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Abstract

This research paper describes a development to eliminate phase lag permitting a single

commercially available sensor (Global Positioning System, GPS receiver) to provide full-state

knowledge (including angular acceleration), eliminating the need for accelerometers, rate

gyros, and other sensors. GPS position data is used to provide full-state estimates using high

gain observers, and two topologies (Gopinath and Luenberger) are examined and compared,

and example preferred design choices are discussed. Observer gain tuning is illustrated and

assertions are evaluated via simulations. A major weakness of feedback state observers if

phase lag (90 degrees per unit of system order) so in particular, novel methods are introduced

to achieve near-zero phase lag state estimation at all frequencies.
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1. Introduction

The basic idea is to provide knowledge of a spacecraft’s attitude, attitude rate, and angular

acceleration using only position measurement via the global positioning systems (GPS)

without having exceedingly noisy state estimates. The lofty goal is to replace high cost on-

board attitude sensors with low-cost GPS antennae and specialized algorithms. [1]

Reference object Typical accuracies

Stars 1 arc second

Sun 1 arc minute

Earth (horizon) 6 arc minutes

RF beacon 1 arc minute

Magnetic field 30 arc minutes

Global Positioning

System

6 arc minutes

Table 1. Typical accuracies of objects sensed

Anyone interested in angular state identification would benefit from this development, but in

particular the focus remains spacecraft developers and operators. Customers include

government agencies (e.g. the National Aeronautics and Space Administration, NASA; the

Department of Defense, DoD; the Department of Energy, DoE; etc.), but additionally several

commercial companies develop and operate spacecraft for non-governmental purposes (e.g.

Lockheed-Martin, Hughes, Orbital Sciences, etc.). Typical attitude knowledge requirements

vary for disparate spacecraft missions. The requirements drive the choice of sensor. The

sensor choice comes with penalties in weight and power, both of which are premiums for

space missions. Some examples of typical design solution choices are listed in Table 1 from

[2] and Table 2 from [3].

1.1 Prior research

NASA Goddard's Navigator team developed a new receiver that allows spacecraft to quickly

acquire GPS navigational signals in weak-signal areas. Seeing an opportunity to help lower
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mission costs, the NASA Navigator team, led by Goddard engineer Luke Winternitz, used

Research and Development (R&D) funding to develop algorithms and hardware for a

prototype spacecraft GPS receiver that would allow spacecraft to acquire and track weak GPS

signals at an altitude of 100,000 km (62,137 miles); well above the GPS constellation, roughly

one quarter of the distance to the moon. Winternitz and his team from NASA are currently

developing the next-generation Navigator receiver; one that can acquire the GPS signal even

if the spacecraft carrying the receiver is located at lunar distances. Such a capability would

reduce mission operational costs because ground controllers could track spacecraft via GPS

rather than with expensive ground stations. [4]

Sensor Accuracy Characteristics and Applicability

Magnetometers 1o at 5000km

5o at 200km

Attitude measured relative to Earth’s

local magnetic field. Magnetic field

uncertainties and variability dominate

accuracy. Usable only below ~6000km.

Earth Sensors 0.05o at GEO

0.1o at low altitude

Horizon uncertainties dominate

accuracy. Highly accurate unites use

scanning.

Sun Sensors 0.01o Typical field of view +1300

Star Sensors 2 arc sec Typical field of view +160

Gyroscopes 0.001 deg/hr Normal use involves periodically

resetting the reference position

Directional Antenna 0.01o to 0.05o Typically 1% of beamwidth

Table 2. Typical system accuracy and characteristics

Component Weight (kg) Power (W)

Earth Sensor 2 to 3.5 2 to 10

Sun Sensor 0.2 to 1 0 to 0.2
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Magnetometer 0.1 to 1.5 0.2 to 1

Gyroscope 0.8 to 3.5 2 to 20

Processors 5 to 25 5 to 25

Table 3. Typical hardware component weight and power

Figure 1. Block diagram of the hemi-dodecahedron antenna array and receiver. [5]

David Quinn [5] invented a GPS system for navigation and attitude determination, comprising

a sensor array including a convex hemispherical mounting structure having a plurality of

mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving

signals from space vehicles of a GPS constellation. His invention includes a receiver for

collecting the signals and making navigation and attitude determinations. There may

alternatively be two opposing convex hemispherical mounting structures, each of the

mounting structures having a plurality of mounting surfaces, and a plurality of antennas

mounted to the mounting surfaces.

Recently, flight results from the Radio Aurora Explorer (RAX) satellites, RAX-1 and RAX-2,

which are CubeSats developed to study space weather, demonstrated a multiplicative

extended Kalman filter is used for attitude estimation. On-orbit calibration was developed and

applied to compensate for sensor and alignment errors, and attitude determination accuracies

of 0.5° 1–σ have been demonstrated on-orbit. It is noteworthy that multiplicative extended
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Kalman filtering is at the high-end of computational requirements. Simpler approaches are

valuable for space missions, where every pound to orbit can be quite expensive. In this paper,

simpler estimation approaches will be evaluated, including Gopinath-styled and Luenberger-

styled observers.

1.2 Distinctiveness of this development

NASA Goddard’s Innovative Technology Partnerships Office Home currently invites

companies to license a new method for low-noise attitude rate determination that uses Global

Positioning System (GPS) signals and eliminates the need for heavy and expensive

gyroscopes and star trackers [7]. Currently methods use the Doppler differences [8] among

GPS signals to calculate highly accurate attitude rates, offering a low-noise, lightweight, and

lower cost method for determining attitude rate for satellites and potentially for aviation and

marine vehicles.

This development will seek to accomplish similar results (low-noise, lightweight, and lower

cost) without using Doppler information. Since gyroscopes and star trackers are extremely

expensive, this technology can result in a major reduction in cost and has the potential to

significantly reduce weight as well as enable navigation control by a single/few GPS

receiver(s).

Current GPS devices estimate attitude rates using a phase-locked loop process, which is very

noisy and requires data to go through a low-pass filter in order to be meaningful. This filtering,

however, limits high-frequency rates that the system can handle. The goal is to not use the

GPS receiver rate estimates, while obtaining angular position, angular rate, and perhaps

angular acceleration with only GPS position and attitude data and simple algorithms

(requiring less computation than say Kalman Filtering), and simultaneously reduce noise.

Lastly and perhaps most importantly, observer gain tuning for two topologies will be

introduced to achieve near-zero phase lag estimation at all frequencies.

2. Materials and Methods

2.3 Relevant Sensor Technologies

There are reasons for current engineers maintaining classical attitude sensor suites on a

spacecraft even when a GPS receiver is added. [6],[10] In this case the classical sensors may

be allowed to be of modest quality only, as subsequent fusion of their data with those from the
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GPS receiver may restore the accuracy of the final estimate again to an acceptable level.

Hence, low-cost attitude sensors combined with a low-cost GPS receiver can still satisfy non-

trivial attitude reconstitution accuracy requirements. Several different options are available

for determining the spacecraft attitude commonly used today. Several examples are listed

below. [2]

2.3.1 Magnetometers

In flux gate magnetometer, alternating current is passed through one coil, and a perm alloy

core is alternately magnetized by electromagnetic field. The corresponding magnetic field is

sensed by second coil. The distortion of the oscillating field is a measure of one component of

the Earth’s magnetic field. Three magnetometers are required to determine Earth’s magnetic

field vector.

Figure 2. Sun Sensor

2.3.2 Sun Sensors

A transparent block of material with known refractive index, n, is coated with an opaque

material (Figure 2). Light passes through a slit etched in the top onto receptive areas etched in

bottom. Light from the sun passes through the slit, forming a line over the photodetectors.

The distance from the centerline is measured by the sensed pattern, which determines angle.

With index of refraction, n, the angle to sun is determined using Snell’s Law. Photodetectors

may provide digital (coarse) or analog (fine) outputs.
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Figure 3. Static Horizon Sensor

2.3.3 Earth’s Horizon Sensor

Static horizon sensors typically use infrared sensing to reduce optical error in a manner

depicted in Figure 3. The field of view is larger than the entire earth’s edge (limb), so the

sensor provides orientation with respect to the nadir.

Figure 4. Scanning Horizon Sensor

Scanning horizon sensors use spinning assemblies to identify light and dark areas (of infrared)

on the focal array. The width of light area identifies spacecraft roll angle.

2.3.4 Star Sensors

These instruments have narrow fields of view, and must have a low angular velocity to

compare stars to a star-location catalog to identify the target. The x and y location of the

star’s image on focal plane determines angles to the star. One example is the Goodrich star

tracker (Table 4).
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Performance Category Narrow FOV Wide FOV

Field of View (FOV)

Magnitude Sensitivity

Power (avg. at +45oC

8o X 8o

+6.5

10W

20o circular

+5.1

10W

Weight (with lightshade)

Update rate

Simultaneous tracking

8.5 lb

6 Hz

6 stars

7.5 lb

2 Hz

6 stars

Overall Accuracy

- Pitch/Yaw, rms

- Roll, rms

2 arc sec

40 arc sec

5 arc sec

40 arc sec

Figure 5. Goodrich star tracker

2.3.5 Gyroscopes

Mechanical Gyroscopes use the body-axis moment equation (aka “Newton-Euler’s Moment

equation) to be derived in Section 2.5.1, which turn out to be nonlinear relationships in all

three axes.

Figure 6. Mechanical gyroscope

Simplifying assumptions include a constant nominal spin rate about the z-axis with small

perturbations in angular velocity about the other two axes. Assuming the moment of inertia

about the spin axes is relatively maximal, while the other two moments of inertia are equal to

each other also helps. Then linearization produces expressions for perturbations in angular

acceleration of the input and output axes. This motivates me to later seek a development that
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also can produce angular acceleration (in addition to position and rate) to eliminate any

justification for needing the gyroscope, which is relatively expensive and also prone to

mechanical failure.

Two-degree-of-freedom gyroscopes place a free gyroscope on a gimbaled platform. The gyro

essentially “stores” reference directions in space, and then angle pickoffs on the gimbal axes

measure pitch and yaw angles.

Figure 7. Optical gyroscope

Large angle feedback may be used with gyroscopes to produce a rate gyro, analogous to a

mechanical spring constraint, while large angle rate feedback may be used to produce an

integrating gyro, analogous to a mechanical damper restraint.

Optical gyros use Sagnac interferometry to measure rotational rate. When no rotation is

present, photons traveling in opposite directions complete the circuit (Figure 7) in the same

time. When a rotational rate is present, travel lengths and times are different, and a simple

equation relates the time of arrival of light to the rotational rates that are present.

2.4 Global Positioning Systems [1]

The Global Positioning System (GPS) is a U.S.-owned spacecraft constellation that provides

users with positioning, navigation, and timing (PNT) services. This system consists of three

segments: the space segment, the control segment, and the user segment. The U.S. Air Force

develops, maintains, and operates the space and control segments.

GPS positioning works on two basic mathematical concepts. The first is called trilateration,

which literally means positioning from three distances. The second concept is the relationship

between distance traveled, rate (speed) of travel and amount of time spent traveling, or:
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Distance = Rate × Time (1)

The first concept, trilateration, is the focus here. It centers around finding your position on the

Earth by knowing the location of orbiting GPS satellites and the distance from those satellites

to your location on the planet. However, there is no way to actually take a yardstick, tape

measure, etc., and measure the distance from your location up to the satellites. The trick lies in

the fact that GPS satellites are always sending out radio signals.

In GPS positioning the rate is how fast the radio signal travels, which is equal to the speed of

light (299,792,458 meters per second). Time is determined by how long it takes for a signal to

travel from the GPS satellite to a GPS receiver on earth. With a known rate and a known time

we can solve for the distance between satellite and receiver. Once we have the distance from

at least 3 satellites, we can determine a 3 dimensional position on or above the surface of the

earth.

This development will utilize this position measurement and relate it to the angle

measurement via rigid body dynamics, and then expand to angular velocity, and angular

acceleration utilizing classical state observers. Alternatively, the attitude output of the GPS

receiver [5] may be directly fed into the state observers. This later approach was critically

evaluated in simulation and frequency response analysis in the next section.

2.5 Details of this Development

Equation of motion and observer tuning are provided next, and later implemented in

MATLAB/SIMULINK (Figure 20).

2.5.1 Equations of motion [9]

Notice by using the definition of angular momentum in a body frame, we can reveal a rigid-

body spacecraft’s angular velocity by knowing the position-rate of a point on the rigid body

and knowing the fixed relationship of that point to the body’s center of mass.

HB = lim
N→∞ i=1

N ρ
B
i × Δmir� i� (2)

HB = M ρ
B
× V� dm (3)

V is the velocity of dm

VB is the velocity of the body
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Taking the limit as N→ ∞ in our calculations of the system of particles the resultant external

torque with respect to B: H� B + VB × P = MB . If MB = 0 and VB = 0 or B is the CM or VB ∥

VC then HB is constant, and thus, Conservation of Angular Momentum.

Figure 8. Rigid-body spacecraft

Another form of the angular momentum principle is in [9] equation 18.22: MB = H� B + � ×

HB proves to be a much more useful form and bestows one relationship between velocity

through linear momentum and angular velocity through angular momentum. By defining the

centroidal moment of inertia, we reveal the body’s angular velocity.

�� = � �
�
× � × �

�
� �t (4)

�� = � � × � × �� �t (5)

�� = � � � � � � ㈹� � ���� �t (6)

�� = � �
�
� �

�
�

� � ��� ��
㈹1�

� ㈹�
�
� ���

�� � ��� ��
㈹t�

� �t (7)

where a � b = i=1
n aibi�

After a few math steps, we arrive at
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�� = �

��t + ��t � t��� � t���
� t��� t�t + ��t � ����
� t��� � ���� t�t + ��t

�t
��
��

� �t (8)

Then, defining the centroidal moment of inertia:

���� � �

��t + ��t � t��� � t���
� t��� t�t + ��t � ����
� t��� � ���� t�t + ��t

� �t (9)

Resulting by substitution in the following:

�� = �� � (10)

The rotational motion law is often referred to as Newton-Euler, and it may be paraphrased as:

“the summed torque vector [3x1] acting on a body is proportional to its resultant angular

acceleration vector [3x1], and the constant of proportionality is the body’s mass inertia matrix

[3x3].” Newton-Euler also only applies in a non-moving, inertial frame. The equations needed

to express the spacecraft’s rotational motion are valid relative to the inertial frame (indicated

by subscript “B/i” often assumed) and may be expressed in inertia. The motion measurement

relative to the inertial frame is taken from onboard sensors expressed in a body fixed frame.

����� = �����

�t �
= �����

�t �
+ ���� �㜮� × ����

�where ����
�
= � � �� �� �㜮� (11)

���
�㜮�� → � � = �� = � �� + � × � � (12)

With proper initialization, the angular velocity can be integrated to provide angular position,

but should not be differentiated to seek angular acceleration. Differentiation is inherently a

noisy process and numerically differentiating noisy-measurements amplifies the noise, and

thus angular acceleration obtained this way would be garbage. Other methods are used

including various forms of Kalman Filtering and a simpler approach, state observers. Two
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kinds of state observers are evaluated here, both high gain observers: Gopinath-styled

observers and Luenberger-styled observers per [14].

2.5.2 Equations of State Estimation

Luenberger-styled observers (henceforth simply referred to as Luenberger observers) are a

simple method to estimate velocity given position measurements. Additionally, the

Luenberger observer may be used to provide estimates of external system disturbances, since

the observer mimics order of actual systems dynamic equations of motion. When used the

Luenberger disturbance observer bestows robustness to system parameter variations, which

will be evaluated shortly.

2.5.3 Observer gain tuning

For desired observer eigenvalues 1=12.5, 2=50, 3=200, desired motion controller gains

(tuned for disturbance rejection) c1=6, c2=25, c3=100, and current regulator gain

i=800, the general form of the characteristic equation may be equated to the specific

observer forms, controller form and current regulator form revealing gains. Tuning was

identical for the two observer topologies to permit apples-to-apples comparison (Figure 20) of

effects on estimation accuracy. Observer robustness is assessed by implementing error in the

known inertia matrix. Thus, the known inertia matrix [J] will be different than the estimated

inertia matrix �� .

Figure 9. Luenberger-Styled Observer

2.5.4 Luenberger Tuning (actual current):

This method uses the actual current from the spacecraft actuator circuit (rather than modeled

or predicted current) to provide the feedforward element of the observer. The actuator circuit
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is assumed to be a DC brushless motor actuating a momentum exchange device (e.g. reaction

wheel, control moment gyroscope, etc.). In a DC brushless motor, the armature is fixed, while

permanent magnets rotate, while an electronic controller commutates the electromagnetic

force providing a rotating field.

Figure 10. DC Brushless motor [2]

This position would normally include the actual current or control, u in typical observer

designs (recalling that observer design is a dual process of controller design). Utilizing the

reference input and actual circuit moment, you can produce an estimate of remaining

disturbance (normally fed back to feedback controllers to handle).

C.E.= (s+ 1)(s+ 2)(s+ 3) = Jp
^
s
3
+ bo s

2s + Kso s + Kiso (13)

bo = Jp
^
( l1+ l2+ l3) (14)

Kso =Jp
^
([ l1( l2+ l3)+ l2 l3] Kiso = Jp

^
( l1 l2 l3) (15)

Gopinath Tuning:

��㈹t�
�㈹t�

=
��1tt+��tt+��t

��tt ������ +��㈹�������t
��

+�
�t
�t
��t㈹���+����

������tt+ �����+����1 tt+����tt+����t
(16)
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Equating coefficient of ‘s’ and solve for gains:

(s+ 1)(s+ 2)(s+ 3)= Jp
^
s3 + (Jp

^
Rp
^
+Ke
^
K1)s

2 + Ke
^
K2s + Ke

^
K3 (17)

KT1 =
Jp
^
Lp
^ (l1+ l2+ l3)-Jp

^ Rp
^

Ke
^ (18)

KT3 =
Jp
^
Lp
^

Ke
^ (l1l2l3) (19)

KT2 =
Jp
^
Lp
^ (l1 l2+ l3)-Jp

^ Rp(l1(l2+ l3)+ l2 l3)

Ke
^ (20)

Motion Controller used for simulation comparison:

(s+ c1)(s+ c2)(s+ c3) =Jp
^
s
3
+ ba s

2s + Ks s + Kis (21)

Current regulator: (s+ i) = Lps+Ra (22)

Figure 11. Gopinath-Styled Velocity Observer

Observer estimation frequency response functions were calculated and plotted first for +20%

estimated-inertia error then for the case of +20% error in estimate of Ke=Kt (Figure 12 &
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Figure 13). Notice first that for all cases of zero-error, both observers exactly estimate the

angular velocity of motion. Overall, the Gopinath-styled observer (referred to as simply

“Gopinath” for brevity) performed poorer than the Luenberger-styled observer indicating the

Luenberger observer is less parameter-sensitive with respect to inertia, Ke, and Kt.

Luenberger Gains

bo Kso Kiso

Nm/m/s Nm/m Nms

24.74 7772.3 465090

Gopinath Gains

KT1 KT2 KT3

rad/s Nms /A Nm/A Nms/A

0.4813 238.7 14285

Table 4: Observer Gains

-4

-2

0

2

Fr
eq

ue
nc

y 
R

es
po

ns
e 

(d
B)

101 102 103 104
-5

0

5

10

Frequency (rad/s)

Ph
as

e 
(d

eg
)

Figure 12. Comparison of estimation accuracy frequency response functions for incorrect ��� .

Luenberger (blue) Gopinath (red); dotted = -20% error, solid = 0% error; dashed = +20% error.
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Figure 13. Comparison of estimation accuracy frequency response functions for incorrect Kt=Ke.

Luenberger (blue) Gopinath (red); dotted = -20% error, solid = 0% error; dashed = +20% error.

While the Luenberger observers diverge very close to the maximum tuned bandwidth (even

with parameter errors), the Gopinath observer diverges at a lower bandwidth when errors are

present. Since both observers contain a current-feedforward element, you will see nearly zero-

lag properties out to the bandwidth of the feedback observer controller. Clearly, disturbances

(in the form of modeling errors here) do not influence low frequency estimation (likely due to

the addition of integrators in the observer controllers). The Gopinath observer was particularly

sensitive to errors in Kt indicating its reliance on the feedforward estimation path. Notice in

particular in Figure 12 & Figure 13 that zero-lag estimation occurs even with inaccurate Kt

(albeit with non-zero estimation frequency response at all frequencies).

2.5.5 Angular rate estimation using only position

Time-response simulations were run with identically tuned observers with a sample

commanded trajectory (rotation angle) of *(t)=sin(10t). Iterations were run to establish the

effects of 20% inertia underestimation and the effects of sensor noise on command tracking

accuracy. Sensor noise was modeled as random numbers with zero-mean and unity variance.

Figure 20 displays the methodology for apples-to-apples comparison of effects on command

tracking. Manual switches were used to evaluate a given case with the results displayed in

Figure 14 and Figure 15.
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General conclusions may be drawn. Nominal feedback control handles incorrect-estimation

just fine from the perspective of control, but not knowledge. This is especially since inertia

has nothing to do with the feedback control strategy (lacking a feedforward strategy). Using

the Luenberger observer performs nearly as well if actual attitude angle (t) is used for

estimation, while it does not perform as well when *(t) (commanded angle) is used for

estimation. This is intuitive, since *(t) does not include the errors and noises associate with

the process, while (t) includes these errors and noises. In all cases examined, the Gopinath

observer was inferior to Luenberger observers, which reinforces the earlier revelation of

parameter sensitivity (in the discussion of the estimation frequency response functions). In

addition to examining the effects on command tracking accuracy, estimation accuracy was

plotted from the simulations to confirm the indications garnered from the discussion of Figure

12 & Figure 13 (estimation accuracy frequency response functions, FRFs). The single case of

20% inertia underestimation with zero-mean and unity variance sensor noise confirmed that

the Luenberger observer provided superior estimates compared to the Gopinath observer for

this sinusoidal commanded trajectory.

-50

0

50

100

150

200

250

Fr
eq

ue
nc

y 
Re

sp
on

se
 (d

B)

100 101 102 103 104 105-90
0

90
180
270

Frequency (rad/s)

Ph
as

e 
(d

eg
)
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Figure 15. Estimation errors for ��� = 0.8Jp and =0, 2=1 sensor noise. Black solid line is

Luenberger with (s) input; Green dotted line is Luenberger with *(s) input; red solid line is

Gopinath with a(s) input; blue dotted line is Gopinath with *(s) input

2.6 Summary of Observers’ Utility

We see that classical state observers can effectively produce estimates of angular acceleration

using a procedure that uses proportional-integral estimation (thus noise-smoothing). Then the

estimates are integrated once and twice for estimates of angular rate and position respectively

after adding a derivative component to estimation. Frequency response evaluation

demonstrated near-zero lag estimation of the full-state using only position & angle data from a

GPS sensor.

3. Results – A Preferred Design

Following from the preceding development, the favored design approach is to use a

commercial space-rated GPS receiver with onboard avionics executing a Luenberger observer

to produce angular acceleration estimates via proportional-integral estimation. This estimate

is integrated (smoothing noise) and derivative-action is added to the estimation of angular

velocity. The angular velocity estimated is integrated (further smoothing noise) to produce

angle estimates with demonstrated high-accuracy.
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3.1 Sensors

GPS receivers have been produced on chips making them rapidly useful for spacecraft

applications. [13] Specific GPS receivers may be chosen to meet pointing requirements,

electrical compatibility, and other performance specifications. The SGR-05U [17], GPS-12-

VA [18] and Namuru, for example have very low (~1W) power requirements, while

TOPSTAR 3000D [16] has more performance history (e.g. Demeter, Swift Gamma-Ray Burst

Missions, etc.).

Receiver Accuracy Cost

SGR-05U 10m LEO

1cm/s LEO

$25,900

Namuru V2

or 3

2cm LEO $6,600

TOPSTAR

3000

10m LEO

100m GEO

$13,624

recurring

$13624 non-

recurring

GPS-12-VA 10m LEO

0.03 m/sec

LEO

$25,900

Table 5: Observer Gains
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Figure 16. SGR-05U GPS receiver

3.2 Interface specifications

One example interface specification is taken from the AMS-02 spaceflight experiment using

the TOPSTAR 3000[16]. Interface hardware includes merely the STR4500 Spirnet

communications cable for wireless antenna, the receiver, and PC Windows! The only software

necessary for that mission was the SimpLEX software package, due to the International Space

Station already having the SPRIRENT software system. I recommend utilizing

MATLAB/SIMULINK with XPC Target or other such operating systems for easy

implementation of various observers in the single operating software if possible; otherwise

implement the observers in the software system of choice by the space mission. MIL-STD

1553 is the standard for the bus. “Space qualified” receivers comply with ISO9001 and

AQAP110. Sample functional architecture and receiver diagrams are included in Figure 18

and Figure 19.

Figure 17. Namuru V3.2 GPS receiver
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Figure 18. Functional architecture [16]

3.3 Estimation of electronics complexity and costs

Complexity will be low, while costs will vary by choice of hardware and software to meet

mission requirements (some exterior to mere knowledge requirements, e.g. mission

requirements). GPS receivers have become mature for space-use, and furthermore classical

state observers are ubiquitously known. The prototype observers are already built, and the

receivers are commercially available. To implement this development, simply feed the GPS

position signal into avionics program implementing the estimated full-state in motion

controllers expecting good results as presented here.

Figure 19. Receiver Diagram [16]

4. Discussion

The basic idea is to provide knowledge of attitude, attitude rate, and angular acceleration

using only position measurement via the global positioning systems (GPS) without having

exceedingly noisy state estimates. The lofty goal is to replace high cost on-board attitude

sensors with low-cost GPS antennae and specialized algorithms. Not only have Luenberger

and Gopinath estimator topologies achieved the objective, enhancing the topologies with
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feedforward elements yields near-zero phase lag estimation at all frequencies. In light of the

impacts of phase lag, it may be asserted this novel approach should be considered the new

initial baseline standard to begin design of state estimators, and future research should begin

from this new baseline seeking further improvements, including optimization for various cost

functions.
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Figure 20. SIMULINK model for error comparison
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