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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, s(rd(a)) , Td@ being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqc), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate Si crystal, defined for the
reduced Fermi energy ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks, as follows.
(1)The critical donor(acceptor)-density, Ncpnnpp) (Fd(a)) . determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEbncop) (d@@): given in Eq. (21).

(2) In Table 5, the numerical results of the electrical conductivity, G(N , rge), T), given in Eq. (27), are

obtained for the degenerate P-Si system, suggesting an accuracy of the order of 7.5%, which gives us

confidence in the determination of other electrical-and-thermoelectric properties.
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(3) Finally, in Tables 10 and 11, one notes here that with increasing temperature T(K): (i) for reduced Fermi

energy &n(p)( = 1.813), while the numerical results of the Seebeck coefficient Sb present a same minimum

(maximum) (= ( )1563x107% %), those of the figure of merit ZT show a same maximum ZT(= ), (ii)

for &, =1, those of Sb and those of ZT present same results: Sb (= ( )1.322 % 10_4%) and 0.715,

respectively, (iii) for &,y = 1.813 and &y = 1, those of the well-known Mott figure of merit give same

2

(ZDmott = F( 1 and 3.290), respectively, and finally, (iv) we show here that in the degenerate Si-
*Sn(p)

case, the Wiedemann-Frank, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as I and I1.

In I, our new expression for the extrinsic static dielectric constant, s(rd(a)), ldca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing ry,) ,
s(l’d(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type
degenerate Si crystal, defined for the accurate reduced Fermi energy [3], (( ). Therefore, all the
numerical results of those obtained and given in II are now revised and performed, in comparison with those
obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4, 5, 6] are presented in Tables 1
and 2. In Section 3, the values of optical band gap are given in Table 3, and also compared with
experimental results [8]. In Section 4, the physical and mathematical methods, needed to determine and
evaluate the critical densities of the majority carriers localized in the exponential conduction (valence) band
tails, are presented, confirming thus the corresponding numerical results, obtained using Eq. (3) for the
generalized effective Mott criterion in the metal-insulator transition (MIT), as observed in Table 2. In
Section 5, based on the Fermi-Dirac distribution function method, our accurate expression for the electrical
conductivity, Op(p), is determined, being a fundamental one, since it is related to all other electrical-and-
thermoelectric coefficients, and then all the numerical results of those coefficients are reported in Tables 4-

11. Finally, some concluding remarks are given in Section 6.
2. Energy-band-structure parameters

First of all, we present in Table 1 the values of the energy-band-structure parameters, given in the n(p)-type

Si-crystal, such as: (i) if denoting the free electron mass by m,, the relative effective electron (hole) mass,
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mn(p)/ My, which is equal to the relative effective mass, Mpp) /Mg [5], as used in this Sections 2 and 4 to

mnxmp

determine the critical impurity density in the MIT, (ii) to the reduced effective mas, m, = g

X Mgy, as
used in Section 3 to determine the optical band gap (OBG), and (iii), to the conductivity effective mass,
Mcnccpy/ Mo [4], as used in Section 5 to determine the electrical-and-thermoelectric coefficients. Further,

go(Fd@a) = rsi) [4] is the unperturbed intrinsic band gap, as used in Section 3 to determine the optical band
gap, & [4], is the relative intrinsic dielectric constant, the critical impurity density in the MIT,
NCDn(CDp)(rp(B)) [2, 6], and finally, the effective averaged numbers of equivalent conduction (valence)-band
edge, Jevy = 3(2) [2, 6], used for present majority-carrier transport phenomena, instead of those, equal to:

6(2), used for other minority-carrier transport phenomena [7].

Table 1. Here, the effective electron (hole) mass, My, is equal respectively to: My, as used in Sections 2 and 4, to

m, in Section 3, and Mcp(cpy in Section 5, and the values of other important parameters are also reported.

mn(p)/mo [5] m/m; [5] an(Cp)/mo [4] Gev) [2, 6] go [4] € [4] NCDn(CDp)(rP(B)) [2,6]
0.3216(0.3664)  0.1713 0.26(0.373) 3(2) 1.17¢V 114 352 (4.06) x 10 cm™3

We now determine our expression for extrinsic static dielectric constant, s(rd(a)), due to the impurity size

effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the MIT, as follows.

2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since I'q(q), given in tetrahedral covalent bonds, is usually either larger

or smaller than Fgoeo) = Isi, a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: rye)y > Fdocac) (Fd(a) < Fdo(ac)): due to the d(a)-size effect,

respectively [1]. Then, we have shown that this ry, -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, €(I'q(a)), determined as follows.

At T=0K, we shown [1] that, as rqyea) > Idocac)( Fd(a) < Fdo(ac)) » SUch the compression (dilatation)

corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap
gni(gpi)(rd(a)) and the effective donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained

in an effective Bohr model, as [1]:

2
gnl(gpl)(rd(a)) go(r5|) = d(a)(rd(a)) - do(ao)(r5|) - do(ao)(rS|) [ S(rd(a)) - 1]: (1)
where
s(rd(a)): 380 - < g, for ld@a) = Ido(ao)s and
1+ ( fda) ) = ><|n( fda) )
do(ao) do(ao)
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One notes that €(ry(,)) decreases with an increasing Iy(a).

= €, for I'y(ay) < I'do(ao)- (2)

&(raea))= J

2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate Si-crystals, the critical donor(acceptor)-density, Ncpnmop)(Fdc)) > is

determined from the generalized effective Mott criterion in the MIT, as:

NCDn(NDp)(rd(a))l/3 % agn(gp)(rdea)) = Z, z=0.290364495(0.3687017088), 3)
and the effective Bohr radius agn(gp)(Fdca)) is given by:

_  &(rg@)x 2 —8 €(rdca))
aBn(Bp) (rd(a)) = —(mn(p)/mo)xqz =053x10"°cm x —(mn(p)/mo), (4)

where —q is the electron charge, €(ry@)) is determined in Eq. (2), and My, /My = Mpgy/mg =
0.3216(0.3664), as given in Table 1. It should be noted in Eq. (3) that, for the Mott criterion in the MIT,
Zmott=0.25, while in the present work, z=0.290364495(0.3687017088), is chosen so that we can obtain
the exact values of NCDn(CDp)(rp(B)) = 3.52 (4.06) x 10 cm™2 [2, 6], as those given in Table 1. Further,
these obtained results can also be justified by those of the densities of electrons (holes) localized in
exponential conduction (valance)-band (EBT) tails, NEEE(CDp)(rP(B)) = NCDn(CDp)(rp(B)) = 3.52 (4.06) x
108 cm™3, obtained using Eq. (21), as investigated in Section 4, and reported also in Table 2. In this Table,
we also present various values of €(Iy)), asn(ep)(Fd(a)): d(a)(rd(a)) and gni(gpi)(rd(a)), Nconnop) (Fda))
and NGB cop (Faga)) . NOting that the maximal relative deviations, in absolute values, | |, between
Neonavop) (Facay) and NGpheop) (Faceay) are found to be equal to: 9.8(4.91) x 1078, respectively. In other
word, Nepniop) (Fdgay) . determined in Eq. (3), can be explained by the densities of electrons (holes)
localized in exponential conduction (valance)-band (EBT) tails, NEBE(CDP)(rd(a)), determined in Eq. (21).
Furthermore, in our recent work [6], we showed that, in the n(p)-type degenerate Si, the critical
densities of electrons (holes) can also be determined from the spin-susceptibility singularities (SSS),
obtained at = ¢ (raca)), at which the MITs occur.

Table 2. Here, for increasing Iy [4], both €(rg(a)), calculated using Eq. (2) and agn(gp) (Faa)), using Eq. (4), decrease,
while gy (Fa@):  gnicgpi) (Facay) » Neonvop) (Faay) and NEBycop) (Taqay) - calculated using Equations (1, 1, 3, 21),

respectively, increase, affecting strongly all the physical properties, given in Sections 3-5 .

Donor P Si As Te Sb Sn

rq (nm) [4] 0.110 0.117 0.118 0.132 0.136 0.140

g(ry) 11.58 11.4 11.396 10.59 10.16 9.69

agn(rq) in nm 1.91 1.88 1.878 1.75 1.67 1.60
d(rg) in mev 32.6 33.7 33.7 39.0 423 46.6
gni(rg) in meV 1168.9 1170 1170.02 1175.04 1178.67 1182.9

Ncpn(rg) in 1018 cm™3 3.52 6] 3.69181 3.69547 4.59924 5.20648 6.01115

69



NEBT (ry) in 1018 cm~3 3.52[6] 3.69179 3.695468 4.599223 5.20643 6.01109

IRD| in 107® 0 6.5 0.4 3.7 9.8 9.4
Acceptor B Si Ga(Al) Mg In
ry (nm) [4] 0.088 0.117 0.126 0.140 0.144
g(ry) 15.98 11.4 11.1 9.69 9.19
agp(r) in nm 231 1.65 1.60 1.40 1.33
a(ra) in mev 19.5 38.3 40.5 53.1 59.0
gpi(ra) inmeV 1151.2 1170 1172.1 1184.7 1190.6
Nepp(ra) in 1018 cm™3 4.06 [6] 11.177705 12.118516 18.199979 21.328851
NEpp(r,) in 108 cm™3 4.06 [6] 11.177737 12.118572 18.199970 21.328810
IRD| in 1078 0 28 4.58 4.91 1.95

Table 2 also indicates that, for increasing ry(a), both €(ry(a)) and agn(gp)(raa)) decrease, while d(a)(rd(a)),

anicopi) (Td(a)) + Neonovop) (Fay)  and N&pneeop)(Faqay)  increase, affecting strongly all the physical

properties, as those given in following Sections 3-5.

3. Optical band gap

Here, mMy/My is chosen as: My, /Mo =my/my, =0.1713 , and then, if denoting N =N -
Nconnop) (Fda)) > the optical band gap (OBG) is found to be given by:

an1@en(N - Ta@ T) = gn2gp2)(N - Fo@ T) + engepy (N D, (5)

where the reduced band gap is defined as:

1
2T ]2.201)2.201

an2ap2y(N P T) = gricopi) (Taw) = 0.0726V > § (1 + [ =—

=1t =8 ggn)(N - Faa).

Here, the intrinsic energy gap gni(gpi)(rd(a)) is determined in Eq. (1), the Fermi energy rnrp)(N ,T), in
Eq. (A3), and the band gap narrowing A gn(gp)(N , rd(a)), in Equations (B3, B4), of the Appendix A and B,
respectively. Then, as noted in the Appendix A and B, at T=0K, as N =0, one has: grepy(N, T) =

Fno(Fpo)(N ) = 0, as givenin Eq. (A4), and A gn(gp)(N ,I’d(a)) =0, according to the MIT, as noted in
Appendix A and B. Therefore, gniigp1) = gn2gp2) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

Finally, the numerical results of gnl(gpl)(N >0, g, T) at T=20K, calculated using Eq. (5), expressed as
functions of N and ry(,, and reported in Table 3, being also compared with the corresponding data

[8], obtained in the P(B)-type degenerate Si, giving rise to the accuracies of the order of 1.16%
(2.68%), respectively.
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Table 3. In degenerate d(a)-Si systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5), and in

P(B)-systems, those also compared with corresponding g3 [8], giving rise to the relative deviations in absolute values

IRD]|, 1.16% and 2.68%, respectively.

N (108 cm™3) 4 8.5 15 50 80 150
SRa3(N,rp) in eV [8] 1.138 1.133 1.129 1.131 1.132 1.133
gni(N ,rp) ineV 1.149 1.129 1.121 1.118 1.124 1.146

IRD]| in (%) 0.9 0.3 0.6 1.16 0.7 1.15
gn1(N  Tag) ineV 1.152 1.130 1.121 1.117 1.123 1.144
gn1(N , I1e) in eV 1.133 1.122 1.113 1.117 1.134
gni(N  Tsp) ineV 1.136 1.123 1111 1.113 1.129
gi(N Fgp) ineV 1.142 1.125 1.108 1.109 1.122

N (10 cm™3) 6.5 11 15 26 60 170
SRA(N ,rg) in (eV) [8] 1.142 1.140 1.139 1.142 1.142 1.162
g1 (N ,rg) ineV 1.120 1.113 1111 1.112 1.127 1.193

IRD| in (%) 1.9 2.3 2.4 2.64 1.3 2.68
gt (N Toaqan) in eV 1.121 1.098 1.088 1.119
apt(N ,Tyg) in eV 1.107 1.077 1.089
gor(N  Tp) ineV 1.118 1.074 1.078

Furthermore, in Table 3, we also showed that, in the n(p)-type degenerate Si and for a given photon energy

E= w, since the extinction coefficient, (y, and other optical coefficients, as discussed in II, are
expressed in terms of the function (E — gnl(gpl))z. Therefore, if the values of  gn1(gp1) Obtained in Table 3

increase (decrease), (E — gn)2 and other optical coefficients then decrease (increase), respectively.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate Si, if denoting the Fermi wave number by: Kgnepy(N) = (3 2N/ gc(v))l 3, the

effective reduced Wigner-Seitz radius gn(sp), characteristic of the interactions, is defined by

k_l
x rsn(SP)(N »Fd(a) rnn(p)) = % <1 (6)
being proportional to N 3, Here, = (4/9 )V/3, kEnl(Fp) means the averaged distance between ionized

donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length Kgn(spy to Fermi wave number Kenpy at 0 K is

defined by
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Rsn(sp)(N ) rd(a)) = % = @ = RanS(spWS) + [RsnTF(spTF) - RanS(spWS)] Tl < 1, (7
n(Fp) sn(sp)
These ratios, Rsntr(spTF) Rsnws(spws), can be determined as follows.
First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rsyrr(sntry 18
reduced to
-1
Rante(N , Faa)) = kkTFF((:;T)F) - k_"l:FEFgF) S 1, (8)

being proportional to N~1/6.

Secondly, < Ncpnnpp)(Fd(a))» according to the Wigner-Seitz (WS)-approximation, the ratio Rspws(snws) 18

reduced to
_ Kenspyws _ s _ 4 Zepy ce(N rae@)]

Rsn(sp)WS(N ' rd(a)) = % = 1(0.389856828) x (2_ - (sp)d sn(sp) =) ©)
where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the
Appendix B.
Furthermore, as given in II, in the highly degenerate case, the physical conditions are found to be given by :
I(I?riL(Fp) Nn(p) 1 kl;r}(Fp) Fno(Fpo)

< = < — =R <1, A =— 10
an@p) | oG A Ky D) "®) T naey (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,
Rsn(sp) 1s determined in Eq. (7).
Then, in degenerate d(a)-Si systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, — (+ ), at position r, and an ionized donor (ionized
acceptor) charge: + (— ) at position R; , randomly distributed throughout the Si crystal, is defined by

V(N = (D) + Vo, (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)-Si system, defined as

_ g2xexp (—Ksn(sp) <|r—Rj])
&(ra@))*|r—Rj|

vi(r) =

where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

Vj(k)z— VL SV

e(rgm) Q  K2+k&’

where Q is the total Si-crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wy (vn(p), N ,rd) = (V(NV(r)), was

determined in 11, as :

Fno(Fpu). ( 1 2)

_ 2 - stn(sp)(N ,rd(a)) _ V2N 2,,—1/2 —
Wag) (Vn(ey: N+ Tacay) = M > eXp< ool | M) (N Fa@) = 55 > A Ksncopy: Vo) =
n(p)
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Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

3.320313702 will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally V) = ,
Fno(Fpo)

where  is the total electron energy and  pno(rpoy 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2xk2
k = 2%

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
o)

two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N, Facay)-
4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)

In heavily doped d(a)-Si systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) = x ex [ ]
2 V2 Wnep) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) "5 = Z_f is defined by

(C =V D =( & Daw= _,( —V)¥IxPW)AV, for a=1.

*Rsn(sp)

Then, by variable changes: = ( —V)/\ Wy and X =— / /Wy = Anp) X np) X eXp| —/— |,
4x [[vng)|

and using an identity:
oo ,_1 2
0 s?7z2x exp (—xs —3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D___1(X) is the parabolic cylinder function and I'(a + 2) is the Gamma function, one thus has:
2

2a-1 ait
( z %>KIM _ o (—xzj;_;an(g) xT(a +%) « D_a_%(x) _&xp (—xj;_i)xnn(pz) x exp | — xR;:(ST\:((pZ)T—l) x [(a+
5xD_,500. (13)
B. Feynman path-integral method (FPIM)
Here, the ensemble average of ( — V) s = z_% is defined by

1 2
— )2 _ 22 __ Y2 M@y e gl _t (4 Whg)) 2
(C =) 2 = “deriv = 375075 < e (D72 X exp{ >z —(dtiT=—1,

2
noting that as a=1, (it) < x exp {— (tzﬂzp)} is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = and X == /,/Wppy, and then using an identity:
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S (s 2 x exp[ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

_1 -1 -1
one finally obtains: ( i epim = ( Z ams ¢ i %)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ 0o onehas: 5 -— o0 andX -— oo, In this case, one gets:

2
V2 x Tx (—x)a_%

g 2T ) =g

_1 1
Therefore, Eq. (13) becomes: ( z “dam = %72. Further,as -+ 0, one has: ) -— 0 and X ~— 0. So,

one gets :

D_, 3(X == <o) (a)xexp((va+—lg)x—;—;+%)~o, @ =52——.

1642 27 rG+d)

-1
Thus,as -+ 0, from Eq. (13), one gets: ( i “Yam - 0.

-1
In summary, for __= 0, the expression of ( z “)xim can be approximated by:

2><k2

a_7 — —
( & Dxam 2, = - (14)
i) = -
As  -—0, from Eq. (13), one has: ) -»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
x2 .
D_a_%(x L) B@xexp|—(Va LY x—2— 2] .0, B@ = % noting that
16a2 24 r(z 4)]
B(1) =5———and B(5/2) = 23,2
2T (5/4)
!
2
. — r-In .
Then, putting f(a) = ﬁ x[(a+ %) x B(a), Eq. (13) yields
(¢ Dxm R x(2a-1)
Ho)( n) —+ 0. Fagey @) = —5— = exp |- ——B——— (\/5 +%) (k)| - O (5)
a 8% [|vn(p)| 1682
Further, as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
)(2
D_,1(X - 00)= X“27x ~7 0. Therefore, Eq. (13) yields
2
( iT)KIM 1 ® )2
Koy ( npy =+ 0 Ta@ @) = —gm— 5 X &XP (—ETEEN) x (A X ) I 0. (16)

It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:
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Fa)( ne) Faa): @) = Ko@) ( n(p): T @) + [Ha@) ( ny: Fa@)» @) = Ky (o), Faay: @] > exp [=
(Ao )] (17)
such that: Fnoy( nepy Fdgay: @ - Hnp)( nepy: Td@ay @) for 0= <16 , and Fppy( nep) Fd@), @) -
Knpy( nepy: Mdea) @) for n(p) = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NCDn(CDp)(N, Id(a)) in the following.
C. Critical impurity density in the MIT

In degenerate d(a)-Si systems at T=0 K, in which my,;,/mMg = Mppy/m, = 0.3216(0.3664), as given in
Table 1, using Eq. (13), for a=1, the density of states ( ) is defined by:

O =22 ()7 s ( 2y, = 212 (2T exp(;“_)anxr(g)xD%(x)= ). (18)

3
2

where x is defined in Eq. (13), as: X ==/ /W) = Anp) X n(p) X EXP —Rontsn)

4% [|vn(p)l

Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My = Mypy/m, and =

n(p

3.320313702, being chosen such that the following determination of NEBE(CDP)(N, I'd(ay) Would be accurate.

Going back to the functions: H,,, K, and F,,, given respectively in Equations (15-17), in which the factor

1

( ;)KIM
=D is now replaced by:

1
( 2m ( <0) gc(\/)x(mn(p)xmo) x.J n(p) v
=== e e faea=1), 27 * @=D), @s D=
(19)

Therefore, NEBE(CDP)(N ,Td(a)) can be defined by

0
Neoneop (N Fa@) = _ ( <0)d ,

where (= 0) is determined in Eq. (19). Then, by a variable change: () = , one obtains:

Fno(Fpo)

Gy (Mney) ™2 ®* Frorpo) | (16
NEBcom (N . Fae)) = — DA O T o [ ® (2= 1) % Fapy( oy Fa@@ = 1) d npy +
I (20)
where
2
o . ~(An@)* n) 3/2
) = 15 @=1) %Koy ( ney Fa@@=1)d gy = 16 2 * (Angp) n(p)) d nep)-

Here, (a=1)= i
24xr(5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral () yields:

— 1 b—1 g—tgt = L& @)
=X —_
n(p) = F7ap, o Ve eTdt= LDV
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2
where b =— 1/4, y,p) = [16An(p)/ \/E] ,and (b, Yn(p)) is the incomplete Gamma function, defined by:

~ ~ b—1)(b—2)...(b—j
FO.Ynp) Yag* @ |1+ 11:61%()(”]
nep

Finally, Eq. (20) now yields:

9e)* (M) 7@ _Fnoepo) 16

EBT _ e(v)*(Mn(p n(p)> Fno(Fpo _ _

NEoncop (N | Faca) = 23 x{ o @=1) % Fagy( npy Fa@y@=1)d ngy +

r, np))

i, 1)

being the density of electrons localized in the exponential conduction-band tails (EBT).
The numerical results of NEB&CDP)(N, ld(a)), evaluated using Eq. (21), are given in Table 2, confirming thus

those of Nepnnop) (Fd(ay)» calculated using Eq. (3).

5. Fermi-Dirac distribution function at low temperatures, and its applications
5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=Q+eN™ y=( — enEp)/(keT),
where  pyep)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in I, can be defined as:

_ p _ o a1 ev
( Proor =Gp( ) * = o px( a_)d s Ty Tt X e (22)
of . .
Further, one notes that, at 0 K, -3 = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  pno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( o) = 1.
Then, at low T, by a variable change Y = ( — n(rp))/(KsT), Eq. (22) yields:
— -p LS eY p _ B -B
Gp( Fn(rpy) =1+ F(Fp) =0 (TreV) (keTy+ Fngrpy) dy =1+ E=1,2,... Cp > (kgT)P x Fncep > 18>
where Cg =p(p—1)..(p — B+ 1)/B! and the integral lg is given by:

(o) yBer _ > yB

IB T oo (1+eY)2 V= (eY/2+e_V/2)2

dy, vanishing for old values of B. Then, for even values of 3 = 2n,

with n=1, 2, ..., one obtains:

o) y2n><€,y

ln =2 ¢ Lz dY - 23)
Now, using an identity (1 +eY)™2 = ;’11 (—1)5*1s x @G~ | a variable change: sy =—t, the Gamma
function: 000 t?"etdt =T (2n+ 1) = (2n)!, and also the definition of the Riemann’s zeta function:
{(2n) = 2°"1n2"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: 1oy = (22" — 2) x 2" x

|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:
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_ ( PyeopF _ p  p(P—1)..(p—2n+1) 2n 2n = — _TkeT
G =-—5—=1+ —_—— = = x (25" =2) x |B,y,| * =G = . 24
p( Fn(Fp)) En(Fp) n=1 (@n)! ( ) | 2n| y p(y)s y Fn(Fp) ( )

Then, some usual results of G,(y) are given in Table 4.

Table 4. Expressions for Gy=1(y = L), as given in II, due to the Fermi-Dirac distribution function FDDF, noting
(@)

that G,=1(y = ZK?FT) = ]: )) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
n(Fp
Gs2(y)  Ga(y) Gs/2(Y) Gs(y) G772(y) Ga(y) Gor2(Y)

= () (= () () (+ ) (——)

These functions G,(y) will be applied to determine the majority-carrier transport coefficients given in the
n(p)-type degenerate Si, in the following.
5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, Mppy/M, is chosen as: My,)/Mo = Mencpy/Mo = 0.26(0.373), as given in Table 1, and all the

n(p n(p

majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpnnop) (Fd(a))» Where the values of critical d(a)-densities Nepnnppy (Fd(ay) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rya), T),

expressed in ohm™ x cm™, the thermal conductivity by K(N , Fdcay, 1) » expressed in %, and Lorenz

Ks

2 2 5
number by L= % X (F) = 24429637 (W ohm

KZ

), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

K(N ,rd(a),T) —
o(N rg@T) L>T. (25a)

K(N ,rd(a),Tst)

Then, it is interesting to define a constant (N, rge))[ = ] in order to show that, for given N

L
and rge), K (N ,rge), T) is found to be proportional to T, as:
_ | % O @D
K (N, rg@T) (N, rg@) > |RDK,K | = ‘1 N T ) (25b)
where |RDK1K | is the relative deviations in absolute values between K(N , rgea), T) and K (N, Fgca), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

First, it is expressed in terms of the kinetic energy of the electron (hole), x = , or the wave number

 2xmen(ep)
k, as:

2
q><k>< k

1/2
= Kk
G(k) =Cx X [k X aBn(Bp)(rd(a))] X (nn(p)(N,l’d(a))) s (26)

mx Ksn(sp)
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which is thus proportional to kz, C = (0.89645)? being chosen such that the numerical results of o will be
in good accordance with the corresponding experimental ones [9, 10]. Further, Ksy(sp), @gn(gp)> and Na, are
defined and determined in Equations (7, 4, 12), respectively.

Then, from Eq. (14), for _ =0, we get: { 2)m 2 and from Eq. (22) we obtain: { ?)gppe = Go(y =

kg T

Fn(Fp)

) l%n(Fp) , where  pyrpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

Ksn(sp) Nnepy (N Faay)

( Faep (N .T) )2] (27)

Fno(Fpo)(N T=0)

1/2
— q2><k n Krn no(Fpo) (N . T=0)
o(N Ty, T) = [C x ni 2 5¢ 2B ¢ [Kengrpy < Aaneep) (Tdca))] < (L) ] X [Go(N , T) x

which also  determine the resistivity as: P(N ,rge), T) = 1/0(N ,ry@), T) , noting that

N = N — Ncpnenop) (Fdgay), and C X anZ = 6.226527 x 107° ohm™! . Further, the Fermi energies Fn(Fp)
and  Fno(rpo) are determined respectively in Equations (A3, A4) of the Appendix A.

In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), a(N , rye), T = OK) is proportional to ,%no(Fpo),
or to (N )*3. Thus, o(N =0, lda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs. Then, in the degenerate P-Si system at T=4.2 K and T=77 K, the numerical results of p and 0 are

calculated, using Eq. (27), and reported also in Table 5, suggesting maximal relative errors of the order of

13.178% (7.5%), respectively. Such an accuracy of G(N , rye), T) gives us a good confidence, using Eq. (27)

to determine other electrical-and-thermoelectric properties, in the following.
Table 5. In the degenerate P-Si system, our numerical results of resistivity p(N ) and conductivity o(N ), calculated
using Eq. (27), are obtained respectively at 4.2K and 77K, respectively, accompanied by their relative deviations in

absolute values, | |, calculated, using the corresponding data [9, 10].

N (10 cm~3) 1.1 1.6 2.7 3.9 7 13

The following resistivity results obtained at T=4.2K are expressed in 10™% ohm x cm.

Pdata [9] 33 23 13 9.4 6 3.8
p (IRD]) 37.3(13.178%)  24.4(5.9%) 14.29(9.9%) 10.02(6.7%) 5.82(3%) 3.3(13.173%)
N (10%° cm™3) 1.85 5.55 8.65

The following conductivity results obtained at T=77K are expressed in ohm™ x cm™,
Ogata [10] 559 1500 2000
o (|RD|) 517 (7.5%) 1409 (6.1%) 2105 (5.2%)
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A.Electrical properties

As given in 11, the relaxation time is related with 0 by:

T(N ,rga), T) = 0(N , rye), T) x %. Therefore, the mobility [ is given by:

axTt(N rg@),T) _ (N rgca).T)
Mcn(Cp) gxN -’

(N rge), T) = (28)

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3, since o(N Taq), T = 0K) is
proportional to (N )*3. Thus, y(N =0, g, 1 =0K)=0 at N =0, at which the metal-insulator

transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

— (Proor _ _Ga)
wWN D =05 TGP

MH(N , Tggay, T) = BN rga), T) X ry(N,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N = 0,14, T=0K) = (N =0,ry@), T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Now, in the degenerate d(a)-Si systems, at T=4.2 K and T=77 K, the numerical results of 0, U, Uy, and the
diffusion coefficient D, calculated respectively by using Equations (27, 28, 29, A8 of the Appendix A), and
reported in following Tables 6 and 7.

Table 6. Here, one notes that: (i) for given N and T, the functions: a(rg), H(rq), Uy(rg) and D(ry), calculated using

respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy, and (ii) for given rq and T, the
functions: (N ) and D(N ) increase, while the functions: (N ) and Yy (N ) decrease, with increasing N.

Donor P As Te Sb Sn

. . . . 1 cm? cm? cm?
In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (m, ot v_xs’T)

N(10%° cm™3)

3 775,183,183,7.3 752,178,178,7.1 651, 160, 160, 6.2 599, 151, 151, 5.8 541, 141, 141,5.3
10 2384, 154,154,14.6 2317, 150,150, 14.2 2039, 133, 133, 12.5 1896, 125, 125, 11.7 1741, 116, 116, 10.5
40 8487, 134,134,324 8248, 130, 130,31.5 7256, 114, 114,27.7 6749,107,107,25.8 6207, 98, 98, 23.7
70 14227, 127, 127,45.0 13823, 124, 124,43.74 12146, 109, 109, 38.4 11290, 101, 101, 35.7 10375, 93,93, 32.9
100 19809, 124, 124, 55.6 19243, 120, 120, 54.0 16894, 106, 106, 47.4 15696, 98, 98, 44.1 14417, 90, 90, 40.5

. . . . 1 cm? cm? cm?
In the following, our numerical results of (o, Y, gy, D) at K, expressed respectively in (ohm—xcm, ot v_xs’T)

N(10* cm™3)

3 806, 190, 218, 7.8 781, 185,213,7.6 678,167,193, 6.6 624,157,183, 6.2 565, 147,172,5.7
10 2401, 155,160, 14.7 2334, 151,155,143 2054, 134,138,12.7 1910, 126,129, 11.8 1754, 116, 120, 10.9
40 8496, 134, 134,32.5  8257,130,131,31.5 7264,115,115,27.8 6757,107,107,25.8 6214, 98,99, 23.8

70 14234, 127, 128,45.0 13830, 124, 124,43.8 12152,109, 109, 38.5 11296, 101, 102, 35.8 10381, 93, 93,32.9
100 19817, 124,124,52.6 19249,120,121,54.1 16900, 106, 106,47.5 15701, 98,99,44.1 14421, 90, 91, 40.5
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Table 7. Here, one notes that: (i) for given N and T, the functions: a(ry), U(r,), Uy(ra) and D(r,), calculated using
respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing r,, and (ii) for given r, and T, the

functions: (N ) and D(N ) increase, while the functions: J(N ) and py(N ) decrease, with increasing N.

Acceptor B Ga(Al) Mg In

. . . . 1 ecm? cm? cm?
In the following, our numerical results of (0, U, Uy, D) at 4.2K, expressed respectively in (m, Vot R’T)

N(10° cm™3)

3 1577, 379, 380, 13.6 745, 260, 260, 7.3 466, 247, 247,5.2 348,251,251,43
10 4549, 296, 296, 25.4 2504, 178,178, 14.4 1973,150, 151, 11.6 1787, 142, 142, 10.7
40 13358, 242, 242, 53.6 8450, 136, 136, 29.7 6789, 111, 111, 24.0 6234, 103, 103, 22.1
70 25315,227,227,73.2 13794, 125, 125, 40.0 11060, 101, 101, 32.2 10152, 93, 93, 29.6
100 34908, 219, 219, 89.5 18896, 119, 119, 48.6 15117, 96, 96, 39.0 13867, 88, 88, 35.8

. . . . 1 cm? cm? cm?
In the following, our numerical results of (0, Y, hy, D) at K, expressed respectively in (ohm—xcm, s v_xs’T)

N(10%° cm™3)

3 1652, 397, 469, 14.8 802, 280, 359, 8.3 526,278, 402, 6.5 416, 299, 488, 5.8
10 4588, 298, 309, 25.8 2529, 179, 186, 14.7 1994, 152, 159, 11.8 1807, 143, 150, 10.9
40 15378, 242, 244, 53.7 8462, 136,137,29.7 6799, 111, 112, 20.0 6242, 103, 103, 22.1
70 25331, 227,228,73.2 13803, 125, 125,40.1 11067, 101, 101, 32.2 10158, 93, 94, 29.6
100 34922, 219, 219, 89.6 18903, 119, 120, 48.6 15123, 96, 96, 39.0 13872, 88, 89, 35.8

B.Thermoelectric properties
First off all, from Eq. (27), obtained for (N ,rya), T) , the well-known Mott definition for the
thermoelectric

power or for the Seebeck coefficient, Sb, is given in the n(p)-type degenerate Si, as:

2
Sh(N , T) = ( )L x X 5 T x 200 .

3 q =

Fn(Fp)
Then, using Eq. (27), for &y, = e 1, one gets:
keT
= VC ke 2 =|1— y?
Sb(N ,T) _( ) 3 x q an x FSb(N ,T), FSb(N ’T) =1 3Gy (y= TkgT ) ' (30)
() Y (N D

noting that the effective donor (acceptor) density, N = N — Ncpn(npp) (Fd(a)). is a function of rgy(,).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) =T x —dSbf# D G1)

and then, the Peltier coefficient, Pt, is defined as:
Pt(N ,T) =T xSb(N ,T). (32)
Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:
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2

Sb(N T)12x0(N ,rga). T)*T _ [Sb(N T)]?
3xE (o)

_ [
ZT(N ’T) = K(N ,I‘d(a),T) L

= (ZDwott X [2 % Fso(N , T)1%, ZDwort =

(33)

Ks

2 2 x
where (ZT)pyore 1S a well-known Mott result, L = % X (F) = 2.4429637 x 1078 (W ohm

K2

) is the Lorenz

. . . npy(N T . .
number, noting that, in the n(p)-type degenerate Si [En(p) = %(T) 1] , this value of L is exact, and

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

E&np) = %(TNT) 1, as: Lgim(ISb]) = 1.5+ exp [— lls—fé], [Sb] being independent of T or N (?).

Then, being inspired from this Lgjm([Sb])-expression, we also propose another one, given in the n(p)-type

degenerate Si, as:

|Sb(N | T)| b(N T

Lvc(ISb(N , T)) = 144296 +¢~ 2* ; [RD, | = |1 — 25020, (34)

where |RDL,ch| is the relative deviations in absolute values between L and L.

Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-Si, defined by physical conditions : N = 10?'cm™ and T (=3K and

300K), the numerical results of &, = %(TN'T), calculated by using Eq. (A3) of the Appendix A, and then
B

other ones of: G(N ,rya), T) by Eq. (27), K(N , rge), T) by Eq. (25a); Cx(N , rgca)), Kapp. (N, Tgca), T) and
|RDK,KAW|T by Eq. (25b), Sb(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 8 and 9.

Table 8. Here, one notes that (i) for a given T, with increasing ry, due to the impurity size effect, Ncp,(rg), increases,
Fn(N ,T=300K)
b 0’
kT

4.84 x 1073 confirms the Kap, -law, as given in Eq. (25b),

since N(=10?* cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in

K, Cy, and Kppp, (ii) the numerical result: |RDK,KApp |3oo
1300k

and finally, (iii) |RDL,LV<:| 1.535% 107 confirms in the degenerate Si-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-Si systems for N=10%! cm™2 and at T=3K and T=300K, noting that N = N — N¢p(rq)
£n(N  T=300K)

— 1 26.06 26.06 26.04 26.03 26.01
B
104
or=31) (o) 1.9809 1.9243 16894 1.5696 1.4417
104
or=300) (s 1.9905 1.9336 1.6976 1.5772 1.4487
Ker=a) (—2—) 14518 14103 12382 1.1504 1.0566
Ker=so06) () 0.1459  0.1417 0.1244 0.1156 0.1062
Ck () 483936 47.0097 41.2721 38.3456 35.2199
Kapp.(300K) () 01452 0.1410 0.1238 0.1150 0.1056
|RD, in 107 4.821 4.822 4.828 4831 4.837
THPP-1300K
1077xv
Sb(r=ak) (——) —2.180  —2.180 —2.181 —2.182 —2.183
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1075V

Sbir=s00K) (——) —2.165 —2.165 —2.167 —2.168 —2.169
TS(r=3K) (@) —2.180  —2.180 —2.181 -2.182 -2.183
Tsqr=so0) (=) —2.136  —2.137 ~2.138 —2.139 ~2.140
Ptr=aky (1077 %V ) —6.539 —6.540 —6.544 —6.547 —6.550
Pt(r=300K) (1073 x V) —6.496  —6.497 —6.500 —6.503 —6.507
ZT (1=ak) (< 107°) 1.945 1.945 1.948 1.949 1.951
ZT (r=300K)(% 1072) 1.919 1.920 1.922 1.923 1.925
|RD .| in 1078 at3 K 1.534 1.534 1.534 1.534 1.534
IRD| in 107 at 300K 1.535 1.535 1.535 1.535 1.535

Table 9. Here, one notes that (i) for a given T, with increasing r,, due to the impurity size effect, Ncpp(ra), increases,
(N, T=300K)
kT >

4.84 x 1073 confirms the Kapp.-1aw, as given in Eq. (25b),

since N(=10?* cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in

K, Cy, and Kppp,, (ii) the numerical result: |RDK1KApp |
1300k

and finally, (iii) |RDL,Lv<:| 1.535%x 107 confirms in the degenerate Si-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
Acceptor B Ga (Al) Mg In

Highly degenerate a-Si systems for N=10?1 cm™2 and T=3K and T=300K
Fp(N  T=300K)

1 23.80 23.67 23.58 23.53
ke T
104
or=31) (o) 3.4908 1.8896 1.5117 1.3867
104
0(r=300K) (5mees) 35111 1.9007 1.5207 1.3949
Kr=aky —=) 2.5584 1.3848 1.1079 1.0163
K(r=300k) (—) 0.2573 0.1393 0.1114 0.1022
Ck (—=)at T=3K 85.2802 46.1616 36.9315 33.8767
Kapp. (300K) (—-) 0.2558 0.1385 0.1108 0.1016
IRD |, in 2073 5.773 5.835 5883 5.907
TAPP-1300K
107V
Sbr=aky(——) 2.387 2.400 2.410 2.415
1075xV
Sber=a00k) (——) 2368 2.381 2.391 2.396
1077xV
Ts(r=3r) (——) 2.387 2.400 2.410 2.415
s
Ts(r=a00) ) 2331 2343 2352 2.357
Ptr=ak) (1077 x V) 7.162 7.201 7.230 7.246
Pt(r=s00ky (1073 x V) 7.105 7.143 7.172 7.187
ZT 1=k (< 1076) 2.333 2.358 2.378 2.388
ZT (r=300k)(% 1072) 2.296 2.320 2.339 2.349
|RD .| in 1078 at3 K 1.534 1.534 1.534 1.534
|RD, | in 1078 at 300 K 1.535 1.535 1.535 1.535
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encepy(N . T)
keT

Secondly, in the highly degenerate d(a)-Si, for a given N , the values of &y, = , calculated by

using Eq. (A3) of the Appendix A, and other ones of: Sb(N ,T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N ,T)
by Eq. (33), and finally, TS(N ,T) and Pt(N ,T) by Equations (31, 32), respectively, are obtained and
reported in following Tables 10 and 11.

Table 10. Here, for a given N and for a given degenerate d-Si system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for

&, = 1.813, while the numerical results of Sb present a same minimum (Sb) min. (=— 1563 x 1074 %), those of ZT show a same
maximum ZT sy (= ), (ii) for §, = 1, Sb and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (iii) for &, =

2
1813 and &, =1, (ZDmott = 31—2% present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch|

is approximated to 1.541 x 1078, suggesting that in the degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate P-Si system, N = N — Nepp(rp) = (5.962 — 3.52) x 108 cm™2 = 2.442 x 108 cm™3
50

T(K) 40 63.945 70 87.00367 88
g, 3.663 2.677 1.813 1.552 1 0.973
Sh (10*4%) 1243 —1.451 ~1.563 —1.544 - 1322 - 1302
|RD_;,|in107®  1.539 1.540 1.541 1.541 1.539 1.540
ZT 0.632 0.862 1 0.976 0.715 0.694
2
@ Nwott = 327 0.245 0.459 1.0004 1.366 3.290 3472
T, (10*8 %) —9423 —8160 5.129 4256 16574 17258
Pt (1073V) —4.972 —7.258 —9.994 -10.81 —-11.50 —11.461
In the degenerate As-Si system, N = N — Nepn(Fas) = (6.238 — 3.695) x 10 cm™2 = 2,542 x 108 cm=3
T(K) 41 51 65.672 70 89.3753 90
N 3.673 2.706 1.813 1.627 1 0.984
Sb (10-45) —1.241 —1.446 —1.563 —1.554 -1.322 —1.310
|RD_y,c|in1078  1.539 1.540 1.541 1.541 1.540 1.540
ZT 0.630 0.855 1 0.988 0.715 0.702
2
() = 3:7 0.244 0.449 0.9996 1.242 3.290 3.400
Ts (10—8 %) —9407 —8305 —5.554 2928 16574 16993
Pt (1073V) —5.088 —7.373 —10.264 —-10.87 —-8.313 -11.79
In the degenerate Te-Si system, N = N — Nepn(rre) = (7.24 — 4.599) x 108 cm™2 = 2,641 x 10 cm™3
T(K) 42 52 67.37 71 91.66275 92
n 3.678 2.730 1.813 1.659 1 0.991
Sb (10-45) —1.240 —1.441 -1.563 —1.557 -1.322 —1315
|RD_y,c|in1078  1.539 1.540 1.541 1.541 1.540 1.540
7T 0.629 0.850 1 0.992 0.715 0.708
2
() = 3:z2 0.243 0.441 1.0004 1.195 3.290 3.347
Ts (10-8 E) —-9398 —8420 5574 2396 16574 16795
Pt (1073V) —5.208 —7.49 —10.53 —11.05 —12.11 —12.10
In the degenerate Sb-Si system, N = N — N¢pn(rsp) = (8.208 — 5.206) x 1018 cm™2 = 3.001 x 108 cm™3
T(K) 52 62 73.37 81 99.8315 100
N 3.096 2.376 1.813 1.529 1 0.996
Sh (10*45) ~1.363 —1.508 ~1.563 —1.540 —-1.322 —-1319
|RDy,;|in107®  1.540 1.540 1.541 1.541 1.540 1.540
ZT 0.761 0.930 1 0.971 0.715 0.712
2
() = 317 0.343 0.582 1.0002 1.408 3.290 3316
Ts (10*8 %) —9545 —6191 3.280 4683 16574 16675
Pt (1073V) —7.089 —-9.347 —-11.47 —12.48 —13.195 —13.189

In the degenerate Sn-Si system, N = N — Ngpp(rsn) = (14.698 — 6.01115) x 108 cm™2 = 8.68685 x 10 cm™2

T(K)

60

100

149

180

202.7443

203



Zn
sb (107)
|RD, .| in 1078
zT

2
() =5
Ts (10785)
Pt (1073V)

5.737
—0.898

1.538
0.330

0.100

—6837
—5.391

3.341
—1.311

1.540
0.703

0.295

—9716
—13.11

1.813
—1.563
1.541

1.0001

1.980
—23.29

1.291
—1.477

1.540
0.893

1.974

9551
—26.58

—1.322

1.540
0.715

3.290

16574
—26.80

0.997
—1.320

1.540
0.713

3.309

16650
—26.79

Table 11. Here, for a given N and for a given degenerate a-Si system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& = 1.813, both Sb and ZT present same maximal results: 1.563 x 10_4% and 1, respectively, (ii) for & = 1, Sb and ZT present

2
same results: 1.322 x 10_4% and 0.715, respectively, (iii) for & = 1.813 and &, = 1, (ZT)yort = 3i—ézpresent same results: 1 and
P

3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 1078, suggesting that in the
degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate B-Si system, N = N — Nep,(1'g) = (4.7 — 4.06) x 1018 cm™3 = 6.4 x 10'7 cm ™3

T(K) 15 20 23.92 29 32545114 33

& 3.651 2416 1.813 1.281 1 0.967
Sh (10*45) 1.245 1.501 1.563 1473 1322 1.298
|RD, .| in 1078 1.539 1.540 1.541 1.540 1.540 1.539
ZT 0.635 0.922 1 0.888 0.715 0.690
() =3z 0.247 0.564 1.0004 2.003 3.290 3514
Ts (1085) 9440 6497 —5.766 9759 —16574 —17408
Pt (1073V) 1.868 3.002 3.739 4272 4301 4284

In the degenerate Ga(Al)-Si system, N = N — Nepy (Fgaqay) = (13.2115 — 12.118516) x 108 cm=3 = 1.093 x 108 cm™3

T(K)

P

_aV
Sh (10 4;)
|RD, .| in 1078
ZT

() =5

Ts (10*8%)
Pt (1073V)

20
3.967

1.182

1.539
0.572

0.209

8851
2.364

30
2.239

1.529

1.540
0.957

0.656

4997
4.587

34.175
1.813

1.563

1.541
1

1.0004

—4.913
5.341

39
1.439

1.522

1.540
0.948

1.589

—6415
5.936

46.49879
1

1.322

1.539
0.715

3.290

—16574
6.146

47
0.975

1.303

1.539
0.696

3.461

—17218
6.127

In the degenerate Mg-Si system, N = N — Ngp,(ryg) = (19.90075 — 18.199979) x 108 cm™3 = 1.701 x 108 cm~3

T(K)
&

a2V
Sh (10 4;)
|RD, .| in 1078
ZT

() =5

= P

2

Ts (10*8%)
Pt (1073V)

20
5.330

0.953

1.538
0.372

0.116

7045
1.907

30
3.461

1.285

1.539
0.676

0.275

9663
3.856

45.89
1.813

1.563

1.540
1

1.0003

—3.724
7.172

50
1.565

1.546

1.540
0.978

1.343

—4019
7.731

62.44
1

1.322

1.539
0.715

3.290

—16574
8.253

63
0.979

1.307

1.539
0.699

3.432

—17111
5.098

In the degenerate In-Si system, N = N — N¢pp(rn) = (25.25693 — 21.329) % 10 cm™2 = 4.364 x 108 cm™3

T(K)

P
sb (107)
|RD, .| in 1078
ZT

— n?
() =3z
Ts (10-8%)
Pt (1073V)

50
3.997

1.176

1.539
0.566

0.206

8788
5.881

60
3.167

1.348

1.539
0.744

0.328

9637
8.089

86
1.813

1.563

1.540
1

0.9999

1.825
13.44

90
1.679

1.558

1.540
0.994

1.166

—2056
14.02

117.03044
1

1.322

1.539
0.715

3.290

—16574
15.47

118
0.981

1.308

1.539
0.700

3.421

—17070
1543
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nFp)(N T . .
In summary, from above Tables, for &) = %(T) 1, the maximal value of |RDL,ch| is equal to :
B

1.541x 1078, suggesting that the above Wiedemann-Frank thermoelectric conversion law, ginen in Eq. (25a)

2 2 <
is found to be exact, with the Laurenz number L = % x (%) = 24429637 (WK—ozhm) , even at the limiting

degenerate case, &,p) 1. In other word, our above LVC(N T, rd(a))—expression, given in Eq. (25b), is not

useful in the present degenerate n(p)-type Si.

6. Concluding remarks

In the n(p)-type degenerate Si-crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
(i)the effective extrinsic static dielectric constant, €(I'q¢a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor(acceptor)-density, Nepnnop) (Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cpp) (Fa(a))=0 or N = Nepnccopy (Facay)-
(iii) the Fermi energy, gnep)(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,
(iv) the electrical conductivity, G(N ,Fgca), T) , the thermal conductivity, K(N , g, T), and the Seebeck
coefficient, Sb(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0, at which:
(@) Fno(rpoy(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) as discussed in Eq. (5), suggesting that, in the MIT,

an1gp)(N = 0.T4@, T = 0) = gnagoa)(N = 0.1, T=0) = rgnicrgpi) (aca):

where  gnigp1), gn2(gp2) and  Fgni(rgpi) are the optical band gap (OBG), reduced band gap and intrinsic
band gap, respectively, and
¢) as discussed in Eq. (27) for the electrical conductivity, G(N , Fgca), T), which is proportional to éno(Fpo) or
to (N )*3, giving rise to: (N =0, Ida), T = 0) = 0, and therefore, as discussed in Equations (28), (29)
and (A7) of the Appendix A: (N =0,rgea), T =0K) =0, yy(N =0,rgea), T=0K) =0, and D(N =
0,r4@), T = 0K) = 0.
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Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.
(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neoniop) (Facay) and NGpheop) (Faceay) are found to be equal to: 9.8(4.91) x 1078, respectively. In other
word, the critical donor(acceptor)-density, Ncpnnpp) (Fd(a)). determined in Eq. (3), can be used to explain
the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
Neonccop) (Fdea)-
(2) In Table 3, the numerical results of the OBG, given in Eq. (5), are obtained, suggesting that those are
accurate to within 1.16%(2.68%), for P(B)-Si systems.
(3) In Table 5, those of the electrical conductivity, G(N ,rgc), T), given in Eq. (27), are obtained for the
degenerate P-Si system, with an accuracy of the order of 7.5%, giving us confidence in the determination of
other electrical-and-thermoelectric properties.
(4) In Tables 6 and 7, we remark that: (i) for given N and T, the functions: 0(rgyca)), M(dca))> MH(Fda)) and
D(rqca)), calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing
Fd(ay» and (ii) for given rgc,) and T, the functions: d(N ) and D(N ) increase, while the functions: U(N ) and
MH(N ) decrease, with increasing N.
(5) In Tables 8 and 9, one notes that (i) for a given T, with increasing (), due to the impurity size effect,

Nconccop) (Fdca)) » increases, since N(=10% cm™3) is very high, N therefore decreases slowly, explaining

en(N T=300K)

T , 0, K, Cy, and Kagp , (ii) the numerical result: |RDK,KApp,| 4.84 %

the slow decrease ( ) in
300K

1073 confirms the Kapp, -law, as that given in Eq. (25b), and finally, (iii)
|RDL,ch| 1.535x% 107° thus confirms in the degenerate Si-case the well-known Wiedemann-Frank, given
in Eq. (25a), is found to be exact.

(6) Finally, in Tables 10 and 11, for a given N and for a given degenerate d(a)-Si system, with increasing T,
the reduced Fermi-energy &,(p) decreases, and other thermoelectric coefficients are in variations, as indicated

by the arrows as: ( , ). One notes here that with increasing T: (i) for &n¢p) = 1.813, while the values of Sb
present a same minimum (maximum) (SB)min max) (= ( )1563x10™ %) , those of ZT show a same

maximum ZT (= ), (ii) for &, = 1, those of Sb and those of ZT present same results: Sb(= ( )1.322 x

2
11
——— present same
3%&m)

10~ %) and 0.715, respectively, (iii) for &, = 1.813 and &, = 1, those of (ZT)pott =
results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximately equal

to 1.541 x 107°, suggesting that in the degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is
exact.

(7) From above remarks (5) and (6), given for the maximal values of |RDL,ch|a being equal approximatively
to 1.5 x 107°, our above LVC(N T, rd(a))—expression, given in Eq. (25b), is found to be not useful in the

present degenerate n(p)-type Si.
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In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type Si-crystals, the Fermi energy rn(rp) = ( Fp = [ v fp]), c(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10~% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(ay)» Neon(cop) (Fdcay) being the
critical density, characteristic of the insulator-metal transition phenomenon. It means that = 0 at this
transition.

First of all, we define the reduced electron density by:

3

U(N o T) = U, T) =10, Nogy (T) = 2 % gy x ((257)° (em ™), (A1)

where Ng)( ) is the conduction (valence)-band density of states, and the values of geny and My, are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type Si is determined by :

en(W) [ Fp(W)Y _ GW)+AuBF(u) _ — V(u)
o ( o ) eaE = On(U) =45 A= 00005372 and B = 482842262, (A2)

2

2 4 8\ 3
where F(N Tdca): T) = aus (1 +bu s+ cu"S) 3, obtained foru 1, according to the degenerate cas,
_ 2/3 _1/m2 . _ 623739855 -3 —du
= [(BvyT/4)]“°, b= 5 (a) = =0 ( ) and then G(u) Ln(u)+22xuxe % foru
H _ Tt —n3/2| 1 _ 3
1, according to the non — degenerate case, with: d =2 [ﬁ 1—6] > 0.
So, in the present degenerate case (U 1), one has:
4 8 _E
_z -9 3
Fn(Fp)(N ’rd(a):T) = Fn(Fp)(N 1) = Fno(Fpo)(u) x (1 +bu 3+cu 3) : (A3)
Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

2xkngepy ()
2%My ()

Fno(Fpo)(N ) = (A4)

being proportional to (N )2/3

,and equal t0 0, fno(rpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.
A2. Now, the generalized Einstein relation is defined by:

D(N (e T d kexT de
(N ra@™) _ N >< FFp) — kexT (u n(p)), (A5)
H(N rg@T) dN q du

where 0,(u) is defined in (A2) and the mobility U(N ,rd(a),T) is determined in Eq. (28). Then, by

. .. . . . . de
differentiating this function 68,(u) with respect to u, one thus obtains d—L:‘. Therefore
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D(N ra@)T) _ kexT oV (WXWW-VWxW ()
H(N ryca).T) q W2(u) ’

(A6)

3 4 8
where W'(u) = ABUB~? and V'(u) = u™ + 272e"%(1 — du) +2AuBIF(U) (1 +F) + 2245 One
3

1+bu 3+cu
Dnpy(U)  kexT

remarks that: (i) as U - 0, one has: W?> 1 and u[V' xW —V xW?] 1, and therefore: p

and (ii) as U » oo, one has: W? = A%u%® and u[V xW -V xW]= %auy 3A%2u2B | and therefore, in this
highly degenerate case and at T=0K,

=2 oo a). (A7)

One notes that, for N =0, pno(rpo)(N ) = 0, as remarked in above Eq. (A4), (N =0, Fda): T = 0K) =0,
as remarked in above Eq. (28), and therefore, for any rqc,), D(N =0,r4@), T = OK) = 0, according to the
MIT. Now, replacing rno(rpoy given in Eq. (A.7) by pnrp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

2
D(N ,rd(a),T=0) 2 _é _§ _5
N rawT=0) 3% FroFpo)( ) X (1+bu s+cus3) . (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type Si-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:
1/3 1/3 /
— = 11723 % 108 x (%) T
N €(rdca))

39°‘“’) (BI)

rsn(sp)(N 'rd(a)) = (4nN

Here, the values of gy = 3(2) and (M,y/M,) are defined and given in Table 1.
) n(p)

asn(ep) (rd(a))

In particular, in the following, Mp/M, =m;/m, =0.1713, is taken for evaluating the band gap
narrowing (BGN), as used in Section 3. Therefore, the correlation energy of an effective electron gas,

CE(rsn(sp)), is found to be given by [1]:

087553 *(2[1;:2 Bl)xin (rgnspy)—0.093288

_ —0.87553 0.0908+rg(sp) -
= = +
CE(rsn(Sp)) CE(N ! rd(a)) 0-0908+rsn(sp) 1+0. 03847728Xr§n6(;3)78876 (BQ’)
Then, the band gap narrowing (BGN) can be determined by [1]:
A (N rg) a Eo><N1/3+a E°><N~°’><(2503><[ (ren) X rn]) + @ X[SO]SMX
gn Id 1 % &(rg) 2 X CE\Usn sn 3 e(rq)
3
1/4 1/2 e — N =N—Ncpn(rq)

1/mrxN +a4><1’8( )XN X2+ agx [( r) *Np. Nr = goggmtotr o (B3)

where a; =6.829x1073(eV) , a, =1.168 x 1073(eV) , az =5.032x 1073(eV) , a, = 10.058 x
1073(eV) and ag = 1.455 x 103(eV), and

5/4
A (N T2 agx E(sro < N1/3 +ap X o x N3 x (2503 x [ — CE(rsp) x rsp]) +ag x L(S;) x ’% x

3
1/4
+ 2a, X
Nr 4 \/e(ra)

Na./Z

N =N—Ncpp(ra) )

+agx [5] > NG Ny = (G i), B4
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where a; =9.329 x1073(eV) , a, = 1596 x 1073(eV) , ag =7.144x1073(eV) , a, = 13.741 x
1073(eV) and ag = 1.988 x 1073(eV).

Therefore, in Equations (B3, B4), as N =0, and for any Iy, A gygpy(N =0,r,) =0, according to the
MIT.

References

(1]

H. Van Cong, “New dielectric constant, due to the impurity size effect, and determined by an
effective Bohr model, affecting strongly the Mott criterion in the metal-insulator transition and
the optical band gap in degenerate (Si, GaAs, InP)-semiconductors, “SCIREA J. Phys., vol.7,
pp. 221-234 (2022); H. Van Cong et al.,, “Size effect on different impurity levels in
semiconductors,” Solid State Communications, vol. 49, pp. 697-699(1984).

H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and thermoelectric
properties of various degenerate donor-silicon systems at low temperatures,” American Journal
of Modern Physics, vol. 7, pp. 136-165 (2018).

H. Van Cong et al., “A simple accurate expression of the reduced Fermi energy for any reduced
carrier density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993; H. Van Cong and B. Doan

Khanh, “Simple accurate general expression of the Fermi-Dirac integral F; (a) and for j> -1,”

Solid-State Electron., vol. 35, pp. 949-951(1992); H. Van Cong, “New series representation of

Fermi-Dirac integral Fj( — oo <a < o) for arbitrary j> -1, and its effect on Fj(a=0,) for

integer j= 0,” Solid-State Electron., vol. 34, pp. 489-492 (1991).

C. Kittel, “Introduction to Solid State Physics, pp. 84-100. Wiley, New York (1976).

M. A. Green, “Intrinsic concentration, effective density of states, and effective mass in silicon,”
J. Appl. Phys., vol. 67, 2944-2954 (1990).

H. Van Cong et al., “Optical bandgap in various impurity-Si systems from the metal-insulator
transition study,” Physica B, vol. 436, pp. 130-139, 2014; H. Stupp et al., Phys. Rev. Lett., vol.
71, p. 2634 (1993); P. Dai et al., Phys. Rev. B, vol. 45, p. 3984 (1992).

H. Van Cong, K. C. Ho-Huynh Thi, et al., “28.68% (29.87%)- Limiting Highest Efficiencies
obtained in n*(p*) — p(n) Crystalline Silicon Junction Solar Cells at 300K, Due to the Effects
of Heavy (Low) Doping and Impurity Size, “SCIREA J. Phys., vol.7, pp. 160-179, 2022; H.
Van Cong, K. C. Ho-Huynh Thi, et al., “30.76% (42.73%)-Limiting Highest Efficiencies
obtained in n*(p™) — p(n) Crystalline GaAs Junction Solar Cells at 300K, Due to the Effects
of Heavy (Low) Doping and Impurity Size, “SCIREA J. Phys., vo.7, pp. 180-199 (2022).

J. Wagner and J. A. del Alamo, J. Appl. Phys., vol. 63, 425-429 (1988).

89



91 P. W. Chapman, O. N. Tufte, J. D. Zook, and D. Long, Phys. Rev. 34, 3291-3295 (1963).
[10] M. Finetti and A. M. Mazzone, J. Appl. Phys. 48, 4597-4600 (1977).
(111 Hyun-Sik Kim et al.,”Characterization of Lorenz number with Seebeck coefficient

measurement”, APL Materials 3, 041506 (2015).

90



