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Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in

the n(p)-type degenerate Si-crystal (��(�)( ≧ �)), at same reduced Fermi energy ��(�)( = �. ���) and

same minimum (maximum) Seebeck coefficient �� = ∓ �. ��� × ��−� �
�

, at which same

�� ����( = ��

�×��(�)
� ≃ �)
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Abstract
In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static

dielectric constant, ε rd a , rd a being the donor (acceptor) d(a)-radius, was determined by using an

effective Bohr model, suggesting that, for an increasing rd a , ε rd a , due to such the impurity size effect,

decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also

various majority carrier transport coefficients given in the n(p)-type degenerate Si crystal, defined for the

reduced Fermi energy ��(�)( ≧ �) . Then, using the same physical model and same mathematical methods

and taking into account the corrected values of energy-band-structure parameters, all the numerical results,

obtained in II, are now revised and performed, giving rise to some important concluding remarks, as follows.

(1)The critical donor(acceptor)-density, NCDn NDp (rd(a)), determined in Eq. (3), can be explained by the

densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)), given in Eq. (21).

(2) In Table 5, the numerical results of the electrical conductivity, σ(N∗, rd(a), T) , given in Eq. (27), are

obtained for the degenerate P-Si system, suggesting an accuracy of the order of 7.5%, which gives us

confidence in the determination of other electrical-and-thermoelectric properties.
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(3) Finally, in Tables 10 and 11, one notes here that with increasing temperature T(K): (i) for reduced Fermi

energy ξn(p)( = 1.813), while the numerical results of the Seebeck coefficient Sb present a same minimum

(maximum) = ∓ 1.563 × 10−4 V
K
, those of the figure of merit ZT show a same maximum ZT = � , (ii)

for ξn = 1 , those of Sb and those of ZT present same results: Sb = ∓ 1.322 × 10−4 V
K

and 0.715,

respectively, (iii) for ξn(p) = 1.813 and ξn(p) = 1 , those of the well-known Mott figure of merit give same

ZT Mott = π2

3×ξn(p)
2 ( ≃ 1 and 3.290), respectively, and finally, (iv) we show here that in the degenerate Si-

case, the Wiedemann-Frank, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction
In our two previous papers [1, 2], referred here to as I and II.

In I, our new expression for the extrinsic static dielectric constant, ε rd a , rd a being the donor (acceptor)

d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing rd a ,

ε rd a , due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in

the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type

degenerate Si crystal, defined for the accurate reduced Fermi energy [3], ��(�)( ≧ �) . Therefore, all the

numerical results of those obtained and given in II are now revised and performed, in comparison with those

obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4, 5, 6] are presented in Tables 1

and 2. In Section 3, the values of optical band gap are given in Table 3, and also compared with

experimental results [8]. In Section 4, the physical and mathematical methods, needed to determine and

evaluate the critical densities of the majority carriers localized in the exponential conduction (valence) band

tails, are presented, confirming thus the corresponding numerical results, obtained using Eq. (3) for the

generalized effective Mott criterion in the metal-insulator transition (MIT), as observed in Table 2. In

Section 5, based on the Fermi-Dirac distribution function method, our accurate expression for the electrical

conductivity, σn(p) , is determined, being a fundamental one, since it is related to all other electrical-and-

thermoelectric coefficients, and then all the numerical results of those coefficients are reported in Tables 4-

11. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters
First of all, we present in Table 1 the values of the energy-band-structure parameters, given in the n(p)-type

Si-crystal, such as: (i) if denoting the free electron mass by mo , the relative effective electron (hole) mass,
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mn(p)
∗ /mo , which is equal to the relative effective mass, mn(p)/mo [5], as used in this Sections 2 and 4 to

determine the critical impurity density in the MIT, (ii) to the reduced effective mas, mr = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

× mo , as

used in Section 3 to determine the optical band gap (OBG), and (iii), to the conductivity effective mass,

mCn(Cp)/mo [4], as used in Section 5 to determine the electrical-and-thermoelectric coefficients. Further,

�go(rd a = rSi) [4] is the unperturbed intrinsic band gap, as used in Section 3 to determine the optical band

gap, εo [4], is the relative intrinsic dielectric constant, the critical impurity density in the MIT,

NCDn CDp rP B [2, 6], and finally, the effective averaged numbers of equivalent conduction (valence)-band

edge, gc(v) = 3(2) [2, 6], used for present majority-carrier transport phenomena, instead of those, equal to:

6(2), used for other minority-carrier transport phenomena [7].

Table 1. Here, the effective electron (hole) mass, mn(p)
∗ , is equal respectively to: mn(p) , as used in Sections 2 and 4, to

mr in Section 3, and mCn(Cp) in Section 5, and the values of other important parameters are also reported.

__________________________________________________________________________ ____________________________________________

mn(p)/mo [5] mr/mo [5] mCn(Cp)/mo [4] gc(v) [2, 6] �go [4] εo [4] NCDn CDp rP B [2, 6]

0.3216(0.3664) 0.1713 0.26(0.373) 3(2) 1.17 eV 11.4 3.52 (4.06) × 1018 cm−3

__________________________________________________________________________ ____________________________________________

We now determine our expression for extrinsic static dielectric constant, ε rd a , due to the impurity size

effect, and the expression for critical density, NCDn(CDp) rd a , characteristic of the MIT, as follows.

2.1. Expression for � �� �

In the [d(a)-semiconductors]-systems, since rd(a), given in tetrahedral covalent bonds, is usually either larger

or smaller than rdo(ao) ≡ rSi , a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: rd(a) > rdo(ao) (rd(a) < rdo(ao)), due to the d(a)-size effect,

respectively [1]. Then, we have shown that this rd(a) -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, ε(rd(a)), determined as follows.

At T=0K, we shown [1] that, as rd(a) > rdo(ao)( rd(a) < rdo(ao)) , such the compression (dilatation)

corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap

�gni(gpi) rd(a) and the effective donor(acceptor)-ionization energy �d(a) rd(a) in absolute values, obtained

in an effective Bohr model, as [1]:

�gni(gpi) rd(a) − �go(rSi) = �d(a) rd(a) − �do(ao)(rSi) = �do(ao)(rSi) × εo
ε(rd(a))

2
− 1 , (1)

where

ε(rd(a))=
εo

1+
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≤ εo, for rd(a) ≥ rdo(ao), and
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ε(rd(a))=
εo

1−
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≥ εo, for rd(a) ≤ rdo(ao). (2)

One notes that ε(rd(a)) decreases with an increasing rd(a).

2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate Si-crystals, the critical donor(acceptor)-density, NCDn NDp (rd(a)) , is

determined from the generalized effective Mott criterion in the MIT, as:

NCDn NDp (rd(a))
1

3 × aBn(Bp)(rd(a)) = z, z=0.290364495(0.3687017088), (3)

and the effective Bohr radius aBn(Bp)(rd(a)) is given by:

aBn(Bp)(rd(a)) ≡ ε(rd(a))×ℏ2

(mn(p)
∗ /mo)×q2 = 0.53 × 10−8 cm × ε(rd(a))

(mn(p)
∗ /mo)

, (4)

where −q is the electron charge, ε(rd(a)) is determined in Eq. (2), and mn(p)
∗ /mo = mn(p)/mo =

0.3216(0.3664), as given in Table 1. It should be noted in Eq. (3) that, for the Mott criterion in the MIT,

zMott=0.25, while in the present work, z=0.290364495(0.3687017088), is chosen so that we can obtain

the exact values of NCDn CDp rP B = 3.52 (4.06) × 1018 cm−3 [2, 6], as those given in Table 1. Further,

these obtained results can also be justified by those of the densities of electrons (holes) localized in

exponential conduction (valance)-band (EBT) tails, NCDn CDp
EBT rP B ≡ NCDn CDp rP B = 3.52 (4.06) ×

1018 cm−3, obtained using Eq. (21), as investigated in Section 4, and reported also in Table 2. In this Table,

we also present various values of ε(rd(a)), aBn(Bp)(rd(a)), �d(a) rd(a) and �gni(gpi) rd(a) , NCDn NDp (rd(a)),

and NCDn CDp
EBT (rd(a)) , noting that the maximal relative deviations, in absolute values, �� , between

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(Ba)) are found to be equal to: 9.8(4.91) × 10−6 , respectively. In other

word, NCDn NDp (rd(a)) , determined in Eq. (3), can be explained by the densities of electrons (holes)

localized in exponential conduction (valance)-band (EBT) tails, NCDn CDp
EBT (rd(a)), determined in Eq. (21).

Furthermore, in our recent work [6], we showed that, in the n(p)-type degenerate Si, the critical

densities of electrons (holes) can also be determined from the spin-susceptibility singularities (SSS),

obtained at � = ����(���)
��� (rd(a)), at which the MITs occur.

Table 2. Here, for increasing rd(a) [4], both ε(rd(a)), calculated using Eq. (2) and aBn(Bp)(rd(a)), using Eq. (4), decrease,

while �d(a) rd(a) , �gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) , calculated using Equations (1, 1, 3, 21),

respectively, increase, affecting strongly all the physical properties, given in Sections 3-5 .
__________________________________________________________________________ ____________________________________________

Donor P Si As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.117 0.118 0.132 0.136 0.140

ε(rd) ↘ 11.58 11.4 11.396 10.59 10.16 9.69

aBn(rd) in nm ↘ 1.91 1.88 1.878 1.75 1.67 1.60

�d(rd) in meV ↗ 32.6 33.7 33.7 39.0 42.3 46.6

�gni(rd) in meV ↗ 1168.9 1170 1170.02 1175.04 1178.67 1182.9

NCDn(rd) in 1018 cm−3 ↗ 3.52 [6] 3.69181 3.69547 4.59924 5.20648 6.01115
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NCDn
EBT(rd) in 1018 cm−3 ↗ 3.52 [6 ] 3.69179 3.695468 4.599223 5.20643 6.01109

RD in 10−6 0 6.5 0.4 3.7 9.8 9.4
__________________________________________________________________________ ____________________________________________

Acceptor B Si Ga(Al) Mg In

ra (nm) [4] ↗ 0.088 0.117 0.126 0.140 0.144

ε(ra) ↘ 15.98 11.4 11.1 9.69 9.19

aBp(ra) in nm ↘ 2.31 1.65 1.60 1.40 1.33

�a(ra) in meV ↗ 19.5 38.3 40.5 53.1 59.0

�gpi(ra) in meV ↗ 1151.2 1170 1172.1 1184.7 1190.6

NCDp(ra) in 1018 cm−3 ↗ 4.06 [6] 11.177705 12.118516 18.199979 21.328851

NCDp
EBT(ra) in 1018 cm−3 ↗ 4.06 [6] 11.177737 12.118572 18.199970 21.328810

RD in 10−6 0 2.8 4.58 4.91 1.95
__________________________________________________________________________ ____________________________________________

Table 2 also indicates that, for increasing rd(a), both ε(rd(a)) and aBn(Bp)(rd(a)) decrease, while �d(a) rd(a) ,

�gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase, affecting strongly all the physical

properties, as those given in following Sections 3-5 .

3. Optical band gap

Here, mn(p)
∗ /mo is chosen as: mn(p)

∗ /mo = mr/mo = 0.1713 , and then, if denoting N∗≡ N −

NCDn NDp (rd(a)) , the optical band gap (OBG) is found to be given by:

�gn1 gp1 N∗, rd a , T ≡ �gn2 gp2 N∗, rd a , T + �Fn Fp N∗, T , (5)

where the reduced band gap is defined as:

�gn2 gp2 N∗, rd a , T ≡ �gni gpi rd a − 0.071eV × 1 + 2T
440.6913

2.201
1

2.201
− 1 − Δ�gn gp N∗, rd a .

Here, the intrinsic energy gap �gni(gpi) rd(a) is determined in Eq. (1), the Fermi energy �Fn Fp N∗, T , in

Eq. (A3), and the band gap narrowing Δ�gn gp N∗, rd a , in Equations (B3, B4), of the Appendix A and B,

respectively. Then, as noted in the Appendix A and B, at T=0K, as N∗ = 0 , one has: �Fn Fp N∗, T ≈

�Fno(Fpo)(N∗) = 0, as given in Eq. (A4), and Δ�gn gp N∗, rd a = 0 , according to the MIT, as noted in

Appendix A and B. Therefore, �gn1 gp1 = �gn2 gp2 = �gni(gpi) rd(a) at T=0K and N∗ = 0 , according also

to the MIT.

Finally, the numerical results of �gn1 gp1 N∗ > 0, rd a , T at T=20K, calculated using Eq. (5), expressed as

functions of N and rd a , and reported in Table 3, being also compared with the corresponding data

[8], obtained in the P(B)-type degenerate Si, giving rise to the accuracies of the order of 1.16%

(2.68%), respectively.
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Table 3. In degenerate d(a)-Si systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5), and in

P(B)-systems, those also compared with corresponding �gn1
Data [8], giving rise to the relative deviations in absolute values

RD , 1.16% and 2.68%, respectively.
_________________________________________________________________________ ____________________________________________

N (1018 cm−3) 4 8.5 15 50 80 150

�gn1
Data(N∗, rP) in eV [8] 1.138 1.133 1.129 1.131 1.132 1.133

�gn1(N∗, rP) in eV 1.149 1.129 1.121 1.118 1.124 1.146

RD in (%) 0.9 0.3 0.6 1.16 0.7 1.15

�gn1(N∗, rAs) in eV 1.152 1.130 1.121 1.117 1.123 1.144

�gn1(N∗, rTe) in eV 1.133 1.122 1.113 1.117 1.134

�gn1(N∗, rSb) in eV 1.136 1.123 1.111 1.113 1.129

�gn1(N∗, rSn) in eV 1.142 1.125 1.108 1.109 1.122

__________________________________________________________________________ ____________________________________________

N (1018 cm−3) 6.5 11 15 26 60 170

�gp1
Data(N∗, rB) in (eV) [8] 1.142 1.140 1.139 1.142 1.142 1.162

�gp1(N∗, rB) in eV 1.120 1.113 1.111 1.112 1.127 1.193

RD in (%) 1.9 2.3 2.4 2.64 1.3 2.68

�gp1(N∗, rGa(Al)) in eV 1.121 1.098 1.088 1.119

�gp1(N∗, rMg) in eV 1.107 1.077 1.089

�gp1(N∗, rIn) in eV 1.118 1.074 1.078

__________________________________________________________________________ ____________________________________________

Furthermore, in Table 3, we also showed that, in the n(p)-type degenerate Si and for a given photon energy

E ≡ ℏω , since the extinction coefficient, ��(�) , and other optical coefficients, as discussed in II, are

expressed in terms of the function (E − �gn1 gp1 )2. Therefore, if the values of �gn1 gp1 obtained in Table 3

increase (decrease), (E − �gn)2 and other optical coefficients then decrease (increase), respectively.

4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate Si, if denoting the Fermi wave number by: kFn(Fp)(N) ≡ 3�2N/gc(v)
1/3

, the

effective reduced Wigner-Seitz radius rsn(sp), characteristic of the interactions, is defined by

� × rsn(sp) N∗, rd a , mn(p)
∗ ≡

kFn(Fp)
−1

�Bn(Bp)
< 1, (6)

being proportional to N∗−1/3 . Here, � = 4/9� 1/3 , kFn(Fp)
−1 means the averaged distance between ionized

donors (acceptors), and aBn(Bp)(rd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 0 K is

defined by
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Rsn(sp) N∗, rd(a) ≡ ksn(sp)

kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = RsnWS(spWS) + RsnTF(spTF) − RsnWS(spWS) �−rsn(sp) < 1. (7)

These ratios, RsnTF(spTF) ��� RsnWS(spWS), can be determined as follows.

First, for � ≫ NCDn NDp (rd(a)), according to the Thomas-Fermi (TF)-approximation, the ratio RsnTF(snTF) is

reduced to

RsnTF N∗, rd(a) ≡ ksnTF(spTF)

kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = 4�rsn(sp)

�
≪ 1, (8)

being proportional to N−1/6.

Secondly, � < NCDn NDp (rd(a)), according to the Wigner-Seitz (WS)-approximation, the ratio RsnWS(snWS) is

reduced to

Rsn(sp)WS N∗, rd(a) ≡ ksn(sp)WS

kFn
= 1(0.389856828) × 3

2�
3

2� − �d �sn(sp)
2 ×�CE N∗,rd(a)

d�sn(sp)
, (9)

where �CE N∗, rd(a) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.

Furthermore, as given in II, in the highly degenerate case, the physical conditions are found to be given by :
kFn(Fp)

−1

aBn(Bp)
< ηn(p)

�Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp) < 1, An(p) ≡ �Fno(Fpo)

ηn(p)
, (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,

Rsn(sp) is determined in Eq. (7).

Then, in degenerate d(a)-Si systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, −� +� , at position r�� , and an ionized donor (ionized

acceptor) charge: +� −� at position Rj��� , randomly distributed throughout the Si crystal, is defined by

V(r) ≡ j=1
ℕ vj r + Vo� , (11)

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and vj r is a

screened Coulomb potential energy for each d(a)-Si system, defined as

vj r ≡− q2×exp (−ksn(sp)× r�� −Rj��� )
ε(rd(a))× r�� −Rj��� ,

where ksn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector k�� -espace is given by

vj k�� =− q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn
2 ,

where Ω is the total Si-crystal volume.

Then, the effective auto-correlation function for potential fluctuations, Wn(p) νn(p), N∗, rd ≡ V r V(r') , was

determined in II, as :

Wn(p) νn(p), N∗, rd(a) ≡ ηn(p)
2 × exp

−ℋ×Rsn(sp) N∗,rd(a)

2 νn(p)

, ηn(p)(N∗, rd(a)) ≡ 2πN∗

ε(rd(a))
× q2ksn(sp)

−1/2 , νn(p) ≡ −�
�Fno(Fpo)

. (12)
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Here, ε(rd(a)) is determined in Eq. (2), Rsn(sp) N∗, rd(a) in Eq. (7), the empirical Heisenberg parameter ℋ =

3.320313702 will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally νn(p) ≡ −�
�Fno(Fpo)

,

where � is the total electron energy and �Fno(Fpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: � − V a−1
2 ≡ �k

a−1
2 , for a ≥ 1 ,

�k ≡ ℏ2×k2

2×��(�)
∗ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on Wn(p) νn(p), N∗, rd(a) .

4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In heavily doped d(a)-Si systems, the effective Gaussian distribution probability is defined by

P V ≡ 1
2�Wn(p)

× exp −V2

2Wn(p)
.

So, in the Kane integration method, the Gaussian average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 KIM ≡ �k

a−1
2

KIM = −∞
� � − V a−1

2� × P V dV, for a ≥ 1.

Then, by variable changes: s = � − V / Wn(p) and x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

,

and using an identity:

0
∞ sa−1

2� × exp ( − xs − s2

2
s2

2 )ds ≡ Γ(� + 1
2
1
2) × exp (x2/4) × D−a−1

2
(x),

where D−a−1
2
(x) is the parabolic cylinder function and Γ(a + 1

2
1
2) is the Gamma function, one thus has:

�k
a−1

2
KIM =

exp (−x2/4)×Wn(p)

2a−1
4

2π
× Γ(a + 1

2
1
2) × D−a−1

2
(x) =

exp (−x2/4)×ηn(p)
a−1

2

2π
× exp − ℋ×Rsn(sp)× 2a−1

8× νn(p)

× Γ(a +

1
2) × D−a−1

2
(x). (13)

B. Feynman path-integral method (FPIM)

Here, the ensemble average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 FPIM ≡ �k

a−1
2

FPIM ≡ ℏa−1
2

23/2× 2�
×

Γ(a+1
2)

Γ(3
2)

× −∞
∞ �t −a−1

2� × exp ��t
ℏ

−
t Wn(p)

2

2ℏ2 dt, i2 =− 1,

noting that as a=1, it −3
2 × exp −

t Wp
2

2ℏ2 is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = ℏ

Wn(p)

ℏ

Wn(p)
and x =− �/ Wn(p), and then using an identity:
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−∞
∞ �s −a−1

2� × exp �xs − s2

2
ds ≡ 23/2 × Γ(3/2) × exp ( − x2/4) × D−a−1

2
(x),

one finally obtains: �k
a−1

2
FPIM ≡ �k

a−1
2

KIM, �k
a−1

2
KIM being determined in Eq. (13).

In the following, with use of asymptotic forms for D−a−1
2
(x) , those given for � − V a−1

2 KIM will be

obtained in the two cases: � ≥ 0 and � ≤ 0.

(i) � ≥ �-case

As � →+ ∞, one has: �n →− ∞ and x →− ∞. In this case, one gets:

D−a−1
2
(x →− ∞) ≈ 2�

Γ(a+1
2)

× �
x2
4 × ( − x)a−1

2.

Therefore, Eq. (13) becomes: �k
a−1

2
KIM ≈ �a−1

2 . Further, as � →+ 0, one has: �n(p) →− 0 and x →− ∞. So,

one gets :

D−a−1
2

x →− ∞ ≃ � a × exp ( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2
16a
x2
16a + x3

24 a
x3

24 a → 0, � a = �

2
2�+1

4 Γ(a
2+3

4)]
.

Thus, as � →+ 0, from Eq. (13), one gets: �k
a−1

2
KIM → 0.

In summary, for � ≥ 0, the expression of �k
a−1

2
KIM can be approximated by:

�k
a−1

2
KIM ≅ �a−1

2, �k ≡ ℏ2×k2

2×m∗ . (14)

(ii) � ≤ � − ����.

As � →− 0, from Eq. (13), one has: �n(p) →+ 0 and x →+ ∞. Thus, one first obtains, for any a ≥ 1,

D−a−1
2
(x → ∞) ≃ β a × exp −( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2

16a
x2

16a − x3

24 a
x3

24 a → 0, β a = π

2
2a+1

4 Γ(a
2+3

4)]
, noting that

β 1 = π

2
3
4×Γ(5/4)

and β 5/2 = π
23/2.

Then, putting f(a) ≡
ηn(p)

a−1
2

2π
× Γ(a + 1

2
1
2
) × β a , Eq. (13) yields

Hn(p) �n(p) →+ 0 , rd(a), a =
�k

a−1
2 KIM

f(a)
= exp −

ℋ×Rsn(sp)× 2a−1

8× νn(p)

− a + 1

16a
3
2

1

16a
3
2

x− 1
4+ 1

16a x2− x3

24 a → 0. (15)

Further, as � →− ∞, one has: �n(p) →+ ∞ and x → ∞. Thus, one gets:

D−a−1
2
(x → ∞ ) ≈ x−a−1

2× �−x2
4 → 0. Therefore, Eq. (13) yields

Kn(p)(�n(p) →+ ∞ , rd(a), a) ≡
�k

a−1
2

KIM

f(a)
≃ 1

� a
× exp ( − (An(p)×�n(p))2

2
) × (An(p) × �n(p))−a−1

2 → 0. (16)

It should be noted that, as � ≤ 0, the ratios (15) and (16) can be taken in an approximate form as:
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Fn(p)(�n(p), rd(a), a) = Kn(p)(�n(p), rd(a), a) + Hn(p)(�n(p), rd(a), a) − Kn(p)(�n(p), rd(a), a) × exp  − c1 ×
An(p)�n(p)

c2 , (17)

such that: Fn(p)(�n(p), rd(a), a) → Hn(p)(�n(p), rd(a), a) for 0 ≤ �n ≤ 16 , and Fn(p)(�n(p), rd(a), a) →

Kn(p)(�n(p), rd(a), a) for �n(p) ≥ 16. Here, the constants c1 and c2 may be respectively chosen as: c1 = 10−40

and c2 = 80, as a = 1 , being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NCDn CDp
EBT (N, rd(a)), in the following.

C. Critical impurity density in the MIT

In degenerate d(a)-Si systems at T=0 K, in which mn(p)
∗ /mo = mn(p)/mo = 0.3216(0.3664), as given in

Table 1, using Eq. (13), for a=1, the density of states �(�) is defined by:

�(�k) KIM ≡
gc(v)

2�2
2mn(p)

ℏ2

3
2 × �k

1
2

KIM =
gc(v)

2�2
2mn(p)

ℏ2

3
2 ×

exp −x2
4 ×Wn

1
4

2�
× Γ 3

2 × D−3
2

x = �(�), (18)

where x is defined in Eq. (13), as: x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

.

Here, �Fno is determined in Eq. (A4) of the Appendix A, with mn(p)
∗ /mo = mn(p)/mo and ℋ =

3.320313702, being chosen such that the following determination of NCDn CDp
EBT (N, rd(a)) would be accurate.

Going back to the functions: Hn , Kn and Fn , given respectively in Equations (15-17), in which the factor

�k

1
2

KIM

f(a=1) is now replaced by:

�k

1
2

KIM

f(a=1)
= �(�≤0)

�o
= Fn(p) �n(p), rd(a), a = 1 , �o =

gc(v)× mn(p)×mo
3/2× �n(p)

2�2ℏ3 × � a = 1 , � a = 1 = �

2
3
4×Γ(5/4)

.

(19)

Therefore, NCDn CDp
EBT (N∗, rd(a)) can be defined by

NCDn CDp
EBT (N∗, rd(a)) = −∞

0 �(� ≤ 0)� d�,

where �(� ≤ 0) is determined in Eq. (19). Then, by a variable change: �n(p) ≡ −�
�Fno(Fpo)

, one obtains:

NCDn CDp
EBT (N∗, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) +

In(p) , (20)

where

In(p) ≡ 16
∞

�(a = 1) × Kn(p) �n(p), rd(a), a = 1� d�n(p) = 16
∞ �

− An(p)×�n
2

2 × An(p)�n(p)
−3/2� d�n(p).

Here, �(a = 1) = �

2
3
4×Γ(5/4)

.

Then, by another variable change: t = An(p)�n(p)/ 2
2
, the integral In(p) yields:

In(p) = 1
25/4An(p)

1
25/4An(p)

1
25/4An(p)

× yn(p)

∞ tb−1� e−tdt ≡ Γ(b, yn(p))

25/4×An(p)

Γ(b, yn(p))

25/4×An(p)
,
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where b =− 1/4, yn(p) = 16An(p)/ 2
2
, and Γ(b, yn(p)) is the incomplete Gamma function, defined by:

Γ(b, yn(p)) ⋍ yn(p)
b−1× �−yn(p) 1 + j=1

16 b−1 b−2 …(b−j)
yn(p)

j� .

Finally, Eq. (20) now yields:

NCDn CDp
EBT (N∗, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) +

Γ(b, �n(p))
25/4×An(p)

, (21)

being the density of electrons localized in the exponential conduction-band tails (EBT).

The numerical results of NCDn CDp
EBT (N, rd(a)), evaluated using Eq. (21), are given in Table 2, confirming thus

those of NCDn NDp (rd(a)), calculated using Eq. (3).

5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by

f(�) ≡ 1 + eγ −1, γ ≡ (� − �Fn(Fp))/(kBT),

where �Fn(Fp)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of �p, calculated using the FDDF-method, as developed in II, can be defined as:

�p
FDDF ≡ Gp(�Fn) × �Fn

p ≡ −∞
∞ �p × − ∂f

∂�
d�� , − ∂f

∂�
= 1

kBT
× eγ

1+eγ 2. (22)

Further, one notes that, at 0 K, − ∂f
∂�

= δ � − �Fno(Fpo) , δ � − �Fno(Fpo) being the Dirac delta (δ) -

function and �Fno(Fpo) is the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp �Fno = 1.

Then, at low T, by a variable change γ ≡ (� − �Fn(Fp))/(kBT), Eq. (22) yields:

Gp �Fn(Fp) ≡ 1 + �Fn(Fp)
−p × −∞

∞ eγ

1+eγ 2 × kBTγ + �Fn(Fp)
pdγ� = 1 + μ=1,2,…

p Cp
β� × kBT β × �Fn(Fp)

−β × Iβ ,

where Cp
β ≡ p p − 1 …(p − β + 1)/β! and the integral Iβ is given by:

Iβ = −∞
∞ γβ×eγ

1+eγ 2 dγ� = −∞
∞ γβ

eγ/2+e−γ/2 2 dγ� , vanishing for old values of β . Then, for even values of β = 2n ,

with n=1, 2, …, one obtains:

I2n = 2 0
∞ γ2n×eγ

1+eγ 2 dγ� . (23)

Now, using an identity 1 + eγ −2 ≡ s=1
∞ −1 s+1s × eγ(s−1)� , a variable change: sγ =− t , the Gamma

function: 0
∞ t2ne−t� dt ≡ Γ 2n + 1 = (2n)! , and also the definition of the Riemann’s zeta function:

ζ(2n) ≡ 22n−1π2n B2n /(2n)!, B2n being the Bernoulli numbers, one finally gets: I2n = 22n − 2 × π2n ×

B2n . So, from Eq. (22), we get in the degenerate case the following ratio:
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Gp �Fn(Fp) ≡ �p FDDF
�Fn(Fp)

p = 1 + n=1
p p p−1 …(p−2n+1)

(2n)!
� × 22n − 2 × B2n × y2n ≡ Gp y , y = πkBT

�Fn(Fp)
. (24)

Then, some usual results of Gp y are given in Table 4.

Table 4. Expressions for Gp≥1(y ≡ π
��(�)

) , as given in II, due to the Fermi-Dirac distribution function FDDF, noting

that Gp=1(y ≡ πkBT
�Fn(Fp)

= π
��(�)

) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5

__________________________________________________________________________ ____________________________________________

G3/2(y) G2(y) G5/2(y) G3(y) G7/2(y) G4(y) G9/2(y)

� + ��

�
+ ���

���
� + ��

�
� + ���

�
− ���

���
� + �� � + ����

��
+ ����

���
� + ��� + ���

��
� + ����

�
+ �����

���

_______________________________________________________________________________________________________________________

These functions Gp y will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate Si, in the following.

5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, mn(p)
∗ /mo is chosen as: mn(p)

∗ /mo = mCn(Cp)/mo = 0.26(0.373) , as given in Table 1, and all the

majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:

N∗≡ N − NCDn NDp (rd(a)), where the values of critical d(a)-densities NCDn NDp (rd(a)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by σ(N∗, rd(a), T) ,

expressed in ohm−1 × cm−1 , the thermal conductivity by κ(N∗, rd(a), T) , expressed in W
cm×K

, and Lorenz

number by L = π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , then the well-known Wiedemann-Frank law states that

the ratio, κ
σ
, is proportional to the temperature T(K), as:

κ(N∗,rd(a),T)
σ(N∗,rd(a),T)

= L × T. (25a)

Then, it is interesting to define a constant ��(N∗, rd(a))[ ≡ κ(N∗,rd(a),T=3K)
L

] in order to show that, for given N∗

and rd(a), κ���.(N∗, rd(a), T) is found to be proportional to T, as:

κ���.(N∗, rd(a), T) ≃ ��(N∗, rd(a)) × � , RDκ,κ���. �
≡ 1 − κ���.(N∗,rd(a),T)

κ(N∗,rd(a),T)
, (25b)

where RDκ,κ���. �
is the relative deviations in absolute values between κ(N∗, rd(a), T) and κ���.(N∗, rd(a), T),

as a function of T.

Thus, if σ is known, κ and other majority-carrier transport coefficients are also determined, since those are

related to σ. We now determine the general form of σ in the following.

First, it is expressed in terms of the kinetic energy of the electron (hole), �k ≡ ℏ2×k2

2×mCn(Cp)
, or the wave number

k, as:

σ(k) ≡ C × q2×k
π×ℏ

× k
ksn(sp)

× k × aBn(Bp)(rd(a)) × �k
ηn(p)(N,rd(a))

1/2
, (26)
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which is thus proportional to �k
2, C = 0.89645 2 being chosen such that the numerical results of σ will be

in good accordance with the corresponding experimental ones [9, 10]. Further, ksn(sp) , aBn(Bp) , and ηn(p) are

defined and determined in Equations (7, 4, 12), respectively.

Then, from Eq. (14), for � ≥ 0 , we get: �k
2

KIM ≅ �2 , and from Eq. (22) we obtain: �2
FDDF ≡ G2(y =

πkBT

�Fn(Fp)
) × �Fn(Fp)

2 , where �Fn(Fp) is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

G2(y)= 1 + y2

3
≡ G2(N∗, T) is given in Table 4. Therefore, Eq. (26) becomes as:

σ(N∗, rd(a), T) ≡ C × q2×kFn(Fp)

π×ℏ
× kFn(Fp)

ksn(sp)
× kFn(Fp) × aBn(Bp)(rd(a)) × �Fno(Fpo)(N∗,T=0)

ηn(p)(N,rd(a))

1/2
× G2(N∗, T) ×

�Fn(Fp)(N∗,T)
�Fno(Fpo)(N∗,T=0)

2
, (27)

which also determine the resistivity as: ρ(N∗, rd(a), T) ≡ 1/σ(N∗, rd(a), T) , noting that

N∗≡ N − NCDn NDp (rd(a)), and C × q2

π×ℏ
= 6.226527 × 10−5 ohm−1 . Further, the Fermi energies �Fn(Fp)

and �Fno(Fpo) are determined respectively in Equations (A3, A4) of the Appendix A.

In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), σ(N∗, rd(a), T = 0K) is proportional to �Fno(Fpo)
2 ,

or to N∗ 4/3. Thus, σ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator transition (MIT)

occurs. Then, in the degenerate P-Si system at T=4.2 K and T=77 K, the numerical results of ρ and σ are

calculated, using Eq. (27), and reported also in Table 5, suggesting maximal relative errors of the order of

13.178% (7.5%), respectively. Such an accuracy of σ(N∗, rd(a), T) gives us a good confidence, using Eq. (27)

to determine other electrical-and-thermoelectric properties, in the following.

Table 5. In the degenerate P-Si system, our numerical results of resistivity ρ(N∗) and conductivity σ(N∗) , calculated

using Eq. (27), are obtained respectively at 4.2K and 77K, respectively, accompanied by their relative deviations in

absolute values, �� , calculated, using the corresponding data [9, 10].
__________________________________________________________________________ ____________________________________________

N 1019 cm−3 1.1 1.6 2.7 3.9 7 13

The following resistivity results obtained at T=4.2K are expressed in 10−4 ohm × cm.
ρdata [9] 33 23 13 9.4 6 3.8

ρ ( RD ) 37.3(13.178%) 24.4 (5.9%) 14.29 (9.9%) 10.02 (6.7%) 5.82 (3%) 3.3 (13.173%)
__________________________________________________________________________ ____________________________________________

N 1019 cm−3 1.85 5.55 8.65

The following conductivity results obtained at T=77K are expressed in ohm−1 × cm−1.
σdata [10] 559 1500 2000

σ ( RD ) 517 (7.5%) 1409 (6.1%) 2105 (5.2%)
________________________________________________________________________ ____________________________________________
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A.Electrical properties

As given in II, the relaxation time � is related with σ by:

τ(N∗, rd(a), T) ≡ σ(N∗, rd(a), T) × mCn(Cp)

q2×N∗ . Therefore, the mobility μ is given by:

μ(N∗, rd(a), T) ≡ q×τ(N∗,rd(a),T)
mCn(Cp)

= σ(N∗,rd(a),T)
q×N∗ . (28)

In Eq. (28), at T= 0K, μ(N∗, rd(a), T = 0K) is thus proportional to N∗ 1/3, since σ(N∗, rd(a), T = 0K) is

proportional to N∗ 4/3 . Thus , μ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator

transition (MIT) occurs.

Then, since τ and σ are both proportional to �2, as given above, the Hall factor can thus be determined by:

rH(N∗, T) ≡ τ2
FDDF

� ����
2 = G4(y)

G2(y) 2, and therefore, the Hall mobility yields:

μH(N∗, rd(a), T) ≡ μ(N∗, rd(a), T) × rH(N∗, T), (29)

noting that, at T=0K, since rH(N∗, T = 0K) = 1, one gets:

μH(N∗ = 0, rd(a), T = 0K) ≡ μ(N∗ = 0, rd(a), T = 0K)=0 at N∗ = 0 , at which the metal-insulator transition

(MIT) occurs.

Now, in the degenerate d(a)-Si systems, at T=4.2 K and T=77 K, the numerical results of σ, μ, μH , and the

diffusion coefficient D, calculated respectively by using Equations (27, 28, 29, A8 of the Appendix A), and

reported in following Tables 6 and 7.
Table 6. Here, one notes that: (i) for given N and T, the functions: σ(rd), μ(rd), μH(rd) and D(rd), calculated using

respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rd, and (ii) for given rd and T, the

functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and μH(N∗) decrease, with increasing N.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 1
ohm×cm

, cm2

V×s
, cm2

V×s
, cm2

s

N(1019 cm−3)

3 775, 183, 183, 7.3 752, 178, 178, 7.1 651, 160, 160, 6.2 599, 151, 151, 5.8 541, 141, 141, 5.3

10 2384, 154, 154, 14.6 2317, 150, 150, 14.2 2039, 133, 133, 12.5 1896, 125, 125, 11.7 1741, 116, 116, 10.5

40 8487, 134, 134, 32.4 8248, 130, 130, 31.5 7256, 114, 114, 27.7 6749, 107,107, 25.8 6207, 98, 98, 23.7

70 14227, 127, 127, 45.0 13823, 124, 124, 43.74 12146, 109, 109, 38.4 11290, 101, 101, 35.7 10375, 93, 93, 32.9

100 19809, 124, 124, 55.6 19243, 120, 120, 54.0 16894, 106, 106, 47.4 15696, 98, 98, 44.1 14417, 90, 90, 40.5

----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 1
ohm×cm

, cm2

V×s
, cm2

V×s
, cm2

s

N(1019 cm−3)

3 806, 190, 218, 7.8 781, 185, 213, 7.6 678, 167, 193, 6.6 624, 157, 183, 6.2 565, 147, 172, 5.7

10 2401, 155, 160, 14.7 2334, 151, 155, 14.3 2054, 134, 138, 12.7 1910, 126, 129, 11.8 1754, 116, 120, 10.9

40 8496, 134, 134, 32.5 8257, 130, 131, 31.5 7264, 115, 115, 27.8 6757, 107, 107, 25.8 6214, 98, 99, 23.8

70 14234, 127, 128, 45.0 13830, 124, 124, 43.8 12152, 109, 109, 38.5 11296, 101, 102, 35.8 10381, 93, 93, 32.9

100 19817, 124, 124, 52.6 19249, 120, 121, 54.1 16900, 106, 106, 47.5 15701, 98, 99, 44.1 14421, 90, 91, 40.5
__________________________________________________________________________ ___________________________________________
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Table 7. Here, one notes that: (i) for given N and T, the functions: σ(ra), μ(ra), μH(ra) and D(ra), calculated using

respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing ra, and (ii) for given ra and T, the

functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and μH(N∗) decrease, with increasing N.
__________________________________________________________________________ ____________________________________________

Acceptor B Ga(Al) Mg In

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 1
ohm×cm

, cm2

V×s
, cm2

V×s
, cm2

s

N(1019 cm−3)

3 1577, 379, 380, 13.6 745, 260, 260, 7.3 466, 247, 247, 5.2 348, 251, 251, 4.3

10 4549, 296, 296, 25.4 2504, 178, 178, 14.4 1973,150, 151, 11.6 1787, 142, 142, 10.7

40 13358, 242, 242, 53.6 8450, 136, 136, 29.7 6789, 111, 111, 24.0 6234, 103, 103, 22.1

70 25315, 227, 227, 73.2 13794, 125, 125, 40.0 11060, 101, 101, 32.2 10152, 93, 93, 29.6

100 34908, 219, 219, 89.5 18896, 119, 119, 48.6 15117, 96, 96, 39.0 13867, 88, 88, 35.8

----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 1
ohm×cm

, cm2

V×s
, cm2

V×s
, cm2

s

N(1019 cm−3)

3 1652, 397, 469, 14.8 802, 280, 359, 8.3 526, 278, 402, 6.5 416, 299, 488, 5.8

10 4588, 298, 309, 25.8 2529, 179, 186, 14.7 1994, 152, 159, 11.8 1807, 143, 150, 10.9

40 15378, 242, 244, 53.7 8462, 136, 137, 29.7 6799, 111, 112, 20.0 6242, 103, 103, 22.1

70 25331, 227, 228, 73.2 13803, 125, 125, 40.1 11067, 101, 101, 32.2 10158, 93, 94, 29.6

100 34922, 219, 219, 89.6 18903, 119, 120, 48.6 15123, 96, 96, 39.0 13872, 88, 89, 35.8
__________________________________________________________________________ ____________________________________________

B.Thermoelectric properties

First off all, from Eq. (27), obtained for σ(N∗, rd(a), T) , the well-known Mott definition for the

thermoelectric

power or for the Seebeck coefficient, Sb, is given in the n(p)-type degenerate Si, as:

Sb(N∗, T) ≡ ∓ π2

3
× kB

q
× kBT × ∂lnσ �

∂� �=�Fn Fp

.

Then, using Eq. (27), for ξn(p) ≡
�Fn(Fp)(N∗,T)

kBT
≳ 1, one gets:

Sb(N∗, T) ≡ ∓ π2

3
× kB

q
× 2

π2

3 ξn(p)

× FSb(N∗, T), FSb(N∗, T) ≡ 1 − y2

3×G2(y=
πkBT

�Fn(Fp)(N∗,T))
, (30)

noting that the effective donor (acceptor) density, N∗≡ N − NCDn NDp (rd(a)), is a function of rd(a).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N∗, T) ≡ T × dSb(N∗,T)
dT

, (31)

and then, the Peltier coefficient, Pt, is defined as:

Pt(N∗, T) ≡ T × Sb(N∗, T). (32)

Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:
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ZT(N∗, T) ≡ Sb(N∗,T) 2×σ(N∗,rd(a),T)×T
κ(N∗,rd(a),T)

= Sb(N∗,T) 2

L
= ZT Mott × 2 × FSb(N∗, T) 2 , ZT Mott = π2

3×ξn(p)
2 , (33)

where ZT Mott is a well-known Mott result, L = π2

3
× kB

q

2
= 2.4429637 × 10−8 W×ohm

K2 is the Lorenz

number, noting that, in the n(p)-type degenerate Si ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≧ 1 , this value of L is exact, and

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≃ 1, as: LKim( Sb ) = 1.5 + exp − Sb
116

, Sb being independent of T or N (?).

Then, being inspired from this LKim( Sb )-expression, we also propose another one, given in the n(p)-type

degenerate Si, as:

LVC Sb(N∗, T) = 1.44296 + e− Sb(N∗,T)
104 ; RDL,LVC ≡ 1 − LVC Sb(N∗,T)

L
, (34)

where RDL,LVC is the relative deviations in absolute values between L and LVC.

Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-Si, defined by physical conditions : N = 1021cm−3 and T (=3K and

300K), the numerical results of ξn(p) ≡
�Fn(Fp)(N∗,T)

kBT
, calculated by using Eq. (A3) of the Appendix A, and then

other ones of: σ(N∗, rd(a), T) by Eq. (27), κ(N∗, rd(a), T) by Eq. (25a); Cκ(N∗, rd(a)) , κApp.(N∗, rd(a), T) and

RDκ,κApp. T
by Eq. (25b), Sb(N∗, T) , Ts(N∗, T) , Pt(N∗, T) and ZT(N∗, T) by Equations (30, 31, 32, 33)

respectively, and finally, RDL,LVC by Eq. (34), are obtained and reported in the following Tables 8 and 9.

Table 8. Here, one notes that (i) for a given T, with increasing rd, due to the impurity size effect, NCDn(rd), increases,
since N(=1021 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in �Fn N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
≃ 4.84 × 10−3 confirms the κApp.-law, as given in Eq. (25b),

and finally, (iii) RDL,LVC ≃ 1.535× 10−6 �ℎ�� confirms in the degenerate Si-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

Highly degenerate d-Si systems for N=1021 cm−3 and at T=3K and T=300K, noting that N∗≡ N − NCDn(rd)
�Fn N∗,T=300K

kBT
≫ 1 ↘ 26.06 26.06 26.04 26.03 26.01

σ(T=3K)
104

ohm×cm
↘ 1.9809 1.9243 1.6894 1.5696 1.4417

σ(T=300K)
104

ohm×cm
↘ 1.9905 1.9336 1.6976 1.5772 1.4487

κ(T=3K) (��−�×�
��×� ) ↘ 1.4518 1.4103 1.2382 1.1504 1.0566

κ(T=300K) ( �
��×� ) ↘ 0.1459 0.1417 0.1244 0.1156 0.1062

Cκ (��−�×�
��×�� ) ↘ 48.3936 47.0097 41.2721 38.3456 35.2199

κApp.(300K) ( �
��×�) ↘ 0.1452 0.1410 0.1238 0.1150 0.1056

RDκ,κApp. 300K
in 10−3 4.821 4.822 4.828 4.831 4.837

Sb(T=3K) (
10−7×V

K
) −2.180 −2.180 −2.181 −2.182 −2.183
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Sb(T=300K) (
10−5×V

K
) −2.165 −2.165 −2.167 −2.168 −2.169

Ts(T=3K) (
10−7×V

K ) −2.180 −2.180 −2.181 −2.182 −2.183

Ts(T=300K) (10−5×V
K

) −2.136 −2.137 −2.138 −2.139 −2.140

Pt(T=3K) (10−7 × V ) −6.539 −6.540 −6.544 −6.547 −6.550

Pt(T=300K) (10−3 × V ) −6.496 −6.497 −6.500 −6.503 −6.507

ZT(T=3K) × 10−6 1.945 1.945 1.948 1.949 1.951

ZT(T=300K)(× 10−2 ) 1.919 1.920 1.922 1.923 1.925

----------------------------------------------------------------------------------------------------------------------------------------------------------------

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534 1.534 1.534

RD in 10−6 at 300K 1.535 1.535 1.535 1.535 1.535

__________________________________________________________________________ ____________________________________________

Table 9. Here, one notes that (i) for a given T, with increasing ra, due to the impurity size effect, NCDp(ra), increases,
since N(=1021 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in �Fp N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
≃ 4.84 × 10−3 confirms the κApp.-law, as given in Eq. (25b),

and finally, (iii) RDL,LVC ≃ 1.535× 10−6 �ℎ�� confirms in the degenerate Si-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Acceptor B Ga (Al) Mg In

Highly degenerate a-Si systems for N=1021 cm−3 and T=3K and T=300K
�Fp N∗,T=300K

kBT
≫ 1 ↘ 23.80 23.67 23.58 23.53

σ(T=3K)
104

ohm×cm
↘ 3.4908 1.8896 1.5117 1.3867

σ(T=300K)
104

ohm×cm
↘ 3.5111 1.9007 1.5207 1.3949

κ(T=3K) (��−�×�
��×� ) ↘ 2.5584 1.3848 1.1079 1.0163

κ(T=300K) ( �
��×� ) ↘ 0.2573 0.1393 0.1114 0.1022

Cκ (��−�×�
��×�� ) at T=3K ↘ 85.2802 46.1616 36.9315 33.8767

κApp.(300K) ( �
��×�) ↘ 0.2558 0.1385 0.1108 0.1016

RDκ,κApp. 300K
in 10−3 5.773 5.835 5883 5.907

Sb(T=3K)(
10−7×V

K ) 2.387 2.400 2.410 2.415

Sb(T=300K) (
10−5×V

K
) 2.368 2.381 2.391 2.396

Ts(T=3K) (
10−7×V

K
) 2.387 2.400 2.410 2.415

Ts(T=300K) (10−5×V
K ) 2.331 2.343 2.352 2.357

Pt(T=3K) (10−7 × V ) 7.162 7.201 7.230 7.246

Pt(T=300K) (10−3 × V ) 7.105 7.143 7.172 7.187

ZT(T=3K) × 10−6 2.333 2.358 2.378 2.388

ZT(T=300K)(× 10−2 ) 2.296 2.320 2.339 2.349

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534 1.534

RDL,LVC in 10−6 at 300 K 1.535 1.535 1.535 1.535
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__________________________________________________________________________ ____________________________________________

Secondly, in the highly degenerate d(a)-Si, for a given N∗ , the values of ξn(p) ≡
�Fn(Fp)(N∗,T)

kBT
, calculated by

using Eq. (A3) of the Appendix A, and other ones of: Sb(N∗, T) by Eq. (30), RDL,LVC by Eq. (34), ZT(N∗, T)

by Eq. (33), and finally, Ts(N∗, T) and Pt(N∗, T) by Equations (31, 32), respectively, are obtained and

reported in following Tables 10 and 11.
Table 10. Here, for a given N∗ and for a given degenerate d-Si system, with increasing T, the reduced Fermi-energy ξn decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξn = 1.813, while the numerical results of Sb present a same minimum Sb min. =− 1.563 × 10−4 V

K
, those of ZT show a same

maximum ZTmax. = � , (ii) for ξn = 1, Sb and ZT present same results: −1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξn =

1.813 and ξn = 1, ZT Mott = π2

3×ξn
2 present same results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of RDL,LVC

is approximated to 1.541 × 10−6, suggesting that in the degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is exact.
_____________________________________________________________________________________________________________________

In the degenerate P-Si system, N∗ ≡ N − NCDn(rP) ≡ 5.962 − 3.52 × 1018 cm−3 ≡ 2.442 × 1018 cm−3

T(K) ↗ 40 50 63.945 70 87.00367 88
ξn ↘ 3.663 2.677 1.813 1.552 1 0.973
Sb 10−4 V

K
−1.243 ↘ −1.451 ↘ −1.563 ↗ −1.544 ↗ − 1.322 ↗ − 1.302

RDL,LVC in 10−6 1.539 1.540 1.541 1.541 1.539 1.540

ZT 0.632 ↗ 0.862 ↗ 1 ↘ 0.976 ↘ 0.715 ↘ 0.694
ZT Mott = π2

3×ξn
2 ↗ 0.245 0.459 1.0004 1.366 3.290 3.472

Ts 10−8 V
K

↗ −9423 −8160 5.129 4256 16574 17258
Pt 10−3V − 4.972 ↘ −7.258 ↘ −9.994 ↘ −10.81 ↘ −11.50 ↗ −11.461
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate As-Si system, N∗ ≡ N − NCDn(rAs) ≡ 6.238 − 3.695 × 1018 cm−3 ≡ 2.542 × 1018 cm−3

T(K) ↗ 41 51 65.672 70 89.3753 90
ξn ↘ 3.673 2.706 1.813 1.627 1 0.984
Sb 10−4 V

K
−1.241 ↘ −1.446 ↘ −1.563 ↗ −1.554 ↗ −1.322 ↗ −1.310

RDL,LVC in 10−6 1.539 1.540 1.541 1.541 1.540 1.540

ZT 0.630 ↗ 0.855 ↗ 1 ↘ 0.988 ↘ 0.715 ↘ 0.702
�� ���� = π2

3×ξ�
2 ↗ 0.244 0.449 0.9996 1.242 3.290 3.400

Ts 10−8 V
K

↗ −9407 −8305 −5.554 2928 16574 16993
Pt 10−3V − 5.088 ↘ −7.373 ↘ −10.264 ↘ −10.87 ↗ −8.313 ↗ −11.79
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Te-Si system, N∗ ≡ N − NCDn(rTe) ≡ 7.24 − 4.599 × 1018 cm−3 ≡ 2.641 × 1018 cm−3

T(K) ↗ 42 52 67.37 71 91.66275 92
ξn ↘ 3.678 2.730 1.813 1.659 1 0.991
Sb 10−4 V

K
−1.240 ↘ −1.441 ↘ −1.563 ↗ −1.557 ↗ −1.322 ↗ −1.315

RDL,LVC in 10−6 1.539 1.540 1.541 1.541 1.540 1.540

ZT 0.629 ↗ 0.850 ↗ 1 ↘ 0.992 ↘ 0.715 ↘ 0.708
�� ���� = π2

3×ξ�
2 ↗ 0.243 0.441 1.0004 1.195 3.290 3.347

Ts 10−8 V
K

↗ −9398 −8420 5.574 2396 16574 16795
Pt 10−3V − 5.208 ↘ −7.49 ↘ −10.53 ↘ −11.05 ↘ −12.11 ↗ −12.10
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sb-Si system, N∗ ≡ N − NCDn(rSb) ≡ 8.208 − 5.206 × 1018 cm−3 ≡ 3.001 × 1018 cm−3

T(K) ↗ 52 62 73.37 81 99.8315 100
ξn ↘ 3.096 2.376 1.813 1.529 1 0.996
Sb 10−4 V

K
−1.363 ↘ −1.508 ↘ −1.563 ↗ −1.540 ↗ −1.322 ↗ −1.319

RDL,LVC in 10−6 1.540 1.540 1.541 1.541 1.540 1.540

ZT 0.761 ↗ 0.930 ↗ 1 ↘ 0.971 ↘ 0.715 ↘ 0.712
�� ���� = π2

3×ξ�
2 ↗ 0.343 0.582 1.0002 1.408 3.290 3.316

Ts 10−8 V
K

↗ −9545 −6191 3.280 4683 16574 16675
Pt 10−3V − 7.089 ↘ −9.347 ↘ −11.47 ↘ −12.48 ↘ −13.195 ↗ −13.189
----------------------------------------- -----------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sn-Si system, N∗ ≡ N − NCDn(rSn) ≡ 14.698 − 6.01115 × 1018 cm−3 ≡ 8.68685 × 1018 cm−3

T(K) ↗ 60 100 149 180 202.7443 203
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ξn ↘ 5.737 3.341 1.813 1.291 1 0.997
Sb 10−4 V

K
−0.898 ↘ −1.311 ↘ −1.563 ↗ −1.477 ↗ −1.322 ↗ −1.320

RDL,LVC in 10−6 1.538 1.540 1.541 1.540 1.540 1.540
ZT 0.330 ↗ 0.703 ↗ 1 ↘ 0.893 ↘ 0.715 ↘ 0.713
�� ���� = π2

3×ξ�
2 ↗ 0.100 0.295 1.0001 1.974 3.290 3.309

Ts 10−8 V
K

−6837 ↘ −9716 ↗ 1.980 ↗ 9551 ↗ 16574 ↗ 16650
Pt 10−3V −5.391 ↘ −13.11 ↘ −23.29 ↘ −26.58 ↘ −26.80 ↗ −26.79

Table 11. Here, for a given N∗ and for a given degenerate a-Si system, with increasing T, the reduced Fermi-energy ξp decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξp = 1.813, both Sb and ZT present same maximal results: 1.563 × 10−4 V

K
and 1, respectively, (ii) for ξp = 1, Sb and ZT present

same results: 1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξp = 1.813 and ξp = 1, ZT Mott = π2

3×ξp
2 present same results: ≃ 1 and

3.290, respectively, and finally, (iv) the maximal value of RDL,LVC is approximated to 1.541 × 10−6, suggesting that in the
degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is exact.
__________________________________________________________________________ ____________________________________________
In the degenerate B-Si system, N∗ ≡ N − NCDp(rB) ≡ 4.7 − 4.06 × 1018 cm−3 ≡ 6.4 × 1017 cm−3

T(K) ↗ 15 20 23.92 29 32.545114 33
ξp ↘ 3.651 2.416 1.813 1.281 1 0.967
Sb 10−4 V

K
1.245 ↗ 1.501 ↗ 1.563 ↘ 1.473 ↘ 1.322 ↘ 1.298

RDL,LVC in 10−6 1.539 1.540 1.541 1.540 1.540 1.539
ZT 0.635 ↗ 0.922 ↗ 1 ↘ 0.888 ↘ 0.715 ↘ 0.690
�� ���� = π2

3×ξ�
2 ↗ 0.247 0.564 1.0004 2.003 3.290 3.514

Ts 10−8 V
K

↘ 9440 6497 −5.766 −9759 −16574 −17408
Pt 10−3V 1.868 ↗ 3.002 ↗ 3.739 ↗ 4.272 ↗ 4.301 ↘ 4.284
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Ga(Al)-Si system, N∗ ≡ N − NCDp(rGa(Al)) ≡ 13.2115 − 12.118516 × 1018 cm−3 ≡ 1.093 × 1018 cm−3

T(K) ↗ 20 30 34.175 39 46.49879 47
ξp ↘ 3.967 2.239 1.813 1.439 1 0.975
Sb 10−4 V

K
1.182 ↗ 1.529 ↗ 1.563 ↘ 1.522 ↘ 1.322 ↘ 1.303

RDL,LVC in 10−6 1.539 1.540 1.541 1.540 1.539 1.539
ZT 0.572 ↗ 0.957 ↗ 1 ↘ 0.948 ↘ 0.715 ↘ 0.696
�� ���� = π2

3×ξ�
2 ↗ 0.209 0.656 1.0004 1.589 3.290 3.461

Ts 10−8 V
K

↘ 8851 4997 −4.913 −6415 −16574 −17218
Pt 10−3V 2.364 ↗ 4.587 ↗ 5.341 ↗ 5.936 ↗ 6.146 ↘ 6.127
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Mg-Si system, N∗ ≡ N − NCDp(rMg) ≡ 19.90075 − 18.199979 × 1018 cm−3 ≡ 1.701 × 1018 cm−3

T(K) ↗ 20 30 45.89 50 62.44 63
ξp ↘ 5.330 3.461 1.813 1.565 1 0.979
Sb 10−4 V

K
0.953 ↗ 1.285 ↗ 1.563 ↘ 1.546 ↘ 1.322 ↘ 1.307

RDL,LVC in 10−6 1.538 1.539 1.540 1.540 1.539 1.539
ZT 0.372 ↗ 0.676 ↗ 1 ↘ 0.978 ↘ 0.715 ↘ 0.699
�� ���� = π2

3×ξ�
2 ↗ 0.116 0.275 1.0003 1.343 3.290 3.432

Ts 10−8 V
K

7045 ↗ 9663 ↘ −3.724 ↘ −4019 ↘ −16574 ↘ −17111
Pt 10−3V 1.907 ↗ 3.856 ↗ 7.172 ↗ 7.731 ↗ 8.253 ↘ 5.098
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate In-Si system, N∗ ≡ N − NCDp(rIn) ≡ 25.25693 − 21.329 × 1018 cm−3 ≡ 4.364 × 1018 cm−3

T(K) ↗ 50 60 86 90 117.03044 118
ξp ↘ 3.997 3.167 1.813 1.679 1 0.981
Sb 10−4 V

K
1.176 ↗ 1.348 ↗ 1.563 ↘ 1.558 ↘ 1.322 ↘ 1.308

RDL,LVC in 10−6 1.539 1.539 1.540 1.540 1.539 1.539
ZT 0.566 ↗ 0.744 ↗ 1 ↘ 0.994 ↘ 0.715 ↘ 0.700
�� ���� = π2

3×ξ�
2 ↗ 0.206 0.328 0.9999 1.166 3.290 3.421

Ts 10−8 V
K

8788 ↗ 9637 ↘ 1.825 ↘ −2056 ↘ −16574 ↘ −17070
Pt 10−3V 5.881 ↗ 8.089 ↗ 13.44 ↗ 14.02 ↗ 15.47 ↘ 15.43
__________________________________________________________________________ ____________________________________________
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In summary, from above Tables, for ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≳ 1, the maximal value of RDL,LVC is equal to :

1.541× 10−6, suggesting that the above Wiedemann-Frank thermoelectric conversion law, ginen in Eq. (25a)

is found to be exact, with the Laurenz number L ≡ π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , even at the limiting

degenerate case, ξn(p) ≃ 1. In other word, our above LVC N∗, T, rd(a) -expression, given in Eq. (25b), is not

useful in the present degenerate n(p)-type Si.

6. Concluding remarks
In the n(p)-type degenerate Si-crystal, by using the same physical model, as that given in Eq. (7), and

same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the

corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now

revised and performed. So, by basing on our following basic expressions, as:

(i)the effective extrinsic static dielectric constant, ε(rd(a)), due to the impurity size effect, determined by an

effective Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, NCDn NDp (rd(a)) , determined from the generalized effective Mott

criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N∗ ≡ N −

NCDn(CDp)(rd(a)), which gives a physical condition, needed to define the metal-insulator transition (MIT) at

T=0K, as: N∗ ≡ N − NCDn(CDp)(rd(a))=0 or N = NCDn(CDp)(rd(a)),

(iii) the Fermi energy, �Fn(Fp)(N∗, T) , determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 × 10−4 [3], and finally,

(iv) the electrical conductivity, σ(N∗, rd(a), T) , the thermal conductivity, κ(N∗, rd(a), T) , and the Seebeck

coefficient, Sb(N∗, T), determined respectively in Equations (27, 25a, 30),

we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks

are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N∗ = 0, at which:

(a) �Fno(Fpo)(N∗ = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to N∗ 2/3,

(b) as discussed in Eq. (5), suggesting that, in the MIT,

�gn1 gp1 N∗ = 0, rd a , T = 0 = �gn2 gp2 N∗ = 0, rd a , T = 0 = �Fgni Fgpi rd a ,

where �gn1 gp1 , �gn2 gp2 and �Fgni Fgpi are the optical band gap (OBG), reduced band gap and intrinsic

band gap, respectively, and

c) as discussed in Eq. (27) for the electrical conductivity, σ(N∗, rd(a), T), which is proportional to �Fno(Fpo)
2 or

to N∗ 4/3 , giving rise to: σ(N∗ = 0, rd(a), T = 0) = 0 , and therefore, as discussed in Equations (28), (29)

and (A7) of the Appendix A: μ(N∗ = 0, rd(a), T = 0K) = 0, μH(N∗ = 0, rd(a), T = 0K) = 0 , and D(N∗ =

0, rd(a), T = 0K) = 0.
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Furthermore, for high N∗ (or high N) and at low T, some concluding remarks are given as follows.

(1) In Table 2, we remark that the maximal relative deviations, in absolute values, RD , between

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(Ba)) are found to be equal to: 9.8(4.91) × 10−6 , respectively. In other

word, the critical donor(acceptor)-density, NCDn NDp (rd(a)), determined in Eq. (3), can be used to explain

the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)).

(2) In Table 3, the numerical results of the OBG, given in Eq. (5), are obtained, suggesting that those are

accurate to within 1.16%(2.68%), for P(B)-Si systems.

(3) In Table 5, those of the electrical conductivity, σ(N∗, rd(a), T) , given in Eq. (27), are obtained for the

degenerate P-Si system, with an accuracy of the order of 7.5%, giving us confidence in the determination of

other electrical-and-thermoelectric properties.

(4) In Tables 6 and 7, we remark that: (i) for given N and T, the functions: σ(rd(a)), μ(rd(a)), μH(rd(a)) and

D(rd(a)), calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing

rd(a), and (ii) for given rd(a) and T, the functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and

μH(N∗) decrease, with increasing N.

(5) In Tables 8 and 9, one notes that (i) for a given T, with increasing rd(a) , due to the impurity size effect,

NCDn(CDp)(rd(a)) , increases, since N(=1021 cm−3) is very high, N∗ therefore decreases slowly, explaining

the slow decrease (↘) in �Fn N∗,T=300K
kBT

, σ, κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
≃ 4.84 ×

10−3 confirms the κApp. -law, as that given in Eq. (25b), and finally, (iii)

RDL,LVC ≃ 1.535× 10−6 thus confirms in the degenerate Si-case the well-known Wiedemann-Frank, given

in Eq. (25a), is found to be exact.

(6) Finally, in Tables 10 and 11, for a given N∗ and for a given degenerate d(a)-Si system, with increasing T,

the reduced Fermi-energy ξn(p) decreases, and other thermoelectric coefficients are in variations, as indicated

by the arrows as: ( ↗, ↘). One notes here that with increasing T: (i) for ξn(p) = 1.813, while the values of Sb

present a same minimum (maximum) Sb min.(max.) = ∓ 1.563 × 10−4 V
K

, those of ZT show a same

maximum ZTmax. = � , (ii) for ξn = 1, those of Sb and those of ZT present same results: Sb = ∓ 1.322 ×

10−4 V
K

and 0.715, respectively, (iii) for ξn = 1.813 and ξn = 1 , those of ZT Mott = π2

3×ξn(p)
2 present same

results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of RDL,LVC is approximately equal

to 1.541 × 10−6 , suggesting that in the degenerate Si-case the Wiedemann-Frank, given in Eq. (25a), is

exact.

(7) From above remarks (5) and (6), given for the maximal values of RDL,LVC , being equal approximatively

to 1.5 × 10−6 , our above LVC N∗, T, rd(a) -expression, given in Eq. (25b), is found to be not useful in the

present degenerate n(p)-type Si.
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In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

A1. In the n(p)-type Si-crystals, the Fermi energy �Fn(Fp) ≡ �fn − �c �Fp ≡ �v − �fp , �c(v) being the

conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in

our previous paper, with a precision of the order of 2.11 × 10−4 [3], is now summarized in the following. In

this work, N is replaced by the effective density N∗ , N∗ ≡ N − NCDn(CDp)(rd(a)), NCDn(CDp)(rd(a)) being the

critical density, characteristic of the insulator-metal transition phenomenon. It means that �∗ = 0 at this

transition.

First of all, we define the reduced electron density by:

u N∗, rd a , T ≡ u N∗, T ≡ N∗

Nc(v)
, Nc(v)(T) = 2 × gc(v) × mn(p)

∗ ×kBT

2πℏ2

3
2 (cm−3), (A1)

where Nc(v)(�) is the conduction (valence)-band density of states, and the values of gc(v) and mn(p)
∗ are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type Si is determined by :
�Fn(u)

kBT
�Fp(u)

kBT
= G u +AuBF(u)

1+AuB = θn(u) ≡ V(u)
W(u)

, A = 0.0005372 and B = 4.82842262, (A2)

where F N∗, rd a , T = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, obtained for u ≫ 1, according to the degenerate cas,

a = (3 π/4) 2/3 , b = 1
8

π
a

2
, c = 62.3739855

1920
π
a

4
, and then G u ≃ Ln u + 2−3

2 × u × e−du for u ≪

1, according to the non − degenerate case, with: d = 23/2 1
27
1
27

− 3
16
3
16 > 0.

So, in the present degenerate case (u ≫ 1), one has:

�Fn(Fp) N∗, rd a , T ≡ �Fn(Fp)(N∗, T) = �Fno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A3)

Then, at T=0K, since u−1 = 0, Eq. (A.3) is reduced to:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mn(p)
∗ , (A4)

being proportional to N∗ 2/3, and equal to 0, �Fno(Fpo)(N∗ = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:
D N∗,rd a ,T
μ N∗,rd a ,T

≡ N
q

× d�Fn(Fp)

dN
≡ kB×T

q
× u dθn(p)

du
, (A5)

where θn(u) is defined in (A2) and the mobility μ N∗, rd a , T is determined in Eq. (28). Then, by

differentiating this function θn(u) with respect to u, one thus obtains dθn
du
. Therefore
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D N∗,rd a ,T
μ N∗,rd a ,T

= kB×T
q

× u V' u ×W u −V u ×W' u
W2 u

, (A6)

where W' u = ABuB−1 and V' u = u−1 + 2−3
2e−du 1 − du + 2

3
2
3AuB−1F u 1 + 3B

2
3B
2 + 4

3
4
3× bu−4

3+2cu−8
3

1+bu−4
3+cu−8

3
. One

remarks that: (i) as u → 0 , one has: W2 ≃ 1 and u[V' × W − V × W'] ≃ 1 , and therefore: Dn(p)(u)
μ

≃ kB×T
q

,

and (ii) as u → ∞ , one has: W2 ≈ A2u2B and u[V' × W − V × W'] ≈ 2
3
2
3au2/3A2u2B , and therefore, in this

highly degenerate case and at T=0K,
D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≈ 2
3

�Fno(Fpo)(N∗)/q). (A.7)

One notes that, for N∗ = 0, �Fno(Fpo)(N∗) = 0, as remarked in above Eq. (A4), μ N∗ = 0, rd a , T = 0K = 0,

as remarked in above Eq. (28), and therefore, for any rd a , D N∗ = 0, rd a , T = 0K = 0, according to the

MIT. Now, replacing �Fno(Fpo) given in Eq. (A.7) by �Fn(Fp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≃ 2
3

× �Fno(Fpo)(�) × 1 + bu−4
3 + cu−8

3
−2

3
. (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type Si-crystals, we define the effective reduced Wigner-Seitz radius rsn(sp),

characteristic of the interactions, by:

rsn(sp) N∗, rd(a) ≡ 3gc(v)

4πN∗

1/3
× 1

aBn(Bp)(rd(a))
= 1.1723 × 108 × gc(v)

N∗

1/3
×

mn(p)
∗ /mo

ε(rd(a))
. (B1)

Here, the values of gc(v) = 3(2) and (mn(p)
∗ /mo) are defined and given in Table 1.

In particular, in the following, mn(p)
∗ /mo = mr/mo = 0.1713 , is taken for evaluating the band gap

narrowing (BGN), as used in Section 3. Therefore, the correlation energy of an effective electron gas,

�CE rsn(sp) , is found to be given by [1]:

�CE rsn(sp) ≡ �CE N∗, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

Δ�gn(N∗, rd) ≃ a1 × εo
ε(rd)

εo
ε(rd) × Nr

1/3 + a2 × εo
ε(rd)

εo
ε(rd)

εo
ε(rd) × Nr

1
3 × 2.503 × [ − �CE rsn × rsn] + a3 × εo

ε(rd)

5/4
×

mv
mr

× Nr
1/4 + a4 × εo

ε(rd)
× Nr

1/2 × 2 + a5 × εo
ε(rd)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDn(rd)

9.999×1017��−3, (B3)

where a1 = 6.829 × 10−3(eV) , a2 = 1.168 × 10−3(eV) , a3 = 5.032 × 10−3(eV) , a4 = 10.058 ×

10−3(eV) and a5 = 1.455 × 10−3(eV), and

Δ�gp(N∗, ra) ≃ a1 × εo
ε(ra)

εo
ε(ra) × Nr

1/3 + a2 × εo
ε(ra)

εo
ε(ra)

εo
ε(ra) × Nr

1
3 × 2.503 × [ − �CE rsp × rsp] + a3 × εo

ε(ra)

5/4
× mc

mr
×

Nr
1/4 + 2a4 × εo

ε(ra)
× Nr

1/2 + a5 × εo
ε(ra)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDp(ra)

9.999×1017 cm−3 , (B4)
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where a1 = 9.329 × 10−3(eV) , a2 = 1.596 × 10−3(eV) , a3 = 7.144 × 10−3(eV) , a4 = 13.741 ×

10−3(eV) and a5 = 1.988 × 10−3(eV).

Therefore, in Equations (B3, B4), as N∗ = 0 , and for any ra , Δ�gn(gp)(N∗ = 0, ra) = 0 , according to the

MIT.
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