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Abstract

The objective of this work is to construct a new efficient numerical scheme to solve the

Fitzhugh-Nagumo model. For the space discretization, Chebyshev spectral method proposed

on Legendre orthogonal approximations on Gauss- Chebyshev- Lobatto points. A high-order

Runge-Kutta algorithm was used in the time direction. The full-discrete scheme was

expressed explicitly and was easy to be implemented with the Neumann boundary conditions.

Numerical experiments are discussed to validate the accuracy and reliability of the proposed

method.

Keywords: Chebyshev spectral method; FitzHugh-Nagumo equation; Neumann boundary

condition

1. Introduction

The early Fitzhugh equation was a mathematical model of excitable media applied to neuronal

dynamics [1]. Then, Nagumo developed the Fitzhugh equation to the Fitzhugh–Nagumo (FN)
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equation which simplified the Hodgkin–Huxley dynamics model [2]. Over four decades, the

FN equation has been widely extended to describe various sciences phenomena such as

autocatalytic chemical reaction, branching Brownian motion process, nuclear reactor theory,

neurophysiology, logistic population growth and study of reentry in heart tissue [2-3].

In this work, we consider the following FN equation with diffusion

(1 )( ) ,

( ),

u
u K u u u u a v
t
v u v
t

   

       
   
 

(1.1)

subject to the initial conditions

0 0( , ,0) ( , ), ( , ,0) ( , ),u x y u x y v x y v x y  (1.2)

with Neumann boundary conditions

( , , ), ( , ) ,

( , , ), ( , ) ,

u f x y t x y on
n
v g x y t x y on
n

  
  


(1.3)

where , , ,a    and  are constants, ( , , ) [0, ],x y t T 2 ,  uK represents the

diffusion coefficient of u , 0 0, ,u v f and g are sufficiently smooth functions.

In the past few decades, many researchers have done for the numerical solution of the FN

equations. Various numerical methods have been announced including the finite difference

method [4-6], Haar wavelet method [7], finite element method [8-9], spectral method [2, 10-

12] and so on [3]. Recently, Muhammad et al. derived a stochastic explicit scheme to

approximate the stochastic FN model. They analyzed the unique existence, consistency and

stability of the proposed scheme [13].

In this work, we employ a high order Runge–Kutta algorithm for the coupled system of FN

equation. With Chebyshev spectral method, FN equation is approximated to a system of

ordinary differential equations which can be decomposed by the fourth-order Runge-Kutta

(RK4) method. The constructed scheme is explicit matrices form which has the advantage of

processing boundary conditions.

The rest of the article is organized as follows. In Section 2, we give a brief introduction of

Chebyshev spectral method with Neumann boundary condition, also the discrete Laplacian is



43

discussed. The full-discrete scheme is presented in Section 3. In Section 4, we test some

numerical experiments, including 1D FN equation and 2D FN equation with long period

simulation. The conclusion of this article is given in last Section.

2. Chebyshev spectral method for Neumann boundary conditions

In this section, we consider Chebyshev approximation in the space for Neumann boundary

value problems.

2.1. Chebyshev spectral method

The spectral method is based on finite-order function expansion and truncation to

approximate the original function. In order to normalize the space region [ , ]a b to [ 1,1] , we

use the linear transformation ( 1) ,
2
Lx x a   .L b a  In this work, we consider

Chebyshev orthogonal polynomials, the trial function ( )kT x is selected as orthogonal function

[15]

( ) cos( arccos( )), .kT x k x k N  

For any function 1( ) 1,1][u x C  can be expanded according to this set of basis function as

follows:

0
( ) ( ) ( ),k

k
u x H x u x







where the kth spectral expansion coefficients ( )kH x are defined as

1

21

2, 0,( ) ( )2( ) ,
1, 0.(1 )

k
k k

k

ku x T xH x C
kC x 


    

 (1.4)

To consider the accuracy of the discrete integration in Eq. (1.4) and efficiency of the

processing Neumann boundary conditions, Gauss-Chebyshev-Lobatto (GCL) points are

considered as collocation points:

cos( ), 0,1, ,k
kx k N
N


  



44

where N is the number of points, the Lagrange interpolation polynomial at these unequally

interpolation are defined as

( 1) 2

2

2, 0, ,( 1) (1 ) ( )( ) ,
1, ,( )

k
N

k k
k k

k Nx T xH x C
otherwiseC N x x

  
  

 

and the approximation of ( )u x with truncated series is

0
( ) ( ) ( ),

N

k k
k

u x H x u x



The first derivative of ( )u x can be approximated by

0
( ) ( ) ( ).

N

k k
k

u x H x u x


  (1.5)

Eq. (1.5) can be expressed in the form of matrix and vector

( ) ,NU D U 

where 0 1[ ( ), ( ), , ( )] ,TNU u x u x u x  0 1[ ( ), ( ), , ( )] ,TNU u x u x u x     ( )ND is an

( 1) ( 1)N N   matrix and so-called the first-order Chebyshev differentiation matrix.

Theorem 2.1 ([16]) Chebyshev differentiation matrix

Given an arbitrary integer 1N  , each element of the first-order Chebyshev differentiation

matrix depends on the values of , ,i j N . This matrix is defined as following

( ) 2

2

( ) 00 ( )

( 1) , ,
( )

[ ] , ( ) 0, ,
2(1 )

2 1( ) ( ) .
6

i j
i

j i j

i
N ij

i

N N NN

C i j
C x x

xD i j N
x

ND D

 
 

   


 
   


The second derivative of ( )u x can be approximated as d matrix form

2
( ) ( ) ( ) ( )( ) ( ) ,N N N NU D U D D U D U   

where 2
( )ND is the second-order Chebyshev differentiation matrix.
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2.2. Discrete Laplacian in 2-dimension

Before discrete processing, we need define two Matrix Operators.

Definition 1 Kronecker product

Given two arbitrary matrices ( )k lA  and ( )m nB  , their Kronecker product C can be

calculated by

11 12 1

21 22 2 ( ) (ln)

1 2

,

l

l km

k k kl

a a a
a a a

a a a



 
 
    
 
 
 

B B B
B B B

C A B

B B B





  



(1.6)

Definition 2 Hadamard product

Given two same dimension matrices ( )m nA  and ( )m nB  , their Hadamard product

A BC  is an m n matrix with elements defined by

( ) ( ) .ij ij ij ija b C A B 

For an integer 1N  , any function ( )u x in [ , ] [ , ]a b c d can be discrete on grid points as

following:

00 01 0

10 11 1
( 1) ( 1)

0 1

,

N

N
N N

N N NN

u u u
u u u

u

u u u

  

 
 
 
 
 
 




  


(1.7)

or

2 00 01 0 10 11 1 0 1( 1)
[( , , , ), ( , , , ), , ( , , , )],N N N N NNN

u u u u u u u u u u


     (1.8)

where the first form (Eq. 1.7) of discrete ( )u x is a square matrix of ( 1)N  -order, and the

second form (Eq. 1.8) of discrete ( )u x is a 2( 1)N  vector.

Now, expending Chebyshev spectral method to 2-dimensional space, we obtain two kinds of

discrete Laplacian:

2 2
2 2

( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( )2 2( ) ( ) ,TN N N N N N N Nu u D u u D
x y         

 
  

 
  (1.9)
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and

2 2

2 2
2 2
( ) ( 1) ( 1) ( )2 2 ( 1) ( 1)

( ) ( ) ,N N N NN N
u u D I I D u

x y   

 
    

 
  (1.10)

respectively. Fig.1 show the two kinds of discrete Laplacian with 10N  . It is clear that the

first discrete form is less computational amount than the second form. In this manuscript, Eq.

1.9 is selected as discrete Laplacian form to improve computing efficiency.

Fig. 1. Sparsity plot of two discrete Laplacian forms. Left, the 11 11 discrete Laplacian (1.9). Right, the

121 121 discrete Laplacian (1.10).

Thus, with the application of Chebyshev spectral method, Eq. (1.1) is given by

2 2
( ) ( )( ( ) ) (1 )( ) ,

( ).

T
u N N

dU K D U U D U U U a V
dt
dV U V
dt

   

      

   



(1.11)

2.3. Neumann boundary conditions processing

Let the value of the function 1( ) [ , ]u x C a b at the GCL points 0 1( , , , )TNx x x x  be the

vector 0 1( , , , )NU u u u  , where 0 ( ), ( )Nu u b u u a  . Neumann boundary conditions

( ),

( ),

x a

x b

du f x
dx
du g x
dx










 

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are implemented by

0

00 01 0 1

0 1

( ) ( ) ( )( ) ( )
,

( ) ( ) ( )( ) ( )
N N N N

N N N N N NN

N

u
D D D uu b g x
D D Du a f x

u

 
                   
 


 

the boundary value problem can be solved by the system

1
1

01 02 0( 1)0 00 0 2

( 1)0 ( 1)1 ( 1)( 1)0

1

( ) ( ) ( )( ) ( ) ( )
,

( ) ( ) ( )( ) ( ) ( )
N N N NN N N

N N N N N N NN N N NNN

N

u
D D Du D D ug x
D D DD Du f x

u




   



  
                              


 

whereas for the homogeneous Neumann boundary problems, the solving system is

1
1

01 02 0( 1)0 00 0 2

( 1)0 ( 1)1 ( 1)( 1)0

1

( ) ( ) ( )( ) ( )
.

( ) ( ) ( )( ) ( )
N N N NN N N

N N N N N N NN N N NNN

N

u
D D Du D D u
D D DD Du

u




   



 
                    
 


 

3. Full-discrete scheme

To integrate the coupled systems (Eq. 1.1) in time direction, a high-order difference method

will be used. Rewriting Eq. (1.1 – 1.3) as following:

0, 0

( , ),

( , ),

( 0) ( 0) ,

( , , ), ( , , ).

dU F U V
dt
dV G U V
dt
U t U V t V
U Vf x y t g x y t
n n

 

 

    

     

(1.12)

where

2 2
( ) ( )( , ) ( ( ) ) (1 )( ) ,T

u N NF U V K D U U D U U U a V     

and

( , ) ( ).G U V U V     
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We consider explicit Fourth-order Runge-Kutta method (RK4) to discrete the ordinary

differential equations (1.12).

Definition 3 Runge-Kutta algorithm [Ref.12]

For nonlinear ODE problem

0 0 ,( , ), ( )y f t y y t y  

the Fourth-order Runge-Kutta method is in the form

1 ( , , )n n n ny y tK y t t    

where ( , , )n nK y t t is determined by ( , )f t y .

Then we can construct the full-discrete scheme:

Chebyshev-Fourth order Runge-Kutta (CRK4) scheme: Given the approximate solution

matrices nU and nV at the time nt , the approximate solution 1nU  and 1nV  at the time 1nt 

can be calculated via

1 1

2 1 1 2 1 1

3 2 2 3 2 2

4 3 3 4 3

( , ), ( , ),

( , ), ( , ),
2 2 2 2

( , ), ( , ),
2 2 2 2

( , ), ( ,

n n n n

n n n n

n n n n

n n n n

KU t F U V K V t G U V
t t t tK U t F U KU V K V K U t G U KU V K V

t t t tK U t F U K U V K V K U t G U K U V K V

K U t F U tK U V tK V K U t G U tK U V

     

   
         

   
         

            3 ),tK V








  

1 1 2 3 4

1 1 2 3 4

( 2 2 ),
6

( 2 2 ),
6

n n

n n

tU U KU K U K U K U

tV V K V K V K V K V





     
      


where t is the step size at time direction. Neumann boundary conditions will be considered

after RK iteration.

Remark 1. CRK4 is an explicit scheme. We refer readers to Ref. [12, 14] for the details of the

stability analysis and error estimation.
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4. Full-discrete scheme

To verify the accuracy and efficiency of the presented scheme in solving the Fitzhugh-

Nagumo equations, several examples are performed in this section. 2L and L error norms

are used to measure the accuracy of the method

2

1
2

2 ( , ) , ,( )j exact
j

jjL u x t u u t
 
 
 

 

(max ,( , ) , )j exact jj
L u x t u u t  

where j are the GCL weight defined by

, 0, ,
2

, .
j

i N
N

otherwise
N






  



Example 1 Consider the following 1-D Fitzhugh-Nagumo equation

(1 )( ), ( , ) [0,1] [0, ]t xxu u u u u x t T     

with initial condition

2

1( ,0) , [0,1],
1

xu x x
e
 



and the boundary conditions are given as

1
2 2

1 1(0, ) , (1, ) ,
1 1

ct ctu t u t
e e
   

 

where 12( ).
2

c  

This example has the exact solution

2

1( , )
1

exact su x t
e



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where the wave speed s x ct  .

We choose parameters as 0.75  , 10N  . Error norms 2L and L are summarized in

Table 1. From the comparison, the presented method can achieve higher accuracy than others.

Then numerical solutions by the CRK4 scheme are plotted in Fig. 2 for 410, 1 10N    

which shows the effect of varying  .

Table 1. Error norms 2L and L for 0.75  , 10N  with different values of t .

410t   0.01t  1t 

2L

CRK4 91.0799 10 94.1044 10

[12] method 92.17 10 91.51 10

[3] method 71 10 76 10

L

CRK4 91.85 10 97.2999 10

[12] method 92.07 10 91.47 10

[3] method 72 10 79 10

510t   0.01t  1t 

2L

CRK4 101.0792 10 104.1050 10

[12] method 92.17 10 94.08 10

[2] method 71 10 76 10

L

CRK4 101.8481 10 107.3009 10

[12] method 92.07 10 93.90 10

[3] method 72 10 79 10
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Fig. 2. Numerical solutions for 410, 1 10N     and different values of �.

Example 2[Long period simulation] Consider the following 2-D Fitzhugh-Nagumo model

(1.1) with initial conditions

1, 0 , 1.25,
( , ,0)

0, ,
if x y

u x y
otherwise

 
 


0.1, 0 2.5, 1.25 2.5,
( , ,0)

0, .
if x y

v x y
otherwise

   
 


over a square domain size [0, 2.5] [0,2.5] with homogeneous Neumann boundary condition.

Parameters in the numerical example are chosen as
40.1, 0.01, 0.5, 1, 0 , , 10 , 50ua K N          and 0.01  . Fig. 3 displays the

stable spiral wave numerical simulations at different time levels 0,150,300,450.t 

Fig.3 Solutions of the 2D Fitzhugh–Nagumo model at 0,150,300, 450.t 
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5. Conclusions

In this work, we developed Chebyshev spectral method in combination with high-order

Runge-Kutta algorithm. The nonlinear Fitzhugh-Nagumo equation can be approximated in an

explicit matrix form and become ease to implement the boundary conditions. The presented

method was able to offer better numerical solutions in comparison with others. At the same

time, the spiral wave simulation in a long period for the FHN model demonstrates that the

proposed scheme (CRK4) is efficient and reliable. As a conceivable outgrowth, the presented

method is capable for other coupled equations in physics.
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