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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, 8(rd(a)) , Td@ being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqc), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate InP-crystal, defined for the

reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks, as follows.
(1) The critical donor(acceptor)-density, Ncpnnpp) (Fa(a)) . determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBE(CDp)(rd(a)), given in Eq. (21).

(2) In Tables 9-11, for a given d(a)-density N [= 2Ncpn(npp)(Fda)) ] one notes here that with increasing
temperature T(K): (i) for reduced Fermi energy &n¢py( = 1.813), while the numerical results of the Seebeck

coefficient Sb present a same minimum (maximum) (: ( )1563 %1074 %), those of the figure of merit ZT

show a same maximum ZT(= ), (ii) for { =1, those of Sb and ZT present same results:
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sb(=( )1.322x 10747) and 0.715, respectively, (i) for &gy = 1813 and &) = 1, those of the well-

2
known Mott figure of merit give same (ZT)pott = %( 1 and 3.290), respectively, and finally, (iv) we
*Sn(p)

show here that in the degenerate InP-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found

to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as I and I1.

In I, our new expression for the extrinsic static dielectric constant, s(rd(a)), ldca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing Iy ,
s(rd(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type
degenerate InP-crystal, defined for the accurate reduced Fermi energy [3], ( )( ). Therefore, all the
numerical results of those obtained and given in II are now revised and performed, in comparison with those
obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4, 5, 6] are presented in Tables 1
and 2. In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and
mathematical methods, needed to determine and evaluate the critical densities of the majority carriers
localized in the exponential conduction (valence) band tails, are presented, confirming thus the
corresponding numerical results, obtained using Eq. (3) for the generalized effective Mott criterion in the
metal-insulator transition (MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution
function method, our accurate expression for the electrical conductivity, 0, is determined, being a
fundamental one, since it is related to all other electrical-and-thermoelectric coefficients, and then all the
numerical results of those coefficients are reported in Tables 4-11. Finally, some concluding remarks are

given in Section 6.

2. Energy-band-structure parameters

First of all, we present in Table 1 the values of the energy-band-structure parameters, given in the n(p)-type
InP-crystal, such as: (i) if denoting the free electron mass by Mg, the relative effective electron (hole) mass,

mn(p)/ My, which is equal to the relative effective mass, Mp(p) /M, [4], as used in this Sections 2 and 4 to

Mp>Mp

determine the critical impurity density in the MIT, (ii) to the reduced effective mas, m, = g

X m,, as

used in Section 3 to determine the optical band gap (OBG), and (iii), to the conductivity effective mass,
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Mcncpy/ Mo [5], as used in Section 5 to determine the electrical-and-thermoelectric coefficients. Further,

g0 = go(l'do(ao) = rpaimy) = 1.424 [5] is the unperturbed intrinsic band gap, as used in Section 3 to
determine the OBG, &, = 12.5 [4], is the relative intrinsic dielectric constant, and finally, the effective
averaged numbers of equivalent conduction (valence)-band edge, gcv)y = 1(1), used for present majority-

carrier transport phenomena.
Table 1. Here, the effective electron (hole) mass, Myp)» is equal respectively to: myp, as used in Sections 2 and 4, to

M, in Section 3, and Mcn(cpy in Section 5, and the values of other important parameters are also reported.

mn(p)/mo [1] mr/mo an(Cp)/mo [5] gc(v) go [5] 80 [4]

0073222 =0.339)  0.060 0.077(0.50) 1(1) 1.424 eV 12.5

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a))’ characteristic of the MIT, as follows.
2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since Iy, given in tetrahedral covalent bonds, is usually either
larger or smaller than Fgo(a0) = Ip(in), @ local mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: rye)y > Fdocac) (Fd(a) < Fdo(ac)): due to the d(a)-size effect,
respectively [1]. Then, we have shown that this ry, -effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'q(a)), determined as follows.

At T=0K, we shown [1] that, as ryea) > lgo(ao)( Md(a) < Vdo(ao)) » SUch the compression (dilatation)
corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap
gni(gpi)(rd(a)) and the effective donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained

in an effective Bohr model, as [1]:

2
gni(gpi)(rd(a)) - go(rdo(ao)) = d(a)(rd(a)) - do(ao)(rdo(ao)) = do(ao)(rdo(ao)) x [(ﬁ) - 1], (D

where
€
E(Fd(a))z - S ~ <§&,, for ld(a) = I'do(ao)» and
1+ (9@ ) g fxjn(- 9@
Tdo(ao) Tdo(ao)
£ Td(a) 3 "d(a) 3
E(Fd(a))z = &g, (—) -1 x In(—) <1, for lFd(a) = Ido(ao)- (2)
r 3 r 3 do(ao) Tdo(ao)
- (7"(3) ) = XIn(id(a) )
do(ao) do(ao)

One notes that €(I'q(a)) decreases with an increasing rya).
2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InP-semiconductor, the critical donor(acceptor)-density, Nepnnpp) (Fdcay) » 18

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonmop) (Fdgay) 73 % 8gneepy(Fdca)) = 0.25, (3)
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and the effective Bohr radius agn(gp)(Fdca)) is given by:

e(ra@)* 2
(mn(p)/mo)xq2

€(rdca)) (4)

— -8
053 x10"°cm x Mg/ M)

asnp) (Fd(a)) =
where —q is the electron charge, €(rg@)) is determined in Eq. (2), and My /My = Mppy/mg =
0.073(0.339), as given in Table 1. In this Table 2, we also present various values of €(I'q(a)), @gn(ep)(Id(a))

d@(a@) and  gnicgpiy(Faca)) » Neonenopy (Fagay) » @nd the densities of electrons (holes) localized in
exponential conduction (valence)-band tails, NGB, cop () . Noting that the maximal relative
deviations, in absolute values, |RD|, between Nepnnop)(Fda) @nd Nepneop)(Faeay) are found to be
equal to: 5.57(7.61) x 1074, respectively. In other word, Nconnop) (Fda)), determined in Eq. (3), can be
explained by NEBE(CDp)(rd(a)), determined in Eqg. (21). Furthermore, in our recent work [6], we showed
that, in the n(p)-type degenerate semiconductors, the critical densities of electrons (holes) can also be
determined from the spin-susceptibility singularities (SSS), obtained at N = N%SDSn(CDp)(rd(a)), at which the

MITs occur.
Table 2. Here, for increasing ryc [4], both €(ry,)), calculated using Eq. (2), and agngp) (Fa(a)), €valuated using Eq. (4),

. ke . .
decrease, while d(a) (rd(a)), gni(gpi) (l’d(a)), NCDn(NDp)(I’d(a)), NEB;:(CDp)(rd(a)), and k:_nlgs)), calculated using Equatlons (1,

1,3,21,7), respectively, increase, affecting strongly all the physical properties, given in Sections 3-5

Donor P As Te Sb Sn
rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
(rq) 125 12.20 10.57 9.987 9.40
agn(rg) in 1077 cm 9.07 8.86 7.67 7.25 6.87
a(rg) in mev 6.35 6.67 8.88 9.95 11.23
gni(rg) in meV 1424 14243 1426 1428 1429
Nepn(rg) in 1016 cm=3 2.09 2.25 3.456 4.10 491
NEBT (ry) in 1016 cm~3 2.09 2.24882 3.45636 4.0988 491274
|RD| in 1074 0 5.24 1.05 2.89 5.57
';Li < 1 (Physical condition) ~ 0.4012 0.4012 0.4012 0.4012 0.4012
Acceptor Ga(Al) Mg In
ry (nm) [4] 0.126 0.140 0.144
e(ra) 13.418 12.543 12.25
agp(ry) in 107" cm 2.098 1.96 1.95
a(ra) in mev 25.60 29.30 29.51
gpi(a) in meV 1420 1423.8 1424
Nepp(ra) in 108 cm~2 1.692 2.072 2.090
NEpp(ra) in 108 cm™3 1.692 2.0713 2.0916
IRD| in 10~# 0 3.45 7.61
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-1

% <1 (Physical condition) 0.3364 0.3364 0.3363

ows

Table 2 also indicates that, for increasing rqy(a), both €(ry(a)) and agnegp)(raca)) decrease, while d(a)(rd(a)),

anicopi) (Td(a)) + Neonouop) (Tay)  and Nepneeop) (Tagay)  increase, affecting strongly all the physical

properties, as those given in following Sections 3-5.

3. Optical band gap
Here, Myy/My is chosen as: Mpy/mM, = my/m, = 0.060, asgiveninTable 1, and then, if denoting
N = N — Nconnop) (Fdca)) » the optical band gap (OBG) is found to be given by:

an1gp) (N Ta@y T) = gnagpy(N  Faa) T) + rnep(N T, (5)

where the reduced band gap is defined as:

— 4.9x1074xT2 (eV)
an2p2) (N Ta@: T) = gnicgod (M@) =3 — 2 an@wy (N Ta@)- (6)

Here, the intrinsic energy gap gni(gpi)(rd(a)) is determined in Eq. (1), the Fermi energy pnepy(N ,T), in
Eq. (A3), and the band gap narrowing A gn(gp)(N , rd(a)), in Equations (B3, B4), of the Appendix A and B,
respectively. Then, as noted in the Appendix A and B, at T=0K, as N =0, one has: Fn(Fp)(N T =
Fno(Fpo)(N ) = 0, as given in Eq. (A4), and A gn(gp)(N ,rd(a)) =0, according to the MIT, as noted in
Appendix A and B. Therefore, gniigp1) = gn2(gp2) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.
Finally, the numerical results of gnl(gpl)(N >0, r4ca), T) at T=20K, calculated using Eq. (5) and expressed
as functions of N and gy, are reported in Table 3

Table 3. In degenerate d(a)- InP systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given I'y(g), the OBG increases with increasing N.

N (10 cm™3) 4 8.5 15 50 80 100
gni(N ,rp) ineV 1.506 1.580 1.671 2.045 2.302 2.457
gni(N  Tag) ineV 1.505 1.579 1.669 2.041 2.298 2.452
gni(N ,Tre) ineV 1.498 1.569 1.657 2.021 2273 2.425
gn1(N ,Fsp) ineV 1.496 1.566 1.653 2.014 2.264 2415
gi(N  Tsp) ineV 1.492 1.561 1.647 2.004 2252 2.402

N (10%8 cm™3) 6.5 11 15 26 60 170
a1 (N ', TGacan) in eV 1.506 1.573 1.626 1.753 2.072 2.847
gt (N Tyg) ineV 1.500 1.566 1.619 1.745 2.061 2.830
gor(N ) ineV 1.499 1.566 1.618 1.745 2.060 2.829
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Furthermore, in Table 3, we also showed that, in the n(p)-type degenerate InP and for a given photon energy

E= w, since the extinction coefficient, (), and other optical coefficients, as discussed in II, are
expressed in terms of the function (E — gnl(gpl))ll 2. Therefore, if the values of gni(gpl) Obtained in Table

3 increase (decrease), (E — gn)1/ 2 and other optical coefficients then decrease (increase), respectively.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate InP, if denoting the Fermi wave number by: Kenepy(N) = (3 2N/gc(\,))l 3,

the effective reduced Wigner-Seitz radius I'sy(spy, characteristic of the interactions, is defined by

_ Keneep)
X Tonp)(N s oy M) = =< 1, (6)

being proportional to N -3

. Here, = (4/9 )3, kEnl(Fp) means the averaged distance between ionized
donors (acceptors), and agngp)(r'dca)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

Ksnsp) _ Kenep) _ R
k T Kk
Fn(Fp) sn(sp)

Rengsp)(N () = snws(spws) * [RsnTrspTF) — Renwsspwsy] ~"snem < 1. (7

These ratios, Rsntr(sptr) @Nd Rsnws(spws), can be determined as follows.

First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rsyrr(snry 18
reduced to
_ KsnTF(spTF) I(l?riL(Fp) 4 Tsn(sp)
R N,r == =—= = 1, 8
SnTF( d(a)) Ken(rp) ksn%I'F(spTF) ( )
being proportional to N=1/6,

Secondly, < Ncpnpp)(Fd(a)), according to the Wigner-Seitz (WS)-approximation, the ratio Rsnws(snws) 18

reduced to
__ Ksn(spyws __ 3 d[ 3 X CE (N T ))]

Ranpyws(N + Ta(@) == 2= = 05(1) x <2—— ) ©)
where CE(N ,l’d(a)) is the majority-carrier correlation energy (CE), being determined by Eq. (B2) of the
Appendix B.
Furthermore, as given in II, in the degenerate case, the physical conditions are found to be given by :
I(l?riL(Fp) M)y — 1 I(l?riL(Fp) — — Fno(Fpo)

< = < = <1, A = 1
an@p)  FroFpo)  Anp)  Ken(sp) sn(sp) > ) M) (19)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,

Rsn(sp) 18 determined in Eq. (7).
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Then, in degenerate d(a)-InP systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the Si crystal, is defined by

O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)-Si system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total InP -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined in II, as :

(12)

(r '
2 |Vn(p)| (d(a)) Fno(Fpo)

_ —  XRsn(sp) (N Faca)) _ V2N~ ~1/2 =_=
Wa) (Vo) N Ta@@)) = Ny X €xp <—Sn(sp) - ) M@ (N Ta@) = 70— X GKerispys Vo) =

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

04721(1.585) = ()~  will be chosen such that the determination of the density of electrons localized

in the conduction(valence)-band tails, given in Section 5, would be accurate, and finally V) = ,
Fno(Fpo)

where s the total electron energy and  gno(rpo) 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A. In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z,

2><k2

fora=1l, (=
’ 2% ()

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by

using the two following integration methods, as developed in II, which strongly depend on
Wag) (V) N Facay)-
4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In heavily doped d(a)- InP systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) =——=xex [—]
M V2 W) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = z 2 is defined by

(C =V D =( & Daw= _o( =¥ ZxPW)dV, for a=1.
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*Rsn(sp)

Then, by variable changes: s = ( —V)/\Wrp,) and X=— 7/ /Wyp) = Anpy X nep) X XP| ——= |,
4x [[vng)|

and using an identity:
(o) _1 2
0 sf2xexp (—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp (—x2/4)xW exp (—x2/4)xn.. 2 x -
( )KIM p(- \/2_; h(®) xT(a+xD_ 1(x) _ = "0 5 exp [ — Ranepy*(2a—1) | Fa+
8% | Vnp)|
9 *D_1(0). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

3 Vo
_a_l(X -—o)  (a)xexp <(\/5 + ) x—X sza) -0, @@= AR
1622 2 4 Tl

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:
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a—1i _1 252
(e am 72 k=g (14)
i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D f— + 1 — X2 — ><3 O — \/ﬁ .
_a_%(x - ) B(a) xexp|—(va _g) X~ i "z ~ 0 B(a) = =T noting that
16a2 2 4 T+l
B(D) = 5"—and B(5/2) = 355
24X (5/4)
L1
2
. — r-In .
Then, putting f(a) = % x I'(a+3) % B(a), Eq. (13) yields
( k_é)KIM R x(2a-1)
Ho)( n) =+ 0 Tagey @) = —5— = exp | = ——B—— — (\/5 + %) X~(31i) 5| - O. (15)
8 ||Vn(p)| 16a2.
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
)(2
D_,_i(X » )= x_a_%x % - 0. Therefore, Eq. (13) yields
2
(7
k KM 2
— (A n)) PN

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fr) ( n@ey: Tacay @) = Ko ngp): Tay @) + [Hao)( ne: Taa) @) = Kngey ( ngoy: Facay @] X exp [ x
(Ao )] (17)
such that: Fnoy( nepy: Fdgay: @ - Hnp)( nepy: Ta@ay @) for 0= =16 , and Fnpy( nep) Fd@) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InP systems at T=0 K, in which m;,/mMy = My(p)/m, = 0.073(0.339), as given in
Table 1, using Eq. (13), for a=1, the density of states ( ) is defined by:
1

1 cv) (2Mn 3 exp LXW;‘
x{ Dxm = %( mz(p))2 x <\/;—) xT(3) % D_g(x) = (), (18)

3
2

( CWkm = gzc(\g (2m_"2(P))

xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP )

4% [Vne)l
Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My =myy/m, and =

0.4721(1.585) , being chosen such that the following determination of NEBI(CDP)(N, Fda)) Wwould be

accurate.
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Then, going back to the functions: H,, K, and F,, given respectively in Equations (15-17), in which the

1

( E)KIM
factor =D is now replaced by:
3
{ kM 3/2
_ (=0 _ _ _ 9ewy*(Mn(p)*mo) ™ "< /“n(p) _ N
fla=1) —0_ Fn(p)( n(p): rd(a)l a= 1)? o~ 223 x (a - 1)a (a - 1) - zgxr(5/4).

(19)
Therefore, the densities of electrons (holes) localized in exponential conduction (valence)-band tails,

NEBE(ch)(N, ld(a)), can be defined by

0
NEBE(CDp)(Nlrd(a)): Y ( =0)d ,

where (= 0) is determined in Eq. (19). Then, by a variable change: () =

, one obtains:

Fno(Fpo)
6o *(Mn)”"* @)™ Fro(epo) 16
Neamccop (N: Fa@) = P 2o { s @=1)%Fae)( ey @@ =1)d np) + Iney |-
(20)
where
o o ~(Pngyx ”)2 —3/2
) = 15 @=1) X Koy ( ngpy Ta@y@=1)d ngpy = 15 2 X (A n@) A ng)-
Here, (a=1)=— A

28xT (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

-1 - (b Yn(p))
I =_1 x e ldt = @
n(p) Dy Ynm) 25 gy’

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

- - 16 (b—1)(b—2)..(b—))
r(buyn(p)) yg(p]jx e (1 + =1 yjn(p) ]

Finally, Eq. (20) now yields:

3/2
NEBT N _ % *(Mn@)™" n@)* Froepo)
conccop)(N: Fa@a)) = 223

o, (@=1)xFo)( n Ta@a=1)d o) +
;EZX—Z(:();}, calculated for N = Nepnnpp) ( Fd(a))s (21)

being the density of electrons localized in the exponential conduction-band tails (EBT).

The numerical results of NEBI(CDP)[N = Nconnop) (Faa))] = NEBE(CDP)( Fd(a)), evaluated using Eq. (21), are
given in Table 2, confirming thus those of Ncpnpp) (Fdca)), calculated using Eq. (3), with a precision of the

order of 5.57(7.61) x 1074, respectively. In other word, Neconnop) (Fdcay), determined in Eq. (3), can be

explained by N&g cop) (Facay), determined in Eq. (21).
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5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=Q+eN™ y=( = eneEp)/(ksT),
where  pyep)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in I, can be defined as:

_ p _ of of _ 1 ev
( p)FDDF = Gp( Fn) X Fn = —oo P x (_ 6_) d, B kB_T x Tren? (22)
Further, one notes that, at 0 K, —:—f = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  pno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( o) = 1.
Then, at low T, by a variable change Y = ( — n(rp))/(KsT), Eq. (22) yields:

<) eY

— - p _ -
Go(( Frm) =1+ ey * wime X (KeTV+ fnp) v =1+ P, Cox(keDFx cfe) =g,

where Cg =p(P—1..(p —B+1)/B! and the integral Ig is given by:

_ yBer _ ® yB

b= —wrenzdY = —wmdy, vanishing for old values of B. Then, for even values of B = 2n,

with n=1, 2, ..., one obtains:

o) y2n><€,y

loh=2 ez Y- (23)
Now, using an identity (1 +eY)™2 = ;’11 (—1)5*1s x @G~ | a variable change: sy =—t, the Gamma
function: Ooo t?"etdt =T (2n+ 1) = (2n)!, and also the definition of the Riemann’s zeta function:
{(2n) = 2°"1n2"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: 1oy = (22" — 2) x 2" x

|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:

_ { PyeoDF _ p  P(p—1)..(p—2n+1) 2n 2N = — _TkeT
. = (oo _ g, b PETDG20D) o o _ o) g, |y = G (y), y = L 24
p( Fn(Fp)) En(Fp) n=1 (2n)! ( ) | 2n| y p(y)s y Fn(Fp) ( )

Then, some usual results of G, (y) are given in Table 4.

Table 4. Expressions for Gp=1(y = L), as given in II, due to the Fermi-Dirac distribution function FDDF, noting
)

that Gp=1(y = ZK?FT) = T({ )) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
n(Fp
Ga/2(y) Ga(y) Gs/2(Y) Gs(y) Grr2(Y) Ga(y) Gos2(y)

=) () (= () () (+ ) (——)

These functions G,(y) will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate InP, as follows.
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5. 2. Its applications (Electrical-and-thermoelectric properties)
Here, Mppy/M, is chosen as: My,)/Mg = Mcn(cp)/Mo = 0.077(0.50), as given in Table 1, and all the

majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpn(nop) (Fd(ay) » where the values of critical d(a)-densities Ncpnnop) (Fdca)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rga) T),

. - — .. W
expressed in ohm™ x cm™ | the thermal conductivity by K(N , Fda): 1), expressed in pessond and Lorenz

ks

2 2 5
number by L= T[? X (?) = 24429637 (W ohm

K2

), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

k(N ,I’d(a),T) _
o(N rg@T) L>T. (25a)

K(N rg) T=3K)

Then, it is interesting to define a constant (N, rge))[ = ] in order to show that, for given N

L
and I'qca), K (N, Fgca), T) is found to be proportional to T, as:
_ _K (N ,rd(a),T)
K (N (Nra)x o [Rog | = -, (25b)
where |RDK1K | is the relative deviations in absolute values between K(N ,rge), T) and K (N, rge), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

2

First, it is expressed in terms of the kinetic energy of the electron (hole), , =

=——— or the wave number
2xMcn(cp)

k, as:

2
q><k>< k

1/2
(k) = C x x [k % agn(apy (Faay)] * ( ) . C=(0.89645)2, (26)

% Ksn(sp) Nnepy) (NFdca))

which is thus proportional to . Further, Ksn(sp)> @Bn(Bp)> and Na(p) are defined and determined in Equations
(7, 4, 12), respectively.
Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)gppe = Gu(y =

kg T )

Fn(Fp)

l%n(Fp) , where  pyrpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

1/2
_ 0?xKken Krn no(Fpo) (N ,T=0)
o(N ,ryea), T) = [C x n: 8 5¢ 22 ¢ [Ken(epy * @gn(ap) (Faca))] (L) ] X [Go(N ,T) x

Ksn(sp) Nnepy (N Faay)

2
Fn(Fp)(N ,T) )
( Fno(Fpo)(N ,T=0) ], (27)
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which also determine the resistivity as: P(N ,rga), T) = 1/0(N ,rg), T) , noting that

N = N — Nconnop) (Fd)), and C x T[qTZ = 6.226527 x 107° ohm™! . Further, the Fermi energies Fn(Fp)
and  pno(Fpo) are determined respectively in Equations (A3, A4) of the Appendix A.

In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), 0(N ,rqca), T = OK) is proportional to ,%no(,:po),
or to (N )*3. Thus, o(N =0, lda) T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.

A.Electrical properties

As given in II, the relaxation time is related with 0 by:

TN Ty, T) = 0(N , Fga) T) ¥ % . Therefore, the mobility | is given by:

— 9*T(N ra@).T) — a(N rg@)T)
u(N ’rd(a)’T) T Menep) gxN  ’

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3 since o(N Ta@), T = 0K) is

(28)

proportional to (N )*2. Thus, py(N =0, gy T =0K) =0 at N =0, at which the metal-insulator

transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

— (P)oor _ _Gay)
N D =057 T hur

(N gy, T) = U(N , rggay, T) X ry(N,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, 14, T=0K) = u(N =0,ry@), T =0K)=0at N =0, at which the metal-insulator transition
(MIT) occurs.

Now, in the degenerate d(a)-InP systems, at T=4.2 K and T=77 K, the numerical results of g, |, Uy, and the
diffusion coefficient D, calculated respectively by using Equations (27, 28, 29, A8 of the Appendix A), and
reported in following Tables 5 and 6.

Table 5. Here, one notes that: (i) for given N and T, the functions: a(rg), M(rq), Hy(rq) and D(ry), calculated using
respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy, and (ii) for given ryq and T, the

functions: (N ) and D(N ) increase, while the functions: J(N ) and py(N ) decrease, with increasing N.

Donor P As Te Sb Sn

10° 103xcm2  103xcm? 103xcm?
ohmxcm' Vxs ' vxs ' s

In the following, our numerical results of (0, Y, Yy, D) at 4.2K, expressed respectively in (
N(10° cm™3)

3 0.446,9.29,9.29,3.25 0.427,8.89, 8.89,3.11 0.332,6.91,6.91,2.4  0.300, 6.25,6.25,2.2 0.270, 5.63, 5.63, 2.0
10 1.37,8.55,8.55,6.68 1.31,8.18,8.18,6.39 1.01,6.32,6.32,4.94 0.914, 5.70,5.70,4.46 0.820,5.12,5.12,4.0
40 5.06,7.90,7.90, 15.6 4.84,7.55,7.55,14.88 3.72,5.81,5.81,11.4  3.35,5.23,5.23,10.3 3.002, 4.68, 4.68,9.22
70  8.61,7.68,7.68,21.9  8.23,7.34,7.34,20.1 6.32,5.63,5.63,16.1 5.69,5.07,5.07,14.5 5.09,4.54,4.54,13.0

100 12.08,7.54,7.54,27.4 11.5,7.21,7.21,26.1 8.86,5.53,5.53,20.0 7.98,4.98,4.98,18.1 7.13,4.45,4.45,16.1
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Vxs S

105 103xcm? 103xcm? 103xcm?
ohmxcm'  Vxs

In the following, our numerical results of (o, Y, gy, D) at K, expressed respectively in (

N(10% cm™3)

3 0.446,9.29,9.31,3.2 0.427,8.90,8.92,3.1 0.332,691,6.92,2.4 0.300, 6.26,6.27,2.2 0.270, 5.63,5.64, 1.97
10 1.37,8.55, 8.56, 6.68 1.31,8.18,8.19,6.40 1.01,6.32,6.32,4.94 0.914,5.71,5.71,4.46 0.820,5.12,5.12,4.0
40 5.06,7.90,7.90, 15.5 4.84,7.55,7.56,149 3.72,5.81,5.81,11.4 3.35,5.23,5.23,10.3  3.00, 4.68, 4.68, 9.22
70 8.61,7.68,7.68,21.9 8.23,7.34,7.34,21.0 6.32,5.63,5.63,16.1 5.69,5.07,5.07, 14.5 5.09,4.54,4.54,13.0
100  12.1,7.54,7.54,27.4 11.5,7.21,7.21,26.1 8.86,5.53,5.53,20.0 7.98,4.98,4.98,18.1 7.13,4.45,4.45,16.1

Table 6. Here, one notes that: (i) for given N and T, the functions: a(ry), 4(ra), Uy(ra) and D(r,), calculated using
respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing I, and (ii) for given r, and T, the
functions: (N ) and D(N ) increase, while the functions: (N ) and Py (N ) decrease, with increasing N.

Acceptor Ga(Al) Mg In

104 10%Zxcm2  10%x cm? 102><cm2)

In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (ohmxcm VR

Vxs S

N(10%*° cm™3)

3 0.185,4.07,4.07,0.18 0.168,3.75,3.75,0.17 0.167,3.73,3.73,0.17
10 0.49,3.11, 3.12,0.32 0.445, 2.83,2.83,0.29 0.443,2.82,2.82,0.29
40 1.58,2.48,2.48,0.65 1.42,2.23,2.23,0.59 1.41,2.22,2.22,0.58
70 2.57,2.30,2.30,0.88 2.30,2.06, 2.06, 0.79 2.29,2.05,2.05,0.78
100 3.52,2.20,2.20,1.07 3.15,1.97,1.97,0.96 3.13,1.96, 1.96, 0.95

104 102xcm?  102x cm? 102><cm2)

In the following, our numerical results of (0, 4, yy, D) at K, expressed respectively in ( ,

ohmxcm'  Vxs Vxs s

N(10° cm™3)

3 0.190, 4.20, 4.70, 0.19 0.173, 3.87,4.33,0.18 0.172,3.85,4.532,0.17
10 0.49,3.14,3.21,0.33 0.447,2.85,2.92,0.29 0.445, 2.84,2.91,0.29
40 1.58,2.48,2.49,0.65 1.42,2.23,2.24,0.59 1.14,2.22,2.23,0.58
70 2.57,2.30,2.30,0.88 2.31,2.06,2.07,0.79 2.29,2.05,2.05,0.78
100 3.52,2.20,2.21, 1.07 3.15,1.97,1.97,0.96 3.13,1.96, 1.96, 0.95

B. Thermoelectric properties
First off all, from Eq. (27), obtained for O(N ,rgea), T) , the well-known Mott definition for the
thermoelectric

power or for the Seebeck coefficient, Sb, is given in the n(p)-type degenerate InP, as:

2
Sb(N \T) = ( )% xLx kT x 2020 .

3 q d =

n(Fp)
. —_ n (N vT)
Then, using Eq. (27), for &) = % 1, one gets:
_ m _ kg 2 _ y?
SH(N ) = ()5 x2x = xFep(N | T), Fep(N 1) = |1 = 5P| (30)
En(p) Y (D)
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noting that the effective donor (acceptor) density, N = N — Ncpnnpp) (Fd(a)) is a function of Fqq).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) = Tx =200, (31)
and then, the Peltier coefficient, Pt, is defined as:
Pt(N,T) =T xSb(N ,T). (32)

Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

2

Sb(N T)I?x0(N gy T)XT _ [Sb(N ,T)]?
3xE)

_ [
ZT(N 7T) = K(N ,I‘d(a),T) L

= (ZDmott * [2 % Fsp(N , T, (ZDpore =

(33)

2 2 x
where (ZT)pyore 1S a well-known Mott result, L = % X (%) = 2.4429637 x 1078 (W K(;hm) is the Lorenz

. . nEmy(N T . .
number, noting that, in the n(p)-type degenerate InP [En(p) = %(T) 1] , this value of L is exact, and
B

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

&) = %(TNT) 1, as: Lkim(ISb]) = 1.5+ exp [— %], [Sb] being independent of T or N (?).

Then, being inspired from this Lgjn(|Sb|)-expression, we also propose another one, given in the n(p)-type

degenerate InP, as:

T b(N DD

Lyc(ISb(N , T)) = 144296 +e~ 17 ; [RD, | = |1 — 2020 (34)

where |RDL,ch| is the relative deviations in absolute values between L and Ly..

Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-InP, defined by physical conditions : N = 10?'cm™2 and T (=3K and

. n N, T . .
300K), the numerical results of &) = %(T), calculated by using Eq. (A3) of the Appendix A, and then
B

other ones of: (N ,rd(a),T) by Eq. (27), K(N ,rd(a),T) by Eq. (25a); C«(N ,rd(a)), KApp.(N ,rd(a),T) and
|RDK,KApp.|T by Eq. (25b), Sb(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing ry, due to the impurity size effect, Ncpn(rg), increases,
Fn(N ,T=300K)
—’ O-’

since N(=102% cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in T

K, Cy, and Kapp , (ii) the numerical result: |RDK,KApp‘|300K = 7.426 x 10™° confirms the Kapp.-1aw, as given in Eq. (25b),

and finally, (iii) |RDL,LV<:| = 1.534x 1078 thus confirms in the degenerate InP -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-InP systems for N=10%% cm™2 and at T=3K and T=300K, noting that N = N — Ngp,(rq)
Fn(N T=300K)

~ 1 210.46 210.46 21045 210.45 210.45
B
108
or=3K) (o) 1.2085 1.1552 0.8860 0.7979 0.7135
106
o(r=300K) (o) 1.2085 11553 0.8860 0.7979 0.7136
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Kereak) (—=—) 8.8567 8.4668 6.4933 5.8475 5.2295

Kr=ao0k) (——) 8.8573 8.4674 6.4938 5.8479 5.2299
Cx ) 29.522 28.222 21.6444 19.4917 17.4318
Kapp.(300K) (—-) 8.8567 8.4667 6.4933 5.8475 5.2295
|[RDuyy |, i 2078 7.426 7.426 7.426 7.426 7.426
TAPP-1300K
1078xv
Sber=sky ——) —2.694 —2.694 —2.694 —2.694 —2.694
106xv
Sb(r=300) (——) —2.694 —2.694 —2.694 —2.694 —2.694
10~8xv
TS(r=ax) (——) —2.694  —2.694 —2.694 —2.694 —2.694
10~6xv
Ts(r=300€) (——) —2.693 —2.693 —2.693 —2.693 —2.693
Ptir=aky (1078 x V) —8.082 —8.082 —8.082 —8.082 —8.082
Pt(r=s00ky (1074 x V) —8.081 —8.081 —8.081 —8.082 —8.082
ZT 1=k (x 1078) 2971 2971 2.971 2.971 2971
ZT (r=300K) (% 107%) 2.970 2.970 2.970 2.970 2971
|RD|,.|in107® at3 K 1.534 1.534 1.534 1.534 1.534
|RD] in 107 at 300K 1.534 1.534 1.534 1.534 1.534

Table 8. Here, one notes that (i) for a given T, with increasing I, due to the impurity size effect, Ncp,(ra), increases,
rp(N  T=300K)
kgT >

4788 x 1072 confirms the Kpgp -law, as given in Eq. (25b),

since N(=102% cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in

K, Cy, and Kppp, (ii) the numerical result: |RDK’KAPP‘ |300K

and finally, (iii) |RDL,ch| 1.535% 107° thus confirms in the degenerate InP-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Acceptor Ga (Al) Mg In

Highly degenerate a- InP systems for N=10%! cm™2 and T=3K and T=300K
Fp(N  T=300K)

= 1 28.21 2821 28.21
O(r=3) () 3.52 3.15 3.13
O(r=3006) () 3.54 3.16 3.15
Kr=aky (—=—) 25827 23106 22976
K r=300K) (—) 0.25934 0.2320 02307
Ck (—* ) at T=3K 0.8609 0.7702 0.7658
Kapp. (300K) (—) 0.25827 0.2311 0.2297
|RDK,KAPP|SOOK in 1073 4.115 4.118 4.118
Sb(TZSK)(#) 2.013 2.013 2.013
Sbir=s00K) (10_:”’ ) 2.001 2.002 2.002
TS(r=3K) 10_;"") 2.013 2.013 2.013
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1075xv

Ts(r=300€) (——) 1.979 1.979 1.979
Pter=saky (1077 x V) 6.038 6.040 6.040
Ptr=300K) (1073 % V) 6.004 6.006 6.006
ZT (7=ak) (x 107) 1.658 1.659 1.659
ZT (r=300k)(% 1072) 1.640 1.640 1.640
|RD ;.| in 1076 at3K 1.534 1.534 1.534

|RD | in 1078 at 300 K 1.535 1.535 1.535

Fn(Fp) (N vT)
kgT

Secondly, in the degenerate d(a)-InP, for a given N , the values of &,y = , calculated by using Eq.

(A3) of the Appendix A, and other ones of: Sb(N ,T) by Eq. (30),

RDy 1| by Eq. (34), ZT(N ,T) by Eq.
(33), and finally, TsS(N ,T) and Pt(N ,T) by Equations (31, 32), respectively, are obtained and reported in
following Tables 9-11.

Table 9. Here, for a given N and for a given degenerate d-InP system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for

&, = 1.813, while the numerical results of Sb present a same minimum (Sb)min, (=— 1563 x 1074 %), those of ZT show a same

maximum ZT ey (= ), (ii) for &, = 1, Sb and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (iii) for &, =
2

1813 and & = 1, (ZDyort = 31—8

is approximated to 1.541 x 1078, suggesting that in the degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.

present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch|

In the degenerate P- InP system, N =N-— NCDn(rp) = NCDn(rp); N = ZNCDn(rp)

T(K) 5 10 21.814 25 29.384436 30

g 9.713 5.036 1.813 1.401 1 0.952

Sb (10—4%) —0.564 —0.997 -1.563 -1.512 -1322 —1.296

|RD.y,c|in1078  1.537 1.538 1.541 1.541 1.540 1.540

7T 0.130 0.406 1 0.936 0.715 0.677
2

@D ot = 3:? 0.035 0.130 0.9997 1.676 3.290 3.633

T, (107¢3) —5115 —7244 —4.240 7183 16574 17819

Pt (1073V) —0.282 —0.997 3375 —3.781 —3.884 —3.858

In the degenerate As- InP system, N = N — N¢pn(ras) = Nepn(ras); N = 2Nepn (As)

T(K) 5 10 22.68 25 30.865609 31

n 10.189 5273 1.813 1.533 1 0.990

sb (1074) —0.539 —0.961 -1.563 —1.541 -1.322 —1314

|RD_y,c|in1078  1.537 1.538 1.541 1.541 1.540 1.540

7T 0.119 0.378 1 0.972 0.715 0.707
2

() = 3:? 0.032 0.118 0.9996 1.399 3.290 3.358

Ts (10765 —4935 —7079 —4.973 4595 16574 16835

Pt (1073V) —-0.270 —0.961 —3.545 —3.853 —4.079 —4.075

In the degenerate Te- InP system, N = N — N¢pn(rre) = Nepn(rre); N = 2Nepn(Te)

T(K) 5 10 30.2 35 41.089955 42

n 13.491 6.890 1.813 1.398 1 0.949

sb (10—45) —0.413 —0.769 -1.563 —1.511 -1.322 —1.284

|RD ;| in107  1.536 1.537 1.541 1.540 1.540 1.540

7T 0.070 0.242 1 0.935 0.715 0.675
2

() = 3:7 0.018 0.069 1.0004 1.683 3.290 3.654

Ts (10-8 E) —3926 —6327 5.355 7247 16574 17889

Pt (1073V) —-0.206 —0.769 —4.720 —5.290 —5.431 —5.393

In the degenerate Sb- InP system, N = N — N¢pp(rsp) = Nepn(rsp); N = 2Nepn (Sb)
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T(K) 5 10 33.84 35 46.6976 47
. 15.10 7.677 1.813 1.713 1 0.952
Sh (10*45) —-0.370 ~0.699 ~1.563 —1.560 —-1.322 —1.286
|RDy,|in 1078 1536 1.537 1.541 1.541 1.540 1.540
ZT 0.056 0.200 1 0.997 0.715 0.677
2
() =5z oo 0.056 1.00003 1.120 3.290 3.628
Ts (1078%) —3557 —5973 0.345 1511 16574 17803
Pt (1073V) - 0.185 —0.699 —5.289 —5.461 —6.086 —6.047
In the degenerate Sn- InP system, N = N — N¢pn(rsn) = Nepn(rsn); N = 2Nepn(Sn)
T(K) 5 10 38.165 45 51.928706 52
. 17.005 8.616 1.813 1353 1 0.997
Sh (10*45) —0.330 —0.630 ~1.563 —1.498 -1.322 1319
|RDyL,|in107% 1536 1.537 1.541 1.540 1.540 1.540
ZT 0.044 0.162 1 0.919 0.715 0.713
2
() =5z oo 0.044 1.0003 1.797 3.290 3311
Ts (10785) ~3194 —5561 4.001 8191 16574 16657
Pt (1073V) —0.165 —0.630 —5.965 —6.742 —6.863 —6.861

Table 10. Here, for a given N and for a given degenerate a- InP system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& = 1.813, both Sb and ZT present same maximal results: 1.563 x 10_4% and 1, respectively, (ii) for & = 1, Sb and ZT present

2
same results: 1.322 x 10_4% and 0.715, respectively, (iii) for & = 1.813 and &, = 1, (ZT)yort = 3i—ézpresent same results: 1 and
P

3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 1078, suggesting that in the
degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate Ga- InP system, N = N — N¢pn(rga) = Nepn(Fea); N = 2Ncpn(rea)

T(K) 5 10 54.15 65 73.687115 74
o 24.08 12.12 1.813 1.307 1 0.990
sh (10*45) 0.234 0.458 1.563 1.483 1322 1.315
|RD | in 1078 1.535 1.536 1.541 1.540 1.540 1.540
ZT 0.022 0.086 1 0.900 0.715 0.707
() = % 0.006 0.022 0.99992 1.925 3.290 3.356
Ts (1085) 2305 4299 1.094 9185 —16574 —16829
Pt (10-3V) 0.117 0.458 8.464 9.638 9.739 9.728
In the degenerate Mg- InP system, N = N — Ncpp(rmg) = Nepn(fmg); N = 2Ncpn(fvg)

T(K) 5 10 61.99 65 84.343409 85

o 27.54 13.841 1.813 1.673 1 0.982
sb (10-45) 0.205 0.403 1.563 1.558 1322 1.309
|RD, .| in 1078 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.017 0.066 1 0.993 0.715 0.701
() = % 0.004 0.017 1.0004 1.175 3.290 3413
Ts (10-85) 2025 3839 —5.277 —21555 —16574 —17040
Pt (1073V) 0.102 0.403 9.689 10.127 11.148 11.124
In the degenerate In- InP system, N = N — N¢pn(rin) = Nepn(Fin); N = 2Nepn(rin)

T(K) 5 10 65 84.831179 85

o 27.705 13.920 1.813 1.690 1 0.995
sb (107%) 0.204 0.400 1.563 1.559 1322 1.318
|RD,, | in 107 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.017 0.066 1 0.995 0.715 0.711
() = % 0.004 0.017 0.99995 1.152 3.290 3321
Ts (10-8%) 2014 3820 0.654 —1885 —16574 —16694
Pt (1073V) 0.102 0.400 9.744 10.134 11.212 11.206
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Table 11. Here, for a given N and for a given degenerate a- InP system, with increasing T, the reduced Fermi-energy &, decreases,

and other thermoelectric coefficients are in variations, as indicated by the arrows as: (

s

). One notes that with increasing T: (i) for

& = 1.813, both Sb and ZT present same maximal results: 1.563 x 10_4% and 1, respectively, (ii) for & = 1, Sb and ZT present

same results: 1.322 x 10_4%

2
and 0.715, respectively, (iii) for & = 1.813 and &, = 1, (ZT)yon = ;(—Zzpresent same results: 1 and
P

3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 1078, suggesting that in the
degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate P- InP system, N = N — N¢pn(rp) = 2Nepn(rp); N = 3Ncpn(rp)

T(K) 5 10 34.283 40 46.644885 47
| 15.29 7772 1.813 1.380 1 0.982
Sh (10*4%) —0.366 —0.692 ~1.563 —1.506 - 1322 — 1309
|RD.,.|in107®  1.536 1.537 1.541 1.540 1.540 1.540
zT 0.055 0.196 1 0.929 0.715 0.701
2
Dot = 32—{2 0.014 0.054 1.0004 1.726 3.290 3.410
T, (10-8 %) -3517 —5931 5.707 7614 16574 17030
Pt (1073V) —0.183 —0.692 —5.358 —6.026 —6.165 —6.152
In the degenerate Sn- InP system, N = N — Nepp(rsn) = 2Nepn(Fsn); N = 3Nepn(Sn)
T(K) 5 10 60.58 70 $2.431683 83
. 26.92 13.532 1.813 1.406 1 0.984
Sh (10—%) -0.210 —-0.412 ~1.563 —-1514 -1.322 -1.310
[RDy,, |in107® 1535 1.536 1.541 1.541 1.540 1.540
ZT 0.018 0.069 1 0.938 0.715 0.703
2
() = 3:7 0.004 0.018 1.0001 1.664 3.290 3.398
Ts (10-85) —2070 -3915 1.730 7081 16574 16987
Pt (1073V) —0.105 —0.412 —9.469 —-10.59 —10.895 —10.87
In the degenerate Ga(Al)- InP system, N =N — NCDn(rGa(AD) = ZNCDn(rGa(AD); N = 3NCDn(rGa(A|))
T(K) 5 10 85.95 90 116.971 117
& 38.172 19.135 1.813 1.678 1 0.999
sh (10*45) 0.148 0.294 1.563 1.558 1322 1321
|RD, .| in 1078 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.009 0.035 1 0.994 0.715 0.7146
2
() =35 0.002 0.009 0.99985 1.168 3.290 3.294
Ts (10*85) 1473 2865 1.988 —2080 —16574 —16589
Pt (1073V) 0.074 0.294 13.435 14.025 15.460 15.459
In the degenerate In- InP system, N = N — N¢pn(rin) = 2Ncpn(rin); N = 3Nepn(fin)
T(K) 5 10 98.96 99 134.6611 135
o 43.936 22.010 1.813 1.812 1 0.994
sh (10*45) 0.129 0.256 1.563 1.5629 1322 1317
|RD | in 1078 1.535 1.535 1.541 1.541 1.540 1.540
ZT 0.007 0.027 1 0.9999995 0.715 0.710
2
() =32 0.002 0.007 0.999998 1.001347 3.290 3.329
Ts (10*85) 1282 2511 0.031 —17.560 —16574 —16725
Pt (1073V) 0.064 0.256 15.470 15.474 17.798 17.786

In summary, from above Tables, for &) =

_ Fn@Ep)(N . T)
kgT

1, the maximal value of |RDL,LVC| is equal to :

1.541x 1078, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given in Eq. (25a)

2 2 <
is found to be exact, with the Lorenz number L = % x (%) = 2.4429637 (WK—ozhm) , even at the limiting

degenerate case, &,p) 1. In other word, our above LVC(N T, rd(a))-expression, given in Eq. (25b), is not

useful in the present n(p)-type degenerate InP.
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6. Concluding remarks

In the n(p)-type degenerate InP-crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
(i)the effective extrinsic static dielectric constant, €(I'q¢a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cop) (Fa(a))=0 or N = Nepn(copy (Fd(a))-
(iii) the Fermi energy, gnep)(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,
(iv) the electrical conductivity, G(N ,Fgca), T) , the thermal conductivity, K(N , Iy, T), and the Seebeck

coefficient, Sb(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0, at which:
(@) Fno(rpoy(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) as discussed in Eq. (5), suggesting that, in the MIT,

an1@n(N = 0,74 T=0) = gnagp2)(N = 0.4, T=0) = rgnicepi) (Faca)):
where  gnigp1), gn2(gp2) and  Fgni(rgpi) are the optical band gap (OBG), reduced band gap and intrinsic
band gap, respectively, and
¢) as discussed in Eq. (27) for the electrical conductivity, G(N , Fqca), T), which is proportional to éno(Fpo) or
to (N )*3, giving rise to: (N =0, Ida), T = 0) = 0, and therefore, as discussed in Equations (28), (29)
and (A7) of the Appendix A: (N =0,rgea), T =0K) =0, yy(N =0,rgea), T=0K) =0, and D(N =
0,r4@), T = 0K) = 0.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.

(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonvop) (Tacay) and NGB cop) (acy) are found to be equal to: 5.57(7.61) x 10™*, respectively. In other
word, the critical donor(acceptor)-density, Ncpn(npp) (Fd(a)). determined in Eg. (3), can be used to explain

the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

Nebnccop) (Fdea)-
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(2) In Tables 5 and 6, we remark that: (i) for given N and T, the functions: 0(ryc)), M(dca))> MH(Fda)) and
D(rqca)), calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing
I'd(a)» and (i) for given ryc) and T, the functions: (N ) and D(N ) increase, while the functions: (N ) and
MH(N ) decrease, with increasing N.

(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rqy(,y, due to the impurity size effect,

Ncon(cop) (Fd(ay) » increases, since N(= 1022 ecm™3) is very high, N therefore decreases very slowly,

Fn(Fp) (N ,T=300K)

explaining the slow decrease ( ) in T ,

0, K, Gy, and Kppp, , (i) the numerical results:

|RDK’KA'D'D.|300K 7.426 x 107°(4.118 x 1073), respectively, confirm the Kapp. -law, as that given in Eq.

(25b), and finally, (iii) |RDL,ch| 1.5% 107 thus confirms in the degenerate InP-case the well-known

Wiedemann-Frank law, given in Eq. (252), is found to be exact.

(4) In Tables 9-11, for a given N = 2Ncpnnpp) OF N = Ncpnnppy and for a given degenerate d(a)-InP
system, with increasing T, the reduced Fermi-energy &,(p) decreases, and other thermoelectric coefficients

are in variations, as indicated by the arrows as: ( , ). One notes here that with increasing T: (i) for &n¢p) =
1.813, while the values of Sb present a same minimum (maximum) (Sb)min (max,) (= ( )1563x1074 %),
those of ZT show a same maximum ZT 5 (= ), (ii) for &, = 1, those of Sb and those of ZT present same

results: Sb(=( )1.322 x 1074Y)  and 0.715, respectively, (iii) for &, =1.813 and &, =1, those of
< pectively

2
ZTD)Mott = n—z present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of
®)

3xE)

|RDL,ch| is equal approximately to 1.541 % 107® | suggesting that in the degenerate InP-case the

2 2
Wiedemann-Frank law, given in Eq. (25a), is exact, with the Lorenz number L E%X (%B) =
Wxohm ..
2.4429637( 2 ) , even at the limiting degenerate case, &np) 1. Therefore, our above

LVC(N T, rd(a))-expression, given in Eq. (25b), is found to be not useful in the present degenerate n(p)-type
InP.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InP-crystals, the Fermi energy pnepy = [ tm — C]( Fp = [ v— fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 % 10~# [3], is now summarized in the following.

In this work, N is replaced by the effective density N , N = N — Ncpn(cop) (Faca)) » Nepn(copy (Fday) being
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the critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N =0
at this transition.

First of all, we define the reduced electron density by:

3
n kgT
uU(N ,rg@, T)=uN,T) = Now , Ne)(T) = 2 X geyy X (ﬁ;) (cm™3), (A1)
where N¢()(T) is the conduction (valence)-band density of states, and the values of Q) and My are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type InP is determined by :

fn(W) [ Fp(W)Y _ GW+AuBF(u) _ — V(u)
o ( = )=l = g, (u) = Wi A = 00005372 and B = 482842262, (A2)

2 4 8\ 3
where F(N , ryc), T) = aus (1 +bu 3+ cu"s) . obtained foru 1, according to the degenerate cas,

_ 23 _ 623739855 _3 _d
= [(3y1/4)] ( ) 1920 ( ) and then G(u) Ln(u)+22xuxe % foru
. _ ithe o — 93/2
1, according to the non — degenerate case, with: d =2 [ﬁ > 0.
So, in the present degenerate case (U 1), one has:
4 8 _E
_z -2 3
Fn(Fp)(N ’rd(a):T) = Fn(Fp)(N ,T) = Fno(Fpo)(u) x (1 +bu 3+cu 3) : (A3)

Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

—_ 2Xkl%n(Fp) (N)

Fno(Fpo)(N ) = 2xMMy (A4)

being proportional to (N )?3, and equal to 0, FnoFpo) (N = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.
A2. Now, the generalized Einstein relation is defined by:

D(N ,rd(a),T) = N x d Fn(Fp) = kgxT x (U den(P)) (AS)
H(N rg@T) g dN q du /7

where 6,(u) is defined in (A2) and the mobility M(N ,rgc), T) is determined in Eq. (28). Then, by

. .. . . . . de
differentiating this function 8,(u) with respect to u, one thus obtains d—J. Therefore

D(N rgca).T) _kexT V' (W) xW(U)=V(u)xW (u)
H(N raa).T) q W2(u) ’

(A6)

. , _3 4 8
where W'(U) = ABUB™* and V'(u) = u™ + 272e”%(1 — du) +2AUBIF(U) (1 + F) + 22245 One
1+bu 3+cu 3
Dnp)(U)  kgxT
q

and (ii) as U - o, one has: W? = A2u?® and u[V' xW —V x W] =§au2/3A2u25, and therefore, in this

b

remarks that: (i) as U » O, one has: W2 1 and u[V'x W —V x W' 1, and therefore:

highly degenerate case and at T=0K,

D(N Fg(a) T=0
01D =2 erospor(N )/, (A7)

(N rd(a)T 0)
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One notes that, for N =0, pno(rpo)(N ) = 0, as remarked in above Eq. (A4), p(N =0,rg@), T= OK) =0,
as remarked in above Eq. (28), and therefore, for any ryc,), D(N =0,r4@) T = OK) = 0, according to the
MIT. Now, replacing Fno(rpoy given in Eq. (A.7) by pnrpy determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

2
D(N ,rd(a),T=0) 2 _é _§ _5
W 3 x Fno(Fpo)(u) x(1l+bu3s+cu s . (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type InP-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

rsn(SD)(N ’rd(a)) - (4T[N ) x aBn(Bp)(rd(a)) - 11723 x 10 x ( N ) x S(I’d(a)) ) (Bl)

Here, the values of gcvy) = 1(1) and (M5)/Mo) are defined and given in Table 1.
In particular, in the following, My;,/M = M/M,, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(sp)), is found to

be given by [1]:
087553 (2[1-In(2)] _
B 087553 T ( = )xln (Fsn(sp))—0.093288
CE(rsn(sp)) = CE(N 'rd(a)) - 0.0908+'n(sp) + 140 03847728xr51n%3)78876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

A N x fo_ xN1/3+ 50 ><N3>< 2.503 x x +ag x |2 5/4><
gn( g ag ) a, X ( [— ce(rsn) Xrsp]) +a3 [s(rd)]
3
[ 1/4 f 1/2 € |2 e — N =N—Ncpn(rq)
my XN g X e(rg >< Ny ™ > 2+ ag < [s(r ) >Ny, Nr ~ 9.999x107cm=2’ (B3)

where a; = 6.829 x 10‘3(eV) , a,=1.168x1073(eV) , a3 =5.032x1073(eV) , a, = 10.058 x
1073(eV) and ag = 1.455 x 103(eV), and

_€o 1/3 a 3 £ 5/4 me
D go(N ra) ag > o> NJ™ +ap x forx Nf x (2503 x [~ ce(rsp) x repl) + az x L(ra) X e

3
Nl/4 + 2a x N =N—Ncpp(ra) )
8(ra)

% Nl/2

a5 x [ 2] x NG N = (Sos0emoroncs)- (B4)

where a; =9.329x1073(eV) , a, =1.596 x1073(eV) , a3 =7.144x1073(eV) , a, =13.741 x
1073(eV) and as = 1.988 x 107 3(eV).

Therefore, in Equations (B3, B4), as N =0, and for any Iy, A gygp)(N =0,1,) =0, according to the
MIT.
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