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Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in

the n(p)-type degenerate InP-crystal (��(�)( ≧ �)), at same reduced Fermi energy ��(�)( = �. ���) and

same minimum (maximum) Seebeck coefficient �� = ∓ �. ��� × ��−� �
�

, at which same

�� ����( = ��

�×��(�)
� ≃ �)
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Abstract
In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static

dielectric constant, ε rd a , rd a being the donor (acceptor) d(a)-radius, was determined by using an

effective Bohr model, suggesting that, for an increasing rd a , ε rd a , due to such the impurity size effect,

decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also

various majority carrier transport coefficients given in the n(p)-type degenerate InP-crystal, defined for the

reduced Fermi energy ��(�)( ≧ �) . Then, using the same physical model and same mathematical methods

and taking into account the corrected values of energy-band-structure parameters, all the numerical results,

obtained in II, are now revised and performed, giving rise to some important concluding remarks, as follows.

(1) The critical donor(acceptor)-density, NCDn NDp (rd(a)), determined in Eq. (3), can be explained by the

densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)), given in Eq. (21).

(2) In Tables 9-11, for a given d(a)-density N [≥ 2NCDn NDp (rd(a)) ] one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy ξn(p)( = 1.813), while the numerical results of the Seebeck

coefficient Sb present a same minimum (maximum) = ∓ 1.563 × 10−4 V
K
, those of the figure of merit ZT

show a same maximum ZT = � , (ii) for ξn = 1 , those of Sb and ZT present same results:
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Sb = ∓ 1.322 × 10−4 V
K

and 0.715, respectively, (iii) for ξn(p) = 1.813 and ξn(p) = 1, those of the well-

known Mott figure of merit give same ZT Mott = π2

3×ξn(p)
2 ( ≃ 1 and 3.290), respectively, and finally, (iv) we

show here that in the degenerate InP-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found

to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential
fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction
In our two previous papers [1, 2], referred here to as I and II.

In I, our new expression for the extrinsic static dielectric constant, ε rd a , rd a being the donor (acceptor)

d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing rd a ,

ε rd a , due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in

the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type

degenerate InP-crystal, defined for the accurate reduced Fermi energy [3], ��(�)( ≧ �) . Therefore, all the

numerical results of those obtained and given in II are now revised and performed, in comparison with those

obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4, 5, 6] are presented in Tables 1

and 2. In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and

mathematical methods, needed to determine and evaluate the critical densities of the majority carriers

localized in the exponential conduction (valence) band tails, are presented, confirming thus the

corresponding numerical results, obtained using Eq. (3) for the generalized effective Mott criterion in the

metal-insulator transition (MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution

function method, our accurate expression for the electrical conductivity, σ , is determined, being a

fundamental one, since it is related to all other electrical-and-thermoelectric coefficients, and then all the

numerical results of those coefficients are reported in Tables 4-11. Finally, some concluding remarks are

given in Section 6.

2. Energy-band-structure parameters
First of all, we present in Table 1 the values of the energy-band-structure parameters, given in the n(p)-type

InP-crystal, such as: (i) if denoting the free electron mass by mo , the relative effective electron (hole) mass,

mn(p)
∗ /mo , which is equal to the relative effective mass, mn(p)/mo [4], as used in this Sections 2 and 4 to

determine the critical impurity density in the MIT, (ii) to the reduced effective mas, mr = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

× mo , as

used in Section 3 to determine the optical band gap (OBG), and (iii), to the conductivity effective mass,
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mCn(Cp)/mo [5], as used in Section 5 to determine the electrical-and-thermoelectric coefficients. Further,

�go = �go(rdo ao = rP(In)) = 1.424 �� [5] is the unperturbed intrinsic band gap, as used in Section 3 to

determine the OBG, εo = 12.5 [4], is the relative intrinsic dielectric constant, and finally, the effective

averaged numbers of equivalent conduction (valence)-band edge, gc(v) = 1(1) , used for present majority-

carrier transport phenomena.
Table 1. Here, the effective electron (hole) mass, mn(p)

∗ , is equal respectively to: mn(p) , as used in Sections 2 and 4, to

mr in Section 3, and mCn(Cp) in Section 5, and the values of other important parameters are also reported.

__________________________________________________________________________ ____________________________________________

mn(p)/mo [1] mr/mo mCn(Cp)/mo [5] gc(v) �go [5] εo [4]

0.073(0.078+0.6
2

= 0.339) 0.060 0.077(0.50) 1(1) 1.424 eV 12.5

__________________________________________________________________________ ____________________________________________

We now determine our expression for extrinsic static dielectric constant, ε rd a , due to the impurity size

effect, and the expression for critical density, NCDn(CDp) rd a , characteristic of the MIT, as follows.

2.1. Expression for � �� �

In the [d(a)-semiconductors]-systems, since rd(a) , given in tetrahedral covalent bonds, is usually either

larger or smaller than rdo(ao) ≡ rP(In), a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: rd(a) > rdo(ao) (rd(a) < rdo(ao)), due to the d(a)-size effect,

respectively [1]. Then, we have shown that this rd(a) -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, ε(rd(a)), determined as follows.

At T=0K, we shown [1] that, as rd(a) > rdo(ao)( rd(a) < rdo(ao)) , such the compression (dilatation)

corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap

�gni(gpi) rd(a) and the effective donor(acceptor)-ionization energy �d(a) rd(a) in absolute values, obtained

in an effective Bohr model, as [1]:

�gni(gpi) rd(a) − �go rdo(ao) = �d(a) rd(a) − �do(ao) rdo(ao) = �do(ao) rdo(ao) × εo
ε(rd(a))

2
− 1 , (1)

where

ε(rd(a))=
εo

1+
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≤ εo, for rd(a) ≥ rdo(ao), and

ε(rd(a))=
εo

1−
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≥ εo,

rd(a)
rdo(ao)

3
− 1 × ln rd(a)

rdo(ao)

3
< 1, for rd(a) ≤ rdo(ao). (2)

One notes that ε(rd(a)) decreases with an increasing rd(a).

2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InP-semiconductor, the critical donor(acceptor)-density, NCDn NDp (rd(a)) , is

determined from the generalized effective Mott criterion in the MIT, as:

NCDn NDp (rd(a))
1

3 × aBn(Bp)(rd(a)) = 0.25, (3)
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and the effective Bohr radius aBn(Bp)(rd(a)) is given by:

aBn(Bp)(rd(a)) ≡
ε(rd(a))×ℏ2

(mn(p)
∗ /mo)×q2 = 0.53 × 10−8 cm × ε(rd(a))

(mn(p)
∗ /mo)

, (4)

where −q is the electron charge, ε(rd(a)) is determined in Eq. (2), and mn(p)
∗ /mo = mn(p)/mo =

0.073(0.339), as given in Table 1. In this Table 2, we also present various values of ε(rd(a)), aBn(Bp)(rd(a)),

�d(a) rd(a) and �gni(gpi) rd(a) , NCDn NDp (rd(a)) , and the densities of electrons (holes) localized in

exponential conduction (valence)-band tails, NCDn CDp
EBT (rd(a)) , noting that the maximal relative

deviations, in absolute values, RD , between NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(Ba)) are found to be

equal to: 5.57(7.61) × 10−4, respectively. In other word, NCDn NDp (rd(a)), determined in Eq. (3), can be

explained by NCDn CDp
EBT (rd(a)), determined in Eq. (21). Furthermore, in our recent work [6], we showed

that, in the n(p)-type degenerate semiconductors, the critical densities of electrons (holes) can also be

determined from the spin-susceptibility singularities (SSS), obtained at N = NCDn(CDp)
SSS (rd(a)), at which the

MITs occur.
Table 2. Here, for increasing rd(a) [4], both ε(rd(a)), calculated using Eq. (2), and aBn(Bp)(rd(a)), evaluated using Eq. (4),

decrease, while �d(a) rd(a) , �gni(gpi) rd(a) , NCDn NDp (rd(a)), NCDn CDp
EBT (rd(a)), and kFn(Fp)

−1

ksn(sp)
−1 , calculated using Equations (1,

1, 3, 21,7), respectively, increase, affecting strongly all the physical properties, given in Sections 3-5
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

ε(rd) ↘ 12.5 12.20 10.57 9.987 9.40

aBn(rd) in 10−7 cm ↘ 9.07 8.86 7.67 7.25 6.87

�d(rd) in meV ↗ 6.35 6.67 8.88 9.95 11.23

�gni(rd) in meV ↗ 1424 1424.3 1426 1428 1429

NCDn(rd) in 1016 cm−3 ↗ 2.09 2.25 3.456 4.10 4.91

NCDn
EBT(rd) in 1016 cm−3 ↗ 2.09 2.24882 3.45636 4.0988 4.91274

RD in 10−4 0 5.24 1.05 2.89 5.57
kFn

−1

ksn
−1 < 1 (Physical condition) 0.4012 0.4012 0.4012 0.4012 0.4012

__________________________________________________________________________ ____________________________________________

Acceptor Ga(Al) Mg In

ra (nm) [4] ↗ 0.126 0.140 0.144

ε(ra) ↘ 13.418 12.543 12.25

aBp(ra) in 10−7 cm ↘ 2.098 1.96 1.95

�a(ra) in meV ↗ 25.60 29.30 29.51

�gpi(ra) in meV ↗ 1420 1423.8 1424

NCDp(ra) in 1018 cm−3 ↗ 1.692 2.072 2.090

NCDp
EBT(ra) in 1018 cm−3 ↗ 1.692 2.0713 2.0916

RD in 10−4 0 3.45 7.61
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kFp
−1

ksp
−1 < 1 (Physical condition) 0.3364 0.3364 0.3363

__________________________________________________________________________ ____________________________________________

Table 2 also indicates that, for increasing rd(a), both ε(rd(a)) and aBn(Bp)(rd(a)) decrease, while �d(a) rd(a) ,

�gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase, affecting strongly all the physical

properties, as those given in following Sections 3-5 .

3. Optical band gap
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.060, as given in Table 1 , and then, if denoting

N∗≡ N − NCDn NDp (rd(a)) , the optical band gap (OBG) is found to be given by:

�gn1 gp1 N∗, rd a , T ≡ �gn2 gp2 N∗, rd a , T + �Fn Fp N∗, T , (5)

where the reduced band gap is defined as:

�gn2 gp2 N∗, rd a , T ≡ �gni gpi rd a − 4.9×10−4×T2 (eV)
T+327

− Δ�gn gp N∗, rd a . (6)

Here, the intrinsic energy gap �gni(gpi) rd(a) is determined in Eq. (1), the Fermi energy �Fn Fp N∗, T , in

Eq. (A3), and the band gap narrowing Δ�gn gp N∗, rd a , in Equations (B3, B4), of the Appendix A and B,

respectively. Then, as noted in the Appendix A and B, at T=0K, as N∗ = 0 , one has: �Fn Fp N∗, T ≈

�Fno(Fpo)(N∗) = 0, as given in Eq. (A4), and Δ�gn gp N∗, rd a = 0 , according to the MIT, as noted in

Appendix A and B. Therefore, �gn1 gp1 = �gn2 gp2 = �gni(gpi) rd(a) at T=0K and N∗ = 0 , according also

to the MIT.

Finally, the numerical results of �gn1 gp1 N∗ > 0, rd a , T at T=20K, calculated using Eq. (5) and expressed

as functions of N and rd a , are reported in Table 3

Table 3. In degenerate d(a)- InP systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given rd(a), the OBG increases with increasing N.

_________________________________________________________________________ ____________________________________________

N (1018 cm−3) 4 8.5 15 50 80 100

�gn1(N∗, rP) in eV 1.506 1.580 1.671 2.045 2.302 2.457

�gn1(N∗, rAs) in eV 1.505 1.579 1.669 2.041 2.298 2.452

�gn1(N∗, rTe) in eV 1.498 1.569 1.657 2.021 2.273 2.425

�gn1(N∗, rSb) in eV 1.496 1.566 1.653 2.014 2.264 2.415

�gn1(N∗, rSn) in eV 1.492 1.561 1.647 2.004 2.252 2.402

__________________________________________________________________________ ____________________________________________

N (1018 cm−3) 6.5 11 15 26 60 170

�gp1(N∗, rGa(Al)) in eV 1.506 1.573 1.626 1.753 2.072 2.847

�gp1(N∗, rMg) in eV 1.500 1.566 1.619 1.745 2.061 2.830

�gp1(N∗, rIn) in eV 1.499 1.566 1.618 1.745 2.060 2.829
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__________________________________________________________________________ ____________________________________________

Furthermore, in Table 3, we also showed that, in the n(p)-type degenerate InP and for a given photon energy

E ≡ ℏω , since the extinction coefficient, ��(�) , and other optical coefficients, as discussed in II, are

expressed in terms of the function (E − �gn1 gp1 )1/2. Therefore, if the values of �gn1 gp1 obtained in Table

3 increase (decrease), (E − �gn)1/2 and other optical coefficients then decrease (increase), respectively.

4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate InP, if denoting the Fermi wave number by: kFn(Fp)(N) ≡ 3�2N/gc(v)
1/3

,

the effective reduced Wigner-Seitz radius rsn(sp), characteristic of the interactions, is defined by

� × rsn(sp) N∗, rd a , mn(p)
∗ ≡

kFn(Fp)
−1

�Bn(Bp)
< 1, (6)

being proportional to N∗−1/3 . Here, � = 4/9� 1/3 , kFn(Fp)
−1 means the averaged distance between ionized

donors (acceptors), and aBn(Bp)(rd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 0 K is

defined by

Rsn(sp) N∗, rd(a) ≡ ksn(sp)

kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = RsnWS(spWS) + RsnTF(spTF) − RsnWS(spWS) �−rsn(sp) < 1. (7)

These ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows.

First, for � ≫ NCDn NDp (rd(a)), according to the Thomas-Fermi (TF)-approximation, the ratio RsnTF(snTF) is

reduced to

RsnTF N∗, rd(a) ≡ ksnTF(spTF)

kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = 4�rsn(sp)

�
≪ 1, (8)

being proportional to N−1/6.

Secondly, � < NCDn NDp (rd(a)), according to the Wigner-Seitz (WS)-approximation, the ratio RsnWS(snWS) is

reduced to

Rsn(sp)WS N∗, rd(a) ≡ ksn(sp)WS

kFn
= 0.5(1) × 3

2�
3

2� − �d �sn(sp)
2 ×�CE N∗,rd(a)

d�sn(sp)
, (9)

where �CE N∗, rd(a) is the majority-carrier correlation energy (CE), being determined by Eq. (B2) of the

Appendix B.

Furthermore, as given in II, in the degenerate case, the physical conditions are found to be given by :
kFn(Fp)

−1

aBn(Bp)
< ηn(p)

�Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp) < 1, An(p) ≡ �Fno(Fpo)

ηn(p)
, (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,

Rsn(sp) is determined in Eq. (7).
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Then, in degenerate d(a)-InP systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, −q +q , at position r�� , and an ionized donor (ionized

acceptor) charge: +q −q at position Rj��� , randomly distributed throughout the Si crystal, is defined by

V(r) ≡ j=1
ℕ vj r + Vo� , (11)

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and vj r is a

screened Coulomb potential energy for each d(a)-Si system, defined as

vj r ≡− q2×exp (−ksn(sp)× r�� −Rj��� )
ε(rd(a))× r�� −Rj��� ,

where ksn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector k�� -espace is given by

vj k�� =− q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn
2 ,

where Ω is the total InP -crystal volume.

Then, the effective auto-correlation function for potential fluctuations, Wn(p) νn(p), N∗, rd ≡ V r V(r') , was

determined in II, as :

Wn(p) νn(p), N∗, rd(a) ≡ ηn(p)
2 × exp −ℋ×Rsn(sp) N∗,rd(a)

2 νn(p)

, ηn(p)(N∗, rd(a)) ≡ 2πN∗

ε(rd(a))
× q2ksn(sp)

−1/2 , νn(p) ≡ −�
�Fno(Fpo)

. (12)

Here, ε(rd(a)) is determined in Eq. (2), Rsn(sp) N∗, rd(a) in Eq. (7), the empirical Heisenberg parameter ℋ =

0.4721(1.585) = ℋ�(�)−��� will be chosen such that the determination of the density of electrons localized

in the conduction(valence)-band tails, given in Section 5, would be accurate, and finally νn(p) ≡ −�
�Fno(Fpo)

,

where � is the total electron energy and �Fno(Fpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A. In the following, we will calculate the ensemble average of the function: � − V a−1
2 ≡ �k

a−1
2 ,

for a ≥ 1, �k ≡ ℏ2×k2

2×��(�)
∗ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by

using the two following integration methods, as developed in II, which strongly depend on

Wn(p) νn(p), N∗, rd(a) .

4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In heavily doped d(a)- InP systems, the effective Gaussian distribution probability is defined by

P V ≡ 1
2�Wn(p)

× exp −V2

2Wn(p)
.

So, in the Kane integration method, the Gaussian average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 KIM ≡ �k

a−1
2

KIM = −∞
� � − V a−1

2� × P V dV, for a ≥ 1.
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Then, by variable changes: s = � − V / Wn(p) and x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

,

and using an identity:

0
∞ sa−1

2� × exp ( − xs − s2

2
s2

2 )ds ≡ Γ(� + 1
2
1
2) × exp (x2/4) × D−a−1

2
(x),

where D−a−1
2
(x) is the parabolic cylinder function and Γ(a + 1

2
1
2) is the Gamma function, one thus has:

�k
a−1

2
KIM =

exp (−x2/4)×Wn(p)

2a−1
4

2π
× Γ(a + 1

2
1
2) × D−a−1

2
(x) =

exp (−x2/4)×ηn(p)
a−1

2

2π
× exp − ℋ×Rsn(sp)× 2a−1

8× νn(p)

× Γ(a +

1
2) × D−a−1

2
(x). (13)

B. Feynman path-integral method (FPIM)

Here, the ensemble average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 FPIM ≡ �k

a−1
2

FPIM ≡ ℏa−1
2

23/2× 2�
×

Γ(a+1
2)

Γ(3
2)

× −∞
∞ �t −a−1

2� × exp ��t
ℏ

−
t Wn(p)

2

2ℏ2 dt, i2 =− 1,

noting that as a=1, it −3
2 × exp −

t Wp
2

2ℏ2 is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = ℏ

Wn(p)

ℏ

Wn(p)
and x =− �/ Wn(p), and then using an identity:

−∞
∞ �s −a−1

2� × exp �xs − s2

2
ds ≡ 23/2 × Γ(3/2) × exp ( − x2/4) × D−a−1

2
(x),

one finally obtains: �k
a−1

2
FPIM ≡ �k

a−1
2

KIM, �k
a−1

2
KIM being determined in Eq. (13).

In the following, with use of asymptotic forms for D−a−1
2
(x) , those given for � − V a−1

2 KIM will be

obtained in the two cases: � ≥ 0 and � ≤ 0.

(i) � ≥ �-case

As � →+ ∞, one has: �n →− ∞ and x →− ∞. In this case, one gets:

D−a−1
2
(x →− ∞) ≈ 2�

Γ(a+1
2)

× �
x2
4 × ( − x)a−1

2.

Therefore, Eq. (13) becomes: �k
a−1

2
KIM ≈ �a−1

2 . Further, as � →+ 0, one has: �n(p) →− 0 and x →− ∞. So,

one gets :

D−a−1
2

x →− ∞ ≃ � a × exp ( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2
16a
x2
16a + x3

24 a
x3

24 a → 0, � a = �

2
2�+1

4 Γ(a
2+3

4)]
.

Thus, as � →+ 0, from Eq. (13), one gets: �k
a−1

2
KIM → 0.

In summary, for � ≥ 0, the expression of �k
a−1

2
KIM can be approximated by:
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�k
a−1

2
KIM ≅ �a−1

2, �k ≡ ℏ2×k2

2×m∗ . (14)

(ii) � ≤ � − ����.

As � →− 0, from Eq. (13), one has: �n(p) →+ 0 and x →+ ∞. Thus, one first obtains, for any a ≥ 1,

D−a−1
2
(x → ∞) ≃ β a × exp −( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2

16a
x2

16a − x3

24 a
x3

24 a → 0, β a = π

2
2a+1

4 Γ(a
2+3

4)]
, noting that

β 1 = π

2
3
4×Γ(5/4)

and β 5/2 = π
23/2.

Then, putting f(a) ≡
ηn(p)

a−1
2

2π
× Γ(a + 1

2
1
2) × β a , Eq. (13) yields

Hn(p) �n(p) →+ 0 , rd(a), a =
�k

a−1
2

KIM

f(a)
= exp −

ℋ×Rsn(sp)× 2a−1

8× νn(p)

− a + 1

16a
3
2

1

16a
3
2

x− 1
4+ 1

16a x2− x3
24 a → 0. (15)

Further, as � →− ∞, one has: �n(p) →+ ∞ and x → ∞. Thus, one gets:

D−a−1
2
(x → ∞ ) ≈ x−a−1

2× �−x2
4 → 0. Therefore, Eq. (13) yields

Kn(p)(�n(p) →+ ∞ , rd(a), a) ≡
�k

a−1
2

KIM

f(a)
≃ 1

� a
× exp ( − (An(p)×�n(p))2

2
) × (An(p) × �n(p))−a−1

2 → 0. (16)

It should be noted that, as � ≤ 0, the ratios (15) and (16) can be taken in an approximate form as:

Fn(p)(�n(p), rd(a), a) = Kn(p)(�n(p), rd(a), a) + Hn(p)(�n(p), rd(a), a) − Kn(p)(�n(p), rd(a), a) × exp  − c1 ×
An(p)�n(p)

c2 , (17)

such that: Fn(p)(�n(p), rd(a), a) → Hn(p)(�n(p), rd(a), a) for 0 ≤ �n ≤ 16 , and Fn(p)(�n(p), rd(a), a) →

Kn(p)(�n(p), rd(a), a) for �n(p) ≥ 16. Here, the constants c1 and c2 may be respectively chosen as: c1 = 10−40

and c2 = 80, as a = 1 , being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NCDn CDp
EBT (N, rd(a)), in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InP systems at T=0 K, in which mn(p)
∗ /mo = mn(p)/mo = 0.073(0.339), as given in

Table 1, using Eq. (13), for a=1, the density of states �(�) is defined by:

�(�k) KIM ≡
gc(v)

2�2
2mn(p)

ℏ2

3
2 × �k

1
2

KIM =
gc(v)

2�2
2mn(p)

ℏ2

3
2 ×

exp −x2
4 ×Wn

1
4

2�
× Γ 3

2 × D−3
2

x = �(�), (18)

where x is defined in Eq. (13), as: x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

.

Here, �Fno is determined in Eq. (A4) of the Appendix A, with mn(p)
∗ /mo = mn(p)/mo and ℋ =

0.4721(1.585) , being chosen such that the following determination of NCDn CDp
EBT (N, rd(a)) would be

accurate.
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Then, going back to the functions: Hn , Kn and Fn , given respectively in Equations (15-17), in which the

factor
�k

1
2

KIM

f(a=1) is now replaced by:

�k

1
2

KIM

f(a=1)
= �(�≤0)

�o
= Fn(p) �n(p), rd(a), a = 1 , �o =

gc(v)× mn(p)×mo
3/2

× �n(p)

2�2ℏ3 × � a = 1 , � a = 1 = �

2
3
4×Γ(5/4)

.

(19)

Therefore, the densities of electrons (holes) localized in exponential conduction (valence)-band tails,

NCDn CDp
EBT (N, rd(a)), can be defined by

NCDn CDp
EBT (N, rd(a)) = −∞

0 �(� ≤ 0)� d�,

where �(� ≤ 0) is determined in Eq. (19). Then, by a variable change: �n(p) ≡ −�
�Fno(Fpo)

, one obtains:

NCDn CDp
EBT (N, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) + In(p) ,

(20)

where

In(p) ≡ 16
∞

�(a = 1) × Kn(p) �n(p), rd(a), a = 1� d�n(p) = 16
∞ �

− An(p)×�n
2

2 × An(p)�n(p)
−3/2

� d�n(p).

Here, �(a = 1) = �

2
3
4×Γ(5/4)

.

Then, by another variable change: t = An(p)�n(p)/ 2
2
, the integral In(p) yields:

In(p) = 1
25/4An(p)

1
25/4An(p)

1
25/4An(p)

× yn(p)

∞ tb−1� e−tdt ≡ Γ(b, yn(p))

25/4×An(p)

Γ(b, yn(p))

25/4×An(p)
,

where b =− 1/4, yn(p) = 16An(p)/ 2
2
, and Γ(b, yn(p)) is the incomplete Gamma function, defined by:

Γ(b, yn(p)) ⋍ yn(p)
b−1× �−yn(p) 1 + j=1

16 b−1 b−2 …(b−j)
yn(p)

j� .

Finally, Eq. (20) now yields:

NCDn CDp
EBT (N, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) +

Γ(b, �n(p))
25/4×An(p)

, calculated for N = NCDn NDp ( rd(a)), (21)

being the density of electrons localized in the exponential conduction-band tails (EBT).

The numerical results of NCDn CDp
EBT [N = NCDn NDp ( rd(a))] = NCDn CDp

EBT ( rd(a)), evaluated using Eq. (21), are

given in Table 2, confirming thus those of NCDn NDp (rd(a)), calculated using Eq. (3), with a precision of the

order of 5.57(7.61) × 10−4 , respectively. In other word, NCDn NDp (rd(a)), determined in Eq. (3), can be

explained by NCDn CDp
EBT (rd(a)), determined in Eq. (21).
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5. Fermi-Dirac distribution function at low temperatures, and its applications
5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by

f(�) ≡ 1 + eγ −1, γ ≡ (� − �Fn(Fp))/(kBT),

where �Fn(Fp)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of �p, calculated using the FDDF-method, as developed in II, can be defined as:

�p
FDDF ≡ Gp(�Fn) × �Fn

p ≡ −∞
∞ �p × − ∂f

∂�
d�� , − ∂f

∂�
= 1

kBT
× eγ

1+eγ 2. (22)

Further, one notes that, at 0 K, − ∂f
∂�

= δ � − �Fno(Fpo) , δ � − �Fno(Fpo) being the Dirac delta (δ) -

function and �Fno(Fpo) is the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp �Fno = 1.

Then, at low T, by a variable change γ ≡ (� − �Fn(Fp))/(kBT), Eq. (22) yields:

Gp �Fn(Fp) ≡ 1 + �Fn(Fp)
−p × −∞

∞ eγ

1+eγ 2 × kBTγ + �Fn(Fp)
pdγ� = 1 + μ=1,2,…

p Cp
β� × kBT β × �Fn(Fp)

−β × Iβ ,

where Cp
β ≡ p p − 1 …(p − β + 1)/β! and the integral Iβ is given by:

Iβ = −∞
∞ γβ×eγ

1+eγ 2 dγ� = −∞
∞ γβ

eγ/2+e−γ/2 2 dγ� , vanishing for old values of β . Then, for even values of β = 2n ,

with n=1, 2, …, one obtains:

I2n = 2 0
∞ γ2n×eγ

1+eγ 2 dγ� . (23)

Now, using an identity 1 + eγ −2 ≡ s=1
∞ −1 s+1s × eγ(s−1)� , a variable change: sγ =− t , the Gamma

function: 0
∞ t2ne−t� dt ≡ Γ 2n + 1 = (2n)! , and also the definition of the Riemann’s zeta function:

ζ(2n) ≡ 22n−1π2n B2n /(2n)!, B2n being the Bernoulli numbers, one finally gets: I2n = 22n − 2 × π2n ×

B2n . So, from Eq. (22), we get in the degenerate case the following ratio:

Gp �Fn(Fp) ≡ �p FDDF
�Fn(Fp)

p = 1 + n=1
p p p−1 …(p−2n+1)

(2n)!
� × 22n − 2 × B2n × y2n ≡ Gp y , y = πkBT

�Fn(Fp)
. (24)

Then, some usual results of Gp y are given in Table 4.

Table 4. Expressions for Gp≥1(y ≡ π
��(�)

) , as given in II, due to the Fermi-Dirac distribution function FDDF, noting

that Gp=1(y ≡ πkBT
�Fn(Fp)

= π
��(�)

) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5

__________________________________________________________________________ ____________________________________________

G3/2(y) G2(y) G5/2(y) G3(y) G7/2(y) G4(y) G9/2(y)

� + ��

�
+ ���

���
� + ��

�
� + ���

�
− ���

���
� + �� � + ����

��
+ ����

���
� + ��� + ���

��
� + ����

�
+ �����

���

_______________________________________________________________________________________________________________________

These functions Gp y will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate InP, as follows.
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5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, mn(p)
∗ /mo is chosen as: mn(p)

∗ /mo = mCn(Cp)/mo = 0.077(0.50) , as given in Table 1, and all the

majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:

N∗≡ N − NCDn NDp (rd(a)), where the values of critical d(a)-densities NCDn NDp (rd(a)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by σ(N∗, rd(a), T) ,

expressed in ohm−1 × cm−1 , the thermal conductivity by κ(N∗, rd(a), T) , expressed in W
cm×K

, and Lorenz

number by L = π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , then the well-known Wiedemann-Frank law states that

the ratio, κ
σ
, is proportional to the temperature T(K), as:

κ(N∗,rd(a),T)
σ(N∗,rd(a),T)

= L × T. (25a)

Then, it is interesting to define a constant ��(N∗, rd(a))[ ≡ κ(N∗,rd(a),T=3K)
L

] in order to show that, for given N∗

and rd(a), κ���.(N∗, rd(a), T) is found to be proportional to T, as:

κ���.(N∗, rd(a), T) ≃ ��(N∗, rd(a)) × � , RDκ,κ���. �
≡ 1 − κ���.(N∗,rd(a),T)

κ(N∗,rd(a),T) , (25b)

where RDκ,κ���. �
is the relative deviations in absolute values between κ(N∗, rd(a), T) and κ���.(N∗, rd(a), T),

as a function of T.

Thus, if σ is known, κ and other majority-carrier transport coefficients are also determined, since those are

related to σ. We now determine the general form of σ in the following.

First, it is expressed in terms of the kinetic energy of the electron (hole), �k ≡ ℏ2×k2

2×mCn(Cp)
, or the wave number

k, as:

σ(k) ≡ C × q2×k
π×ℏ

× k
ksn(sp)

× k × aBn(Bp)(rd(a)) × �k
ηn(p)(N,rd(a))

1/2
, C= 0.89645 2, (26)

which is thus proportional to �k
2. Further, ksn(sp), aBn(Bp), and ηn(p) are defined and determined in Equations

(7, 4, 12), respectively.

Then, from Eq. (14), for � ≥ 0 , we get: �k
2

KIM ≅ �2 , and from Eq. (22) we obtain: �2
FDDF ≡ G2(y =

πkBT

�Fn(Fp)
) × �Fn(Fp)

2 , where �Fn(Fp) is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

G2(y)= 1 + y2

3
≡ G2(N∗, T) is given in Table 4. Therefore, Eq. (26) becomes as:

σ(N∗, rd(a), T) ≡ C × q2×kFn(Fp)

π×ℏ
× kFn(Fp)

ksn(sp)
× kFn(Fp) × aBn(Bp)(rd(a)) × �Fno(Fpo)(N∗,T=0)

ηn(p)(N,rd(a))

1/2
× G2(N∗, T) ×

�Fn(Fp)(N∗,T)
�Fno(Fpo)(N∗,T=0)

2
, (27)
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which also determine the resistivity as: ρ(N∗, rd(a), T) ≡ 1/σ(N∗, rd(a), T) , noting that

N∗≡ N − NCDn NDp (rd(a)), and C × q2

π×ℏ
= 6.226527 × 10−5 ohm−1 . Further, the Fermi energies �Fn(Fp)

and �Fno(Fpo) are determined respectively in Equations (A3, A4) of the Appendix A.

In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), σ(N∗, rd(a), T = 0K) is proportional to �Fno(Fpo)
2 ,

or to N∗ 4/3. Thus, σ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator transition (MIT)

occurs.

A.Electrical properties

As given in II, the relaxation time � is related with σ by:

τ(N∗, rd(a), T) ≡ σ(N∗, rd(a), T) × mCn(Cp)

q2×N∗ . Therefore, the mobility μ is given by:

μ(N∗, rd(a), T) ≡
q×τ(N∗,rd(a),T)

mCn(Cp)
=

σ(N∗,rd(a),T)
q×N∗ . (28)

In Eq. (28), at T= 0K, μ(N∗, rd(a), T = 0K) is thus proportional to N∗ 1/3, since σ(N∗, rd(a), T = 0K) is

proportional to N∗ 4/3 . Thus , μ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator

transition (MIT) occurs.

Then, since τ and σ are both proportional to �2, as given above, the Hall factor can thus be determined by:

rH(N∗, T) ≡ τ2
FDDF

� ����
2 = G4(y)

G2(y) 2, and therefore, the Hall mobility yields:

μH(N∗, rd(a), T) ≡ μ(N∗, rd(a), T) × rH(N∗, T), (29)

noting that, at T=0K, since rH(N∗, T = 0K) = 1, one gets:

μH(N∗ = 0, rd(a), T = 0K) ≡ μ(N∗ = 0, rd(a), T = 0K)=0 at N∗ = 0 , at which the metal-insulator transition

(MIT) occurs.

Now, in the degenerate d(a)-InP systems, at T=4.2 K and T=77 K, the numerical results of σ, μ, μH, and the

diffusion coefficient D, calculated respectively by using Equations (27, 28, 29, A8 of the Appendix A), and

reported in following Tables 5 and 6.

Table 5. Here, one notes that: (i) for given N and T, the functions: σ(rd), μ(rd), μH(rd) and D(rd), calculated using

respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rd, and (ii) for given rd and T, the

functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and μH(N∗) decrease, with increasing N.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 105

ohm×cm
, 103× cm2

V×s
, 103× cm2

V×s
, 103×cm2

s

N(1019 cm−3)

3 0.446, 9.29, 9.29, 3.25 0.427, 8.89, 8.89, 3.11 0.332, 6.91, 6.91, 2.4 0.300, 6.25, 6.25, 2.2 0.270, 5.63, 5.63, 2.0

10 1.37, 8.55, 8.55, 6.68 1.31, 8.18, 8.18, 6.39 1.01, 6.32, 6.32, 4.94 0.914, 5.70, 5.70, 4.46 0.820, 5.12, 5.12, 4.0

40 5.06, 7.90, 7.90, 15.6 4.84, 7.55, 7.55, 14.88 3.72, 5.81, 5.81, 11.4 3.35, 5.23, 5.23, 10.3 3.002, 4.68, 4.68, 9.22

70 8.61, 7.68, 7.68, 21.9 8.23, 7.34, 7.34, 20.1 6.32, 5.63, 5.63, 16.1 5.69, 5.07, 5.07, 14.5 5.09, 4.54, 4.54, 13.0

100 12.08, 7.54, 7.54, 27.4 11.5, 7.21, 7.21, 26.1 8.86, 5.53, 5.53, 20.0 7.98, 4.98, 4.98, 18.1 7.13, 4.45, 4.45, 16.1

----------------------------------------------------------------------------------------------------------------------------------------------------------------
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In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 105

ohm×cm
, 103× cm2

V×s
, 103× cm2

V×s
, 103×cm2

s

N(1019 cm−3)

3 0.446, 9.29, 9.31, 3.2 0.427, 8.90, 8.92, 3.1 0.332, 6.91, 6.92, 2.4 0.300, 6.26, 6.27, 2.2 0.270, 5.63, 5.64, 1.97

10 1.37, 8.55, 8.56, 6.68 1.31, 8.18, 8.19, 6.40 1.01, 6.32, 6.32, 4.94 0.914, 5.71, 5.71, 4.46 0.820, 5.12, 5.12, 4.0

40 5.06, 7.90, 7.90, 15.5 4.84, 7.55, 7.56, 14.9 3.72, 5.81, 5.81, 11.4 3.35, 5.23, 5.23, 10.3 3.00, 4.68, 4.68, 9.22

70 8.61, 7.68, 7.68, 21.9 8.23, 7.34, 7.34, 21.0 6.32, 5.63, 5.63, 16.1 5.69, 5.07, 5.07, 14.5 5.09, 4.54, 4.54, 13.0

100 12.1, 7.54, 7.54, 27.4 11.5, 7.21, 7.21, 26.1 8.86, 5.53, 5.53, 20.0 7.98, 4.98, 4.98, 18.1 7.13, 4.45, 4.45, 16.1
__________________________________________________________________________ ___________________________________________

Table 6. Here, one notes that: (i) for given N and T, the functions: σ(ra), μ(ra), μH(ra) and D(ra), calculated using

respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing ra, and (ii) for given ra and T, the

functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and μH(N∗) decrease, with increasing N.
__________________________________________________________________________ ____________________________________________

Acceptor Ga(Al) Mg In

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 104

ohm×cm
, 102× cm2

V×s
, 102× cm2

V×s
, 102×cm2

s

N(1019 cm−3)

3 0.185, 4.07, 4.07, 0.18 0.168, 3.75, 3.75, 0.17 0.167, 3.73, 3.73, 0.17

10 0.49, 3.11, 3.12, 0.32 0.445, 2.83, 2.83, 0.29 0.443, 2.82, 2.82, 0.29

40 1.58, 2.48, 2.48, 0.65 1.42, 2.23, 2.23, 0.59 1.41, 2.22, 2.22, 0.58

70 2.57, 2.30, 2.30, 0.88 2.30, 2.06, 2.06, 0.79 2.29, 2.05, 2.05, 0.78

100 3.52, 2.20, 2.20, 1.07 3.15, 1.97, 1.97, 0.96 3.13, 1.96, 1.96, 0.95

----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 104

ohm×cm
, 102× cm2

V×s
, 102× cm2

V×s
, 102×cm2

s

N(1019 cm−3)

3 0.190, 4.20, 4.70, 0.19 0.173, 3.87, 4.33, 0.18 0.172, 3.85, 4.532, 0.17

10 0.49, 3.14, 3.21, 0.33 0.447, 2.85, 2.92, 0.29 0.445, 2.84, 2.91, 0.29

40 1.58, 2.48, 2.49, 0.65 1.42, 2.23, 2.24, 0.59 1.14, 2.22, 2.23, 0.58

70 2.57, 2.30, 2.30, 0.88 2.31, 2.06, 2.07, 0.79 2.29, 2.05, 2.05, 0.78

100 3.52, 2.20, 2.21, 1.07 3.15, 1.97, 1.97, 0.96 3.13, 1.96, 1.96, 0.95
__________________________________________________________________________ ____________________________________________

B. Thermoelectric properties

First off all, from Eq. (27), obtained for σ(N∗, rd(a), T) , the well-known Mott definition for the

thermoelectric

power or for the Seebeck coefficient, Sb, is given in the n(p)-type degenerate InP, as:

Sb(N∗, T) ≡ ∓ π2

3
× kB

q
× kBT × ∂lnσ �

∂� �=�Fn Fp
.

Then, using Eq. (27), for ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≳ 1, one gets:

Sb(N∗, T) ≡ ∓ π2

3
× kB

q
× 2

π2

3 ξn(p)

× FSb(N∗, T), FSb(N∗, T) ≡ 1 − y2

3×G2(y= πkBT
�Fn(Fp)(N∗,T))

, (30)
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noting that the effective donor (acceptor) density, N∗≡ N − NCDn NDp (rd(a)), is a function of rd(a).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N∗, T) ≡ T × dSb(N∗,T)
dT

, (31)

and then, the Peltier coefficient, Pt, is defined as:

Pt(N∗, T) ≡ T × Sb(N∗, T). (32)

Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

ZT(N∗, T) ≡
Sb(N∗,T) 2×σ(N∗,rd(a),T)×T

κ(N∗,rd(a),T)
= Sb(N∗,T) 2

L
= ZT Mott × 2 × FSb(N∗, T) 2 , ZT Mott = π2

3×ξn(p)
2 , (33)

where ZT Mott is a well-known Mott result, L = π2

3
× kB

q

2
= 2.4429637 × 10−8 W×ohm

K2 is the Lorenz

number, noting that, in the n(p)-type degenerate InP ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≧ 1 , this value of L is exact, and

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

ξn(p) ≡
�Fn(Fp)(N∗,T)

kBT
≃ 1, as: LKim( Sb ) = 1.5 + exp − Sb

116
, Sb being independent of T or N (?).

Then, being inspired from this LKim( Sb )-expression, we also propose another one, given in the n(p)-type

degenerate InP, as:

LVC Sb(N∗, T) = 1.44296 + e− Sb(N∗,T)
104 ; RDL,LVC ≡ 1 − LVC Sb(N∗,T)

L
, (34)

where RDL,LVC is the relative deviations in absolute values between L and LVC.

Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-InP, defined by physical conditions : N = 1021cm−3 and T (=3K and

300K), the numerical results of ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

, calculated by using Eq. (A3) of the Appendix A, and then

other ones of: σ(N∗, rd(a), T) by Eq. (27), κ(N∗, rd(a), T) by Eq. (25a); Cκ(N∗, rd(a)) , κApp.(N∗, rd(a), T) and

RDκ,κApp. T
by Eq. (25b), Sb(N∗, T) , Ts(N∗, T) , Pt(N∗, T) and ZT(N∗, T) by Equations (30, 31, 32, 33)

respectively, and finally, RDL,LVC by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing rd, due to the impurity size effect, NCDn(rd), increases,
since N(=1021 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in �Fn N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
= 7.426 × 10−5 confirms the κApp.-law, as given in Eq. (25b),

and finally, (iii) RDL,LVC = 1.534× 10−6 thus confirms in the degenerate InP -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

Highly degenerate d-InP systems for N=1021 cm−3 and at T=3K and T=300K, noting that N∗≡ N − NCDn(rd)
�Fn N∗,T=300K

kBT
≫ 1 210.46 210.46 210.45 210.45 210.45

σ(T=3K)
106

ohm×cm
↘ 1.2085 1.1552 0.8860 0.7979 0.7135

σ(T=300K)
106

ohm×cm
↘ 1.2085 1.1553 0.8860 0.7979 0.7136
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κ(T=3K) (��−�×�
��×� ) ↘ 8.8567 8.4668 6.4933 5.8475 5.2295

κ(T=300K) ( �
��×� ) ↘ 8.8573 8.4674 6.4938 5.8479 5.2299

Cκ (10−3×�
��×�� ) ↘ 29.522 28.222 21.6444 19.4917 17.4318

κApp.(300K) ( �
��×�) ↘ 8.8567 8.4667 6.4933 5.8475 5.2295

RDκ,κApp. 300K
in 10−5 7.426 7.426 7.426 7.426 7.426

Sb(T=3K) (
10−8×V

K
) −2.694 −2.694 −2.694 −2.694 −2.694

Sb(T=300K) (
10−6×V

K
) −2.694 −2.694 −2.694 −2.694 −2.694

Ts(T=3K) (
10−8×V

K
) −2.694 −2.694 −2.694 −2.694 −2.694

Ts(T=300K) (10−6×V
K

) −2.693 −2.693 −2.693 −2.693 −2.693

Pt(T=3K) (10−8 × V ) −8.082 −8.082 −8.082 −8.082 −8.082

Pt(T=300K) (10−4 × V ) −8.081 −8.081 −8.081 −8.082 −8.082

ZT(T=3K) × 10−8 2.971 2.971 2.971 2.971 2.971

ZT(T=300K)(× 10−4 ) 2.970 2.970 2.970 2.970 2.971

----------------------------------------------------------------------------------------------------------------------------------------------------------------

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534 1.534 1.534

RD in 10−6 at 300K 1.534 1.534 1.534 1.534 1.534

__________________________________________________________________________ ____________________________________________

Table 8. Here, one notes that (i) for a given T, with increasing ra, due to the impurity size effect, NCDp(ra), increases,
since N(=1021 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in �Fp N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
≃ 4.788 × 10−3 confirms the κApp.-law, as given in Eq. (25b),

and finally, (iii) RDL,LVC ≃ 1.535× 10−6 thus confirms in the degenerate InP-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Acceptor Ga (Al) Mg In

Highly degenerate a- InP systems for N=1021 cm−3 and T=3K and T=300K
�Fp N∗,T=300K

kBT
≫ 1 ↘ 28.21 28.21 28.21

σ(T=3K)
104

ohm×cm
↘ 3.52 3.15 3.13

σ(T=300K)
104

ohm×cm
↘ 3.54 3.16 3.15

κ(T=3K) (��−�×�
��×� ) ↘ 2.5827 2.3106 2.2976

κ(T=300K) ( �
��×� ) ↘ 0.25934 0.2320 0.2307

Cκ (��−�×�
��×�� ) at T=3K ↘ 0.8609 0.7702 0.7658

κApp.(300K) ( �
��×�) ↘ 0.25827 0.2311 0.2297

RDκ,κApp. 300K
in 10−3 4.115 4.118 4.118

Sb(T=3K)(
10−7×V

K
) 2.013 2.013 2.013

Sb(T=300K) (
10−5×V

K ) 2.001 2.002 2.002

Ts(T=3K) (
10−7×V

K
) 2.013 2.013 2.013
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Ts(T=300K) (10−5×V
K

) 1.979 1.979 1.979

Pt(T=3K) (10−7 × V ) 6.038 6.040 6.040

Pt(T=300K) (10−3 × V ) 6.004 6.006 6.006

ZT(T=3K) × 10−6 1.658 1.659 1.659

ZT(T=300K)(× 10−2 ) 1.640 1.640 1.640

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534

RDL,LVC in 10−6 at 300 K 1.535 1.535 1.535

__________________________________________________________________________ ____________________________________________

Secondly, in the degenerate d(a)-InP, for a given N∗, the values of ξn(p) ≡
�Fn(Fp)(N∗,T)

kBT
, calculated by using Eq.

(A3) of the Appendix A, and other ones of: Sb(N∗, T) by Eq. (30), RDL,LVC by Eq. (34), ZT(N∗, T) by Eq.

(33), and finally, Ts(N∗, T) and Pt(N∗, T) by Equations (31, 32), respectively, are obtained and reported in

following Tables 9-11.
Table 9. Here, for a given N∗ and for a given degenerate d-InP system, with increasing T, the reduced Fermi-energy ξn decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξn = 1.813, while the numerical results of Sb present a same minimum Sb min. =− 1.563 × 10−4 V

K
, those of ZT show a same

maximum ZTmax. = � , (ii) for ξn = 1, Sb and ZT present same results: −1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξn =

1.813 and ξn = 1, ZT Mott = π2

3×ξn
2 present same results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of RDL,LVC

is approximated to 1.541 × 10−6, suggesting that in the degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.
_____________________________________________________________________________________________________________________

In the degenerate P- InP system, N∗ ≡ N − NCDn(rP) ≡ NCDn(rP); N = 2NCDn(rP)
T(K) ↗ 5 10 21.814 25 29.384436 30
ξn ↘ 9.713 5.036 1.813 1.401 1 0.952
Sb 10−4 V

K
−0.564 ↘ −0.997 ↘ −1.563 ↗ −1.512 ↗ − 1.322 ↗ − 1.296

RDL,LVC in 10−6 1.537 1.538 1.541 1.541 1.540 1.540

ZT 0.130 ↗ 0.406 ↗ 1 ↘ 0.936 ↘ 0.715 ↘ 0.677
ZT Mott = π2

3×ξn
2 ↗ 0.035 0.130 0.9997 1.676 3.290 3.633

Ts 10−8 V
K

−5115 ↘ −7244 ↗ −4.240 ↗ 7183 ↗ 16574 ↗ 17819
Pt 10−3V − 0.282 ↘ −0.997 ↘ −3.375 ↘ −3.781 ↘ −3.884 ↗ −3.858
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate As- InP system, N∗ ≡ N − NCDn(rAs) ≡ NCDn(rAs); N = 2NCDn(As)
T(K) ↗ 5 10 22.68 25 30.865609 31
ξn ↘ 10.189 5.273 1.813 1.533 1 0.990
Sb 10−4 V

K
−0.539 ↘ −0.961 ↘ −1.563 ↗ −1.541 ↗ −1.322 ↗ −1.314

RDL,LVC in 10−6 1.537 1.538 1.541 1.541 1.540 1.540

ZT 0.119 ↗ 0.378 ↗ 1 ↘ 0.972 ↘ 0.715 ↘ 0.707
�� ���� = π2

3×ξ�
2 ↗ 0.032 0.118 0.9996 1.399 3.290 3.358

Ts 10−8 V
K

−4935 ↘ −7079 ↗ −4.973 ↗ 4595 ↗ 16574 ↗ 16835
Pt 10−3V − 0.270 ↘ −0.961 ↘ −3.545 ↘ −3.853 ↘ −4.079 ↗ −4.075

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Te- InP system, N∗ ≡ N − NCDn(rTe) ≡ NCDn(rTe); N = 2NCDn(Te)
T(K) ↗ 5 10 30.2 35 41.089955 42
ξn ↘ 13.491 6.890 1.813 1.398 1 0.949
Sb 10−4 V

K
−0.413 ↘ −0.769 ↘ −1.563 ↗ −1.511 ↗ −1.322 ↗ −1.284

RDL,LVC in 10−6 1.536 1.537 1.541 1.540 1.540 1.540

ZT 0.070 ↗ 0.242 ↗ 1 ↘ 0.935 ↘ 0.715 ↘ 0.675
�� ���� = π2

3×ξ�
2 ↗ 0.018 0.069 1.0004 1.683 3.290 3.654

Ts 10−8 V
K

−3926 ↘ −6327 ↗ 5.355 ↗ 7247 ↗ 16574 ↗ 17889
Pt 10−3V − 0.206 ↘ −0.769 ↘ −4.720 ↘ −5.290 ↘ −5.431 ↗ −5.393
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sb- InP system, N∗ ≡ N − NCDn(rSb) ≡ NCDn(rSb); N = 2NCDn(Sb)
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T(K) ↗ 5 10 33.84 35 46.6976 47
ξn ↘ 15.10 7.677 1.813 1.713 1 0.952
Sb 10−4 V

K
−0.370 ↘ −0.699 ↘ −1.563 ↗ −1.560 ↗ −1.322 ↗ −1.286

RDL,LVC in 10−6 1.536 1.537 1.541 1.541 1.540 1.540

ZT 0.056 ↗ 0.200 ↗ 1 ↘ 0.997 ↘ 0.715 ↘ 0.677
�� ���� = π2

3×ξ�
2 ↗ 0.014 0.056 1.00003 1.120 3.290 3.628

Ts 10−8 V
K

−3557 ↘ −5973 ↗ 0.345 ↗ 1511 ↗ 16574 ↗ 17803
Pt 10−3V − 0.185 ↘ −0.699 ↘ −5.289 ↘ −5.461 ↘ −6.086 ↗ −6.047
----------------------------------------- -----------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sn- InP system, N∗ ≡ N − NCDn(rSn) ≡ NCDn(rSn); N = 2NCDn(Sn)
T(K) ↗ 5 10 38.165 45 51.928706 52
ξn ↘ 17.005 8.616 1.813 1.353 1 0.997
Sb 10−4 V

K
−0.330 ↘ −0.630 ↘ −1.563 ↗ −1.498 ↗ −1.322 ↗ −1.319

RDL,LVC in 10−6 1.536 1.537 1.541 1.540 1.540 1.540
ZT 0.044 ↗ 0.162 ↗ 1 ↘ 0.919 ↘ 0.715 ↘ 0.713
�� ���� = π2

3×ξ�
2 ↗ 0.011 0.044 1.0003 1.797 3.290 3.311

Ts 10−8 V
K

−3194 ↘ −5561 ↗ 4.001 ↗ 8191 ↗ 16574 ↗ 16657
Pt 10−3V −0.165 ↘ −0.630 ↘ −5.965 ↘ −6.742 ↘ −6.863 ↗ −6.861

Table 10. Here, for a given N∗ and for a given degenerate a- InP system, with increasing T, the reduced Fermi-energy ξp decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξp = 1.813, both Sb and ZT present same maximal results: 1.563 × 10−4 V

K
and 1, respectively, (ii) for ξp = 1, Sb and ZT present

same results: 1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξp = 1.813 and ξp = 1, ZT Mott = π2

3×ξp
2 present same results: ≃ 1 and

3.290, respectively, and finally, (iv) the maximal value of RDL,LVC is approximated to 1.541 × 10−6, suggesting that in the
degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.
__________________________________________________________________________ ____________________________________________
In the degenerate Ga- InP system, N∗ ≡ N − NCDn(rGa) ≡ NCDn(rGa); N = 2NCDn(rGa)
T(K) ↗ 5 10 54.15 65 73.687115 74
ξp ↘ 24.08 12.12 1.813 1.307 1 0.990
Sb 10−4 V

K
0.234 ↗ 0.458 ↗ 1.563 ↘ 1.483 ↘ 1.322 ↘ 1.315

RDL,LVC in 10−6 1.535 1.536 1.541 1.540 1.540 1.540
ZT 0.022 ↗ 0.086 ↗ 1 ↘ 0.900 ↘ 0.715 ↘ 0.707
�� ���� = π2

3×ξ�
2 ↗ 0.006 0.022 0.99992 1.925 3.290 3.356

Ts 10−8 V
K

2305 ↗ 4299 ↘ 1.094 ↘ −9185 ↘ −16574 ↘ −16829
Pt 10−3V 0.117 ↗ 0.458 ↗ 8.464 ↗ 9.638 ↗ 9.739 ↘ 9.728
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Mg- InP system, N∗ ≡ N − NCDn(rMg) ≡ NCDn(rMg); N = 2NCDn(rMg)
T(K) ↗ 5 10 61.99 65 84.343409 85
ξp ↘ 27.54 13.841 1.813 1.673 1 0.982
Sb 10−4 V

K
0.205 ↗ 0.403 ↗ 1.563 ↘ 1.558 ↘ 1.322 ↘ 1.309

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.017 ↗ 0.066 ↗ 1 ↘ 0.993 ↘ 0.715 ↘ 0.701
�� ���� = π2

3×ξ�
2 ↗ 0.004 0.017 1.0004 1.175 3.290 3.413

Ts 10−8 V
K

2025 ↗ 3839 ↘ −5.277 ↘ −21555 ↗ −16574 ↘ −17040
Pt 10−3V 0.102 ↗ 0.403 ↗ 9.689 ↗ 10.127 ↗ 11.148 ↘ 11.124
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate In- InP system, N∗ ≡ N − NCDn(rIn) ≡ NCDn(rIn); N = 2NCDn(rIn)
T(K) ↗ 5 10 62.34 65 84.831179 85
ξp ↘ 27.705 13.920 1.813 1.690 1 0.995
Sb 10−4 V

K
0.204 ↗ 0.400 ↗ 1.563 ↘ 1.559 ↘ 1.322 ↘ 1.318

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.017 ↗ 0.066 ↗ 1 ↘ 0.995 ↘ 0.715 ↘ 0.711
�� ���� = π2

3×ξ�
2 ↗ 0.004 0.017 0.99995 1.152 3.290 3.321

Ts 10−8 V
K

2014 ↗ 3820 ↘ 0.654 ↘ −1885 ↘ −16574 ↘ −16694
Pt 10−3V 0.102 ↗ 0.400 ↗ 9.744 ↗ 10.134 ↗ 11.212 ↘ 11.206
__________________________________________________________________________ ____________________________________________
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Table 11. Here, for a given N∗ and for a given degenerate a- InP system, with increasing T, the reduced Fermi-energy ξp decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξp = 1.813, both Sb and ZT present same maximal results: 1.563 × 10−4 V

K
and 1, respectively, (ii) for ξp = 1, Sb and ZT present

same results: 1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξp = 1.813 and ξp = 1, ZT Mott = π2

3×ξp
2 present same results: ≃ 1 and

3.290, respectively, and finally, (iv) the maximal value of RDL,LVC is approximated to 1.541 × 10−6, suggesting that in the
degenerate InP -case the Wiedemann-Frank, given in Eq. (25a), is exact.
__________________________________________________________________________ ____________________________________________

In the degenerate P- InP system, N∗ ≡ N − NCDn(rP) ≡ 2NCDn(rP); N = 3NCDn(rP)
T(K) ↗ 5 10 34.283 40 46.644885 47
ξn ↘ 15.29 7.772 1.813 1.380 1 0.982
Sb 10−4 V

K
−0.366 ↘ −0.692 ↘ −1.563 ↗ −1.506 ↗ − 1.322 ↗ − 1.309

RDL,LVC in 10−6 1.536 1.537 1.541 1.540 1.540 1.540

ZT 0.055 ↗ 0.196 ↗ 1 ↘ 0.929 ↘ 0.715 ↘ 0.701
ZT Mott = π2

3×ξn
2 ↗ 0.014 0.054 1.0004 1.726 3.290 3.410

Ts 10−8 V
K

−3517 ↘ −5931 ↗ 5.707 ↗ 7614 ↗ 16574 ↗ 17030
Pt 10−3V − 0.183 ↘ −0.692 ↘ −5.358 ↘ −6.026 ↘ −6.165 ↗ −6.152

----------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sn- InP system, N∗ ≡ N − NCDn(rSn) ≡ 2NCDn(rSn); N = 3NCDn(Sn)
T(K) ↗ 5 10 60.58 70 82.431683 83
ξn ↘ 26.92 13.532 1.813 1.406 1 0.984
Sb 10−4 V

K
−0.210 ↘ −0.412 ↘ −1.563 ↗ −1.514 ↗ −1.322 ↗ −1.310

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.018 ↗ 0.069 ↗ 1 ↘ 0.938 ↘ 0.715 ↘ 0.703
�� ���� = π2

3×ξ�
2 ↗ 0.004 0.018 1.0001 1.664 3.290 3.398

Ts 10−8 V
K

−2070 ↘ −3915 ↗ 1.730 ↗ 7081 ↗ 16574 ↗ 16987
Pt 10−3V −0.105 ↘ −0.412 ↘ −9.469 ↘ −10.59 ↘ −10.895 ↗ −10.87

In the degenerate Ga(Al)- InP system, N∗ ≡ N − NCDn(rGa(Al)) ≡ 2NCDn(rGa(Al)); N = 3NCDn(rGa(Al))
T(K) ↗ 5 10 85.95 90 116.971 117
ξp ↘ 38.172 19.135 1.813 1.678 1 0.999
Sb 10−4 V

K
0.148 ↗ 0.294 ↗ 1.563 ↘ 1.558 ↘ 1.322 ↘ 1.321

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.009 ↗ 0.035 ↗ 1 ↘ 0.994 ↘ 0.715 ↘ 0.7146
�� ���� = π2

3×ξ�
2 ↗ 0.002 0.009 0.99985 1.168 3.290 3.294

Ts 10−8 V
K

1473 ↗ 2865 ↘ 1.988 ↘ −2080 ↘ −16574 ↘ −16589
Pt 10−3V 0.074 ↗ 0.294 ↗ 13.435 ↗ 14.025 ↗ 15.460 ↘ 15.459
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate In- InP system, N∗ ≡ N − NCDn(rIn) ≡ 2NCDn(rIn); N = 3NCDn(rIn)
T(K) ↗ 5 10 98.96 99 134.6611 135
ξp ↘ 43.936 22.010 1.813 1.812 1 0.994
Sb 10−4 V

K
0.129 ↗ 0.256 ↗ 1.563 ↘ 1.5629 ↘ 1.322 ↘ 1.317

RDL,LVC in 10−6 1.535 1.535 1.541 1.541 1.540 1.540
ZT 0.007 ↗ 0.027 ↗ 1 ↘ 0.9999995 ↘ 0.715 ↘ 0.710
�� ���� = π2

3×ξ�
2 ↗ 0.002 0.007 0.999998 1.001347 3.290 3.329

Ts 10−8 V
K

1282 ↗ 2511 ↘ 0.031 ↘ −17.560 ↘ −16574 ↘ −16725
Pt 10−3V 0.064 ↗ 0.256 ↗ 15.470 ↗ 15.474 ↗ 17.798 ↘ 17.786
_________________________________________________._________________________ ____________________________________________

In summary, from above Tables, for ξn(p) ≡ �Fn(Fp)(N∗,T)
kBT

≳ 1, the maximal value of RDL,LVC is equal to :

1.541× 10−6, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given in Eq. (25a)

is found to be exact, with the Lorenz number L ≡ π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , even at the limiting

degenerate case, ξn(p) ≃ 1. In other word, our above LVC N∗, T, rd(a) -expression, given in Eq. (25b), is not

useful in the present n(p)-type degenerate InP.
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6. Concluding remarks
In the n(p)-type degenerate InP-crystal, by using the same physical model, as that given in Eq. (7), and

same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the

corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now

revised and performed. So, by basing on our following basic expressions, as:

(i)the effective extrinsic static dielectric constant, ε(rd(a)), due to the impurity size effect, determined by an

effective Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, NCDn NDp (rd(a)) , determined from the generalized effective Mott

criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N∗ ≡ N −

NCDn(CDp)(rd(a)), which gives a physical condition, needed to define the metal-insulator transition (MIT) at

T=0K, as: N∗ ≡ N − NCDn(CDp)(rd(a))=0 or N = NCDn(CDp)(rd(a)),

(iii) the Fermi energy, �Fn(Fp)(N∗, T) , determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 × 10−4 [3], and finally,

(iv) the electrical conductivity, σ(N∗, rd(a), T) , the thermal conductivity, κ(N∗, rd(a), T) , and the Seebeck

coefficient, Sb(N∗, T), determined respectively in Equations (27, 25a, 30),

we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks

are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N∗ = 0, at which:

(a) �Fno(Fpo)(N∗ = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to N∗ 2/3,

(b) as discussed in Eq. (5), suggesting that, in the MIT,

�gn1 gp1 N∗ = 0, rd a , T = 0 = �gn2 gp2 N∗ = 0, rd a , T = 0 = �Fgni Fgpi rd a ,

where �gn1 gp1 , �gn2 gp2 and �Fgni Fgpi are the optical band gap (OBG), reduced band gap and intrinsic

band gap, respectively, and

c) as discussed in Eq. (27) for the electrical conductivity, σ(N∗, rd(a), T), which is proportional to �Fno(Fpo)
2 or

to N∗ 4/3 , giving rise to: σ(N∗ = 0, rd(a), T = 0) = 0 , and therefore, as discussed in Equations (28), (29)

and (A7) of the Appendix A: μ(N∗ = 0, rd(a), T = 0K) = 0, μH(N∗ = 0, rd(a), T = 0K) = 0 , and D(N∗ =

0, rd(a), T = 0K) = 0.

Furthermore, for high N∗ (or high N) and at low T, some concluding remarks are given as follows.

(1) In Table 2, we remark that the maximal relative deviations, in absolute values, RD , between

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) are found to be equal to: 5.57(7.61) × 10−4 , respectively. In other

word, the critical donor(acceptor)-density, NCDn NDp (rd(a)), determined in Eq. (3), can be used to explain

the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)).
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(2) In Tables 5 and 6, we remark that: (i) for given N and T, the functions: σ(rd(a)), μ(rd(a)), μH(rd(a)) and

D(rd(a)), calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing

rd(a), and (ii) for given rd(a) and T, the functions: σ(N∗) and D(N∗) increase, while the functions: μ(N∗) and

μH(N∗) decrease, with increasing N.

(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rd(a) , due to the impurity size effect,

NCDn(CDp)(rd(a)) , increases, since N(= 1021 cm−3) is very high, N∗ therefore decreases very slowly,

explaining the slow decrease ( ↘ ) in
�Fn(Fp) N∗,T=300K

kBT
, σ , κ , Cκ , and κApp. , (ii) the numerical results:

RDκ,κApp. 300K
≃ 7.426 × 10−5(4.118 × 10−3) , respectively, confirm the κApp. -law, as that given in Eq.

(25b), and finally, (iii) RDL,LVC ≃ 1.5× 10−6 thus confirms in the degenerate InP-case the well-known

Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

(4) In Tables 9-11, for a given N ≥ 2NCDn NDp or N∗ ≥ NCDn NDp and for a given degenerate d(a)-InP

system, with increasing T, the reduced Fermi-energy ξn(p) decreases, and other thermoelectric coefficients

are in variations, as indicated by the arrows as: ( ↗, ↘). One notes here that with increasing T: (i) for ξn(p) =

1.813, while the values of Sb present a same minimum (maximum) Sb min.(max.) = ∓ 1.563 × 10−4 V
K
,

those of ZT show a same maximum ZTmax. = � , (ii) for ξn = 1, those of Sb and those of ZT present same

results: Sb = ∓ 1.322 × 10−4 V
K

and 0.715, respectively, (iii) for ξn = 1.813 and ξn = 1 , those of

ZT Mott = π2

3×ξn(p)
2 present same results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of

RDL,LVC is equal approximately to 1.541 × 10−6 , suggesting that in the degenerate InP-case the

Wiedemann-Frank law, given in Eq. (25a), is exact, with the Lorenz number L ≡ π2

3
× kB

q

2
=

2.4429637 W×ohm
K2 , even at the limiting degenerate case, ξn(p) ≃ 1. Therefore, our above

LVC N∗, T, rd(a) -expression, given in Eq. (25b), is found to be not useful in the present degenerate n(p)-type

InP.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix
Appendix A. Fermi Energy and generalized Einstein relation

A1. In the n(p)-type InP-crystals, the Fermi energy �Fn(Fp) ≡ �fn − �c �Fp ≡ �v − �fp , �c(v) being

the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated

in our previous paper, with a precision of the order of 2.11 × 10−4 [3], is now summarized in the following.

In this work, N is replaced by the effective density N∗ , N∗ ≡ N − NCDn(CDp)(rd(a)) , NCDn(CDp)(rd(a)) being



112

the critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N∗ = 0

at this transition.

First of all, we define the reduced electron density by:

u N∗, rd a , T ≡ u N∗, T ≡ N∗

Nc(v)
, Nc(v)(T) = 2 × gc(v) × mn(p)

∗ ×kBT

2πℏ2

3
2 (cm−3), (A1)

where Nc(v)(T) is the conduction (valence)-band density of states, and the values of gc(v) and mn(p)
∗ are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type InP is determined by :
�Fn(u)

kBT
�Fp(u)

kBT
= G u +AuBF(u)

1+AuB = θn(u) ≡ V(u)
W(u)

, A = 0.0005372 and B = 4.82842262, (A2)

where F N∗, rd a , T = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, obtained for u ≫ 1, according to the degenerate cas,

a = (3 π/4) 2/3 , b = 1
8

π
a

2
, c = 62.3739855

1920
π
a

4
, and then G u ≃ Ln u + 2−3

2 × u × e−du for u ≪

1, according to the non − degenerate case, with: d = 23/2 1
27
1
27

− 3
16
3
16 > 0.

So, in the present degenerate case (u ≫ 1), one has:

�Fn(Fp) N∗, rd a , T ≡ �Fn(Fp)(N∗, T) = �Fno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A3)

Then, at T=0K, since u−1 = 0, Eq. (A.3) is reduced to:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mn(p)
∗ , (A4)

being proportional to N∗ 2/3, and equal to 0, �Fno(Fpo)(N∗ = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:
D N∗,rd a ,T
μ N∗,rd a ,T

≡ N
q

× d�Fn(Fp)

dN
≡ kB×T

q
× u dθn(p)

du
, (A5)

where θn(u) is defined in (A2) and the mobility μ N∗, rd a , T is determined in Eq. (28). Then, by

differentiating this function θn(u) with respect to u, one thus obtains dθn
du
. Therefore

D N∗,rd a ,T
μ N∗,rd a ,T

= kB×T
q

× u V' u ×W u −V u ×W' u
W2 u

, (A6)

where W' u = ABuB−1 and V' u = u−1 + 2−3
2e−du 1 − du + 2

3
2
3AuB−1F u 1 + 3B

2
3B
2 + 4

3
4
3× bu−4

3+2cu−8
3

1+bu−4
3+cu−8

3
. One

remarks that: (i) as u → 0 , one has: W2 ≃ 1 and u[V' × W − V × W'] ≃ 1 , and therefore: Dn(p)(u)
μ

≃ kB×T
q

,

and (ii) as u → ∞ , one has: W2 ≈ A2u2B and u[V' × W − V × W'] ≈ 2
3
2
3au2/3A2u2B , and therefore, in this

highly degenerate case and at T=0K,
D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≈ 2
3

�Fno(Fpo)(N∗)/q). (A.7)
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One notes that, for N∗ = 0, �Fno(Fpo)(N∗) = 0, as remarked in above Eq. (A4), μ N∗ = 0, rd a , T = 0K = 0,

as remarked in above Eq. (28), and therefore, for any rd a , D N∗ = 0, rd a , T = 0K = 0, according to the

MIT. Now, replacing �Fno(Fpo) given in Eq. (A.7) by �Fn(Fp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≃ 2
3

× �Fno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type InP-crystals, we define the effective reduced Wigner-Seitz radius rsn(sp),

characteristic of the interactions, by:

rsn(sp) N∗, rd(a) ≡ 3gc(v)

4πN∗

1/3
× 1

aBn(Bp)(rd(a))
= 1.1723 × 108 × gc(v)

N∗

1/3
×

mn(p)
∗ /mo

ε(rd(a))
. (B1)

Here, the values of gc(v) = 1(1) and (mn(p)
∗ /mo) are defined and given in Table 1.

In particular, in the following, mn(p)
∗ /mo = mr/mo , is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, �CE rsn(sp) , is found to

be given by [1]:

�CE rsn(sp) ≡ �CE N∗, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

Δ�gn(N∗, rd) ≃ a1 × εo
ε(rd)

εo
ε(rd) × Nr

1/3 + a2 × εo
ε(rd)

εo
ε(rd)

εo
ε(rd) × Nr

1
3 × 2.503 × [ − �CE rsn × rsn] + a3 × εo

ε(rd)

5/4
×

mv
mr

× Nr
1/4 + a4 × εo

ε(rd)
× Nr

1/2 × 2 + a5 × εo
ε(rd)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDn(rd)

9.999×1017cm−3, (B3)

where a1 = 6.829 × 10−3(eV) , a2 = 1.168 × 10−3(eV) , a3 = 5.032 × 10−3(eV) , a4 = 10.058 ×

10−3(eV) and a5 = 1.455 × 10−3(eV), and

Δ�gp(N∗, ra) ≃ a1 × εo
ε(ra)

εo
ε(ra) × Nr

1/3 + a2 × εo
ε(ra)

εo
ε(ra)

εo
ε(ra) × Nr

1
3 × 2.503 × [ − �CE rsp × rsp] + a3 × εo

ε(ra)

5/4
× mc

mr
×

Nr
1/4 + 2a4 × εo

ε(ra)
× Nr

1/2 + a5 × εo
ε(ra)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDp(ra)

9.999×1017 cm−3 , (B4)

where a1 = 9.329 × 10−3(eV) , a2 = 1.596 × 10−3(eV) , a3 = 7.144 × 10−3(eV) , a4 = 13.741 ×

10−3(eV) and a5 = 1.988 × 10−3(eV).

Therefore, in Equations (B3, B4), as N∗ = 0 , and for any ra , Δ�gn(gp)(N∗ = 0, ra) = 0 , according to the

MIT.
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