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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, s(rd(a)) , Td@ being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqcy), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate GaAs-crystal, defined for the
reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks, as follows.
(1) The critical donor(acceptor)-density, Ncpnnpp) (Fda)), determined in Eq. (3), can be explained by the

densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NGoncop (Td@@) given in Eq. (21).
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(2) In Tables 9-11, for a given d(a)-density N [= 2Ncpn(npp)(Fd(a)) ] one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy &n¢py( = 1.813), while the numerical results of the Seebeck
coefficient Sb present a same minimum (maximum) (= ( )1563 %1074 %), those of the figure of merit ZT

show a same maximum ZT(= ), (ii) for { =1, those of Sb and ZT present same results:

sb(=( )1.322x 107*3) and 0.715, respectively, (iii) for &) = 1.813 and &y = 1. those of the well-

known Mott figure of merit give same (ZT)pott = 1 and 3.290), respectively, and finally, (iv) we

T
€ () (
show here that in the degenerate semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found to

be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction
In our two previous papers [1, 2], referred here to as I and II.

In I, our new expression for the extrinsic static dielectric constant, s(rd(a)), ldca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing rq,) ,
s(l’d(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type
degenerate GaAs-crystal, defined for the accurate reduced Fermi energy [3], ( ( ). Therefore, all the
numerical results of those obtained and given in II are now revised and performed, in comparison with those
obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4, 5, 6] are presented in Tables 1
and 2. In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and
mathematical methods, needed to determine and evaluate the critical densities of the majority carriers
localized in the exponential conduction (valence) band tails, are presented, confirming thus the
corresponding numerical results, obtained using Eq. (3) for the generalized effective Mott criterion in the
metal-insulator transition (MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution
function method, our accurate expression for the electrical conductivity, 0, is determined, being a
fundamental one, since it is related to all other electrical-and-thermoelectric coefficients, and then all the
numerical results of those coefficients are reported in Tables 4-11. Finally, some concluding remarks are

given in Section 6.
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2. Energy-band-structure parameters

First of all, we present in Table 1 the values of the energy-band-structure parameters, given in the n(p)-type
GaAs-crystal, such as: (i) if denoting the free electron mass by m,, the relative effective electron (hole) mass,

mn(p)/ My, which is equal to the relative effective mass, My(p)/Mg [4], as used in this Sections 2 and 4 to

mnxmp
mp+mp

determine the critical impurity density in the MIT, (ii) to the reduced effective mas, m, = X m,, as

used in Section 3 to determine the optical band gap (OBG), and (iii), to the conductivity effective mass,

Mcn(cpy/ Mo [4], as used in Section 5 to determine the electrical-and-thermoelectric coefficients. Further,
go(Fd(@ = Tas(ca)) [4] is the unperturbed intrinsic band gap, as used in Section 3 to determine the OBG, &,

[4], is the relative intrinsic dielectric constant, and finally, the effective averaged numbers of equivalent

conduction (valence)-band edge, gevy = 1(1), used for present majority-carrier transport phenomena.

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size

effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the MIT, as follows.

Table 1. Here, the effective electron (hole) mass, My, is equal respectively to: my(p,, as used in Sections 2 and 4, to

m, in Section 3, and Mcp(cpy in Section 5, and the values of other important parameters are also reported.

Mypy/ Mo [1] m,/mg Mcn(cpy/ Mo Oe(v) go €o

. + .

0.073 = . ) 0.060 0.077(0.50) 1(1) 1.424 eV 12.5

2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since (), given in tetrahedral covalent bonds, is usually either
larger or smaller than ryoea0) = ras(ca), @ local mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: Fyay > rdocac) (Fd(a) < Fdo(ac)): due to the d(a)-size effect,
respectively [1]. Then, we have shown that this ry, -effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'gca)), determined as follows.

At T=0K, we shown [1] that, as rgea) > Fo(ao)( Md(a) < Vdoao)) » SUch the compression (dilatation)
corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap
gni(gpi)(rd(a)) and the effective donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained

in an effective Bohr model, as [1]:

2
€o
gni(gpi)(rd(a)) = go(Isi) = d(a)(rd(a)) = do(ao)(I'si) = doao)(I'si) % [(S(rd(a))) - 1], (1)
where
s(rd(a)): 380 ~ < ¢, for Fd@) = F'do(ao)> and
1+ ( fda) ) ~1 xln( fdEa) )
do(ao) do(ao)
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One notes that €(ry(,)) decreases with an increasing Iy(a).

= &g, for Fy@) =< ldo(ao)- (2

&(raea))= J

2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate GaAs-crystals, the critical donor(acceptor)-density, Ncpnpp)(Fda)) » 1S

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonmop) (Fdgay) 73 % @gneep)(Fdca)) = 0.25, (3)
and the effective Bohr radius agn(gp)(Fdca)) is given by:
_  &(rg@)x 2 —8 €(rdca))
aBn(Bp) (rd(a)) = —(mn(p)/mo)xqz =053x10"°cm x —(mn(p)/mo), (4)

where —q is the electron charge, €(ry@)) is determined in Eq. (2), and My, /My = Mpgy/mg =
0.066(0.291), as given in Table 1. In this Table 2, we also present various values of €(I'q(a)), 8gn(gp)(ld(a))

d@(Fa@) and  gnicgpiy(Faca)) » Neonenopy (Fagay) » and the densities of electrons (holes) localized in
exponential conduction (valence)-band tails, NEBI(CDp)(rd(a)) , hoting that the maximal relative
deviations, in absolute values, |RD|, between Nepnop) (fa) and Nephcop (faes) are found to be
equal to: 0.56(2.92) x 1073, respectively. In other word, Nconnop) (Faa)), determined in Eq. (3), can be
explained by NG5! cop) (faca)). determined in Eq. (21). Furthermore, in our recent work [6], we showed
that, in the n(p)-type degenerate semiconductors, the critical densities of electrons (holes) can also be
determined from the spin-susceptibility singularities (SSS), obtained at N = N%SDSn(CDp)(rd(a)), at which the

MIT occurs.
Table 2. Here, for increasing Iy [4], both €(rg(a)), calculated using Eq. (2), and agn(gp)(Fdca)), evaluated using Eq. (4),

. Kk . .
decrease, while 4 (Faca))  gnicapiy(Faca)): Neonnop) (Facay). Nepn(cop) (Fdcay). and k:—nl:;) calculated using Equations (1,

1, 3, 21,7), respectively, increase, affecting strongly all the physical properties, given in Sections 3-5

Donor P As Te Sb Sn
ry (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 125 12.20 10.57 9.987 9.40
agn(rg) in 1077 cm 9.07 8.86 7.67 7.25 6.87
a(rg) in mev 6.35 6.67 8.88 9.95 11.23
gni(g) in meV 1424 14243 1426 1428 1429
Ncpn(rg) in 1016 cm™3 2.09 2.25 3.456 4.10 491
NEBT (ry) in 1016 cm~3 2.09 2.24882 3.45636 4.0988 491274
|RD| in 10~ 0 5.24 1.05 2.89 5.57
K < q (Physical condition) ~ 0.4012 0.4012 0.4012 0.4012 0.4012

—1
ksn
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Acceptor Ga(Al) Mg In

Iy (nm) [4] 0.126 0.140 0.144
e(ra) 13.418 12.543 12.25
agp(ra) in 1077 cm 2.098 1.96 1.95
a(ra) in mev 25.60 29.30 29.51
gpi(ra) inmeV 1420 1423.8 1424
Nepp(ra) in 108 cm =2 1.692 2.072 2.090
( )in10¥cm™3 1.1395 1.3463 1.4926
| lin ~ 0.42 2.76 2.92
— < (Physical condition) 0.3090 0.3091 0.3091

Table 2 also indicates that, for increasing ry(a), both €(ry(a)) and agn(gp)(raa)) decrease, while d(a)(rd(a)),
anicepiy (Ta@) + Neononop) (Fa@))  and N&pneeop) (fa)  increase, affecting strongly all the physical

properties, as those given in following Sections 3-5.

3. Optical band gap
Here, Myy/My is chosen as: Mpy/mMy = my/m, = 0.054,asgivenin Table 1, and then, if denoting
N = N — Ncpn(nop) (Fdcay) > the optical band gap (OBG) is found to be given by:

an1gp(N  Ta@: T) = gnagp2)(N - Ta@) T) + ey (N T (5)

where the reduced band gap is defined as:

_ 49x1074x 2( )
gn2p2) (N Ta@: T) = gnicond (Td@) =537 — 2 anem(N . Ta@)- (6)

Here, the intrinsic energy gap gni(gpi)(rd(a)) is determined in Eq. (1), the Fermi energy pnepy(N ,T), in
Eq. (A3), and the band gap narrowing A gn(gp)(N , rd(a)), in Equations (B3, B4), of the Appendix A and B,
respectively. Then, as noted in the Appendix A and B, at T=0K, as N =0, one has: pep(N,T) =
rno(Fpo)(N ) = 0, as given in Eq. (A4), and A gn(gp)(N ,rd(a)) =0, according to the MIT, as noted in
Appendix A and B. Therefore, gniigp1) = gn2(gp2) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.
Finally, the numerical results of gnl(gpl)(N >0, rgca), T) at T=20K, calculated using Eq. (5) and expressed
as functions of N and gy, are reported in Table 3

Table 3. In degenerate d(a)- GaAs systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given I'y(,), the OBG increases with increasing N.

N (108 cm™3) 4 8.5 15 50 80 100
gni(N ,Ip) ineV 1.506 1.580 1.671 2.045 2.302 2.457
gi(N  Tag)ineV  1.505 1.579 1.669 2.041 2.298 2.452
gi(N  Fre)ineV 1498 1.569 1.657 2.021 2273 2.425
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an(N , Tsp) in eV 1.496 1.566 1.653 2.014 2.264 2415

gi(N Fgp) ineV 1.492 1.561 1.647 2.004 2252 2.402
N (108 cm™3) 6.5 11 15 26 60 170
( , )ineV 1.582 1.626 1.662 1.749 1.968 2.506
(. ()inev 1.555 1.592 1.622 1.697 1.891 2.381
(, )ineV 1.552 1.588 1.618 1.691 1.883
2.367
( , )ineV 1.550 1.585 1.615 1.687 1.878 2.358

Furthermore, in Table 3, we also showed that, in the n(p)-type degenerate Si and for a given photon energy
E= w, since the extinction coefficient, () and other optical coefficients, as discussed in II, are

expressed in terms of the function (E — gnl(gpl))l/ 2. Therefore, if the values of gni(gp1) Obtained in Table

)1/2

3 increase (decrease), (E— ¢ and other optical coefficients then decrease (increase), respectively.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate GaAs, if denoting the Fermi wave number by: Kenrp)(N) = (3 2N/gc(\,))l 3,

the effective reduced Wigner-Seitz radius I'sy(sp), characteristic of the interactions, is defined by

Ken
*Tnspy (N +Ta@: M) == 2 < 1, (©)

-3 Here, = (4/9 )1/3, k,?nl(,:p) means the averaged distance between ionized

being proportional to N
donors (acceptors), and apn(ap)(Fd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is

defined by

Rsn(sp)(N ) I’d(a)) = ls:n—((im = @ = RanS(spWS) + [RsnTF(spTF) - RanS(spWS)] “lenee) < 1, @)
P) sn(sp)
These ratios, Rsntr(spTF) Rsnws(spws), can be determined as follows.
First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rsyrr(sntry 18
reduced to
-1
e o) =52 = - [ ®

being proportional to N~1/6.

Secondly, < Ncpnnpp)(Fd(a))» according to the Wigner-Seitz (WS)-approximation, the ratio Rgpws(snws) 18

reduced to

Ksn(s d gns x N ryea
Rancomis(N Tow) = 2 = 0.5(1) x (3 — s el o)) ©)

d sn(sp)
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where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined by Eq. (B2) of the
Appendix B.
Furthermore, as given in I, in the highly degenerate case, the physical conditions are found to be given by :

I(l?riL(Fp) < ey — 1 <kl;riL(Fp) — <1 A — __Fno(Fpo) (10)
= Rsn(sp) > Mn(p) = nn(p)_,

anep)  FoFpo)  Anm)  Kecsp)
being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,
Rsn(sp) 1s determined in Eq. (7).

Then, in degenerate d(a)-GaAs systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—Qq) at position R; , randomly distributed throughout the Si crystal, is defined by
V(O= i) + Vo, (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)-Si system, defined as

gZxexp (—Ksn(sp) > | IR, |)
&(rd@))*|r—Rj|

where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2
q 4n 1

Vvi(k) =— X — X =

J( ) e(rd@) Q  K+kE

where Q is the total GaAs -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, W) (Vny, N . 1a) = (V(NDV(r)), was

determined in II, as :

(12)

Fno(Fpo) ’

— 2 - stn(sp)(N vrd(a)) __ V2nN 21,—1/2 —
Wa(p) (Vngey N +Tagay) = ey > €xp <—2 - (N Fa@) = 55 A Ksn(sp)» V(o) =
n(p)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =
0.48302632(10.959015) will be chosen such that the determination of the density of electrons localized in

the conduction(valence)-band tails, given in Section 5, would be accurate, and finally V) = ,
Fno(Fpo)

where s the total electron energy and  pno(rpoy 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

[

In the following, we will calculate the ensemble average of the function: ( — V)a_% = z 2 fora=1,

2xk2

k=3 being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

* 0

two following integration methods, as developed in 11, which strongly depend on Wy (Vag)y, N Facay)-
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4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In heavily doped d(a)- GaAs systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) = x ex [ ]
g V2 Wn(p) P 2Wn(p)
1
So, in the Kane integration method, the Gaussian average of ( — V) a3 = z 2 is defined by

(C =V D =( & Daw= _o( —V¥2xPW)dV, for a=1.

%Rsn(sp)

Then, by variable changes: s= ( —V)/ Wy and X =— / /Wy = Anp) X np) X eXp| —/— |,
4x ||vn(p|

and using an identity:

o st xexp (—xs—)ds =T( +1) x exp (2/4) D01,

where D___1(X) is the parabolic cylinder function and I'(a + 2) is the Gamma function, one thus has:
2

2a-1 -1
( i_%m =2 (_ijj—;ané) xT(a+3) % D_a_%(x) =2 (_X\Z/;—i)xn_z@% xexp| — XR;:(SPI)\:((;T_D xrer
5xD_,500. (13)
B. Feynman path-integral method (FPIM)

Here, the ensemble average of ( — V) a3 = z_% is defined by

1 2
_\pna—2 — a—% _ a—y F(a+%) o a1 t (t/Wnep)) o
(C =V 2ppm=( | Ipm = Sl < 1) x __ () zxexp {— —z —(dt it =—1,

2
noting that as a=1, (it) < x exp {— (—‘zwzp)} is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)"a"% x exp{ XS —%} ds = 2%2 x [(3/2) x exp ( — x2/4) x D_,_1(x),
2

Then, by variable changes: t = and X == /,/Wppy, and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i %)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_a_%(x) , those given for (( —V)a_%)K”\A will be

obtained in the two cases: =0and <O0.
(i) _= -case
As -+ oo onehas: , -— o0 and X - — oo, In this case, one gets:

vz 2 -1
Dy mme) =rap > (207
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_1 1
Therefore, Eq. (13) becomes: ( z v = 272. Further,as -+ 0, one has: np) - — 0 and X - —oo. So,

one gets :

D_, 3(X == <o) (a)xexp((\/ﬁ+_1§)x—l"_:a+%)_,0, @) = o ——

1682 27 r@+d)

-1
Thus,as -+ 0, from Eq. (13), one gets: ( z “Yam - 0.

-1
In summary, for __= 0, the expression of ( Z “)xim can be approximated by:

a—1i _1 22
( & Dkam 2, = - (14)
) = -
As  -—0, from Eq. (13), one has: ) -»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D i(x - ) B(a)xexp|—(Va +-1)x—2—2 0 B@) = o noting that
—a=\ 7 P 3 16a 24va| = > o g
16a2 2 4 TG+l
B(D) = —"—and B(5/2) = 355
28xT(5/4)
. g . .
Then, putting f(a) = Nl M(a+3) % B(a), Eq. (13) yields
( k_é)KIM R «(2a-1)
Ho)( n) ~+ 0 Fagey @) = —5— = exp | = —— B ——— (\/5 +%) X~(31k) 5| -~ ©. (5)
8% [|vn(p)| 1682
Further, as - — o0, one has: ) —»+ % and X - oo. Thus, one gets:
)(2
D_, 1(X - 0)=x32x & . 0. Therefore, Eq. (13) yields
2
( iT)KIM 1 Py n(e)? 1
Kn(p)( n(p) -+ 00, rd(a)’a) = T E x exp ( —%) X (An(p) X n(p)) a2 , 0. (16)

It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:

Face)( n(py: Td@ @) = Kne)( np): Facay: @) + [Hao)( noy: Facay @) — Kngpy ( ngpys Fiay @)] * exp [— ¢y x
(Ao n))”]: (17)
such that: Fnoy( nep): Mdga): @ ~ Hn)( nepy: Fday@)  for 0= <16 , and Fnpy( nep) M) @) -
Kn)( nep): Mdcay, @) for n¢py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDIO)(N, Fd(ay), in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- GaAs systems at T=0 K, in which My, y/My = Mppy/M,, as given in Table 1, using

Eq. (13), for a=1, the density of states () is defined by:
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CC o =2 (20 s ( 2y, = 20 (2TH0)? dw @) (@) % Ds 0= (). (18)

3
2

*Rsn(sp)

where x is defined in Eq. (13), as: X == /,/Wpy = Anpy X n(p) X EXP
4x [V

Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My = Mypy/m, and =

n(p
0.48302632(10.959015), being chosen such that the following determination of NEBE(CDP)(N, ld(a)) would

be accurate. Then, going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in

1

( ;)KIM

which the factor — =) is now replaced by:

1
( Dxm

_ o X(Ming y*mo)” <

— === F ) ( ey Ty @ = 1), TR 2x (a=1), @=1)=7"—
f(a=1) 0 2 2xT(5/4)
(19)

Therefore, NEBE(CDP)(N, Fdea) can be defined by

0
NEBE(CDp)(Nlrd(a)): ., ( =0)d,

where (= 0) is determined in Eq. (19). Then, by a variable change: () = , one obtains:

Fno(Fpo)

NEET copy (N, Feey) = 9c(v>x(mn(p>)2 mx Fno(Fpo) { 016 (@= 1) % Fa( nioy T @ = 1) iy + |n(p)},
(20)
where
2
e = 1 @=1) %Ky ( gy Fo@@=1)d ngy = 1 Mx (A n(e) 4 d nep)-
Here, (a=1) = v
DX (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

— — 0, ynp))
I —__ 1 s tt—le—tdt = n(p)
n(p) Dy Ynm) PLRT

where b =— 1/4, y,p) = [16An(p)/ \/E] ,and (b, Yn(p)) is the incomplete Gamma function, defined by:

- — 16 (b—1)(b—2)...(b—))
r(b’yn(p)) yE(p]jX Ynp) |1 + J:lT]

Finally, Eq. (20) now yields:

9o *(Mn( )) \/ n()>< Fro(Fpo) (16
: : e 5 {47 (@= 1) % Fagy( (o) Ta@y@ = 1) d oy +

e2y)

Neonceop)(N: Fa@@) =

r(b. ne)
25 Aoy )’

being the density of electrons(holes) localized in the exponential conduction-band tails (EBT).
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The numerical results of NEBI(CDP)[N = Nconop) (Fd@a)): Fdeay)] = NEB:;(CDp)( F'd(a)), for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of Ncpnnop) (Fdca))-
calculated using Eq. (3). In other word, this Ncpn(npp) (Fd(a)) can thus be explained as the density of

electrons (holes) localized in the EBT, with a precision of the order of 0.56(2.92) x 1073, as given in

Table 2, respectively.

5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
()= A+eN ™ y=( — e/ kaT),
where gn(rp)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in II, can be defined as:

_ p _ of of _ 1 e
( Proor =Gp( m) X g = _, P X (— a_) d,—5= ot X @ (22)
of . .
Further, one notes that, at 0 K, -5 = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  Fno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( Fno) = 1.
Then, at low T, by a variable change Y = ( — gn(rp))/(KgT), Eq. (22) yields:

[ ey

= —p Py — B —B
Go( Fnp) =1+ Fnep) X - ez < (KeTY + ) dy =1+ [_yp Cox (keTP > i) <,

where CE =p(P—1..(p —B+1)/B! and the integral lg is given by:

@ yBer . ® yB C . —
g = _ a2V = ‘“—(ev/2+e—v/2)2 dy, vanishing for old values of . Then, for even values of B = 2n,
with n=1, 2, ..., one obtains:

_ oo yznxey
lan =2 ¢ ez dY - (23)

Now, using an identity (1 +eY)™2 = ‘;1 (—1)5*1s x @G~ | a variable change: sy =—t, the Gamma
function: 000 t?"e"tdt =r(2n+1) = (2n)!, and also the definition of the Riemann’s zeta function:
{(2n) = 22""12"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: 1o, = (22" — 2) x 112" x
|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:

_ { P)eoDF _ p p(p-1)..(p—2n+1) 2n 2n — — kT
G =-—5—=1+ "% (2" = 2) x |By,| x =G = : 24
p( Fn(Fp)) En(Fp) n=1 (2n)! ( ) | 2n| y p(Y)» y Fn(Fp) ( )

Then, some usual results of G,(y) are given in Table 4.
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Table 4. Expressions for Gp=1(y = L), as given in II, due to the Fermi-Dirac distribution function FDDF, noting
(@)

that Gp—1(y = tk?:) = ]: ) ) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
n(Fp
Ga/2(Y) Ga(y) Gs/2(Y) Gs(y) G7/2(Y) Ga(y) Gor2(Y)

=) () (=) () (=) (+ ) (+——)

These functions G,(y) will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate GaAs, as follows.

5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, Mppy/M, is chosen as: My,)/Mo = Mcn(cp)/Mo = 0.067(0.34), as given in Table 1, and all the
majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpn(nop) (Fd(ay) » Where the values of critical d(a)-densities Ncpnnop) (Fdca)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rga) T),

expressed in ohm™ x cm™ | the thermal conductivity by K(N , Fda): 1), expressed in lexK, and Lorenz

2 2 9
number by L = % x (%) = 24429637 (WK—ozhm), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

k(N ,I’d(a),T) —
o(N rg@)T) L>T. (25a)

K(N ,rd(a),T=3K)

] ] in order to show that, for given N

Then, it is interesting to define a constant (N, rge))[ =

and rge), K (N ,rge), T) is found to be proportional to T, as:

‘ _ K (N r4@@) )

K (NrawD (V) x o [RDg | W T |

(25b)

where |RDK1K | is the relative deviations in absolute values between K(N , rgea), T) and K (N, Fgca), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

2

First, it is expressed in terms of the kinetic energy of the electron (hole), ¢ = , or the wave number

" 2xmen(ep)

k, as:

(k) = C x LXx K5 [k x agnp) (Tay)] * (—k) . C=(0.89645)2, (26)

= Ksn(sp) Nngpy (NFdca))
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which is thus proportional to k2‘ Further, Ksn(spy, @Bn(@p)> and Ny are defined and determined in Equations
(7,4, 12), respectively.
Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)gppe = Go(y =

kg T

Fn(Fp)

l%n(Fp) , where  pyrpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

> Ksn(sp) Nnepy (N Faay)
2
(N.T)
( Fn(Fp) 2 , 27
Fno(Fpo)(N T=0)

which also  determine the resistivity as: P(N ,rge), T) = 1/0(N ,ry@), T) , noting that

1/2
— q2><k n Krn no(Fpo)(N . T=0)
o(N Ty, T) = [C > —— B 5 ) e [k im0y X Bneep) (Facay) | > (L) ] X [Go(N |\ T) x

N = N — Ncpn(nop) (Fdgay), and C x anZ = 6.226527 x 107° ohm™! . Further, the Fermi energies Fn(Fp)
and  Fno(rpo) are determined respectively in Equations (A3, A4) of the Appendix A.

In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), o(N , rye), T = OK) is proportional to ,%no(Fpo),
or to (N )*3. Thus, o(N =0, lda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.

A.Electrical properties

As given in 11, the relaxation time is related with 0 by:

T(N ,rga), T) = 0(N , rye), T) x %. Therefore, the mobility [ is given by:
— 9*T(N rd@a).T) — O(N rgea).T)
HN o, T === 00 N (28)

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3, since o(N Taq), T = 0K) is
proportional to (N )*3. Thus, y(N =0, gy 1 =0K)=0 at N =0, at which the metal-insulator
transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

_ (Proor _ Gy
wWN D =05 T Gor

IJH(N urd(a)uT) = H(N urd(a),T) x rH(N ,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, rg@), T =0K) = u(N = 0,1, T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Now, in the degenerate d(a)-GaAs systems, at T=4.2 K and T=77 K, the numerical results of 0, Y, Uy, and
the diffusion coefficient D, calculated respectively by using Equations (27, 28, 29, A8 of the Appendix A),
and reported in following Tables 5 and 6.
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Table 5. Here, one notes that: (i) for given N and T, the functions: a(rg), M(rq), Hy(rq) and D(rg), calculated using
respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy, and (ii) for given rq and T, the

functions: (N ) and D(N ) increase, while the functions: J(N ) and py(N ) decrease, with increasing N.

Donor P As Te Sb Sn

Vxs ' Vxs s

. . . . 105 108xcm? 103xcm? 108xcm?
In the following, our numerical results of (0, Y, Yy, D) at 4.2K, expressed respectively in (Ohmxcm , — asall “om )

N(10%° cm™3)

3 0.457,9.52,9.52, 3.33
10 1.41, 8.83, 8.83, 6.90
40 5.26, 8.20, 8.20, 16.1
70 8.95,7.98,7.98, 22.8
100 12.57,7.85,7.85,28.5

0.441,9.18,9.18, 3.21
1.36,8.51, 8.51, 6.65
5.06, 7.90, 7.90, 15.5
8.62,7.68,7.68,22.0
12.1,7.56, 7.56,27.4

0.394, 8.20, 8.20, 2.9
1.21,7.59,7.59,5.93
4.51,7.03,7.03,13.8
7.67,6.84, 6.84,19.5
10.77,6.72, 6.72, 24.4

0.367,7.65,7.65,2.7 0.339,7.05,7.05,2.5

1.13,7.07,7.07,5.52 1.04, 6.50, 6.50, 5.08

4.19,6.54,6.54,12.9 3.85,6.02,6.02,11.8
7.14,6.36, 6.36,18.2  6.56, 5.85,5.85,16.7
10.02, 6.25, 6.25,22.7 9.21,5.75,5.75,20.8

105 103xcm? 103x cm? 103><cm2)

In the following, our numerical results of (0, Y, gy, D) at K, expressed respectively in (

ohmxcm'  Vxs Vxs s

N(10* cm™3)

3 0.458,9.52,9.54,3.3 0.441,9.18,9.20,3.2  0.394, 8.20,8.22,2.9 0.368, 7.65,7.67,2.7 0.339,7.05,7.07, 2.5
10 1.41,8.83,8.84,6.90 1.36,8.51,8.51,6.65 1.21,7.59,7.59,593 1.13,7.07,7.07,5.52 1.04, 6.50, 6.50, 5.08
40 5.26, 8.20, 8.20, 16.1 5.06,7.90,7.90,15.5 4.51,7.03,7.03,13.8 4.19,6.54,6.55,12.9 3.85,6.02,6.02,11.8
70 8.95,7.98,7.98,22.8 8.62,7.68,7.68,22.0 7.67,6.84,6.84,19.5 7.14,6.36,6.36,18.2  6.56, 5.85,5.85,16.7
100 12.6,7.85,7.85,28.5 12.1,7.56,7.56,27.4 10.77,6.72,6.72,24.4 10.02, 6.25, 6.25,22.7  9.21,5.75,5.75, 20.8

Table 6. Here, one notes that: (i) for given N and T, the functions: a(ry), U(ra), Uy(ra) and D(r,), calculated using
respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing I, and (ii) for given r, and T, the

functions: (N ) and D(N ) increase, while the functions: J(N ) and py(N ) decrease, with increasing N.

Acceptor B Ga(Al) Mg In

4 2 2 2 2 2 2
In the following, our numerical results of (0, U, Uy, D) at 4.2K, expressed respectively in ( 10 10" cm” 107 em” 107xem )

Vxs '

ohmxcm'’ Vxs s

N(10%° cm™3)

3 0.374,7.83,7.84,0.34  0.149,3.22,3.22,0.14  0.138, 3.00, 3.00, 0.13 0.131,2.87,2.87,0.12
10 1.06, 6.65, 6.65, 0.64 0.399,2.52,2.52,0.24  0.367,2.32,2.32,0.22 0.349,2.21,2.21,0.21
40 3.70,5.78,5.78, 1.41 1.30,2.04, 2.04, 0.50 1.19,1.87,1.87,0.45 1.13,1.77,1.77,0.43
70 6.18,5.51,5.51,1.96 2.14,1.91,1.91, 0.68 1.95,1.74,1.74, 0.62 1.84,1.65, 1.65, 0.58
100 8.59,5.36, 5.36,2.41 2.94,1.83,1.83,0.82 2.67,1.67,1.67,0.75 2.52,1.58,1.58,0.71

. . . . 104 102xcem? 10%x cm? 10%xcm?
In the following, our numerical results of (0, 4, yy, D) at K, expressed respectively in ( asall Vizm :Cm )

ohmxcm'  Vxs

N(10%° cm™3)

3 0.387, 8.10, 8.14, 0.36 0.154,3.33,3.78,0.14  0.142,3.10, 3.52,0.13 0.136,2.97,3.37,0.13
10 1.07, 6.70, 6.88, 0.65 0.402,2.54,2.61,0.24  0.370, 2.34, 2.40, 0.23 0.352,2.22,2.29,0.21
40 3.70,5.78,5.81, 1.41 1.31,2.04, 2.05, 0.50 1.19,1.87,1.88, 0.46 1.13,1.77,1.78, 0.43
70 6.18,5.51,5.53,1.96 2.14,1.91,1.91, 0.68 1.95,1.74, 1.75, 0.62 1.84,1.65, 1.65,0.58
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100 8.59,5.36,5.37,2.41 2.94,1.83,1.83,0.83 2.68,1.67,1.67,0.75 2.53,1.58,1.58,0.71

B. Thermoelectric properties
First off all, from Eq. (27), obtained for o(N ,rgea,T) , the well-known Mott definition for the
thermoelectric

power or for the Seebeck coefficient, Sb, is given in the n(p)-type degenerate GaAs, as:

2
SHN ) = ( )5 x 2 x kT x 220 .
d = Fn(Fp)
. — _mEp(N.T) )
Then, using Eq. (27), for &,p) = I 1, one gets:
SHN , T) = ( ) Exkex 2 s Fy (N, T), Fep(N,T) = |1— v
( ) ) = ( ) 3 q 2 Sb( ) )l Sb( ) ) = 3xGy(y= TkgT ) (30)
) N D

noting that the effective donor (acceptor) density, N = N — Ncpn(npp) (Fd(a))- is a function of ry(,).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) = Tx 200, (31)

and then, the Peltier coefficient, Pt, is defined as:
Pt(N,T) =T xSb(N ,T). (32)
Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

SH(N ,T)I?x0(N fa(a) T)*T _ [Sb(N T)]2
K(N ,I‘d(a),T) - L

ZT(N | T) =1 = (ZT)wote % [2 % Fep(N , T)I2, (ZT)yott = (33)

T
3xE )

Ks

2 2 x
where (ZT)pyore is a well-known Mott result, L = % X (F) = 2.4429637 x 1078 (W ohm

K2

) is the Lorenz

Fnepy (N, T)

1], this value of L is exact, and
keT

number, noting that, in the n(p)-type degenerate GaAs [En(p) =

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

&) = %(TNT) 1, as: Lkim(ISb]) = 1.5+ exp [— %], [Sb] being independent of T or N (?).

Then, being inspired from this Lgjy,([Sb])-expression, we also propose another one, given in the n(p)-type

degenerate GaAs, as:

T b(N D)

Lyc(ISb(N , T)) = 144296 +e~ 17 ; [RD, | = |1 —2EED0), (34)

where |RDL,LVC| is the relative deviations in absolute values between L and L.
Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-GaAs, defined by physical conditions : N = 1022cm™ and T (=3K and

. n N, T . .
300K), the numerical results of &) = %(T), calculated by using Eq. (A3) of the Appendix A, and then

other ones of: O'(N ,rd(a),T) by Eq. (27), K(N ,rd(a),T) by Eq. (253.); CK(N ,rd(a)), KApp.(N ,rd(a),T) and
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|RDK,KApp.|T by Eq. (25b), SO(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing ry, due to the impurity size effect, Ncpn(rg), increases,
Fn(N . T=300K)
kgT >

= 7.426 % 107° confirms the Kapp-law, as given in Eq. (25b),

since N(=102 cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in

K, Cy, and Kapp , (ii) the numerical result: |RDK,KApp‘|300

and finally, (iii) |RDL,ch| = 1.534x 1078 thus confirms in the degenerate GaAs -case the well-known Wiedemann-
Frank, given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-Si systems for N=10%! cm™2 and at T=3K and T=300K, noting that N = N — N¢pn(rg)
Fn(N . T=300K)

— 1 210.46 210.46 210.46 210.46 210.46
B

106
or=31) (sos) 1.2574 1.2107 1.0771 1.0021 0.9206
O(r=a00k) () 12575 12107 1.0772 1.0022 0.9207
Kereak) (——) 9.2151 8.8728 7.8943 7.3446 6.7472
Kcr=sook) (——) 9.2158 8.8735 7.8949 7.3452 6.7477
Cx () 30.717 29.576 26.3145 24.4821 22.4906
Kapp.(300K) (—-) 9.2151 8.8728 7.8943 7.3446 6.7472
|[RDyy |, i 2078 7.426 7.426 7.426 7.426 7.426

AP 300K

1078xv

Sbr=sk) ——) —2.694 —2.694 —2.694 —2.694 —2.694
10~5xv

Sb(r=300) () —2.694 —2.694 —2.694 —2.694 —2.694

1078xv
Ts(r=ak) ) —2.694  —2.694 —2.694 —2.694 —2.694

10-6xv

Ts(r=300k) (——) —2.693 —2.693 —2.693 —2.693 —2.693
Ptr=ak) (1078 x V) —8.082 —8.082 —8.082 —8.082 —8.082
Pt(r=s00Ky (1074 x V) —8.081 —8.081 —8.081 —8.081 —8.081
ZT =3k (x 1078) 2971 2971 2.971 2.971 2971
ZT (7=300k) (% 1074) 2.970 2.970 2.970 2.970 2.970
|RD .| in 1078 at3 K 1.534 1.534 1.534 1.534 1.534
|RD] in 107 at 300K 1.534 1.534 1.534 1.534 1.534

Table 8. Here, one notes that (i) for a given T, with increasing r,, due to the impurity size effect, Ncpp(ra), increases,
rp(N  T=300K)
kgT >

4788 x 1072 confirms the Kppy -law, as given in Eq. (25b),

since N(=102% cm™2) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in

K, Cy, and Kppp, (ii) the numerical result: |RDK,KApp |3oo
1300k

and finally, (iii) |RDL,ch| 1.535% 107° thus confirms in the degenerate GaAs-case the well-known Wiedemann-
Frank, given in Eq. (25a), is found to be exact.
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Acceptor B Ga (Al) Mg In

Highly degenerate a- GaAs systems for N=10?* cm™2 and T=3K and T=300K
Fp(N  T=300K)

1 26.17 26.15 26.15 26.15
kg T
104
or=3K) () 8.5895 2.9372 2.6754 25260
L 8.6308 2.9513 2.6882 2.5381
O(T=300K) (ohmxcm) : ' : :
Kr=aky —=) 6.2952 2.1526 1.9607 1.8512
K(r=300K) () 0.6325 0.2163 0.1970 0.1860
Ck (—=)at T=3K 2.0984 0.7175 0.6536 0.6171
Kapp. (300K) (—-) 0.6295 0.2153 0.1961 0.1851
-3
|RDKYKAPP‘|300K in 10 4780 4786 4787 4.788
sh 107"xV
(=3 (——) 2.170 2.172 2.172 2.172
s
Sber=sook) () 2.156 2.157 2.158 2.158
107"xV
TS(r=aK) ——) 2.170 2.172 2.172 2.172
s
Ts(r=so0k) C—>) 2.128 2.129 2.129 2.130
Pt(r=ax) (1077 x V) 6.511 6.515 6.516 6.517
Pter=300Ky (1073 x V) 6.468 6.473 6.473 6.474
ZT (7=ak) (x 107) 1.928 1.931 1.931 1.932
ZT (r=300k)(x 1072) 1.903 1.905 1.906 1.906
|RD|,.|in 1078 at3 K 1.534 1.534 1.534 1.534
|RD, ;| in 1078 at 300 K 1.535 1.535 1.535 1.535
) . . — rEp(N.T)
Secondly, in the highly degenerate d(a)-GaAs, for a given N , the values of &,y =————, calculated by

kgT
using Eq. (A3) of the Appendix A, and other ones of: Sb(N ,T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N ,T)
by Eq. (33), and finally, TS(N ,T) and Pt(N ,T) by Equations (31, 32), respectively, are obtained and
reported in following Tables 9-11.

Table 9. Here, for a given N and for a given degenerate d-GaAs system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
&, = 1.813, while the numerical results of Sb present a same minimum (Sb) min. (=— 1563 x 1074 %), those of ZT show a same
maximum ZT ey (= ), (ii) for &, = 1, Sb and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (iii) for &, =

2
1.813and &, = 1, (ZDyort = 3172

is approximated to 1.541 x 107, suggesting that in the degenerate GaAs -case the Wiedemann-Frank, given in Eq. (25a), is exact.

present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,LVC|

In the degenerate P- GaAs system, N = N — Nepn(p) = Nepn(rp); N = 2Ncpn(rp)

T(K) 5 10 1533 17 20.858986 21

g 6.989 3.471 1.813 1.516 1 0.984
Sh (10—4%) —0.760 —-1.283 -1.563 —1.538 —1.322 - 1310
|RD_y,c|in1078  1.537 1.540 1.541 1.541 1.540 1.540
7T 0.236 0.674 1 0.969 0.715 0.703

2

ZDwott = 3:? 0.067 0.273 1.0002 1.430 3.290 3.396
T, (107¢3) —6282 —9655 3.120 4912 16574 16979
Pt (1073V) —0.380 —1.283 2396 —2.615 —2.396 —2.752
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In the degenerate As- GaAs system, N = N — N¢pn(ras) = Nepn(Fas); N = 2Nepn (As)

T(K) 5 10 15.98037 17 21.739829 22
n 7.269 3.660 1.813 1.632 1 0.972
sb (1043) —0.734 —1.244 -1.563 —1.554 -1.322 ~1.301
|RD ;| in1078 1537 1.539 1.541 1.541 1.540 1.540
7T 0.221 0.633 1 0.989 0.715 0.693
2
() = 3:7 0.062 0.245 1.0009 1.235 3.290 3.481
Ts (10*8 %) —6157 —9426 11.334 2851 16574 17289
Pt (1073V) - 02367 —1.244 —2.498 —2.642 —2.873 —2.863
In the degenerate Te- GaAs system, N = N — N¢pn(Fre) = Nepn(rre); N = 2Nepn(Te)
T(K) 5 10 18.15 20 24.692805 25
g 8.209 4239 1.813 1.533 1 0.971
sb (1043) —0.658 —1.130 -1.563 —1.541 -1.322 —1.301
|RD ;| in107% 1537 1.539 1.541 1.541 1.540 1.540
7T 0.177 0.523 1 0.972 0.715 0.692
2
() = 3:z2 0.049 0.183 1.0006 1.399 3.290 3.489
Ts (10*8 E) —5737 —8299 8.856 4594 16574 17317
Pt (1073V) —-0.329 -1.130 —2.837 —3.082 —3.264 —3.252
In the degenerate Sb- GaAs system, N = N — N¢pn(rsp) = Nepn(rsp); N = 2Nepn(Sb)
T(K) 5 10 19.622 20 26.6976 27
n 8.851 4591 1.813 1.756 1 0.974
sb (1043) —0.615 —1.068 -1.563 ~1.562 -1.322 ~1.303
|RD_ ;| in107® 1537 1.539 1.541 1.541 1.540 1.540
7T 0.155 0.467 1 0.999 0.715 0.695
2
() = 3:z2 0.042 0.156 1.00024 1.066 3.290 3.470
Ts (10787 —5462 —7714 5332 849.84 16574 17251
Pt (1073V) —-0.307 —1.068 —3.067 —3.124 —3.529 —-3.517
In the degenerate Sn- GaAs system, N = N — N¢pn(Fsn) = Nepn(rsn); N = 2Nepn(Sn)
T(K) 5 10 21.528 26 29.290631 30
n 9.683 5.020 1.813 1.291 1 0.944
sb (10743) —0.566 —0.999 ~1.563 —1.477 -1.322 —1.280
|RD_;,.|in107  1.537 1.538 1.541 1.540 1.540 1.540
7T 0.131 0.408 1 0.893 0.715 0.671
2
() = 318 0.035 0.130 1.0004 1.974 3.290 3.690
Ts (10*85) —5126 7256 5.724 9551 16574 18010
Pt (1073V) —0.283 —0.999 —3.365 —26.58 -3.871 —3.841

Table 10. Here, for a given N and for a given degenerate a- GaAs system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& = 1.813, both Sb and ZT present same maximal results: 1.563 x 10_4% and 1, respectively, (ii) for §, = 1, Sb and ZT present

2
same results: 1.322 x 10_4% and 0.715, respectively, (iii) for § = 1.813 and &, = 1, (ZT)pon = ;(—Zzpresent same results: 1 and
P

3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 107, suggesting that in the
degenerate GaAs -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate B- GaAs system, N = N — N¢pn(rg) = Nepn(rg); N = 2N¢pn ()

T(K) 5 10 11.18 13 15.212797 16
. 5203 2.174 1.813 1.389 1 0.883
Sb (10-45) 0.972 1.538 1.563 1.509 1322 1.230
|RD, | in 107 1.538 1.541 1.541 1.540 1.540 1.539
zT 0.386 0.968 1 0.932 0.715 0.620
() =% 0.121 0.696 1.0001 1.704 3290 4217
Ts (10785) 7124 4364 —1.493 —7422 —16574 —19589
Pt (107%V) 0.486 1.538 1.747 1.962 2.011 1.969
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In the degenerate Ga- GaAs system, N = N — Ncpn(rea) = Nepn(Fea); N = 2Ncpn(rea)
10 38.56 39

T(K) 5 52.464512 53
& 17.18 8.702 1.813 1.439 1 0.976
sh (10*45) 0326 0.624 1.563 1.522 1322 1.304
|RD | in 1078 1.536 1.537 1.541 1.540 1.540 1.540
ZT 0.044 0.160 1 0.948 0.715 0.697
() = 31; 0.011 0.043 1.0004 1.589 3.290 3.452
Ts (1083) 3165 5525 —5367 —6415 —16574 —17184
Pt (10-3V) 0.163 0.624 6.027 5.936 6.934 6.914

In the degenerate Mg- GaAs system, N = N — Nepn(yg) = Nepn(fvg)s N = 2Nepn(fvg)

T(K) 5 10 43.15 50 58.724354 59
& 19.21 9.706 1.814 1.399 1 0.989
sb (10-45) 0292 0.564 1.563 1.512 1322 1314
|RD, .| in 1078 1.536 1.537 1.541 1.541 1.540 1.540
ZT 0.035 0.130 1 0.935 0.715 0.707
() = 3:; 0.009 0.035 0.999 1.680 3.290 3363
Ts (10-8%) 2854 5118 5537 —7224 —16574 —16856
Pt (10-3V) 0.146 0.564 6.744 7.559 7762 7752
In the degenerate In- GaAs system, N = N — N¢pn(rin) = Nepn(Fin); N = 2Nepn(rin)

T(K) 5 10 46.24 50 62.913465 63

o 20.574 10.380 1.813 1.549 1 0.997
sb (107%) 0273 0.530 1.563 1.558 1322 1.319
|RD,, | in 107 1.535 1.537 1.541 1.541 1.540 1.540
ZT 0.031 0.115 1 0.982 0.715 0.713
() = 3:; 0.008 0.030 1.0004 1.308 3.290 3311
Ts (10-8%) 2676 4866 —5.651 —3643 —16574 —16657
Pt (1073V) 0.137 5301 7227 7.745 8315 8312

Table 11. Here, for a given N and for a given degenerate a- GaAs system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& = 1.813, both Sb and ZT present same maximal results: 1.563 x 10_4% and 1, respectively, (ii) for & = 1, Sb and ZT present

2
same results: 1.322 x 10_4% and 0.715, respectively, (iii) for & = 1.813 and &, = 1, (ZT)yore = 3i—ézpresent same results: 1 and
P

3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 1078, suggesting that in the
degenerate GaAs -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate P-GaAs system, N = N — Nepn(rp) = 2N¢pn(rp); N = 3Ncpn(rp)
30

T(K) 5 10 24.336 33.111575 34
n 1091 5.630 1.813 1.239 1 0.938
sb(10745) —0.505 —0.912 -1.563 —1.456 -1322 —1.276
|RD_;,|in107®  1.536 1.538 1.541 1.540 1.540 1.540
ZT 0.105 0.341 1 0.868 0.715 0.666
2
ZDyote = 327 0.028 0.104 1.0004 2.141 3.290 3.737
T, (10*8 %) —4680 —6888 5.162 10715 16574 18163
Pt (1073V) —0.253 —0.912 —3.804 —4.368 —4.376 —4.337
In the degenerate Sn-GaAs system, N = N — N¢pp(rsn) = 2Ncepn(rsn); N = 3Ncpn(Sn)
T(K) 5 10 34.168 40 46.495979 47
n 15.24 7.748 1.813 1.372 1 0.975
sb (107%) —0.367 —0.694 ~1.563 —1.504 1322 ~1.303
|RD_ | in107® 1536 1.537 1.541 1.540 1.540 1.540
7T 0.055 0.197 1 0.926 0.715 0.695
2
() = 3:7 0.014 0.055 0.9999 1.748 3.290 3.462
Ts (10-85) —3526 —5941 —1.369 7789 16574 17222
Pt (1073V) —0.183 —0.694 —5.340 —6.016 —6.145 —6.126
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In the degenerate B-GaAs system, N = N — N¢p,(rg) = 2Ncpn(rg); N = 3Ncpn ()
17.75 20

TK) 5 10 24.14881 25
g 8.036 4.139 1.813 1.473 1 0.919
Sb (10*45) 0.671 1.149 1.563 1.530 1322 1.261
|RD | in 1078 1.537 1.539 1.541 1.541 1.540 1.539
ZT 0.184 0.541 1 0.958 0.715 0.650
() = 31; 0.051 0.192 1.0006 1.516 3.290 3.891
Ts (10*85) 5814 8498 —8.497 —5746 —16574 —18650
Pt (1073V) 0.336 1.149 2.774 3.059 3.192 3.152
In the degenerate In-GaAs system, N = N — Nepn(rin) = 2Nepn(rin); N = 3Nepn(rin)
TK) 5 10 73.4 80 99.8689 100
o 32.601 16.358 1.813 1.564 1 0.997
Sb (10-45) 0.173 0.342 1.563 1.546 1322 1.319
|RD, .| in 1078 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.012 0.048 1 0.978 0.715 0713
() = 31; 0.003 0.012 1.0004 1.345 3.290 3.310
Ts (108) 1719 3309 —4.806 —4036 —16574 —16653
Pt (1073V) 0.087 0.342 11.47 12.37 13.20 13.19
— Fn(Fp)(N »T) . .
In summary, from above Tables, for &) = T 1, the maximal value of |RDL,ch| is equal to :

1.541x 1078, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given in Eq. (25a)

ks

2 2 <
is found to be exact, with the Lorenz number L = % X (?) = 2.4429637 (W ohm

K2

) , even at the limiting

degenerate case, &,p) 1. In other word, our above LVC(N T, rd(a))—expression, given in Eq. (25b), is not

useful in the present n(p)-type degenerate GaAs.

6. Concluding remarks

In the n(p)-type degenerate GaAs-crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
(i)the effective extrinsic static dielectric constant, €(ry(a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Ncon(cop) (Fd(a))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Nepn(cpp) (Fa(a))=0 or N = Nepnceop) (Fda))-
(iii) the Fermi energy, pnrpy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,
(iv) the electrical conductivity, G(N ,Fgca), T) , the thermal conductivity, K(N , g, T), and the Seebeck

coefficient, Sb(N , T), determined respectively in Equations (27, 25a, 30),
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we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0, at which:
(@) Fno(rpo)(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) as discussed in Eq. (5), suggesting that, in the MIT,

an1@eD(N = 0,74 T=0) = gnagp2)(N = 0. gy, T=0) = rgnicrpi) (Faca)):
where  gnigp1)> gn2(gp2) and  Fgni(rgpiy are the optical band gap (OBG), reduced band gap and intrinsic
band gap, respectively, and
¢) as discussed in Eq. (27) for the electrical conductivity, G(N , ryca), T), which is proportional to ,%no(,:po) or
to (N )*3, giving rise to: (N =0, ldcay, T = 0) = 0, and therefore, as discussed in Equations (28), (29)
and (A7) of the Appendix A: U(N = 0,rge), T =0K) =0, yy(N =0,r4e), T=0K) =0, and D(N =
0, r4@), T = 0K) = 0.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.
(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonaop) (Facay) and N&pnceop) (Ta(eay) are found to be equal to: 0.56(2.92) x 1073, respectively. In
other word, the critical donor(acceptor)-density, Ncpnnpp) (Fd(a)). determined in Eq. (3), can be used to
explain the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEbncop) (Td@)-
(2) In Tables 5 and 6, we remark that: (i) for given N and T, the functions: 0(rg(a)), H(Fca))» MH(Fdca)) and
D(rqca)), calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing
I'd(a)» and (ii) for given ryc) and T, the functions: (N ) and D(N ) increase, while the functions: (N ) and
MH(N ) decrease, with increasing N.
(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rq(,), due to the impurity size effect,

Ncon(copy (Fd(a)) » increases, since N(= 102 em™3) is very high, N therefore decreases very slowly,

Fn(Fp) (N ,T=300K)

explaining the slow decrease ( ) in T ,

0, K, Cy, and Kppp, , (ii) the numerical results:

|RDKvKApp.|3OOK 7.4 x 1075(4.8 x 1072%), respectively, confirm the Kapp.-law, as that given in Eq. (25b),

and finally, (iii) |RDL,ch| 1.5 x 1078 thus confirms in the degenerate GaAs-case the well-known

Wiedemann-Frank law, given in Eq. (252), is found to be exact.

(4) In Tables 9-11, for a given N = 2N¢prnpp) OF N = Nepn(npp) and for a given degenerate d(a)-Si system,
with increasing T, the reduced Fermi-energy En(p) decreases, and other thermoelectric coefficients are in
variations, as indicated by the arrows as: (, ). One notes here that with increasing T: (i) for &,y = 1.813,

while the values of Sb present a same minimum (maximum) (Sb)min (max,) (= ( )1563 %1074 %), those of

ZT show a same maximum ZTa (= ), (ii) for &, = 1, those of Sb and those of ZT present same results:
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Sb (: ( )1.322x 1074 %) and 0.715, respectively, (iii) for {, = 1.813 and &, = 1, those of (ZT)pott =

2

P present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RD|_ chl is
*Sn(p) ’

equal approximately to 1.541 x 1078, suggesting that in the degenerate GaAs-case the Wiedemann-Frank

law, given in Eq. (25a), is exact, with the Lorenz number L = T

32 x (%) = 24429637 (WX"h ) . even at

the limiting degenerate case, {ny 1.

(5) From above remarks (3) and (4), given for the maximal values of |RDL,ch|’ being equal approximatively
to 1.541 x 107°, our above LVC(N T, rd(a))-expression, given in Eq. (25b), is found to be not useful in the

present degenerate n(p)-type GaAs.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type GaAs-crystals, the Fermi energy pnrp) = ( Fp = [ v fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10~# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — N¢pncop)(Fd(a)) > Neon(cop) (Fdea)) being
the critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N = 0
at this transition.

First of all, we define the reduced electron density by:

3
2

n(p)<ksT _
U(N ' Ta T) = UN |, T) = = Ny (T) = 2 % ogyy < (T35 (em™3), (A1)
where Ny (T) is the conduction (valence)-band density of states, and the values of gy and M) are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type Si is determined by :

nW) (_Fp(WY _ G(u)+AUBF() _ _ V@
o ( o ) =B = 6, () = w5 A= 00005372 and B = 4.82842262, (A2)

2
2 4 8\ 3
where F(N , rqc), T) = aus (1 +bu s+ cu“S) . obtained foru 1, according to the degenerate cas,

2 I
= [(3VT/H)]Y3, b= %(g) o= 2388 (M ndthen G(u) Ln(u)+272xuxe M for u

1920
. _ L 4 — 9372
1, according to the non — degenerate case, with: d =2 [ﬁ == 0.
So, in the present degenerate case (U 1), one has:
4 8 _E
_z _° 3
(N Ta@ T) = rnEp)(N . T) = Enogepoy(U) % (1 +bu 3+cu 3) : (A3)

Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:
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2xkEn(epy(N )
2XMn(p)

Fno(Fpo)(N ) = (A4)

being proportional to (N )2/3, and equal to 0, Fno(Fppo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.
A2. Now, the generalized Einstein relation is defined by:

D(N rg).T) =Ny d En(Fp) = kexT (u den(p)),
H(N ,rd(a),T) q dN q du

where 0,(u) is defined in (A2) and the mobility P(N ,ryc), T) is determined in Eq. (28). Then, by

(A5)

. .. . . . . de
differentiating this function 8,(u) with respect to u, one thus obtains d—u". Therefore

D(N ra@T) _ kexT y V' (U) XW(U)—V(u)xW (1)

b(N ra@ T~ WZ(U) ’ (A6)
: , _3 4 8
where W'(u) = ABuB™t and V'(u) = u™ + 272e7M(1 — du) +2AuBIF(U) [(1 + ) + I 22 = 9’_;2°“ %|. One
1+bu” 3+cu 3
remarks that: (i) as U -~ O, one has: W?> 1 and u[V' x W —V xW'] 1, and therefore: D”(F;)(“) kB:T’

and (ii) as U » oo, one has: W? = A%2u%8 and u[V xW -V xW]= %auy 3A%2u?B | and therefore, in this
highly degenerate case and at T=0K,

D(N , a ,T=0 2
ST =2 ooy (N /). AT

One notes that, for N =0, no(rpoy)(N ) = 0, as remarked in above Eq. (A4), U(N =04, T= OK) =0,
as remarked in above Eq. (28), and therefore, for any ry,), D(N =0,r4@) T = OK) = 0, according to the
MIT. Now, replacing Fno(rpoy given in Eq. (A.7) by pnrp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

2

- 4 8\ 3
AN fa@T20) 2,0 oy (U) X (1 +bus+ cu“s) : (A.8)

IJ(N ,rd(a),Tzo) § x
Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type GaAs-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

1/3 < mn(p)/mo .
€(rda))

/3
_ 39c(v>)1 1
= X

rSn(SIO)(N ‘rd(a)) (4nN agn(ep) (rd(a))

Here, the values of gcy = 1(1) and (M5)/M,) are defined and given in Table 1.

=1.1723 x 108 x (M)

: (B1)

In particular, in the following, My,)/M = M/My, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)), is found to

be given by [1]:
0.87553 2[1-In(2)] B
—0.87553 + 0'0908+rsn(sp)+( 2 )xln (rsn(sp)) 0.093288

ce(Tansp) = ce(N o) = 0.0908+gn(sp) 1-+0.03847728xrLET3T8876 ' (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:
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= 5/4
1/3 £
A gn(N rg) ap x E(Erc;) x N7 +ap x 8(5:;) x N3 x (2503 x [ = ce(rsn) X rgp]) +ag L(rf’d)] x
3 1
my 1/4 €0 1/2 [ & |2 5 — N =N—Ncpn(rg)
— X + X X X =+ X X = —
«/ my Nr A \’S(rd) Nr 2+ 8 &(ra) Ny, Ny 9.999x1017¢cm=3’ (B3)

where a; =6.829 x 1073(eV) , a, =1.168 x1073(eV) , az =5.032x 1073(eV) , a, = 10.058 x
1073(eV) and ag = 1.455 x 103(eV), and

1 5/4
¢ 1/3 3 _ . me
A go(N Ta)  ag > 2o x N> +ay x fos x N? x (2503 x [ = ¢g(rsp) X rspl) +ag < & % /Ex
3 1
1/4 € 1/2 [ € ]E 6 — (N =N—Ncpp(ra) )
=+ X X -+ X X =
Ny 28y &(ra) Ny as (ra) Nr, Nr 9.999x1017 cm~3/° (B4)

where a; =9.329x1073(eV) , a, = 1596 x 1073(eV) , ag=7.144x1073(eV) , a, = 13.741 x
1073(eV) and as = 1.988 x 10~ 3(eV).

Therefore, in Equations (B3, B4), as N =0, and for any Iy, A gngp)(N =0, rz) =0, according to the
MIT.
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