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Abstract

In our three previous papers [1, 2, 3], referred to as I, I and III. In I and II, our new expression for the static dielectric
constant, s(rd(a)), 4@ being the donor (acceptor) d(a)-radius, was determined by using an effective Bohr model,
suggesting that, for an increasing (), S(Vd(a))a due to such the impurity size effect, decreases, and affecting strongly
the critical d(a)-density in the metal-insulator transition (MIT), Ncpncopy(Faca))» determined by Eq. (3), and also the
optical coefficients, given in the n(p)-type degenerate Si crystal, at low temperature T and high d(a)-density N,

according to the reduced Fermi energy &np)( 1), since those coefficients are expressed in terms of (E = —

gn(gp))z. Here, E is the effective photon energy, E is the photon energy and gnp) is the band gap, which can be
equal to the intrinsic band gap  gni(gpiy( F'd(a))> and optical band gap  gn1(gp1)( N . Faa) T), as those defined in Eq. (5),
noting that N is the effective d(a)-density, defined by: N = N — Ncpncop) (Facay) » being the effective density of free
electrons (holes), given in the parabolic conduction (valence) bands of the n(p)-type degenerate d(a)-Si crystals.
Then, using the same physical model and same mathematical methods and taking into account the corrected values of
energy-band-structure parameters, all the numerical results of the optical coefficients, obtained in III, are now revised
and performed, giving rise to some important concluding remarks, as follows.
(()The physical MIT-condition for N, is found to be given by: N = N — Ncpncopy (Faay) =0 or N = Nepnccopy (Faa)) »
which can be explained by the density of electrons (holes) localized in the exponential conduction(valence)-band tails,
NEBE(CDP)( ly(a))> determined in Eq. (21), with a precision of the order of 1075, as given in Table 1.
(ii) By basing on correct asymptotic behaviors of the refraction index n and extinction coefficient K, as those proposed

in Equations (28, 29), we have investigated all the optical coefficients, being determined in Equations (24, 25, 28, 29),
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and then their numerical results given in different physical conditions have been tabulated and discussed in Tables 2a(b,

c), 3a(b, c), 4n(p), Sn(p), and 6n(p), in which  gnicgiy and  gn1(gp1), defined in Eq. (5), play a very important role.

(iii)As given in Eq. (30), at T=0K, the physical MIT-condition for E, is that K(E =0,ry,) =0, at E =E—
gnigpi) = 0, according to the critical photon energy E = Ecpg = gni(gpiy, being similar to the physical MIT-condition

for N, as that given in (i).

(iv) As showed in Tables 3a, 3b and 3¢, our expressions for optical coefficients are found to be more accurate than the

corresponding ones, being obtained from the physical model proposed by Forouhi and Bloomer [11].

(v) Finally, as showed in Tables 4n and 4p, the extrema values of real (imaginary) parts of the complex dielectric

functions, €1(2)(E, Fyca)), given in any d(a)-Si systems, occur at the same photon energy E.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy

1. Introduction

In our two previous papers [1, 2, 3], referred here to as I, I and III.

In I and II, our new expression for the extrinsic static dielectric constant, s(rd(a)) , Tdea) being the donor
(acceptor) d(a)-radius, was determined by using an effective Bohr model, suggesting that, with an increasing
Fd(a)» s(l’d(a)), due to such the impurity size effect, decreases, affecting strongly the critical impurity density
in the metal-insulator transition, and also the optical coefficients, given in n(p)-type degenerate Si crystal, for
the reduced Fermi energy [4], ( ( ). Therefore, all the numerical results of those obtained and given in

IIT are now revised and performed, in comparison with those obtained in [5-12], as given in the following

Sections 1-5.

2. Energy-band-structure parameters
First of all, we present in the following Table 1 the values of the energy-band-structure parameters, given in
the n(p)-type Si-crystal, such as: (i) if denoting the free electron mass by mg, the relative effective electron

(hole) mass, mn(p)/ My, which is equal to the relative effective mass, Mp(p)/M, [5], as used in this Sections 2

and 4 to determine the critical impurity density in the MIT, and (ii) to the reduced effective mas, m, =

mpxmp

2 X My, as used in Sections 3 and 5 to determine the optical band gap and the optical coefficients in the
n+Mp

n(p)-type degenerate Si. Further, 4o(rg@ = I'si) = 1.17  [4] is the unperturbed intrinsic band gap, as used
in Section 3 to determine the optical band gap, €, = 11.4 [6] is the relative intrinsic dielectric constant, the
critical impurity density in the MIT, Ncpnccop)(fpe)) = 3.52(4.06 x 108 ~3[3, 7], and finally, the

effective averaged numbers of equivalent conduction (valence)-band edge, gcvy = 3(2) [4, 7], used here.
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Table 1. For increasing r'q(z), while £(ry) decreases, the functions:

EBT

anicgpiy (Ta@) ). Neonnop) (Fagay) and N(E:B-rE(CDp)(rd(a)) increase.

The relative deviations between the numerical results of N¢p,(rg) and Ngpa(ry), calculated using Equations (3, 21), are verry

small, of the order of 9.8 % 1078, suggesting that Neonnop) (Fagay) can be well explained by NEBT (r,), being localized in the EBT.

Donor P Si As Te Sb Sn
ry (nm) [4] 0.110 0.117 0.118 0.132 0.136 0.140
e(rq) 11.58 11.4 11.396 10.59 10.16 9.69
gni(rg) in meV 1168.9 1170 1170.02 1175.04 1178.67 1182.9
Neon(rg) in 10%8 cm™3 3.52 (7] 3.69181 3.69547 4.59924 5.20648 6.011
NEB! (ry) in 1018 cm~3 3.52[7] 3.69179 3.695468 4.599223 520643 6.01109
|IRD| in 1078 0 6.5 0.4 3.7 9.8 9.4
Acceptor B Si Ga(Al) Mg In
ry (nm) [4] 0.088 0.117 0.126 0.140 0.14
e(ra) 15.98 11.4 11.1 9.69 9.19
gpi(ra) inmeV 11512 1170 1172.1 1184.7 1190.6
Nepp(ra) in 108 cm™2 4.06 [7] 11.177705 12.118516 18.199979 21.328851
NEpp(ra) in 108 cm™3 4.06 [7] 11.177737 12.118572 18.199970 21.32881
|RD| in 1076 0 2.8 4.58 0.49 1.9

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size

effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the MIT, as follows.

2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since Ig(a), given in tetrahedral covalent bonds, is usually either larger

or smaller than rgg(ae) = Isi, a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: Fyiy > rdocac) (Fd(a) < Fdo(ag)): due to the d(a)-size effect,

respectively [1]. Then, we have shown that this rg, -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, €(Iq(a)), determined as follows.

At T=0K, we shown [1, 2] that, as rya) > ldoac)( Fd(a) < ldo(ac)) . Such the compression (dilatation)

corresponding the repulsive (attractive) force increases (decreases) the intrinsic energy gap
gni(gpi)(rd(a)) and the effective donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained

in an effective Bohr model, as [1]:

2
gnl(gpl)(rd(a)) go(r5|) - d(a)(rd(a)) - do(ao)(r5|) - do(ao)(rS|) [ S(rd(a)) - 1:|a (1)
13600 *x(Mpp)y/Mo
where  do(a) (Fsi) = 2( (2)/Mo) and
e(rae@)= 380 = < &, for fq(a) = I'do(ao)>
1| (22D ) g |in(-9@. )
do(ao) do(ao)
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r r
. ( fa(a) )3_1 x|n( fa(a) )3 do(ao) do(ao)
"do(ao) "do(ao)

One notes that €(ry(,)) decreases with an increasing I'y(a).

N N
e(Taq))= J o =g, [( @) ) - 1] x In(&) < 1, for 'ycay =< T'do(ac)- 2)

2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate Si-crystals, the critical donor(acceptor)-density, Nepnnop) (Fd(ay)» is determined
from the generalized effective Mott criterion in the MIT, as:

NCDn(NDp)(rd(a))l/S X agn(ep) (da)) = Z, z=0.290364495(0.3687017088), 3)

and the effective Bohr radius agn(gpy(rca)) is given by:

x 2
o)~ — 053 x 1078 cm x — @) (4)

aBn(ep) (M) = oy / Mo < Ty/mo)
where —q is the electron charge, €(rq@)) is determined in Eq. (2), and My /My = Mppy/mg =
0.3216(0.3664). It should be noted in Eq. (3) that, for the Mott criterion in the MIT, Zpo+=0.25, while in
the present work, z=0.290364495(0.3687017088), is chosen so that we can obtain the exact values of
NCDn(CDp)(rP(B)) =3.52 (4.06) x 108 cm™3 [3, 7], as those given in Table 1. Further, these obtained
results can also be justified by those of the densities of electrons (holes) localized in exponential conduction
(valance)-band (EBT) tails, NGB cop(fe@)) = Neonceop)(fr)) = 352 (4.06) x 108 ¢cm™ , obtained
using Eq. (21), as investigated in Section 4, and reported also in Table 1. In this Table, we also present
various values of €(faa)),  gnicgpi)(dca)): Neoneuop) (Faay): and NEpnceop) (Fay). noting that the maximal
relative deviations, in absolute values, | |, between Nepnnop) (Faca)) @nd Nephcop (Faeay) are found
to be equal to: 9.8(0.49) x 107, respectively. In other word, Neonop) (Fd(ay), determined in Eq. (3),
can be explained by the densities of electrons (holes) localized in exponential conduction (valance)-band
(EBT) tails, Ngpnccop) (Fa@@). determined in Eq. (21). Furthermore, in our recent work [7], we showed
that, in the n(p)-type degenerate Si, the critical densities of electrons (holes) can also be determined from
the spin-susceptibility singularities (SSS), obtained at = ¢ (race)), at which the MITs occur.

Table 1 also indicates that, for increasing rqcay, €(Iqca)) decreases, while gni(gpi)(rd(a))’ Nconiop) (Fda))
and NGphcop) (facay) increase, affecting strongly all the physical properties, as those given in following

Sections 3-5.

3. Optical band gap
Here, Mp)/M, is chosen as: My /My =m./m, =0.1713 , and then, if denoting N =N-—

Nconnop) (Fda)) > the optical band gap (OBG) is found to be given by:

ot (N Ta@ T) = gnap2y(N 1 Fa@: T) + (N LT, Q)
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where the Fermi energy pnep)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

an2@p2)(N Ta@y T) = gneicgpen (Fa@r ) =2 gngmy (N Td(@))-

Here, the effective intrinsic band gap  gnei(gpei) 1 determined by:

b

1
oT  12201\220T
gnei(gpei)(rd(a): ) = gni(gpi)(rd(a)) —0.071eV % (1 + [440.6913] )

and the band gap narrowing, A gn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B
and the intrinsic energy gap  gnicgpiy(Fdcay) is defined in in Eq. (1).

Then, as noted in the Appendix A and B, at T=0K, as N =0, one has:  pnrp)(N , T) = pnorpoy(N ) =
0,as givenin Eq. (A4), and A gni(gpi)(N Td(a) ) =0,0rA gn(gp)(N , I’d(a)) = 0, according to the MIT, as
noted in Appendix A and B. Therefore, gn1gp1) = gn2(gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K
and N = 0, according also to the MIT.

Finally, the numerical results of gnl(gpl)(N >0, g, T) at T=20K, calculated using Eq. (5), expressed as
functions of N and Iy(y), and reported in Table 3 of I, being also compared with the corresponding
data [8], obtained in the P(B)-type degenerate Si, giving rise to the accuracies of the order of 1.16%

(2.68%), respectively. Here, we also showed that, in the n(p)-type degenerate Si and for a given photon

energy E = w, since the extinction coefficient, ( y, and other optical coefficients, as discussed in III, are
expressed in terms of the function (E — gnl(gpl))z. Therefore, if the values of  gn1(gp1) Obtained in Table 3
of I1I, increase (decrease), (E — gn)2 and other optical coefficients then decrease (increase), respectively, as

showed in Figures 3a, 3b and 3¢ of our previous paper IL

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate Si, if denoting the Fermi wave number by: Kenrpy(N) = (3 2N/gc(\,))1 3, the

effective reduced Wigner-Seitz radius gn(sp), characteristic of the interactions, is defined by

_ Kengep)
* Ton(sp) (N Py, Mi(p)) = Tspp) <L ©
being proportional to N 3 Here, = (4/9 )3, kEnl(Fp) means the averaged distance between ionized

donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgn(spy to Fermi wave number Kenpy at 0 K is

defined by

Ksnsp) _ Kenep) _ R

= + |R —R “Tansp) < 1,
Kencp) k;11(sp) snWS(spWS) [ snTF(spTF) anS(spWS)] 1 (7)

Rsngspy(N  Faay) =

These ratios, RsnTr(spTF) Rsnws(spws), can be determined as follows.
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First, for Nconop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rgntr(snry is

reduced to

KsnTF(spTF) Ken(ep) 4 Tsn(sp)
RsnTr(N  Faay) == =— = 1 8
SnTF( d(a)) Ken(Fp) ksnlI'F(spTF) ’ ( )

being proportional to N=1/6,

Secondly, < Ncpnpp)(Fd(a)), according to the Wigner-Seitz (WS)-approximation, the ratio Rsnws(snws) is

reduced to

= Lontows _ 9] nispy* e (M ra@)]
Rsn(sp)WS(N ' rd(a)) = % - (21 — sn(sp)d = a ’ o)

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, as given in I, in the highly degenerate case, the physical conditions are found to be given by :
I(l?riL(Fp) Nn(p) 1 I(l?riL(Fp) Fno(Fpo)

< = < ) — <1, Ayp = —2 10
anEp) | Fofpo) A Keep P "®) T ) (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,
Rsn(sp) 1s determined in Eq. (7).

Then, in degenerate d(a)-Si systems, the total screened Coulomb impurity potential energy due to the
attractive interaction between an electron(hole) charge, — (+ ), at position r, and an ionized donor (ionized
acceptor) charge: + (— ) at position R; , randomly distributed throughout the Si crystal, is defined by

V(r) = i=1 vi(r) +V,, (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a
screened Coulomb potential energy for each d(a)-Si system, defined as

_ gZxexp (—Ksn(sp) | IR, |)
&(rd@))*|r—Rj|

VJ'(I’) = 5
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2

q 4n 1
vi(k) =— X —X——
i(k) ea@) QKK

where Q is the total Si-crystal volume.
Then, the effective auto-correlation function for potential fluctuations, W) (Vngy, N . 1a) = (V(NDV(r)), was

determined in II, as :

_ .2 — XRsnesp) (N Faca)) _ V2nN 21,—1/2 _ -
Wa(o) (Vagey: N @) = Mage) exp( 2 |5 | ) ey (N +Ta@) = gy 0y > 9 Ksngep) Vo) = (12)
n(p)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

3.320313702 will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally Vi) = ,
Fno(Fpo)
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where s the total electron energy and  pno(rpoy 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

1
In the following, we will calculate the ensemble average of the function: ( —V)¥ 2= i 2 fora=1,

2xk2
k = 2%

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
(@)

two following integration methods, as developed in II, which strongly depend on W) (Vagy, N Faca)-
4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In heavily doped d(a)-Si systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) = X ex [ ]
v V2 Wn(p) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = z 2 is defined by

(C =V D =( & Dau= _o( —V)¥2xPW)dV, for a=1.

*Rsn(sp)

Then, by variable changes: s = ( —V)/\Whp,y and X =— //Wpp) = Anp) X np) X eXp| —— |,
4 [|vnep)|

and using an identity:
0°° 773 x exp (—xs — %)ds =T( +3) xexp (x2/4) x D_a_%(x),

where D___1(X) is the parabolic cylinder function and I'(a + 2) is the Gamma function, one thus has:
2

2a-1 1
1 —x2/4)xW A4 exp (—x2/4)xn’ 2 -
a3 _ e (X ne) o 1 _ &P "np) *Rsn(sp)*(2a—1)
=— + 1) % = P —_snep MR Y ) & +
( K dKIM NG M(a 2) D_a_%(X) NeT exp 8 [jon| M
n(p
1
HxD_, 100 (13)

B. Feynman path-integral method (FPIM)

1
Here, the ensemble average of ( — V)2 = Z % is defined by

1 2
—\)a s — a3 -2 M(a+y) bl —a—1 t _ (t/Wnep) o
(C =) 2 = “drriv = 53725 75= < Q) _wo (D7 2xexpi——————dt, i* =— 1,

2
L3 t /W . .
noting that as a=1, (it) 72 < exp {— (2_2,@)} is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

}ds = 2%2 < 1(3/2) x exp (— x*/4) x D___1(X),
2

Then, by variable changes: t =

and X == /,/Wp, and then using an identity:

2

0 —a-1 s
. (9) 2xexp{xs—3

_1 -1 -1
one finally obtains: i epim = ( i s € i “)xim being determined in Eq. (13).
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In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.
(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

x2 _1
x ax (—x)¥2

Dy -—e) =

_1 1
Therefore, Eq. (13) becomes: ( i v = %72. Further,as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

D_, 3(X ~=c0) (a)xexp((va+ Ayx—2Z+ 2:35)~o, @ = 7=

1622 27 13+

-1
Thus,as -+ 0, from Eq. (13), one gets: ( Z m - 0.

1
In summary, for __= 0, the expression of ( z Z)kim can be approximated by:

a—5 _1 _ 2xk?
( & Dam 2, = o (14)
) = -
As  -—0, from Eq. (13), one has: ) -»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
X2 .
D_, i(x - @) B@ xexp|—(/a +2)x—2—22] 0, B = % noting that
2 16a2 24 TG+
B(1) =—5———and B(5/2) = 23/2
24><r(5/4)
ot
Then, putting f(a) = n(p) x(a+ —) B(a), Eq. (13) yields
(¢ Dam R x(2a-1)
Hu) ( npy =+ 0 Fae), &) = —5— = exp l——( - (\/5 +—lz> (k)| - O (15)
8% [[vn(p)| 16a2
Further, as - — o0, one has: ) -+ % and X - oo. Thus, one gets:
)(2
D_, 1(X - 0)=x%2x & . 0. Therefore, Eq. (13) yields
2
at
( K 2)KIM 1 (A()X ())
—_ n n
Kn(p)( n(p) -+ oo, r'd(a)’a-) = T (a) eXp( p—p) (An(p) x n(p)) - 0. (16)

It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:

Fre C npy: Tdcay @) = Knpy C nepy: Fdcay: @) + [Hngy( nepy: Faay @) = Knepy( nepy: Facay )] > exp [—

C2
(Ao ne)) "1 (17)
such that: Fn(p)( n(p),rd(a),a) - Hn(p)( n(p): rd(a),a) for 0= ,=<16 , and I:n(p)( n(p) rd(a)’a) -

Kn)( nep): Mdcay, @) for n¢py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740

179



and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.

C. Critical impurity density in the MIT

In degenerate d(a)-Si systems at T=0 K, in which mp;y/mM, = Mp,y/my = 0.3216(0.3664), as given in
Table 1, using Eq. (13), for a=1, the density of states ( ) is defined by:

3
2

( (kv = gc(v)( n(p)) x( k)KIM g;(vz’ (2mn(p))z p(\/;_) MY r@) = D%(X) = (), (18)

*Rsn(sp)

where x is defined in Eq. (13), as: X ==/ /W) = Anp) X n(p) X EXP
4% [Vngp)l

Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My =mMypy/m, and =

n(p

3.320313702, being chosen such that the following determination of NEBI(CDP)(N, F'd(ay) Would be accurate.

Going back to the functions: H,,, K, and F,,, given respectively in Equations (15-17), in which the factor

1

( ;)KIM
=) is now replaced by:
1
( 2m
_(=0)_ _ gc(v)x(mn(p)xmo) */ ) _ Ay —
@ =~ el e fa@a=1). o 223 SR
(19)

Therefore, NEBI(CDP)(N, lda)) can be defined by

0
Neoncopy(N: Ta@) = o ( =0)d ,

where (=< 0) is determined in Eq. (19). Then, by a variable change: ¢y = , one obtains:

Fno(Fpo)

9c(v>><(mn(p>) \/ n(p)>< Fno(Fpo) . { 16
0

Nebnccop (N: Ta@@) = (@= 1) % Fagy( ey Ta@y @ = 1) ngpy + Ingey -

(20)
where
2
- o (P> n) 3/2
) = 15 (@=1) X Koy ( ngpy Ta@@=1)d ngy = 15 2 % (A n@) A n-
Here, (a=1)= L
24xr(5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/E] , the integral 1) yields:

— r'®. Ynp))
I — 1 x tt—letdt = n(p)
n(p) iaey ) LTV

where b =— 174, ynqy = [16An(p)/\/_ ] and I (0, Yn(p)) is the incomplete Gamma function, defined by:

o 16 (b—1)(b—2)...(b—j)
F(b,Yn(py) Yn(|01)>< 1+ N
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Finally, Eq. (20) now yields:

8ery (M) 7 Frocepo) 16
Neonccop) [N = Nepnvop) (Faca)): Fa@y] = : 23 ° ) % { o (@=1)x
r, np))
Fa( neoy @@ =1)d n(p) +—25/4XA;2)}, 1)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBI(CDF,)[N = Neoniop) (Fdgay): Fday] = NEBI(CDp)(rd(a)) , for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2 of III, confirming thus those of Nepnpp) (Fd(a))

calculated using Eq. (3), with a precision of the order of 9.8(4.91) x 107, respectively. In other word,
this critical d(a)-density Ncpnvpp)(Fdca))) can thus be explained by the density of electrons(holes)

localized in the EBT, NEBI(CDF,)( ld(a))» respectively.

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the

degenerate d(a)-Si systems, can thus be expressed by:
N =N—Neonuop N = Neonceop)- (22)

2xkEn(epy(N )
2xm

Then, if N = Ncpnnpp), according to the Fermi energy, rno(rpo)(N = Nconnop)) = , then the

n(p)

value of the density of electrons(holes), NEEE(CDP) , localized in the EBT for <0, is almost equal to

Ncon(Npp)» given in this parabolic conduction (valence) band, for = 0. This can be expressed as:

Neoncop)y  Nepnuop)s as N = Nepnuop)- (23)

5. Optical coefficients

Optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n—iK and € =&, —ig,, where i* =— 1 and €= 2. Therefore, the real and
imaginary parts of € denoted by €, and €, can thus be expressed in terms of the refraction index n and the
extinction coefficient K as: €, = n? — k? and €, = 2nK. One notes that the optical absorption coefficient o is

related to €, n, K, and the optical conductivity Og by [3]

q2x|v(E)|?

a(E) = T

— Exep(E) — 2ExK(E) — 4nog(E) = 2_ 2 =
xCE xJE)= B ~ ¢ cn(E)x > 17 and ;=2 , 24)

where the effective photon energy: E = E — gn¢gp) =  is the reduced photon energy, the band gap  gn(gp)
can be equal to the optical band gap gn1(gp1) and intrinsic band gap  gni(gpiy, determined in Eq. (5). Here,
E= w,-q, ,|V(E)|,w, , € and J(E ) respectively represent: the photon energy, electron charge,

Dirac’s constant, matrix elements of the velocity operator between valence (conduction)-and-conduction
(valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light,

and joint density of states. It should be noted that, if the three functions such as: |V(E)|?, J(E ) and n(E) are
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known, then the other optical dispersion functions given in Eq. (24) can thus be determined. Moreover, the

normal-incidence reflectance, R(E), can be expressed in terms of K(E) and n(E) as:

[n(E)—1]2+K(E)?

RE) = neyrizer -

(25)

From Equations (24, 25), if the two optical functions, €; and £,, (or n and K), are both known, the other ones
defined above can thus be determined.
Then, using a transformation for the joint density of states, given in allowed indirect Si-transitions, for a=5/2,

as discussed in II, one has:

2|2 g O 1 (g (€
O 2n®

1
Jn(p)(E = gn(gp)) o2 x ( 2 > =72 , for a=5/2. (26)
(D]

Therefore, from Equations (24, 26), for E= gnqpy, or for E =E— gnqp) = =0, the extinction

coefficient K can be determined by:

3/2
g2xm;’“x|v(E)|?

KE= gngp) =f(E) X (E =E— gngp)> f(E)>= N 7> (27)

2xm2xggx xn(E)xE2x VS

noting that the optical function such as: Nn(E) and K(E = gn(gp)) , were parameterized by various authors
[10-12]. First of all, one notes that, as -~ oo, Forouhi and Bloomer (FB) [11] claimed model that K( -
o) - a constant, while Jellison and Modine [12] and Van Cong [3] showed that their proposed expressions
quickly go to 0 as 3, and consequently, the optical functions such as: 0o( ) and a(E), given in Eq. (24),
bothgo 0 as ~2.

In the following, we will propose: K( - ) - Oas ~!sothatog( - o) anda( - o) both go to their
appropriate limiting constants.

Then, if defining the band gap gn(gp), €qual to the optical band gap gny(gp1) Or to the intrinsic band gap

gni(gpi)> and taking into account the above remarks, we now propose:

Aj

— — 2 _ 4
K( =0) = ()x ( = - gn(gp)) , (E)= i=1 2><(l+10_4><€)—Bi o (28)
being equal to 0 for =0 (or for = ¢p(gpy) and also going to 0 as 1 as - oo, and then,
Boi +Coi
()= o(ra@) + ?zlm, (29)
going to a constant as - oo, since (- ©,Iyp) = w(ld@) = /(@) X— =99 1013 -1
[SJand = 16.8464 x 101® ~1 accordingto (rp) = 2, being obtained from the Lyddane-Sachs-Teller
relation [5], from which T(L) represents the transverse (longitudinal) optical phonon mode.
, 2 _

Here, other parameters are determined by: By = % b [—B?' +  gnei(gpei)Bi — gnei(gpei) +Ci|, Coi = % X
Bix( 2r1ei ei +Ci) 4Ci_Bi2 .

% -2 gnei(gpei)Ci] , Qi = 5 , where, for i=(1, 2, 3, and 4), =
0.004374, 0.0154,0.0738 0.1889 = 6.885,7.401, 8.634 and 10.652, and =

11.864,13.754,18.812, and 29.841.
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The important numerical results of the above optical functions, at T=0K, N = Ncpncpp), and for = gni(giy,
are reported in following Tables 2a, 2b and 2¢, and Tables 3a, 3b and 3c, in which they are also discussed,
and compared with the corresponding ones, calculated and obtained from FB-model [11], and also with the
corresponding data given by Aspnes and Studna [9].

Table 2a. At the MIT, T=0K, N=N¢pn(p)(racay), and the critical photon energy =E= gigen(fa@)s  ( gnigpiy: @) =

0, 2( )( gni(gpi): rd(a)) = 0, ( )( gni(gpi): rd(a)) =0and ( gni(gpi) rd(a)) = 0, and the other functions such as :

NwiTC gniggpiy d@) > 2 ) gnicgpi) Mdcay)> and (' gni(gpiy: Td(a)) decrease with increasing Fy(ay and i (Fycay)-
Donor P Si As Te Sb Sn
At the MIT, T=0K, N=Ncpp(rq), and the critical photon energy =E= gni(ry,onhas:
gni(rd) in meV 1168.9 1170 1170.02 1175.04 1178.67 1182.9
N ( gnis rq) 3.4463 343 3.4279 3.3565 3.3158 3.2696
(C gnir Ta) 0 0 0 0 0 0
1( )( gnis rq) 11.8768 11.7649 11.7626 11.2658 10.9943 10.6902
2 ) gninTa) 0 0 0 0 0 0
¢ C gniTa) 0 0 0 0 0 0
( gnirTa) 0 0 0 0 0 0
( gnirTa) 0.3027 0.3009 0.3009 0.2926 0.2879 0.2826
Acceptor B Si Ga(Al) Mg In
At the MIT, T=0K, N=N¢p,(ra), and the critical photon energy =E= g(ra),onhas:
gpi(fa) in meV 1151.2 1170 1172.1 1184.7 1190.6
( gpir ra) 3.8030 343 3.4026 3.2688 3.2185
( gpir Ta) 0 0 0 0 0
1( )( gpis ry) 14.4626 11.7649 11.5774 10.6851 10.3589
2 H( gpinTa) 0 0 0 0 0
¢ ) gpirTa) 0 0 0 0
( gpirTa) 0 0 0 0 0
( gpi r.) 0.3406 0.3009 0.2978 0.2825 0.2766

Table 2b. In d(a)-Si systems, the values of the following optical coefficients at < 0, expressed as functions of rqg), and

calculated using Equations (31-36, 24), for = gni(gpi)(rd(a)), present the exponential tail-states for T, 2 T, -,
-, ~ andR 7, and their variations with increasing Iq(s) are represented by the arrows: and , suggesting that the
obtained results of “, 1 T~ ,andR 7 arealmostequal to the corresponding ones given in the above Table 2a.
d-Si systems P-Si As-Si Te-Si Sb-Si Sn-Si
~ (rg) 3.4463 3.4297 3.3565 3.3158 3.2696
~ (rg) 0.0282 0.0282 0.0286 0.0288 0.0291
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. (r9) 11.8761 11.7618 11.2650 10.9935 10.6893

> (ro) 0.1941 0.1936 0.1917 0.1909 0.1901
T (rg in QF 1 2.4286 2.4251 2.4108 2.4086 2.4067
- (r) in 108 1 33361 3.3473 3.4002 3.4389 3.4847
R~ (ry) 0.3027 0.3009 0.2926 0.2880 0.2826
a-Si systems B-Si Ga-Si Mg-Si In-Si
~(r) 3.803 3.4026 3.2688 3.2185
~(rw) 0.027 0.0284 0.0292 0.0296
(D) 14.4619 11.5766 10.6843 10.3580
. (r) 0.2057 0.193 0.1908 0.1904
“(rp) in QY 1 2.5343 24216 2.4194 2.4261
= (rp) in 108 % 3.1548 3.3692 3.5039 3.5684
R~ (r) 0.3406 0.2978 0.2825 0.2766
Table 2c. Here, the choice of the real refraction index: (- 0, rg@a) =  w(ry@) = /E(Fa@) X — =99x101 !
[5] and =16.8464 x 10*® ! obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the

transverse (longitudinal) optical phonon mode, giving rise to o (rp) = 2, and further, that of the asymptotic behavior, given for
the extinction coefficient: ( - ©,ryE) - 0, as ~1 so that ap( - oo, lda)) and 0( - ©,ry) both go to their appropriate

limiting constants, are found to be very important, affecting strongly the numerical results of the other optical coefficients.

Donor P Si As Te Sb Sn
e(rq) 11.58 11.4 11.396 10.59 10.16 9.69
wo(rd) 2 1.9842 1.9838 1.9128 1.8737 1.8293
wo(rd) 0 0 0 0 0 0
1,00(Fa) 4 3.9370 3.9356 3.6589 3.5107 3.3465
200(rd) 0 0 0 0 0 0
5
wo(rg) in Qio 7.2548 7.1974 7.1963 6.9385 6.7966 6.6357
o(fg) in(0°x 1 1.7172 1.7172 1.7172 1.7172 1.7172 1.7172
wo(rd) 0.1111 0.1088 0.1087 0.0982 0.0924 0.0859
Acceptor B Si Ga(Al) Mg In
e(ra) 15.98 11.4 11.1 9.69 9.19
w(ra) 2.349 1.9842 1.9576 1.8293 1.7816
0(ra) 0 0 0 0 0
1.00(Fa) 5.5179 3.9370 3.8323 3.3465 3.1741
200(Fa) 0 0 0 0 0
5
(ra) in Qio 8.5208 7.1974 7.1011 6.6357 6.4626
o(fa) in(0°x 1.7172 1.7172 1.7172 1.7172 1.7172
w(ra) 0.1623 0.1088 0.1048 0.0859 0.0790
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Table 3a. In the P-Si system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28,29),for ( )= ( )[ = 1.1689eV], and the corresponding ones, obtained from the

FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,
for15< ( ) <6, using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2¢c, one obtains: ( - oo, r ) -
Oand ,w( - ©,rp) - 0, while, in the FB-model, ¢ )( - o,rp) = 0.2615and 3¢ )( - oo, rp) =1.0196.

EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 ) (RD%) 2y (RD%)
1.5 3.605(1.8) 0.003(45)  12.999(3.6)  0.020 47.8)  3.535(3.7) 0.004 (10) 12.497 (1.3) 0.032 (16.2)
1.6 3.661 (1.4) 0.005(37.8) 13.401(2.8)  0.036(36.1)  3.590 (3.3) 0.007 (9.6)  12.887 (6.6) 0.052 (8.9)
1.7 3.720 (0.8) 0.008(19.2) 13.839(1.7)  0.060 (22.9)  3.648 (2.8) 0011 (8.6)  13.312(5.4) 0.079 (1.6)
1.8 3.784(03) 0.012(5.9) 14319(0.6)  0.093(65)  3.712(2.2) 0.016 (19.8)  13.777 (4.4) 0.116 (16.8)
1.9 3.853(0.2) 0.018 (10.4) 14.847(0.3)  0.136(8.0)  3.780(1.7) 0.022 (34.9)  14.288 (3.4) 0.163 (29.5)
2 3.98(0.6) 0.025(12.0) 15429 (1.1)  0.194(12.5)  3.854(1.3) 0.029 (32.7)  14.854 (2.6) 0.225 (30.8)
2.1 4010 (1.0) 0.033(11.7)  16.076(2.0) 0.269(13.9)  3.935(0.9) 0.039 (29.1)  15.482(1.7) 0.305 (29.1)
2.2 4.099 (1.4) 0.045(39.9) 16798 (2.8) 0367 (41.1)  4.023(0.5) 0.051 (58.3)  16.183 (0.9) 0.408 (56.8)
2.3 4197 (1.8) 0059 (22.8)  17.611(3.6)  0.495(24.9)  4.120 (0.1) 0.066 (36.7)  16.973 (0.1) 0.541 (36.5)
24 4305(2.1) 0.077(28.2) 18532 (4.3)  0.662(30.4)  4.228 (0.3) 0.084 (40.6)  17.868 (0.6) 0.508 (40.4)
2.5 4427 (2.5 0.100 (36.6)  19.585(4.9)  0.883 (40.1)  4.348 (0.6) 0.108 (48.1)  18.893 (1.2) 0.940 (49.2)
2.6 4863 (2.7) 0.129(43.3)  20.804(5.5)  1.177(46.6)  4.483(0.9) 0.138(53.7)  20.080 (1.8) 1.240 (54.5)
27 4718(2.9) 0.167(28.5) 22232(5.9) 1576(32.1)  4.637(1.2) 0.177 (36.5)  21.472(2.3) 1.646 (38.0)
2.8 4897 (3.0) 0217(33.4) 23933(6.1)  2.130(37.6) 4.815(1.3) 0.229 (40.6)  23.130 (2.5) 2.208 (42.6)
2.9 5107 (2.9) 0286 (41.1) 25999 (5.8)  2.926(45.1) 5.024(1.2) 0.300 (47.7)  25.147 (2.3) 3.013 (49.4)
3 5359(2.6) 0.385(432) 28572(5.1)  4.128(47.1) 5.275(1.0) 0.401 (48.9)  27.663 (1.7) 4.226 (50.5)
3.1 5671 (1.8) 0536 (38.6) 31.873(3.2)  6.084 (40.8)  5.586(0.3) 0.555(43.4)  30.891 (0.06) 6.200 (43.5)
32 6.068 (0.1) 0.797 (26.4)  36.188 (0.4)  9.668(26.6)  5.982(1.3) 0.821 (30.4)  35.109 (3.4) 9.825 (28.7)
33 6.549 (2.4)  1.329(0.7)  41.127(4.9)  17.412(L.7)  6.461(3.7) 1372(3.9)  39.869 (7.8) 17.725 (0.04)
34 6.650 (1.9)  2.440 (9.8)  38.265(8.6)  32.454(8.0)  6.550 (0.4) 2.550 (5.7)  36.400 (3.3) 33.404 (5.3)
35 5.662(0.9)  2.896(3.9)  23.666(5.7)  32.798 3.0)  5.535(1.3) 3.006(0.3)  21.599 (3.5) 33.270 (1.6)
3.6 5.532(4.5) 2.828(53) 22.608(182) 31.295(1.1)  5.396(1.9) 2.888(3.3)  20.777 (8.6) 31.163 (1.5)
37 5399 (47)  3.105(1.5) 19.501 (13.2)  33.531(6.4) 5.254(1.9) 3.156(3.2)  17.643 (2.4) 33.165 (5.2)
3.8 5.155(1.8)  3.208(0.8)  16.282(4.8)  33.075(2.6)  5.003(1.2) 3.245(2.0)  14.502 (6.6) 32.470 (0.7)
39 5149 (2.7)  3.25527) 15921 (14.0)  33.519(0.1)  4.992(0.5) 3275(2.1) 14197 (1.7) 32.704 (2.5)
4 5273(52) 3.527(1.6) 15363 (25.5) 37201 (3.5)  5.112(2.0) 3.537(1.4)  13.620(11.3) 36.159 (0.6)
4.1 5276 (5.1)  4.060(2.0) 11.354(21.2) 42.842(72)  5.110(1.8) 4.062 (2.1) 9.613 (2.7) 41.515 (3.9)
4.2 4963 (1.5)  4.715(1.6) 2403 (1.3)  46.796 (3.2)  4.795 (1.9) 4.710 (1.5) 0.803 (66.1) 45.166 (0.4)
43 4280 (47) 5231 (3.0) —9.048(27.1) 44773 (1.5) 4.114(0.7) 5218 (3.3) —10.309 (17.0) 42.937 (2.6)
4.4 3.409(9.2)  5375(0.6) —17.275(82) 36.644 (9.9)  3.250 (4.2) 5.352(0.1) —18.079 (3.9) 34.792 (4.3)
45 2,646 (7.9)  5.146(12)  —19.475(1.7) 27.232(9.3) 2.498(1.9) 5.110 (0.6) —19.878 (0.3) 25.527 (2.4)
4.6 2.151(82) 4732(1.1)  —17.764(0.9) 20359 (9.4)  2.011(L.1) 4.687(0.2) —17.919 (0.1) 18.852 (1.3)
4.7 1.901 (7.8)  4315(0.9)  —15.004(1.2) 16407 (8.7)  1.767 (0.2) 4262 (0.4) —15.042 (1.0) 15.067 (0.2)
48 1.805(8.9) 3.980(0.01) —12577(3.9) 14370(8.9) 1.676(l.1) 3.921 (1.4) —12.568 (4.0) 13.145 (0.4)
49 1784 (117) 3.742(02)  —10.820(6.0) 13347 (11.5) 1.657 (3.8) 3.679 (1.9) —10.792 (6.2) 12.194 (1.8)
5 1.783 (13.6)  3.587(0.6) —9.690 (5.4) 12.793 (14.3)  1.659 (5.7) 3.521(1.2) —9.645 (5.8) 11.684 (4.4)
51 1.775(13.0)  3.494 (1.9) —9.056 (2.5) 12.403 (15.0) 1.653(5.2) 3424 (0.1) —8.987 (3.4) 11.322 (5.1)
52 1.745(9.8)  3.439(2.5) —8.778(0.6) 12.004 (12.7)  1.627 (2.4) 3.365(0.3)  —8.675 (0.6) 10.947 (2.7)
53 1.690 (7.0)  3.403 (1.5) —8.724(0.3) 11.501 (8.6)  1.575(0.3) 3.325(0.8)  —8.577 (2.0) 10.473 (1.1)
54 1.610(9.5)  3.371(0.2) —8.773 (4.3) 10.859(9.6)  1.500 (1.9) 3290 (2.2) —8.578 (6.4) 9.868 (0.4)
55 1.513(12.9) 3.334(0.9) —8.824 (3.1) 10.086(14.0)  1.407 (5.0) 3250 (1.6)  —8.582 (5.8) 9.142 (3.3)
56 1.404(12.6) 3.283(2.4) —8.806(0.9) 9.219(152)  1.303(5.0) 3.197(0.3)  —8.521 (2.3) 8.331 (4.1)
5.7 1.292(8.9) 3217 (3.1) —8.678 (4.2) 8310(12.3)  1.196 (4.1) 3129 (24)  —8.359 (4.2) 7.484 (6.4)
5.8 1.182 (44)  3.135(3.0) —8.430(5.5) 7414(7.5)  1.092 (3.6) 3.046 (0.004) —8.087 (1.3) 6.654 (3.5)
59 1.081(0.2)  3.040(1.9)  —8.074(4.6)  6.574(1.8)  0.996(8.0) 2.951(1.0)  —7.717 (0.05) 5.880 (9.0)
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6 0.991 (1.8)  2.935 (0.9) —-7.633(2.6)  5.819(0.9)  0.911(9.8) 2847(2.1)  —7.273(2.3) 5.189 (11.7)

10% 2 0 4 0 1.95 0.2615 3.7341 1.0198

10% 2 0 4 0 1.95 0.2615 3.7341 1.0198
EineV (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 ) (RD%) 2( ) (RD%)

Table 3b. In the P-Si system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28,29),for ( )= ( )[ = 1.1689eV], and the corresponding ones, obtained from the

FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,
for15< ( ) <6, using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2¢, one obtains: ( - ©,rp) =

17122 x10° “tand o( - ©0,Ip) = 7.2548 x 10° (Qx;), while, in the FB-model, - oo, and ( y - oo, which should be not

correct.

EineV  (10°x “):;RD%  R;RD% (=) () (10°x  ~1);RD% ; RD%

15 0.418; 46.4% 0.3200;2.1% 03186 0.5110 0.684; 12.3% 0.3125; 4.4%
1.6 0.807; 35.4% 03259;1.5%  0.6241 0.8893 1.173; 6.2% 0.3184;3.8%
1.7 1.392;22.7% 0.3321;0.9% 10937 1.4525 1.872; 4.0 % 0.3246; 3.1%
1.8 2.231;6.2% 0.3387;04% 17837 2.2277 2.841319.4 % 0.3321; 2.6%
1.9 3.401;7.9% 0.3456;02% 27680 3.3197 4.157:32.0% 0.3383; 1.9%
2 4.994; 117 % 0.3530;0.6%  4.1440 4.8168 5.916;32.4 % 0.3457; 1.5%
2.1 7.134; 12.9 % 0.3609; 1.1%  6.0425 6.8509 8.242;30.4 % 0.3537; 0.9%
22 9.979;39.2 % 0.3694; 1.5%  8.6404 9.6004 11.297; 57.5 % 0.3623; 0.5%
23 13.741;22.8 % 03785;1.7% 12182 13311 15.293; 36.7 % 0.3715;0.1%
24 18.705; 27.7 % 0.3883;22%  17.012 18328 20.522;40.1 % 0.3814; 0.4%
25 25.265;36.7 % 0.3989;23%  23.625 25.150 27.383;48.2 % 0.3922; 0.5%
26 33.986; 42.7 % 0.4105,2.6% 32758 34.517 36.447; 53.1 % 0.4039; 1.0%
27 45.703; 28.3 % 0.4233;2.7%  45.549 47570 48.564;36.3 % 0.4169; 1.2%
28 61.719;33.5 % 0.4375;2.7%  63.843 66.165 65.054;40.7 % 0.4313; 1.2%
2.9 84.199; 40.9 % 0.4535;2.6%  90.832 93.513 88.121;47.5 % 0.4476; 1.3%
3 117.09; 43.3 % 0.4718;23% 13255 135.69 121.78; 49.0% 0.4663; 1.1%
3.1 168.51; 38.6 % 0.4935;1.5%  201.87 205.72 174.36; 43.4% 0.4885; 0.5%
32 25832;26.5 % 0.5202;0.4% 33113 336.52 266.32; 30.4% 0.5158; 0.4%
33 444.54; 0.6 % 0.5542;12%  615.00 626.05 458.68; 3.8% 0.5509; 1.8%
3.4 840.79; 9.8 % 0.5874;0.8% 11810 1215.6 878.58;5.7% 0.5874; 0.8%
35 1027.3;3.9 % 0.5708;0.7% 12287 1246.3 1066.0; 0.3% 0.5721; 0.5%
3.6 1031.8; 5.3 % 0.5633;0.1% 12059 1200.7 1053.5; 3.3% 0.5617; 0.4%
37 1164.4; 1.5 % 0.5731;1.8% 13279 1313.4 1183.4;3.2% 0.5717; 1.5%
3.8 1235.4; 0.8 % 0.5720;0.7% 13452 13207 1249.6;2.0% 0.5702; 0.4%
3.9 1286.3; 2.7 % 0.5745;0.4% 13992 1365.2 1294.5; 2.1% 0.5718; 0.9%
4 1429.8; 1.7 % 0.5928;0.3% 15927 1548.1 1433.7; 1.4% 0.5899; 0.2%
4.1 1686.9; 2.0 % 0.6223;13%  1880.1 1821.8 1687.7; 2.1% 0.6203; 1.0%
42 2006.6; 1.6 % 0.6564;0.7%  2103.6 2030.4 2004.7; 1.5% 0.6561; 0.6%
43 2279.4;3.1% 0.6901; 1.8%  2060.6 1976.1 2274.0;3.3% 0.6918; 1.6%
44 2396.8; 0.6 % 0.7179; 1.1% 17257 1638.5 2386.4; 0.1% 0.7217; 0.6%
45 2346.5; 1.2 % 0.7339;0.8% 13116 1229.5 2330.4; 0.5% 0.7395; 0.07%
4.6 2205.9; 1.1 % 0.7338; 1.1%  1002.4 928.16 2184.7; 0.2% 0.7408; 0.2%
47 2055.2; 0.8 % 0.7187;13% 82537 757.95 2030.0; 0.4% 0.7262; 0.2%
48 1935.8; 0.1 % 0.6954;2.1% 73828 675.34 1907.5; 1.5% 0.7025; 1.0%
49 1858.0; 0.2 % 0.6720;3.0%  700.02 639.53 1827.0; 1.9% 0.6782; 2.1%
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5 1817.7; 0.6 % 0.6540; 3.1% 684.66 627.27 1784.1; 1.2% 0.6591; 2.3%

5.1 1805.7; 1.9 % 0.6433; 2.2% 677.05 618.03 1769.4; 0.2% 0.6475; 1.6%
52 1812.1;2.5 % 0.6394; 1.0% 668.08 609.28 1773.1; 0.3 % 0.6429; 0.5%
5.3 1827.7; 1.5 % 0.6407; 0.9% 652.43 594.12 1786.0; 0.8 % 0.6439; 0.5%
5.4 1845.0; 0.1 % 0.6457; 2.6% 627.65 570.38 1800.6; 2.3 % 0.6487; 2.2%
5.5 1858.0; 0.9 % 0.6528; 3.0% 693.75 538.17 1811.3; 1.6 % 0.6559; 2.5%
5.6 1863.0; 2.4 % 0.6608; 2.1% 552.55 499.32 1814.1; 0.3% 0.6642; 1.6%
5.7 1858.0; 3.1 % 0.6688; 0.6% 506.98 456.62 1807.3; 0.3% 0.6726; 0.06%
5.8 1842.7,2.9 % 0.6759; 0.6% 460.23 413.08 1790.5; 003% 0.6801; 1.2%
5.9 1817.7; 1.9 % 0.6814; 1.2% 415.13 371.32 1764.5; 1.1% 0.6861; 1.9%
6 1784.8; 0.9 % 0.6848; 1.2% 373.72 333.21 1730.9; 2.2% 0.6899; 1.9%
10% 1.7122 x 10° 0.1111 7.2548 x 10° . x .ox 0.1107
10?2 1.7122 x 10° 0.1111 7.2548 x 10° . x .ox 0.1107
EineV  (10°x “1);RD%  R;RD% (=) () (10°x  “1);RD% ; RD%

Table 3c. Here, our maximal relative deviation (MRD)-values and those of (MRD)gg are reported, suggesting that our

obtained numerical results of these optical coefficients are found be more accurate than the corresponding ones, obtained from the

FB-model.

MRD ) ) R

E (eV)

1.5 45% 47.8% 46.4%

4.3 27.1%

5 13.6% 3.1%

E (eV)

1.5 4.4%

22 58.3% 56.8% 57.5%

42 66.1%

6 9.8%

Some important cases, given in various physical conditions, are considered as follows.

5.1. Metal-insulator transition (MIT)-case
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As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT
are: T=0K, N =0 or N = Ncpnccop) NEB}E(CDp) , vanishing the Fermi energy:

2xkEnpy(N )

Fro(rpo)(N ) = =0. Further, from the discussions given Eq. (5) for the optical band gap:

2XMn(p)
gnl(gpl)(N =014, T = O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)), according also to the MIT.

Then, in this MIT-case, replacing both  gnei(gpeiy @and  gn1(gp1)> bY  gni(gpi)> given in Equations (28, 29), and

consequently from Eq. (24), one gets, for the effective photon energy = —  gpi(gpiy = O:

K(E , rg@) =0, &(E , rg@) = 0, 00(E ,ry@m) = 0 and a(E , ry@)) = 0, corresponding also to the MIT.

Thus, in this case, the photon energy E becomes the critical photon energy, defined by:

CpE(rd(a)) = gni(gpi)(rd(a))- Therefore, Equations (28, 29), obtained in the MIT-case, become:

2
K( =0) = ( gni(gpi)) x( = CPE T gni(gpi) 20) =0, (30)
Boi +Coi . : —
( = gi@gei)) = ot ?zlm, in which  gnei(gpei) = gni(gpi)- G

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients
for =0, representing the exponential tail-states, which can be deduced from Eq. (30), by putting: =
anicapi) (Ta(a)): as:
= (Conipd) = Conio) X 2 () (32)
Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, obtained

for the following exponential tail-states of €,, 0g(E), 0, and R as:

2 Coanigen) =2% 7 (gnigpi) * € = gnicopi))» (33)
6 = ( guitepd) = gni(grz) 2 (gni(gpi)), (34)
“ ( gricapy) = 2%_gni(gpi) X _ — ( gni(gpi))’ and (35)
_ _ I gnig)=12* = ( gnicgpi)”
R aoiy) = : (36)
( gm(gpl)) In( gnipn)+117+  ~ ( gni(gpi))2

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, rq(a))
in following physical conditions by: T=0K and N = Ncpnnppy » and by: T=20K and = 1.5(1.7) x
1020 3 respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the
maximum, and ( | 1) the minimum and the extrema-values of those occur at the same corresponding photon
energy E.

Table 4n. In d-Si systems, and for two types of physical conditions such as: (T=0K and N = N¢pn(rg)) and (T=20K, N =

15x10%° cm™3), the extrema values of 1( ) and ,( ), calculated using Equations (24, 28, 29), vary with increasing E,
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represented by  the  arrows: tori, suggesting  that  their  extrema

occur at  the same
EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 102
In the P-Si system, at T=0K and N = Ngpn(rp) = 3.52 x10*® cm™3, an(re) = gni(rp)[ = 1.1689 eV]
() 28.57 1t 4211 | 31.22 22.72 18.98 15.88 0.72 | —1947 1 0.73 3.71 4
() 4.13 2281 t 3558 1 30.81 1t 33.60 | 33.06 t 4695 I 27.23 2.03 1.19 0
In the As-Si system, at T=0K and N = Nepp(ras) = 3.6955 X108 cm™3, 1(ra) = gni(ras)[ = 1.1170eV]
() 2837 1t 4185 | 31.00 22.53 18.81 15.71 0.58 1 —1952 t+ 0.69 3.65 3.9356
2() 4.11 2272 1t 3544 | 30.68 1t 3346 13292 t 46.75 | 27.05 2.01 1.18 0
In the Te-Si system, at T=0K and N = Ngpn(rre) = 4.59924 x10*€ cm=3, an(rre) = gni(rre)[ = 1.1750 eV]
() 27.51 1 40.74 | 30.03 21.72 18.05 15.01 0.005 | —19.72 t+ 0.54 3.38  3.6589
() 4.02 2232 vt 3481 1 30.11 r 3284 | 230 1t 4587 | 26.27 1.89 1.13 0
In the Sb-Si system, at T=0K and N = Ngp,(r'sp) = 5.20648 X108 cm™3, (rsp) = gni(rsp)[ = 1.1787 eV]
() 27.02 1t 40.09 | 29.50 21.28 17.64 14.62 —-029 | -—-1980 t 045 3.23  3.5107
() 3.97 2208 t 3443 1+ 2977 t 3247 1 3194 1t 4535 | 25.83 1.83 1.11 0
In the Sn-Si system, at T=0K and N = Ngp,(rs,) = 6.01115 x10*¢ cm™3, an(Fsn) = gni(rsn)[ = 1.1829 eV]
() 2647 1t 3937 | 28.89 20.78 17.17 14.20 -062 | -—1987 1 0.37 3.07 3.3465
2() 391 21.80 T 3399 | 2938 1t 32.05 13152 1t 44.77 | 25.33 1.75 1.08 0
EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 10%*
In the P-Si system, at T=20K and N = 1.5x10° cm™3, ,(rp) = g (rp)[ = 1.1467 V]
() 28.57 1t 4199 | 3091 2243 18.64 15.53 0.04 | —20.19 1 0.72 3.71 4
() 4.23 2328 1t 3628 | 3139 t 3420 1 33.61 1 47.64 | 27.59 2.04 1.19 0
In the As-Si system, at T=20K and N = 1.5 x10%° cm~3, gn(fas) = gn1(ras)[= 1.144eV]
() 2837 t 4172 | 30.64 22.20 18.41 15.32 -0196 | —2034 1 0.68 3.65 3.9356
2() 4.22 2326 1 36.24 | 31.34 + 34.14 1 3355 1 4754 | 27.47 2.02 1.18 0
In the Te-Si system, at T=20K and N = 1.5 x10%° cm™3, an(rre) = gni(rre)[ = 1.1346 eV]
() 27.50 1 40.52 | 2945 21.19 17.42 14.37 =124 | -=2102 1t 0.52 3.38  3.6589
2() 4.20 2317 t 36.07 | 31.14 t 3390 | 3328 t 47.10 | 2691 1.91 1.14 0
In the Sb-Si system, at T=20K and N = 1.5 x10%° cm~3, gn(rsp) = gna(rep)[ = 1.129eV]
() 27.01 1 39.84 | 2879 20.63 16.87 13.85 -181 | —21.387 1 0.44 3.23  3.5107
2() 4.19 23.10 T 3595 | 31.01 1t 3375 | 33.12 1 46.84 | 26.60 1.85 1.11 0
In the Sn-Si system, at T=20K and N = 1.5 x10%° cm~3, gn(fsn) = gn1(rsp)[ = 1.123 eV]
() 2646 1 39.05 | 28.02 19.99 16.23 13.26 —247 | —2181 1t 0.35 3.07 3.3465
2() 4.18 23.03 T 3582 | 30.88 1t 33.59 | 3294 t 46.56 | 26.25 1.78 1.08 0
EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 10%
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Table 4p. In a-Si systems, and for two types of physical conditions such as: (T=0K and N =

15x10%9 cm™2), the extrema values of 1( ) and ,( ), calculated using Equations (24, 28,

represented by the arrows: 1 Or | , suggesting that their extrema occur at the same E.

NCDp(ra)) and (T=20K, N =

29), vary with increasing E,

EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 10%
In the B-Si system, at T=0K and N = N¢pp(rg) = 4.06 x10%8 cm~3, o(s) = gi(re)[=1.1512¢eV]
() 32.85 1 4757 1 36.05 26.82 22.88 19.54 388 1 —1813 t 1.65 5.19 5.5179
2() 4.51 2457 't 3840 | 3342 1 3646 | 3592 1t 51.05 t 31.06 2.62 1.40 0
In the Ga-Si system, at T=0K and N = Ngp,(rga) = 1.2119x10% em™3, ,(rea) = gpi(rea)[ = 1.1721eV]
1) 28.05 1 4143 | 30.64 22.23 18.53 15.45 037 1 —1959 t 0.63 3.55 3.8323
2() 4.08 2257 v 3520 | 3046 1t 3323 | 32,68 t 4642 | 26.76 1.96 1.16 0
In the Mg-Si system, at T=0K and = Nepp(rvg) = 1.82x10%° em™2,  o,(rwg) = gpi(rmg)[= 1.1847 ]
() 2644 1 3932 | 28.86 20.77 17.17 14.20 —058 | —1981 t 0.37 3.07  3.3465
2() 3.90 2175 ¢t 3391 1 2931 13199 | 3146 t 4470 | 25.31 1.75 1.08 0
In-Si system, at T=0K and N = N¢pp(rp) = 2.133 x10%° cm3, (M) = gi(r)[= 1.1906 eV]
() 25.82 1 3850 1 28.19 20.23 16.68 13.75 —090 | -—-1985 1t 0.28 291  3.1741
2() 3.83 21.41 t 3339 L 2885 1t 3149 1 3098 1t 44.02 | 24.76 1.68 1.05 0
EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 10%
In the B-Si system, at T=20K and N = 1.7 x10%° cm™3, ,(rg) = g1 (rg)[ = 1.193eV]
() 3287 t+ 4780 |  36.65 27.37 23.53 20.19 515 | —16.80 t 1.67 5.19 5.5179
2() 431 2364 1t 3701 | 3227 t 3528 | 3482 1t 49.67 | 30.29 2.60 1.40 0
In the Ga-Si system, at T=20K and N = 1.7x10% cm™3, ,(rga) = gp1(ras)[= 1.119eV]
() 28.04 1t 41.14 | 29.86 21.52 17.68 14.61 —-128 | —-2132 t+ 0.62 3.55 3.8323
2() 4.32 23.69 1 36.88 | 31.84 t 34.64 | 3399 t 48.06 | 27.63 2.00 1.16 0
: — — 20 ~m—3 = _
In the Mg-Si system, at T=20K and N = 1.7 x10% cm™3, 5(rvg) = gpa(rug)[= 1.089V]
1) 2641 1 3879 | 2745 19.48 15.65 12.68 =357 | —2294 1+ 0.34 3.07 3.3465
2() 4.32 2372 1t 3685 | 3172t 3445 | 3374 1 47.56 | 26.79 1.79 1.09 0
In the In-Si system, at T=20K and N = 1.7 x10%° cm~3, w(n) = gpa(np)[=1.078eV]
() 2579 + 37.88 | 26.52 18.70 14.87 11.95 —444 | —-2355 1t 024 291 3.1741
2() 4.32 23.72 1 3682 L+ 31.66 t 3437 | 33.64 1t 47.36 | 26.48 1.72 1.06 0
EineV 3 3.34 3.44 3.56 3.712 3.87 4.215 4.5 10 100 10

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-Si systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, typically for E=3.34 ¢V and for some (P, Te, Sn)-Si systems and (B, Ga, In)-Si ones, being

indicated by the arrows:  and

, as tabulated in following Tables 5n and 5p, in which the physical

condition N > Nepn(nppy (or N > 0) must be respected, and their variations thus depend on the ones of the

optical band gap, gn]_(gp]_)(N lfd(a))-
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Table Sn. In (P, Te, Sn)-Si systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.34 eV and T=20K, present the variations by arrows, (
optical gap gn1 (N , Ig), are presented by (

and )or by( and ).

and ), since those of the

N (10%8 cm™3)

8.5

15 50 80 150
gn1(N ,Ip, 20K) in eV 1.1489 1.1294 1.1219 1.1184 1.1248 1.1467
n(rp)=6.7086
() 1.732 1.763 1.774 1.780 1.770 1.735
1C . rp) 42.007 41.898 41.856 41.836 41.873 41.995
20 1p) 23.233 23.649 23.809 23.885 23.746 23.279
( ,rp) in102 Q1 -t 8.306 8.454 8.511 8.539 8.489 8.322
(,rp) in 10° 1 5.861 5.966 6.006 6.025 5.990 5.873
R( ,rp) 0.570 0.571 0.5711 0.5713 0.571 0.5702
g1 (N, Ire, 20K) in eV 1.1334 1.1225 1.1132 1.117 1.135
n(  )=6.6031
(. 1.756 1.773 1.788 1.782 1.754
) 40.517 40.456 40.402 40.424 40.524
20, ) 23.192 23.421 23.619 23.538 23.168
(, ) in 202Q1t -1 8.291 8.373 8.443 8.415 8.282
(, )in 10° ! 5.944 6.003 6.053 6.033 5.938
R(, ) 0.566 0.5667 0.5671 0.5669 0.5662
g1 (N, Isp, 20K) in eV 1.1421 1.1256 1.1092 1.1101 1.123
n( )=6.4960
. ) 1.742 1.769 1.7949 1.7935 1.773
) 39.163 39.071 38.977 38.982 39.056
20, ) 22.637 22.978 23.319 23.301 23.032
(, )in 102071 ! 8.092 8.214 8.336 8.330 8.234
(, )in 10° 1 5.897 5.986 6.075 6.070 6.000
R(, ) 0.5613 0.562 0.5626 0.5625 0.5621
N (108 cm™3) 4 8.5 15 50 80 150

Table Sp. In (B, Ga, In)-Si systems, the numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.34eV and T=20K, present the variations by arrows, (

optical gap gp1(N ,Ty), are presented by ( and )or by ( and ).

and ), since those of the

N (108 cm™3)

6.5

11

15 26 60 170

op1(N T, 20K) in eV 1.120 1.113 1.111 1.112 1.127 1.193
n(rg)=7.1111

( ,rg) 1.777 1.789 1.7917 1.7907 1.766 1.662
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1 1) 47.408 47.368 47.357 47.361 47.448 47.804

2( 1) 25.279 25.439 25.482 25.467 25.121 23.642
( ,rg) in102 Q% 1 9.037 9.094 9.109 9.104 8.981 8.452
(,rg) in 10° ! 6.016 6.054 6.0644 6.061 5.979 5.627
R( ,rg) 0.5875 0.5877 0.5878 0.5877 0.5872 0.5851
a1 (N TG, 20K) in eV 1.121 1.098 1.088 1.119
n(  )=6.6568
(., ) 1.7756 1.8128 1.8283 1.780
100 41.1598 41.0261 40.9697 41.145
20, ) 23.639 24.135 243416 23.694
(, ) in102Qt -t 8.451 8.628 8.702 8.470
(, ) in 10° 1 6.0098 6.136 6.188 6.024
R(, ) 0.5690 0.5699 0.5703 0.569
gpl(N ,M1n, 20K) in eV 1.118 1.074 1.078
n(  )=6.4254
(., ) 1.7806 1.8511 1.846
10D 38.115 37.859 37.879
20, ) 22.882 23.788 23.7185
(, )in 1020t -t 8.181 8.504 8.479
(, )in 1205 1 6.027 6.265 6.247
R(, ) 0.5592 0.5611 0.5610
N (108 cm™3) 6.5 11 15 26 60 170

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)-Si systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at =
15(3) x 10 3 respectively, as functions of T, typically for E=3.34 eV and for some (P, Te, Sn)-Si
systems and (B, Ga, In)-Si ones, being indicated by the arrows: and , as given in following Tables 6n

and 6p, in which their variations thus depend on the ones of the reduced Fermi energy, En(p)(rd(a), )

Table 6n. In (P, Te, Sn)-Si systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.34eV and N = 1.5 x 10*° cm™2, increase with increasing T, since the optical band

gap gn1(T,Iq) decreases with increasing T.

TinK 20 30 50 100 200 300
= gn(T,rp)ineV 1.1219 11218 1.1212 1.1185 1.1091  1.1024

n(rp, ) 6.7086 6.7093 6.7118 6.724 6.774 6.8457
(re, ) 1.774 1.7747 1.7756 1.780 1.795 1.8059
1(re, ) 41.856 41.865 41.895 42.049 42.668 43.603
o(rp, ) 23.809 23.814 23.835 23.939 24.320 24.725
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(tp, ) in 102 Q71 1 8.511 8.513 8.521 8.558 8.694 8.8389

(tp, ) in 10° % 6.006 6.007 6.0098 6.0248 6.0757 6.1124
R(rp, ) 0.5711 0.5712 0.5713 0.5719 0.5744 0.5775
gn = gni(T,Ire) ineV 1.1225 1.1224 1.1219 1.1192 1.1106 1.1063
n(rre, ) 6.6031 6.6038 6.606 6.6189 6.6686 6.740
(e, ) 1.773 1.7737 1.774 1.7787 1.7926 1.7996
1(rre, ) 40.456 40.464 40.494 40.6458 41.2569 42.189
2(Fey ) 23.421 23.426 23.4458 23.5467 23.9077 24.258
(fre, ) in 102 Q1 1 8.373 8.3746 8.3816 8.4177 8.5467 8.6721
(fre, ) in 10° % 6.0027 6.0034 6.0062 6.0206 6.0673 6.0911
R(Ie, ) 0.5667 0.5667 0.5668 0.5675 0.5699 0.5731
gn = gn1(T,Tsp) ineV 1.1256 1.1255 1.1250 1.1225 1.1153 1.1152
n(fsn, ) 6.496 6.4967 6.4992 6.5118 6.5613 6.6326
(Fsm ) 1.7686 1.7688 1.7696 1.7735 1.7851 1.7853
1(Fsn, ) 39.0706 39.0790 39.1082 39.2579 39.8646 40.8037
2(fsm ) 22.9776 22.9828 23.0014 23.0970 23.4256 23.6817
(fsn, ) in 102 Q71 1 8.2142 8.2161 8.2227 8.2569 8.3744 8.4659
(rgn, ) in 105 ¢ 5.9862 5.9869 5.9895 6.0027 6.0421 6.0426
R(rsn, ) 0.5620 0.5620 0.5621 0.5628 0.5652 0.5682
TinK 20 30 50 100 200 300

Table 6p. In (B, Ga, In)-Si systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.34eV and N = 3 x 10'° cm™3, increase with increasing T, since the optical band

gap gp1(T,Ia) decreases with increasing T.

TinK 20 30 50 100 200 300
w= gu(T.rg)ineV 1.1130 11128 1.1121 1.1085 1.0945  1.0755
n(rs, ) 7.1111 7.1118 7.1143 7.127 7.177 7.249
(rs, ) 1.7888 1.7891 1.7902 1.796 1.8186 1.849
W(re, ) 47.368 47.3769 47.4082 47.568 48.203 49.128
(g, ) 25.440 25.448 25472 25.600 26.105 26.813
(rs, ) in 102 Q7 -1 9.095 9.097 9.106 9.152 9.332 9.585
(r, ) in 105 1 6.0546 6.0556 6.0594 6.079 6.156 6.260
R(rg, ) 0.5877 0.5877 0.5879 0.5885 0.5909 0.5943
w= gu(T.rea)ineV 10948 1.0946  1.0939 1.0905 1.0773  1.0603
n(fea ) 6.6568 6.6575 6.6599 6.673 6.722 6.794
(fea ) 1.8182 1.8185 1.8195 1.825 1.846 1.874
1(fea, ) 41.007 41,015 41.044 41.192 41.780 42.642
2(Tear ) 24206 24213 24236 24.356 24.826 25.470
(feas ) in 102 Q1 -1 8.653 8.656 8.664 8.707 8.875 9.105
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(feas ) in 105 1 6.154 6.155 6.1586 6.1774 6.250 6.345

R(rea ) 0.5701 0.5701 0.5702 0.5709 0.5735  0.5771
o = gpl(T, M) ineV 1.1050 1.1049 1.1043 1.0912 1.0773 1.0820
n(fn ) 6.4254 6.4261 6.4285 6.441 6.490 6.562
) 1.8016 1.8019 1.8028 1.8074 1.824 1.839
() 38.040 38.048 38.076 38.220 38.800 39.672
NGD) 23.152 23.158 23.178 23.283 23.676 24.132
(fy ) in 102 Q71 -1 8.276 8.279 8.286 8.323 8.464 8.627
(i ) in 105 1 6.098 6.0988 6.102 6.118 6.173 6.224
R ) 0.5598 0.5598 0.5599 0.5606 0.5632  0.5666
TinK 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type degenerate Si-crystal, by using the same physical model, as that given in Eq. (7), and same
mathematical methods, as those proposed in I, II and III, and further, by taking into account the corrected
values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the refraction
index n and extinction coefficient K, as the photon energy ( - o), all the numerical results, obtained in III,
are now revised and performed.

So, by basing on our following basic expressions, as:

(i)the effective static dielectric constant, €(Iy(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N =N — N¢pn(cpp) =0 or N = Ncpn(cppy » noting that Nepncppy can also be explained as the

density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT), NEBE(CDF,), as

that determined in Eq. (21), with a precision of the order of 107>, being observed in Table 1,

(iii) the Fermi energy, paepy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables

2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical
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results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the physical model, proposed by Forouhi and Bloomer (FB) [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@)  Fnorpo)(N =0, T=0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )2/3,

(b) as discussed in Eq. (5), in the MIT, in which gn1(gp1y(N = 0,rg@@), T=0) = gnicgpi)(raca))-

where  gn1(gp1) and  gnicrgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = gni(gpi)(rd(a)) or the effective photon energy E =

gni(gpi)(rd(a)) =0, one has: K(E =0, rd(a)) =0, &(E =0, rd(a)) =0, go(E =0, rd(a)) =0 and

a(E =0,rg) =0, since those optical coefficients expressed in terms of (E = E— gnigpi) = 0)2 ,
according also to the MIT-case, being new results.

In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type Si-crystals, the Fermi energy rnrp) = ( Fp = [ v fp]), c(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10~% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(ay)» Neon(cop) (Fd(ay) being the
critical density, characteristic of the insulator-metal transition phenomenon. It means that =0 at this
transition.

First of all, we define the reduced electron density by:

3

U(N 1o, T) = UL T) = s Negy (1) = 2% ey > (M2521)7 (em™), (A1)

where N¢y( ) is the conduction (valence)-band density of states, and the values of Q) and My are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type Si is determined by :

en(W) [ Fp(W)Y _ G(W)+AuBF(u) _ = V(u)
o ( o )= = g, (u) = TS, A= 00005372 and B = 482842262, (A2)

2
2 4 8\ 3
where F(N , rge, T) = aud (1 +bu 3+ cu“s) °, obtained foru 1, according to the degenerate cas,

2 _3
= [(BVT/A)]¥3, b= %(2) ,C= =% 3739855( ) and then G(u) Ln(u)+272xuxe % foru

1920
. _ . 4 — 93/2
1, according to the non — degenerate case, with: d =2 [ﬁ (> 0.
So, in the present degenerate case (U 1), one has:
4 8 _E
_z -2 3
Fn(Fp)(N ’rd(a):T) = Fn(Fp)(N ’T) = Fno(Fpo)(u) x (1 +bu 3+cu 3) : (A3)
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Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

2Xkl%n(Fp) (N)
2%My ()

Fno(Fpo)(N ) = (A4)

being proportional to (N )%3, and equal to 0, FnoFpo) (N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type Si-crystals, we define the effective reduced Wigner-Seitz radius rgn(sp),
characteristic of the interactions, by:

1/3 1

asn(ep) (rd(a))

1/3
= 11723 10° x (%2) 7 x T2
a,

39““’) (BI)

Foncsp)(N -+ Faca)) = (4,TN
Here, the values of gcv) = 3(2) and (M5)/M,) are defined and given in Table 1.
In particular, in the following, Mp/My =m;/m, =0.1713, is taken for evaluating the band gap

narrowing (BGN), as used in Section 3. Therefore, the correlation energy of an effective electron gas,

CE(rsn(Sp)), is found to be given by [1]:

0.87553 L (2[1-In(2)] _
_ 087553 o —— ( = )xln (Fsn(sp))—0.093288
CE(rsn(Sp)) = CE(N ! rd(a)) - 0-0908+rsn(sp) + 1+0.03847728XI’1'67878876 . (Bz)

sn(sp)

Then, the band gap narrowing (BGN) can be determined by [1]:

1

= 5/4
1/3 2
A gn(N rg)  ap % s(sl%) XN " +apx e(gr% x N? X (2503 x [ = ce(rsn) X rsp]) +az [s(rd)]
3 1
my 174 ) 1/2 & |2 6 N =N—Ncpn(rq)
w’ me XN +ay x \IS(rd) XN " x 2+ as x [S(I’d)] Ny, Ny = 9.999x1017 ~¥ (B3)

where a; =6.829x1073(eV) , a, =1.168 x 1073(eV) , az =5.032x 1073(eV) , a, = 10.058 x
1073(eV) and ag = 1.455 x 103(eV), and

1 5/4
€ 1/3 3 — & mC
D go(N ,Fa) ag > o x NJ™ +ap x forx Nf x (2503 x [~ ce(rsp) x repl) +az x ool x /E x
3 1
1/4 € 1/2 [ € ]E s _ (N =N—Ncpp(ra) )
+ X x + X |—|" x =|—
Nr 284 &(ra) Nr 3 &(ra) Ny, N 9.999x1017 ¢cm=3/° (B4)

where a; =9.329x1073(eV) , a, =1596 x 1073(eV) , ag=7.144x1073(eV) , a, = 13.741 x
1073(eV) and ag = 1.988 x 1073(eV).

Therefore, in Equations (B3, B4), as T=0 and N =0, and for any gy, A gn@gp(N =0,rqg@) =0,
according to the MIT.
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