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Abstract

In the n(p)-type degenerate GaAs-crystals, at low temperature T and high d(a)-density N, our expression for
the static dielectric constant, 8(rd(a)) , expressed as a function of the donor (acceptor) radius, rqc), and
determined by using an effective Bohr model, as that investigated in [1,2], suggests that, for an increasing
Fdca)» due to such the impurity size effect, 8(rd(a)) decreases, affecting strongly the critical d(a)-density in
the metal-insulator transition (MIT), Ncpn(cpp)(aca))» determined by Eq. (3), and its values are reported in
Table 1, and also our accurate expressions for optical coefficients, obtained in Equations (24, 25, 28, 29),
and their numerical results are given in Tables 2-6. Furthermore, one notes that, as observed in Table 3¢, our
obtained results of those optical coefficients are found to be more accurate than the corresponding ones,
obtained from the FB-PM [11], suggesting thus that the present model, used here to study the optical
properties of the n(p)-type degenerate GaAs-crystals, is a good improved FB-PM.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy

1. Introduction
In our three previous papers [1, 2, 3], referred here to as I, II and III.
In I and II, our new expression for the extrinsic static dielectric constant, S(Fd(a)) , Fd@a) being the donor

(acceptor) d(a)-radius, was determined by using an effective Bohr model, suggesting that, with an increasing
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Fdca)» due thus to such the impurity size effect, 8(rd(a)) decreases, affecting strongly the critical impurity
density in the metal-insulator transition, and also the optical coefficients, given in n(p)-type degenerate Si
crystal, for the reduced Fermi energy [4], ( ( ). Therefore, all the numerical results of those obtained
and given in III are now revised and performed, in comparison with those obtained in [5-12], as given in the

following Sections 2-5.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given
in the n(p)-type GaAs -crystal, such as: (i) if denoting the free electron mass by mg, the effective electron
(hole) mass, mn(p)/ M, , which is respectively equal to the relative effective mass, Mppy/my =
0.066 (0.291) [2], as used in this Sections 2 and 4 to determine the critical impurity density in the metal-

insulator transition (MIT), and (ii) to the reduced effective mas, m,//m, = ::::ﬁ’; = 0.0538, as used in

Sections 3 and 5 to determine the optical band gap and the optical coefficients given in the n(p)-type
degenerate GaAs. Further, go = goas(goca) = 1.52€V [2] is the unperturbed intrinsic band gap, €, =
€as(Ga) = 13.13 is the relative static intrinsic dielectric constant of the GaAs-crystal, and finally, the
effective averaged numbers of equivalent conduction (valence)-band edge, gcv) = 1(1).

Table 1. For increasing r'q(z), while £(ry) decreases, the functions: gni(gpi)(rd(a)), Neonnop) (Fagay) and N(E:BE(CDp)(rd(a)) increase.

The relative deviations between the numerical results of Nep,(rq) and NEB!(r,), calculated using Equations (3, 21), are verry

small, of the order of 2.35 % 1072, suggesting that Neonnop) (Faay) can be well explained by NEB! (ry), being localized in the

EBT.

Donor P As Te Sb Sn

rq (nm) [4] 0.110 0.118 0.132 0.136 0.140

e(rq) 13.40 13.13 12.33 11.86 11.33
gni(rg) in meV 1519.8 1520 1520.7 1521.2 1521.8

Neon(rg) in 106 cm™3 1.2538 1.3330 1.6107 1.8099 2.0762

NEB! (ry) in 1016 cm~3 1.2516 1.3305 1.6070 1.8058 2.0713

IRD] in 1073 1.79 1.90 2278 2.28 2.35

Acceptor B Ga(Al) Mg In

ra (nm) [4] 0.088 0.126 0.140 0.144

&(ra) 243813 13.13 12.4205 11.9991
gpi(ra) in meV 1503.7 1520 1522.7 1524.5

Nepp(ra) in 101" cm =3 1.7845 11.426 13.497 14.970

NEpp(ra) in 1017 cm™3 1.7850542 11.429526 13.50187 14.975094

|RD| in 107 3.1 3.08 3.61 3.40
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We now determine our expression for extrinsic static dielectric constant, 8(rd(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the MIT, as follows.
2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since (), given in tetrahedral covalent bonds, is usually either
larger or smaller than ryoea0) = ras(Ga), @ local mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: Fyay > rdocac) (Fd(a) < Fdo(ac)): due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc,)-effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'qa)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
aniap) (@) = go(rsi) = @ (Fd@) = docao)(I'si) =  docaoy (T'si) < [(e(r?:a))) - 1], (1)

__ 13600 X(mn(p)/mo)
where  goca0)('si) = > and

€,
e(ra))= = = < &, for Fq(a) = Fdoao)»
d@ ) _ "d(a)
\/l+[(rdo(ao)) 1] ><In(rdo(ao))
e(rga)= o > [( "d(a) )3 - 1] x In( d(@) )3 <1 forrggy <r, ()
d@/— r 3 r 3 Tdo(ao) Tdo(ao) ! d(@) = "do(a0)-
1| (22D ) 1 |in(-9@. )
do(ao) do(ao)

One notes that €(ry(,)) decreases with an increasing I'q(a), as observed in the above Table 1.
2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate GaAs-crystals, the critical donor(acceptor)-density, Ncpnnpp)(Fda)) » 1s
determined from the generalized effective Mott criterion in the MIT, as:
1
Neonop) (Fdgay) 73 * @aneepy(F)) = 2, 2=0.25, 3)

and the effective Bohr radius agn(gp)(raca)) is given by:

2

_ &(rg@y)> © _ —8 €(raa))
aBn(Bp)(rd(a)) = W =053x10"°cm x m, (4)

where —q is the electron charge, €(rq@)) is determined in Eq. (2), and My, /My = Mppy/mg =
0.066(0.291). From Eq. (3), the numerical results of Ncpnnpp)(aca)) are obtained and given in the above
Table 1, in which we also report those of the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, N(EZBI(CDp)(rd(a))’ obtained using Eq. (21), as investigated in Section
4, noting that the maximal relative deviations (RD), in absolute values, between Ncpnnpp)(Faca)) and

Neonccop) (Td(eay) are found to be equal to: 2.35(0.361) x 1072, respectively. Thus, Nepnop) (Fdca))
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determined in Eq. (3), can be explained by the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, NEBE(CDp)(rd(a))’ determined in Eq. (21).
Furthermore, in our recent work [7], we also showed that, in the n(p)-type degenerate
semiconductors, the critical densities of electrons (holes) can also be determined from the spin-
susceptibility singularities (SSS), obtained at N = N&&y cppy (faca)), at which the MIT occur.

In summary, Table 1 also indicates that, for an increasing Iy, €(rqe)) decreases, while gni(gpi)(rd(a)),
Neonvop () and Npheop) (facay) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, M, /My is chosen as: My, /Mo =m/m, =0.0538 , and then, if denoting N =N —

n(p
Nconiop) (Fda)) > the optical band gap (OBG) is found to be given by:

an1gp)(N  Ta@: T) = gn2@p)(N - Ta@y T) + rngepy (N T (5)
where the Fermi energy pnep)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

gn2@p2)(N Ta@, T) = gneicgpen (Ta@: ) =4 gngny (N Faca)-
Here, the effective intrinsic band gap  gnei(gpei) 1S determined by:

_ 49%x1074xT2
aneicoped (Td@» T) = gnicopiy (Fa@) ~ ~Tagzr i

and the band gap narrowing, A gn(gp)(N , rd(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of gni(gpi)(rd(a)) are given in Table 1.

Then, as noted in the Appendix A and B, at T=0K, as N =0, one has:  gep)(N,T) = gnorpoy(N ) =
0,as givenin Eq. (A4), and A gn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, gniigp1) = gn2gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also

to the MIT.

4. Physical model and mathematical methods

4.1. Physical model

/'
In the n(p)-type degenerate GaAs, if denoting the Fermi wave number by: Krnrpy(N) = (3 2N/gc(\,))1 3,

the effective reduced Wigner-Seitz radius I'sn(spy, characteristic of the interactions, is defined by

k_l
x rsn(SP)(N »Fd(a)s rnn(p)) = % <1 (6)
being proportional to N 3, Here, = (4/9 )V3, kEnl(Fp) means the averaged distance between ionized

donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).
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Then, the ratio of the inverse effective screening length Kgn(spy to Fermi wave number Kenpy at 0 K is
defined by

Ksnsp) __ Ken(ep) _ R

+ - “fnsp) < 1,
KenFp)  Kan(sp) SNWS(spWs) [RsnTF(SpTF) RanS(spWS)] 1 7

Rsngspy(N + Faa)) =

These ratios, Rsntr(spTr) @Nd Rsnws(spws)> can be determined as follows.
First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rgyrr(sntry 18

reduced to

KsnTF(spTF) kl?nl(Fp) 4 Tsn(sp)
Rente(N , Tgaa)) = — =— = 1 8
snTF( d(a)) Ken(ep) ksanF(spTF) ’ ®

being proportional to N~/6,

Secondly, for < Ncpnnpp)(Fde) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

Ksn(s d gns * N Fd(a
Rsnspyws(N  Faa) = —,((Fp:ws =05() x (23 — Lo ce v ))]), ©)

d sn(sp)

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, as given in I, in the highly degenerate case, the physical conditions are found to be given by :
Kenep) NMn(p) 1 Ken(ep) Fno(Fpo)

< = <——=P=R <1, Ayp) = — 10
aBn(Bp) Fropo)  Anp)  Kantsp) sn(sp) n(P) Nn(p) (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,
Rsn(sp) 18 determined in Eq. (7).
Then, in degenerate d(a)-GaAs systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, — (+ ), at position r, and an ionized donor (ionized
acceptor) charge: + (— ) at position R; , randomly distributed throughout the Si crystal, is defined by

ORIV GER'S (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and v;(r) is a

screened Coulomb potential energy for each d(a)-GaAs system, defined as

g2xexp (—Ksn(sp) <|r—Rj])
&(rd(a))*|r—Rj|

vi(r) == ,

where Kgn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2
_ q 4n 1

vi(k) =— X — X —=—

J( ) (@) Q  K2+kd’

where Q is the total GaAs -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wy (vn(p), N, rg) = (V(NV(r)), was

determined in 11, as :
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Fno(Fpu). ( 1 2)

=2 — Rasp)(N Fa@) _ V2N 21,—1/2 _
Wn(p)(\)n(p)’ N , rd(a)) = r]n(p) X exp <# 5 r]n(p)(N y I’d(a)) = m xXq kSI‘I(SP)’ Vn(p) =
n(p

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =
0.48302632 (1.58), respectively, will be chosen such that the determination of the density of electrons

localized in the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally

Vn(p) = ———— where is the total electron energy and Fno(Fpo) 1S the Fermi energy at 0 K, determined in
Fno(Fpo)

Eq. (A4) of the Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2><k2
kT,

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on W) (Vagy, N Faca)-
4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)

In heavily doped d(a)- GaAs systems, the effective Gaussian distribution probability is defined by

1 —V2
o) =t erp ]
g 2 Wn(p) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = i 2 is defined by

(C =V D =( & Daw= _o( =¥ 2xPW)AV, for a=1.

*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /W) = Anp) X nep) X EXP

2

4 [[vn(p)|

and using an identity:

o %3 x exp (— XS — %)dS =T( +3) xexp (x*/4) % D_a_%(x),

where D__ 1 (x) is the parabolic cylinder function and (a + %) is the Gamma function, one thus has:
2

2a—1 1
a—1t exp (—x2/4)><WnT exp (—x2/4)><r]:_i xRan(sp) X (2a—1)
2 8% | [Vn(p)|
3) xD___1(x). (13)
2
B. Feynman path-integral method (FPIM)
1 -1
Here, the ensemble average of ( —V)* 2= Z 2 is defined by

e 2
_\pa—t _ a—3 _ 2 M(a+3) 0 _al t (W) 5 _
(C =) 2 = deriv = o755 < 76 X (D 2xexp —=z —(dt 1" =-1,
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...3
noting that as a=1, (it) 72 x exp{ ( “/_) } is found to be proportional to the averaged Feynman propagator
given the dense donors(acceptors).

_moo( s)"a"% x exp{ XS — %} ds = 2%2 x [(3/2) x exp ( — x2/4) x D_,_1(x),
2

Then, by variable changes: t = and X == /,/Wp(p), and then using an identity:

_1 -1 -1
one finally obtains: i Derm = Dkams € i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_a_%(x) , those given for (( —V)a_%)K”\A will be

obtained in the two cases: =0and <0O0.
(i) _= -case

As -+ 0o onehas: , -— o0 andX -— oo, In this case, one gets:

vz o2 -1
D g »—o0) =5 imx ax (=X

-1
Therefore, Eq. (13) becomes: ( Z am = a_%. Further, as -+ 0, one has: @y -— 0 and X -— 0. So,
one gets :

D_, 1(X == ) (a)xexp((ﬁ+ )x—m%ﬁ)w, @ = = —

1682 27 r@+d)

_1
Thus,as -+ 0, from Eq. (13), one gets: ( z v — 0.

-1
In summary, for __= 0, the expression of ( Z “)xim can be approximated by:

_% _1 22
( « M 2, k= (14)
i) = -
As -—0, from Eq. (13), one has: ppy -+ 0and X -+ oo. Thus, one first obtains, for any a = 1,
2 VT .
D_,_1(x » ) PB(a) xexp|—(vVa +—3) x — = W -0, B(a) = 1> hoting that
2 16a2 27 1@+
B(D) = " —and B(5/2) = 295
24xr(5/4)
L1
2
Then, putting f(a) = n”—\/é_‘: x I'(a+3) % B(a), Eq. (13) yields
( 2)kim <R x(2a-1)
Hoy( npy =+ 0, Faqay @) = @ XP [_ #\)}()7_ (‘/5 + ML%) X~(3+15) 2 JV - 0. (15)
n(p al

Further,as - — oo, one has: ) -+ © and X - oo. Thus, one gets:

N

X

1(X > 00) = xeIx 7 0. Therefore, Eq. (13) yields
2

—a—
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1
( iT)KIM 2
_ 1 (Ane)* n(p)) —a—1
Kn(p)( n(p) -+ oo, rd(a)’ a) = f(a) @ x exp ( — 2 © ) x (An(p) x n(p)) 2.0 (16)

It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:
Fre)( n(p): Fa) @) = Kngp) ( nep): @) @) + [Hn(e)( n(p: Ta@) @) = Kngp) ( ny: Facay @)] > exp [ ¢q
(Ao n))”]: (17)
such that: Fnoy( nep): Mdga): @ ~ Hn)( nepy: Fday@)  for 0= <16 , and Fnpy( nep) M) @) -
Kn)( nep): Mdcay: @) for n¢py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢q = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDIO)(N, Fd(ay), in the following.
C. Critical impurity density in the MIT

In degenerate d(a)-GaAs systems at T=0 K, in which My, y/my = mMppy/m, = 0.066(0.291), as given in
Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

1
3 4
2

cv) (2Mp : cv) (2Mp 3 eXp__an
C O =29 (52 ( Dy = 22(F52) x <J;‘—) XM *Ds00= (). (18)

X2

where x is defined in Eq. (13), as: X == /,/Wpy = Anpy X n(p) X EXP X Rones)

4x v
Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My = Mypy/m, and =

0.48302632 (1.58), respectively, being chosen such that the following determination of Ngphcopy (N: Fay)

would be accurate.

Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:

1
( Dxm 3/2

<0 9e) X (M) *Mo) ™% /()

_ =M=I:n(p)( n(p)lrd(a)lazl), 0o~ é 23 2 x @=1, @=1= §\/_ .
f(a=1) 0 2 23xT(5/4)
(19)

Therefore, NEBI(CDP)(N, ld(a)) can be defined by

0
Neoncop(N: fa@) = o ( <0)d ,
where (- = 0) is determined in Eq. (19). Then, by a variable change: () = . one obtains:

Fno(Fpo

9e* (M) 7@ _Fnotepo) 16

c(v) <\ Mn n(p) > Fno(Fpo
NEBncop (N Fa@ay) = PO s [ 7 (= 1) % Fagy( ey Fa@ @ = 1) d ey + Iny -

(20)
where
oo oo —(An(p)x n)z -3/2

) = 36 @=1) XKy ( ey Ta@ @ =1)d ey = 16 e (A n@) )
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Here, (a=1)= 3L
23X (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/i] , the integral 1) yields:

—1 A— — b ynp))
I — 1 x tt—letdt = n(p) ,
n(p) ey ) LTV

2
where b =—1/4, yp(p) = [16An(p)/ \/E] , and I'(b, Yn(p)) is the incomplete Gamma function, defined by:

- — 16 (b—1)(b=2)..(b—j)
"Bye)  Yap* " [1+ Jw—()]

Finally, Eq. (20) now yields:
3/2
9ew) > (Ma@))™ "y @) > Fro(Fpo) 16
NEBm(cop [N = Neoniuop) (Faa): Taa)] = 27 & { P (a = 1)

= r(, ne)
Faw)( n@) M@ @ =1)d ngp) +25/TA2,3)}

21

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBI(CDF,)[N = Neonop) (Fdgay): Fday] = NEEE(CDp)("d(a)) , for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp) (Fdca)) »
calculated using Eq. (3), with a precision of the order of 2.35(0.361) x 1072, respectively. In other word,
this critical d(a)-density Ncpnpp)(Fdea))) can thus be explained by the density of electrons(holes)
localized in the EBT, NEBI(CDF,)( Fd(a))» respectively.

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)-Si systems, can thus be expressed by:

N =N—Neonuop N = Nconccop)- (22)

2xkEnpy(N )

, then the
2XMn(p)

Then, if N = Ncpnnpp), according to the Fermi energy, rno(rpo)(N = Nconinop)) =

value of the density of electrons(holes), NEEE(CDP) , localized in the EBT for <0, is almost equal to

Ncpn(npp), given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

NEB-rI;(CDp) NCDn(NDp)a asN = NCDn(NDp)- (23)

5. Optical coefficients

Here, My,5)/ M, is chosen as: My, /My = my/m, = 0.0538, as that used in Section 3, for determining the
optical band gap in degenerate GaAs-crystals.

The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n—iK and € =&, —ig,, where i* =— 1 and €= 2. Therefore, the real and

imaginary parts of € denoted by €, and €, can thus be expressed in terms of the refraction index n and the
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extinction coefficient K as: & = n? — K? and €, = 2nK. One notes that the optical absorption coefficient a is

related to €5, n, K, and the optical conductivity G by [3]

g*x|v(E)[?
N(E) %&free space XCE

a(E) = x J(E ) = Ex2® = 2@ = __4190E) g1 =n?—kZand g, = 2nK, (24)

cn(E) c n(E)*¢free space

where the effective photon energy: E = E — gn(gp) =  is the reduced photon energy, the band gap  gn(gp)
can be equal to the optical band gap gn1(gp1) and intrinsic band gap  gni(gpiy» determined in Eq. (5). Here,
E= w,-q, ,|V(E)], W, &freespace> C and J(E ) respectively represent: the photon energy, electron charge,
Dirac’s constant, matrix elements of the velocity operator between valence (conduction)-and-conduction
(valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light,
and joint density of states. It should be noted that, if the three functions such as: |V(E)|?, J(E ) and n(E) are
known, then the other optical dispersion functions given in Eq. (24) can thus be determined. Moreover, the

normal-incidence reflectance, R(E), can be expressed in terms of K(E) and n(E) as:

[n(E)—1]2+K(E)?

RE) = remer

(25)

From Equations (24, 25), if the two optical functions, €; and €5, (or n and K), are both known, the other ones
defined above can thus be determined.

Then, using a transformation for the joint density of states, given in allowed indirect GaAs-transitions, for
a=5/2, as discussed in I and III, one has:

at low values of E,

In)( an(@p) = 2_,112 x (z_rgr)3/2 x % = 2—,112 x (z—rgr)slz X (E— gn@p)"?, fora=1, (26)

and at large values of E,

3/2 — a—(1/2) 3/2 _ 2
_ 1 2m, (E—Egnegp)) _ 1 2my (E— gn@n)) _
Jn(p)( = gn(gp)) =52 > (_2 ) 1 > (—2 ) X ———— _ for a=5/2. 27)
oni(gpi) Egnicgpi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E - o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o (E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the accurate
expressions of the optical coefficients, obtained in the degenerate n(p) type GaAs-crystals, is proposed as
follows.

If defining the band gap gn(gp), Which can be equal to the optical band gap  gn1(gp1), the effective intrinsic

4 Ai
=1 E2 (1410742 ) —BE+C;

band gap gnei(gpei), Or to the intrinsic band gap  gni(gpiy, and f(E)= we propose:

3/2 _ 1/2
KE) =FE) % gnigoiy X (E = E= gngn) ~ »for gnicgpiy SE=<23eV,

=f(E)x (E = E— guggp)) . for E=236V, (28)
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being equal to 0 for E =0 (or for E = g5(gpy), and also going to 0 as E™1 asE - oo, and further,

BoiE+Co
N(E) = Neo(Faga)) + ?zlﬁﬁf'ci, (29)

going to a constant as E - oo, since N(E - ©,I4(a)) = Neo(Faa)) = /€(Faca)) > 2—1, wr=51x1013s71

[5] and w_ = 8.9755 x 1013 s, according to N (rp) = 2.08, obtained from the Lyddane-Sachs-Teller
relation [5], from which T(L) represents the transverse (longitudinal) optical phonon mode, while in the FB-

PM [11], Neorgy = 2.156 for the GaAs crystal.

. 2 _
Here, other parameters are determined by [11]:Bq = %: x [— 87' + Egnei(gpei) Bi — Egnei(gpei) + Cil, Coi = %: X
Bix(E2nei(qpeiy*+Ci Jaci—8f

M— 2 gnei(gpei)Ci] , Q= — where, for i=(1, 2, 3, and 4), Aj = 1.154 x Ai(FB) =

47314 x 1074, 0.2314,0.1118 and 0.0116 , B; = Bi(rs) = 5.871,6.154,9.679 and 13.232, and C; =
Ci(re) = 8.619, 9.784, 23.803, and 44.119.

The important numerical results of the above optical functions, at T=0K, N = N¢pn(cpp), and for E = gni(giy,
are reported in following Tables 2a, 2b and 2c¢, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of
those numerical results, calculated using the corresponding data given by Aspnes and Studna [9], suggesting
that our obtained numerical results of these optical coefficients are found to be more accurate than the
corresponding ones, obtained from the FB-PM, as observed in Table 3c.

Table 2a. At the MIT, T=0K, N=N¢pn(p)(racay), and the critical photon energy =E= gigen(fa@)s  ( gnicgpi): @) =

O, 2( )( gni(gpi) rd(a)) = 0, ( )( gni(gpi) rd(a)) = 0 and ( gni(gpi) rd(a)) = 0, and the other functions such as :

Mmit( gnicgpiy Fa@) > 2 )( gnicgpiy Fd@)>and  ( gni(gpiy: Fd(a)) decrease with increasing Fge) and  gni(Faa))-
Donor P As Te Sb Sn
At the MIT, T=0K, N=N¢p,(rg), and the critical photon energy =E= g4ni(ra),onhas:
gni(rg) in meV 1519.8 1520 1520.7 1521.2 1521.8
mir( gnis Fa) 3.4373 3.4161 3.3520 3.3133 3.2687
( gnirta) 0 0 0 0 0
1¢ ) gninFa) 11.8152 11.6700 11.2358 10.9778 10.6843
2 ) gninTa) 0 0 0 0 0
¢ HCgninfa) 0 0 0 0 0
( gnirta) 0 0 0 0 0
( gnirTa) 0.3017 0.2993 0.2921 0.2876 0.2825
Acceptor B Ga(Al) Mg In
At the MIT, T=0K, N=Ncp,(ra), and the critical photon energy =E= gi(ra),onhas:
gpi(Ta) in meV 1503.7 1520 1522.7 1524.5
( gpir T2) 4173 34161 3.3580 3.3227
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( gpi’ ra) 0 0 0 0

1 HC gpiTa) 17.414 11.6700 11.2765 11.0401
2¢ )( gpira) 0 0 0 0
¢ H( gpirTa) 0 0 0 0
( gpirTa) 0 0 0 0

( gpir ra) 0.3762 0.2993 0.2928 0.2887

Table 2b. In d(a)-GaAs systems, the values of the following optical coefficients at < 0, expressed as functions of gy, and

calculated using Equations (31-36, 24), for = gni(gpi)(rd(a)),present the exponential tail-states for T, 2 T, -,

-, ~ andR 7, and their variations with increasing Iy are represented by the arrows: and , suggesting that the
obtained results of “, 1 T~ ,andR 7 arealmost equal to the corresponding ones given in the above Table 2a.
d-GaAs systems P As Te Sb Sn

~ (rg) 3.4373 34161 3.3520 3.3133 3.2687

~ (rg) 0.2192 0.2193 0.2197 0.2199 0.2202
1 (ro) 11.7671 11.6219 11.1876 10.9294 10.6358
, T (r9) 1.5068 1.4982 1.4726 1.4573 1.4398

T (rg) in QT 1 24.511 24375 23.968 23.728 23.451

~(rg) in 108 1 33.758 33.778 33.850 33.902 33.964

R~ (rg) 0.303 0.301 0.294 0.289 0.284
a-GaAs systems B Ga(Al) Mg In

= (r) 4.1730 3.4161 3.3580 3.3227

~(r) 0.2109 0.2193 0.2207 0.2217
1 (ry) 17.3698 11.6219 11.2278 10.9910
. T (r) 1.7601 1.4982 1.4823 1.4730

“(ry in QT 1 28.329 24.375 24.158 24.035

~(ry) in 108 1 32.137 33.778 34.057 34.245

R ~(r) 0.377 0.301 0.295 0.291
Table 2c. Here, the choice of the real refraction index: (- ©,fyy) = o (Fa@) = /E(fa@) X—, =51 1013 1
[5] and =8.9755x 10*® 1 obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the

transverse (longitudinal) optical phonon mode, giving rise to ,(rp) = 2.08, and further, that of the asymptotic behavior, given

-1

for the extinction coefficient: ( - ©,rg@) - 0, as , so that Og( - ©0,Tg(z)) and A( - 0,rgE) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.

Donor P As Te Sb Sn

e(rg) 13.40 13.13 12.33 11.86 11.33
wo(rd) 2.08 2.0589 1.9952 1.9568 1.9126
wo(Fd) 0 0 0 0 0
1,00(Fa) 4.3264 4.2392 3.9809 3.8292 3.6581
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2,00(Fd) 0 0 0 0 0

5
e(ra) ing— 9.4912 9.3951 9.1044 8.9292 8.7274
W(rg) in(109x 1 2.1602 2.1602 2.1602 2.1602 2.1602
() 0.123 0.120 0.110 0.105 0.098
Acceptor B Ga(Al) Mg In
(ra) 24.3813 13.13 12.4205 11.9991
o(ra) 2.8057 2.0589 2.0025 1.9683
w(ra) 0 0 0 0
Loo(T2) 7.8719 42392 4.0102 3.8741
2,00(ra) 0 0 0 0
5
w(ra) ino 12.803 9.3951 9.1377 8.9814
W(fa) in(10°x b 2.1602 2.1602 2.1602 2.1602
o(ra) 0.225 0.120 0.1115 0.106

Table 3a. In the P-GaAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for n(rp) = gni(rp)[ = 1.5198 eV], and the corresponding ones, obtained from
the FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and
calculated, for 1.6 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c¢, one obtains: K., (E -
00,1p) - Oandge(E ~ 00,rp) - 0, while, in the FB-model, Keo(eg)(E ~ 0,1p) = 0.3079 and €3 o) (E - 0, 1p) = 1.3275.

EineV  (RD%) (RD%) 1 (RD%) 5 (RD%) (RD%) (RD%) 1 ,(RD%) 2 ) (RD%
1.5198 3.4373 0 11.8152 0 3.5230 0.0023709 12.4116 0.0167
1.6 3.489(5.7) 0.055(39)  12.172(11)  0.508 (24.9)  3.575 (3.4) 0.006 (93.8)  12.785 (6.6) 0.040 (94.1)
1.7 3.560 (4.9) 0.092 (17.4) 12.666 (9.5)  0.659 (21) 3.647 (2.5) 0.012 (89) 13.303 (4.9) 0.090 (89.2)
1.8 3.639(3.9) 0.130(13.7) 13223(7.6) 0.948(16.9)  3.727 (1.54) 0.023 (84.7)  13.887 (2.9) 0.172 (84.9)
1.9 3.726(2.6) 0.172(12)  13.854(5.2)  1.286(6.0)  3.815(0.3) 0.039 (78.1)  14.551 (0.4) 0.299 (78.2)
2 3.823(1.4) 0222(53) 14570(2.8)  1.698(3.7)  3.913(0.9) 0.063 (70.3)  15.307 (2.1) 0.490 (70.1)
2.1 3.932(0.2) 0.282(17.4) 15384 (0.5) 2217(17.1)  4.022 (18.6) 0.096 (59.9)  16.169 (4.6) 0.774 (59.1)
2.2 4054 (1)  0355(28.7) 16309(1.7) 2.880(30.2)  4.144(3.3) 0.144 (47.9)  17.151 (7.0) 1.193 (46.1)
2.3 4189 (2.2) 0.446(39.5) 17351 (3.8) 3.739(42.6)  4.278 (4.3) 0211 (34.1)  18.259(9.3) 1.805 (31.2)
24 4338(32) 0.247(33.5) 18.756(6.9) 2.142(31.4) 4425 (5.2) 0.304 (17.9)  19.488 (11.1) 2.695 (13.7)
25 4498 (3.8) 0364 (17.5)  20.097(8.2)  3.272(14.4) 4.581 (5.7) 0434 (1.6)  20.798 (11.9) 3.977 (4.1)
2.6 4.663 (3.8) 0526 (2.4)  21.464(7.9) 4.907 (1.4) 4.740 (5.5) 0.611(13.3)  22.091 (11.1) 5.791 (19.6)
27 4.823 (27) 0.747(1.3) 22,704 (5.4)  7.203(102)  4.890 (4.2) 0.847 (21.7)  23.196 (7.6) 8.286 (26.78)
2.8 4.973(0.3) 1.044(5.3)  23.644(0.2)  10382(5.6)  5.027(1.4) 1162 (17.3)  23.926 (1.4) 11.685 (18.9)
2.9 5108 (1.1) 1.577(8.4)  23.609 (4.7)  16.114(7.3)  5.147(1.9) 1762 (2.4)  23.390 (3.7) 18.141 (4.4)
3 4521(0.2) 1.800(7.6)  17.197(4.0)  16272(7.4)  4.488 (0.5) 1953 (0.3)  16.328 (1.3) 17.533 (0.2)
3.1 4435(14) 1.946(9.3)  15.878(9.4)  17.262(8.0)  4.382(0.2) 2072(34) 14910 (2.7) 18.163 (3.2)
3.2 4227(73) 2.093(8.5) 13484 (31.3) 17.691(1.8)  4.152(5.4) 2202(3.7)  12.390 (20.6) 18.287 (1.5)
33 3.996(7.7)  2.144(0.8) 11369 (25.1)  17.135(6.8)  3.904(5.3) 2233(33)  10.256 (12.9) 17.435 (8.7)
34 3.804(5.8) 2.115(1.9) 9.996(15.9)  16.090(7.8)  3.701 (2.9) 2.182(5.1)  8.940 (3.6) 16.153 (8.2)
35 3676 (4.1)  2.042(14) 9347(11.1)  15.013(5.6)  3.569 (1.1) 2.089(3.7) 8.373 (0.5) 14.906 (4.9)
36 3.615(3.4) 1958 (0.4) 9.236(10.5)  14.156(3.0)  3.505(0.3) 1.987 (1.1) 8.336 (0.2) 13.930 (1.4)
3.7 3.611(3.6) 1.886(2.3) 9479 (12.6)  13.619(1.2)  3.499 (0.4) 1.901 (1.6) 8.633 (2.5) 13.303 (1.2)
3.8 3.651(43)  1.840 (3.6)  9.941 (15.4) 13437 (0.5)  3.539 (1.1) 1.843 (3.5) 9.127 (6.0) 13.043 (2.4)
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39 3.724(53)  1.830(3.9) 10523 (18.4)  13.631(1.2) 3.611(2.1) 1.822(43)  9.722(9.4) 13.157 (2.3)
4 3.822(6.1)  1.862(3.0) 11.140 (20.1)  14.232(2.9)  3.706 (2.9) 1.844 (4.0)  10.338 (11.4) 13.667 (1.2)

4.1 3.933(6.5) 1.943(1.3)  11.690(19.8)  15.287(5.1)  3.814(3.3) 19152.7)  10.879 (11.5) 14.607 (0.5)
4.2 4.045(6.2) 2.082(0.6) 12.029(17.5) 16.845(6.8)  3.922 (2.9) 2.042 (1.3) 11.211 (9.5) 16.021 (1.6)
43 4142 (5.1)  2285(L.1) 11.934(14.6) 18.928(6.3)  4.014 (1.9) 2.232(1.2) 11.128 (6.9) 17.922 (0.7)
4.4 4199 (4.6)  2.556(0.3) 11.095(16.2)  21.465(4.3)  4.067 (1.3) 2.488 (2.9) 10.345 (8.4) 20.239 (1.7)
45 4.183(6.9) 2.890(0.9) 9.143(34.5)  24.178(5.8)  4.049 (3.5) 2.804 (3.9) 8.527 (25.5) 22.709 (0.6)
4.6 4058 (7.7) 3.263(2.9) 5.819(39.8)  26482(10.8) 3.926 (4.2) 3.157 (0.4) 5.445 (30.8) 24.787 (3.7)
47 3796 (5.5)  3.626 (5.0) 1263 (22.6)  27.533(10.9) 3.672 (2.1) 3.499 (1.4) 1.245 (20.9) 25.699 (3.5)
4.8 3.401(1.8)  3.912(3.8) —3.741 (22.8) 26.613(5.6)  3.293(L.5) 3.765(0.1)  —3.335(9.5) 24.795 (1.6)
49 2918 (0.9)  4.061 (0.3) —7.980(0.5)  23.699 (1.3) 2.831 (2.0) 3.898(3.7) —7.180 (10.5) 22.071 (5.6)

5 2422(6.6)  4.049 (0.8) —10.524 (8.6)  19.614 (5.7) 2.360 (3.8) 3.875(5.1)  —9.449 (17.9) 18.294 (1.4)
5.1 1.986 (10.2)  3.898 (2.7) —11.252(0.8) 15.482(13.2)  1.948(8.1) 3.721(1.9)  —10.053 (9.9) 14.497 (6)
52 1.648(3.1)  3.660(5.1) —10.681(11.5) 12.067(8.3)  1.631 (2.0) 3.484 (0.01)  —9.480 (1.0) 11.368 (2)

53 1416 (5.5)  3.387 (4.0) —9.464 (13.3) 9.591(1.7)  1.416 (5.6) 3215(1.2)  —8.333(0.2) 9.103 (6.7)
54 1275(10.8) 3.114(1.1) —8.075 (8.6) 7.940(9.8) 1.286 (10) 2949 (42)  —7.042(5.3) 7.588 (13.8)
55  1.203 (12.9)  2.865(2.4) —6.762 (0.8) 6.896(15.1)  1.224 (11.5) 2.707(7.8)  —5.828 (13.1) 6.625 (18.4)
56 1.182(123)  2.649(5.9) —5.620 (7.9) 6.264 (17.5)  1.208 (10.4) 2497(11.3) —4.773 (21.8) 6.033 (20.5)
57  1.195(9.8)  2.469 (8.9) —4.666(16.5) 5903 (17.8)  1.225(7.6) 2322(143)  —3.891(30.4) 5.687 (20.8)
5.8 1.231(6.1)  2.324(114) —3.889(24.8)  5.722(16.9) 1.262(3.8) 2.182(169)  —3.168 (38.7) 5.506 (20.0)
59 1279(0.7)  2215(13.4) —3.272(32.9) 5.665 (14) 1.310 (1.7) 2.075(18.8)  —2.591 (46.9) 5438 (17.4)
6 1.331(5.3)  2.140(13.4) —2.807 (37.8) 5.696 (8.8) 1.362 (7.8) 2,002 (19.0)  —2.150 (52.3) 5.454 (12.7)
102 2.08 0 4.3264 0 2.156 0.3079 4.5536 1.3275
1022 2.08 0 43264 0 2.156 0.3079 4.5536 1.3275
EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 ) (RD%) 2y (RD%)

Table 3b. In the P-GaAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for n(rp) = gni(rp)[ = 1.5198 eV], and the corresponding ones, obtained from
the FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and
calculated, for 1.6 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: (E -
©0,Ip) = 21602 x 10°cm™ and g (E - ©0,1p) =9.4912 x 10° (ﬁ), while, in the FB-model, ¢ — ©, and opsy —~ 0, which

should be not correct.

EineV  (10°x ~);RD%  R;RD% (=) () (10°x  1);RD% ; RD%
1.5198 0 0.3017 0 0.2717 0.3651 0.3112

1.6 8.92; 39.9% 0.308; 6.8% 6.572 0.6874 0.910; 93.9% 0.3169; 4.0%
1.7 15.93; 17.4% 0.3155;5.8%  11.983 1.6385 2.127;89.0 % 0.3245; 3.1%
1.8 23.76; 13.6% 0.3241;44%  18.261 3.3091 4.203; 847 % 0.3328; 1.8%
1.9 33.22;3.6% 0.3336;3.0% 26145 6.0735 7.537;78.1 % 0.3418; 0.6%
2 45.01;5.2% 0.3440; 1.4%  36.357 10.492 12.69; 70.3 % 0.3516; 0.7%
2.1 59.98; 17.3% 0.3556;0.1%  49.827 17.407 20.49; 59.9 % 0.3624; 1.8%
22 79.19; 28.8% 0.3683; 1.4%  67.817 28.086 32.09;47.8 % 0.3740; 3.0%
23 104.0; 39.5% 0.3823;2.8%  92.056 44.427 49.16; 34.1 % 0.3867; 4.0%
24 60.03; 33.5% 0.3923;2.7%  55.012 69.220 74.05; 18.0 % 0.4005; 4.8%
2.5 92.15; 17.5% 0.4074;3.1%  87.552 106.41 109.96; 1.6 % 0.4152; 5.1%
26 138.6; 2.4% 04233;32% 13654 161.15 160.95; 13 % 0.4310; 5.1%
2.7 204.3;7.2% 0.4402;2.6%  208.14 239.47 231.82; 22 % 0.4476; 4.3%
28 296.2;5.3% 0.4590;0.6%  311.14 350.18 329.74; 17.2 % 0.4663; 2.3%
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2.9 463.5;8.3% 0.4866; 0.7% 500.18 563.08 517.86; 2.4 % 0.4965; 1.3%

3 547.1;7.6% 0.4637;1.8%  522.49 562.98 593.82; 0.2 % 0.4710; 0.2%
3.1 611.4;9.3 % 0.4677;1.9%  572.77 602.64 651.0133.4 % 0.4730; 0.8%
32 678.7; 8.6 % 0.4666;03%  605.92 62635 714.14; 3.8 % 0.4710; 0.6%
33 717.0; 0.8 % 0.4592;2.7%  605.24 615.81 746.72:33 % 0.4622; 3.3%
3.4 772.8;8 % 0.4579;5.5%  618.04 587.82 751.79; 5.1 % 0.4489; 3.4%
35 724.2; 1.4% 0.4352;24% 56241 558.41 740.78; 3.7 % 0.4343;2.2%
36 714.2; 0.4 % 0.4246;1.3%  545.44 536.75 724.97; 1.1 % 0.4217; 0.6%
37 707.1;2.3 % 0.4180;0.7% 53932 5264 712.70; 1.6 % 0.4133; 0.4%
38 708.7; 3.6 % 0.4163;0.5% 54650 530.50 709.66; 3.5 % 0.4101; 0.9%
39 723.2;3.9 % 0.4196;0.9% 56899 549.23 719.99; 4.3 % 0.4124; 0.9%
4 754.7; 3.1 % 0.4278;1.6%  609.34 585.12 747.35,4.0% 0.4197; 0.3%
4.1 807.5; 1.3 % 0.4404;24%  670.84 641.02 795.66; 2.8 % 0.4316; 0.4%
42 886.2; 0.6 % 0.4568,2.9%  757.23 720.19 869.30; 1.3 % 0.4476; 0.8%
43 995.69; 1.1 % 0.4767:23% 87116 824.86 972.81; 1.2 % 0.4670; 0.2%
44 1139.8; 0.3 % 0.4996; 1.1%  1010.9 953.14 1109.6; 2.9 % 0.4895; 0.9%
45 1318.0; 0.9 % 0.5249;0.7%  1164.5 1093.8 1278.9:3.9% 0.5145; 1.3%
4.6 1521.1;2.9% 0.5520;22%  1303.8 1220.4 14717, 0.4 % 0.5412; 0.2%
47 1727.1;5.0% 0.5800;2.6%  1385.0 1202.8 1666.5: 1.3 % 0.5689; 0.7%
48 1903.133.7% 0.6077;1.9%  1367.3 1273.9 18315, 0.1% 0.5960; 0.0%
4.9 2016.6;0.3 % 0.63350.07%  1242.9 1157.5 1935.6:3.7% 0.6209; 1.9%
5 2051.4; 0.8 % 0.6552;1.9% 10497 979.03 1963.7; 5.1 % 0.6412; 4.0%
5.1 2014.7;2.7% 0.6706;0.8%  845.12 791.33 1923.2;2.0% 0.6543; 3.2%
52 1928.9; 5.0 % 0.6770;24% 67159 632.74 1836.2; 0.001 % 0.6577; 0.5%
53 1818.9; 4.0 % 0.6727;45%  544.06 51637 1726.9;1.2% 0.6499; 0.9%
5.4 1704.3; 1.1 % 0.6572;4.6%  458.90 438.59 1613.9;4.2% 0.6305; 0.4 %
55 1597.0; 2.4 % 0.6316;3.0% 40597 389.98 1508.6, 7.8 % 0.60115 1.9 %
56 1503.3; 5.9 % 0.5985;0.08% 37547 361.63 1416.8; 11.3 % 0.5650; 5.7 %
57 1426.1; 8.9 % 0.5619;3.8%  360.14 347.00 1341.2; 14.3 % 0.5262; 9.9 %
5.8 1366.3; 11.5 % 0.5257;7.9% 35520 341.78 1282.4; 16.9 % 0.4890; 14.4 %
59 1324.5; 13.4 % 0.4936;122%  357.72 343.42 1240.9; 18.8 % 0.4566; 18.7 %
6 1301.0; 13.4 % 0.4682; 14.8%  365.79 350.27 1217.0; 19.0 % 0.4316; 21.5 %
102 2.1602 x 10° 0.123 9.4912 x 10° Lox L 0.1423
1022 2.1602 x 10° 0.123 9.4912 x 10° Lox L 0.1423
EineV  (10°x ~1);RD% R; RD% (=) () (10°x  ~1);RD% ; RD%

Table 3c. Here, our maximal relative deviation (MRD)-values and those of (MRD)gg, calculated using the
(AS)-data [9], are reported, suggesting that our obtained numerical results of these optical coefficients are

found be more accurate than the corresponding ones, obtained from the FB-model.

MRD n K €& € R
E (eV)

1.6 39.9%

2.3 39.5% 42.6%

4.6 39.8%
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5.5 12.9%

6 14.8%
(MRD)gg Nrs Krs €1(FB) €2(FB) FB Res
E (eV)

1.6 93.8% 94.1% 93.9%

2.1 18.6%

6 52.3% 21.5%

Some important cases, given in various physical conditions, are considered as follows.

5.1. Metal-insulator transition (MIT)-case

As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT
are: T=0K, N =0 or N = Ncpnccpp) NEEI(CDF,) , vanishing the Fermi energy:

2 I(l%n(Fp) (N)

Fro(Fpoy)(N ) = =0. Further, from the discussions given Eq. (5) for the optical band gap:

2XMn(p)
gnl(gpl)(N =0,rga, T= O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a))a according also to the MIT.

Then, in this MIT-case, replacing both  gnej(gpeiy and  gn1(gp1)> BY  gni(gpi)> given in Equations (28, 29), and

consequently from Eq. (24), one gets, for the effective photon energy E = E—  gpi(gpiy = 0:

K(E , Fd@)) = 0, &(E , rg@)) =0, 0o(E ,rye@) =0 and a(E , r4cay) = 0, corresponding also to the MIT.

Thus, in this case, the photon energy E becomes the critical photon energy, defined by:

ECPE(rd(a)) = gni(gpi)(rd(a)). Therefore, Equations (28, 29), obtained in the MIT-case, become:

3/2 _ 1/2
KE =0) = f(Egnigpi)) X gnicgpi) % (E = E ~ Egnigpy =0)" =0, (30)
BoiE+Coj . . _
n(E = gni(gpi)) = r‘oo(rd(a)) + ?:1 E2—BE+C, in which gnei(gpei) =  gni(gpi)- 31

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients

for <=0, representing the exponential tail-states, which can be deduced from Eq. (30), by putting: E =
anicapi (a@)- as:

KEET( gniggpi) = FEqicgpd) > G- (32)

Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, obtained

for the following exponential tail-states of €, 0g(E), a, and R as:

g5 T ( gnicapiy) = 2% KEETT( gnicgpi)) X NE = gricgpi)s (33)
— Efr ce> gni ixSEImD_T ni(gpi

OEOCT( gnicgpiy) = e @ (gpin 2 (g (gp))’ (34)
- 2% gnicgpi) *KEECT( gni(gpi

QEOACT( o) = 22 it ~ (g (gp))’ and (35)
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RNR=T( i) = E:E gni(gpp)—l]iﬂiz:( gnf(gpi)); (36)
gni(gpi)) +117+K ( gnicepi))

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, Iq(a))
in following physical conditions by: T=0K and N = Ncpnnpp) » and by: T=20K and = 1020 3,
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and

(¢ 1) the minimum and the extrema-values of those occur at the same corresponding photon energy E.

Table 4n. In d-GaAs systems, and for two types of physical conditions such as: (T=0K and N = N¢pn(rq)) and (T=20K, N =

10%° cm™3), the extrema values of 1( ) and ,( ), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: tori, suggesting that those extrema occur at the same E.
EineV 25 2.8 3 32 3.9 4 4.5 4.7 5.1 100 102
In the P- GaAs system, at T=0K and N = Ngpn(rp) = 1.2538x10%6 cm™3, 1(rp) = 4ni(rp)[ = 1.5198 eV]
() 20.10 T 23.64 | 17.20 13.48 1052t 11.14 | 9.14 126 + -—11251 4.04 4.3264
() 3.27 10.38 16.27 t17.69 L 13.63 1t 14.23 24.18 t2753 15.48 1.52 0
In the As-GaAs system, at T=0K and N = Ngpn(ras) = 1.333 x10%° cm™3, an(Tas) = gni(ras)[ = 1.52eV]
1) 19.90 2343 1 17.01 13.31 1037 t 1098 | 897 .11+ -1133 1t 3.96 4.2392
2() 3.25 10.33 16.19 t 17.60 | 13.55 1t 14.15 24.05 T 2738 | 15.32 1.50 0

In the Te- GaAs system, at T=0K and N = Nepn(rre) = 1.6107x10% cm™2, 4,(rre) = 4i(rre)[ = 1.5207eV]

1) 19.32 2279 1 1643 12.78 990 1t 1050 + 845 064 | —1156 1t 3.70 3.9809
2() 3.20 10.19 1594 t+ 1731 + 1331 t 13.90 23.67 t 2690 14.82 1.46 0
In the Sb- GaAs system, at T=0K and N = Ngp,(rsp) = 1.8099 x10%6 cm™2, ;(rsp) = gni(rsp)[ = 1.5212 eV]
() 18.98 2241 1 16.09 12.46 9.63 1t 1022 | 8.14 036 |+ —1170 t 3.56 3.8292
2() 3.17 10.09 1579 t+ 17.14 1 13.16 t 13.76 23.44 vt 26.61 | 14.52 1.43 0
In the Sn- GaAs system, at T=0K and N = Nepn(r'sy) = 2.0762x10%€ cm™, (1)) = gni(rsn)[ = 1.5218 V]
1) 18.58 t2197 1 15770 12.10 931 1t 989 | 7.78 050 + -—11.85 1t 3.39 3.6581
2() 3.13 9.99 1562 t 1694 | 1299 1t 13.58 23.17 t 2628 | 14.17 1.39 0
EineV 2.71 2.8 3 3.2 3.9 4 4.5 4.7 5.1 100 104
In the P- GaAs system, at T=20K and N = 10%° cm~3, gn(rp) = gna(rp)[ = 2.7095 eV]
() 23.42 2475 1 2044 1784 | 13.66 1t 1435 1t 1641 1239 | 092 1t 4.05 4.3264
2( ) 158 % 10°% 0.05 0.63 1.51 3.41 3.85 8.73 1 10.78 | 6.90 1.48 0
In the As- GaAs system, at T=20K and N = 10%° cm™3, an(fas) = gn1(ras)[=2.7059 eV]
() 23.21 Tt 2453 L 2025 1765 + 1350 t 1419 t 1622 | 1222 0.82 t 397 4.2392
,() 87x107° 0.056 0.64 1.52 3.41 3.85 872 1 10.76 | 6.85 1.47 0

In the Te- GaAs system, at T=20K and N = 1020 ecm™3, (1) = gn1(rre)[ = 2.6948 eV]

1) 22.59 2389 L 19.67 17.12 1 13.03 't 1370 t 15.67 + 11.70 | 052 t 371 3.9809
o() 1.2x10°8 0.069 0.68 1.57 3.41 3.85 8.69 1 10.70 6.69 1.42 0
In the Sb- GaAs system, at T=20K and N = 10%° cm™3, aon(rsp) = gn1(rsp)[ = 2.6876 V]

10) 22.21 t23.50 1 1932 16.79 | 12.74 1+ 1340 t 1533 | 11.38 034 1t 3.56 3.8292
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() 26%x107 0.078 0.70 1.59 3.42 3.86 8.78 1 10.66 | 6.59 1.40 0
In the Sn- GaAs system, at T=20K and N = 10%° cm™3, an(fsn) = gn1(rsp)[ = 2.6789eV]

() 2179 1 2306 L 18.92 1642 + 1242 1t 1307 t 1495 1 11.02 I 013 1t 339 3.6581
() 49x1073 0.09 0.74 1.63 4.43 386 1 8.66 | 10.63 6.49 1.36 0
EineV 2.71 2.8 3 3.2 3.9 4 4.5 4.7 5.1 100 10%

Table 4p. In a-GaAs systems, and for two types of physical conditions such as: (T=0K and N = N¢py(ra)) and (T=20K, N =
10%° cm™3), the extrema values of ;( ) and ,( ), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 Or | , suggesting that their extrema occur at the same E.

EineV 25 2.8 3 3.2 3.9 4 4.5 4.7 5.1 100 102

In the B- GaAs system, at T=0K and N = Ncpy(rg) = 1.7845x10%7 cm™2, ,(rg) = i(rg)[ = 1.5037 eV]
() 27.51 1 31.78 L 2439 20.12 16.40 1 17.17 1+ 15.64 7.06 |+ —819 1t 7.54 7.8719

20) 3.95 12.28 19.38 to2119 1 1652 ot 17.17 2873t 33.15 21.23 2.06 0

In the Ga- GaAs system, at T=0K and N = Npp(rea) = 1.1426 X108 cm™3,  ,(rea) = gi(fea)[ = 1.52€V]
() 19.90 12343 | 17.01 13.31 1037 1 1098 | 897 .11 1 -1133 1t 3.96 4.2392

20) 3.25 10.33 16.19 T 17.60 L 1355 1t 1415 2405 t 2738 | 15.32 1.50 0

In the Mg- GaAs system, at T=0K and = Nepy(ryg) = 1.3497 x1018 cm™3, o, (ryg) = goi(rug)[= 15227 ]
() 1935 12282 1 1649 12.84 996 t 1056 1 852 072 1 —11.49 t 373 4.0102

20) 3.19 10.16 1591 t17.29 1+ 1331 1 1391 23.68 t 2692 | 14.87 1.46 0

In- GaAs system, at T=0K and N = Npp(rn) = 1497 X108 ecm™3, (1)) = 4oi(rn)[ = 1.5245 V]

() 1902 12245 1 1618 12.56 972 1t 1031 | 825 050 1 —1159 1 3.60  3.8741
() 315 10.05 1574t 17.11 1 1316 1t 13.76 2344 1 26.63 | 14.60 1.44 0
EineV 2.71 2.8 3 3.2 3.9 4 4.5 4.7 5.1 100 10%*
In the B- GaAs system, at T=20K and N = 102 cm™3, ,(rg) = g1 (rs)[=2.7236€V]

() 3140 1 3294 1 2778 2465 1+ 19.64 1 2048 1 2312 1 1852 | 433 1 754 7.8719
() 11x107°  0.04 0.66 1.67 3.98 4.49 10.10 1 12,68 | 9.27 2.01 0

In the Ga- GaAs system, at T=20K and N = 10%° cm™3, p(fea) = gp1(rea)[= 26231 eV]

1() 2321 1 2453 1 2024 1763 1 1344 1 1412 1 1601 | 11.86 | 038 1t 396 42392
() 004 1.20 1.05 2.07 3.90 436 9.54 1 11.68 1 7.33 1.47 0
In the Mg- GaAs system, at T=20K and N = 10%° cm™3, gp(ng) = gpl(ng)[: 2.6118¢eV]

1() 2261 1 2391 ¢ 19.70 17.13 + 1301 1 13.67 1 1550 | 1138 0.10 1 374 40102
2() 005 0.22 1.10 2.13 3.91 437 952 1 11.63 1 7.19 1.43 0

In the In- GaAs system, at T=20K and N = 10%° cm™3, (n) = gpa(np)[=2.6045eV]

1) 2225 t 2354 1 1937 16.83 1+ 1275 1t 1341 t 15.19 1 11.09 + -006 t 3.61 3.8741
20) 0.057 0.24 1.13 2.16 3.916 4.372 9.51 1 11.60 7.11 1.40 0
EineV  2.71 2.8 3 3.2 39 4 4.5 4.7 5.1 100 10%

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-GaAs systems
Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, typically for E=3.2 eV and for some (P, Te, Sn)-GaAs systems and (Ga, In)-GaAs ones,
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being indicated by the arrows: and , as tabulated in following Tables 5n and 5p, in which the physical
condition N > Nepn(nppy (or N > 0) must be respected, and their variations thus depend on the ones of the
optical band gap, gnl(gpl)(N , rd(a)).

Table 5n. In (P, Te, Sn)- GaAs systems, our numerical results of the following optical coefficients, expressed as functions of N,

and calculated using Equations (31-36, 24), for E=3.2 eV and T=20K, present the variations by arrows, ( and ), since those of

the optical gap a1 (N , Ig) increase with increasing N, at T=20 K.

N (108 cm™3) 4 8.5 15 50 80 100
gn1(N ,Tp,20K) in eV 1.6211 1.7078 1.8126 2.2400 2.5330 2.7095
n(rp)=4.2271
( .,rp) 1.848 1.651 1.427 0.683 0.330 0.178
1C,rp) 14.453 15.143 15.832 17.401 17.759 17.836
2( ,1p) 15.623 13.955 12.063 5.776 2.789 1.508
( ,rp) in 102 Q1 1 5.351 4.780 4.132 1.978 0.955 0.517
(,rp) in 105 5.993 5.353 4.627 2.215 1.070 0.578
R( ,rp) 0.450 0.437 0.424 0.392 0.384 0.382
gn1(N , r7e, 20K) in eV 1.6173 1.7025 1.8060 22290 2.5196 2.6948
n( )=4.1415
( ,rre) 1.857 1.662 1.441 0.699 0.343 0.189
1C ) 13.703 14.388 15.076 16.663 17.034 17.116
2( e 15.381 13.769 11.932 5.789 2.843 1.567
( ,rgp) in 102 Q1 1 5.268 4.716 4.087 1.983 0.974 0.537
( ,rr) in  10%5 1 6.022 5.391 4.672 2.266 1.113 0.614
R( ,rre) 0.446 0.433 0.419 0.385 0.376 0.374
gni(N , sn, 20K) in eV 1.6132 1.6969 1.7988 22171 2.5051 2.6789
n( )=4.0578
( ,rsn) 1.867 1.675 1.455 0.716 0.358 0.201
1C i rgn) 12.982 13.660 14.347 15.953 16.338 16.425
2( 1 Tsn) 15.149 13.593 11.812 5.812 2.905 1.634
( ,rg,) in 102 Q7* 1 5.189 4.656 4.046 1.991 0.995 0.560
(.,rg) in 105 1 6.053 5.432 4.720 2.322 1.161 0.653
R( ,rgy) 0.442 0.428 0.414 0.378 0.369 0.366
N (108 cm™3) 4 8.5 15 50 80 100
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Table Sp. In (Ga, In)- GaAs systems, the numerical results of the following optical coefficients, expressed as functions of N, and
calculated using Equations (31-36, 24), for E=3.2eV and T=20K, present the variations by arrows, ( or ), since those of the

optical gap 41 (N , ) increase with increasing N, at T=20 K.

N (10%8 cm™3) 15 26 60 100
gp1 (N, Tga, 20K) in eV 1.7675 1.9116 2.2722 2.6231
n(  )=4.2058
., ) 1.5212 1.2307 0.6381 0.247
10 15.375 16.175 17.282 17.628
20, ) 12.796 10.352 5.368 2.075
(., ) in 102 Q7 1 4.3826 3.5456 1.838 0.711
(, )in 108 4.9330 3.9908 2.069 0.800
R(, ) 0.428 0.412 0.388 0.381
a1 (N 1, 20K) ineV 1.7580 1.9003 22571 2.6045
n( )=4.1109
(. 1.5416 1.2522 0.659 0.263
) 14.523 15.332 16.465 16.831
20, ) 12.675 10.295 5.419 2.161
(, )in 10207t -t 4341 3.526 1.856 0.740
(, )in 1208 4.999 4.061 2.137 0.852
R(, ) 0.423 0.406 0.381 0.372
N (10 cm™3) 15 26 60 100

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)-GaAs systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =
1.5 x 10%cm™3, respectively, as functions of T, typically for E=3.2 ¢V and for some (P, Te, Sn)-GaAs
systems and (Ga, In)-GaAs ones, being indicated by the arrows: and , as given in following Tables 6n

and 6p, in which their variations thus depend on the ones of the reduced Fermi energy, En(p)( Fd(a): T).

Table 6n. In (P, Te, Sn)-GaAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.2 ¢V and N = 1.5 x 10'® cm™3, increase with increasing T, since the optical band

gap gn1(T,Tg) decreases with increasing T.

TinK 20 30 50 100 200 300
gn = gn1(T,Ip) ineV 1.8126 1.8120 1.8100 1.8020 1.7769 1.7449

n(rp, ) 4.227 4.228 4.230 4.237 4.261 4.292
(re, ) 1.427 1.428 1.432 1.449 1.501 1.570
1(rp, ) 15.832 15.834 15.838 15.855 15.905 15.959
2(rp, ) 12.063 12.076 12.116 12.279 12.796 13.474
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(tp, ) in 102 Q71 1 4.132 4.136 4.150 4.206 4.383 4.615
(rp, ) in 105 % 4.627 4.631 4.645 4.699 4.869 5.090
R(rp, ) 0.424 0.424 0.424 0.426 0.431 0.437
gn = gni(T,Ire) ineV 1.8060 1.8053 1.8034 1.7953 1.7702 1.7382
n(rre, ) 4.141 4.142 4.144 4.152 4.176 4207
(e, ) 1.441 1.442 1.446 1.463 1.515 1.584
1(rre, ) 15.076 15.078 15.082 15.097 15.140 15.186
2(rre, ) 11.932 11.946 11.985 12.146 12.656 13.327
(fre, ) in 102 Q1 1 4.087 4.091 4.105 4.160 4335 4.564
(fre, ) in 105 7% 4.672 4.676 4.689 4744 4914 5.137
R(Ie, ) 0.419 0.4191 0.4194 0.421 0.426 0.432
gn = gn1(T,Tsp) ineV 1.7988 1.7981 1.7962 1.7881 1.7631 1.7311
n(fsn, ) 4.058 4.058 4.060 4.068 4.092 4.123
(Fsm ) 1.455 1.457 1.461 1.478 1.531 1.600
1(Fsn, ) 14.347 14.348 14.352 14.365 14.402 14.440
2(fsm ) 11.812 11.825 11.864 12.024 12.528 13.191
(fsn, ) in 102 Q71 1 4.046 4.050 4.063 4.118 4.291 4518
(fsn ) in 10° 1 4.720 4.724 4.738 4.792 4.964 5.187
R(rsn, ) 0.414 0.4142 0.4145 0.4161 0.4211 0.4274
TinK 20 30 50 100 200 300

Table 6p. In (Ga, In)-GaAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.2 eV and N = 1.5 x 10'° cm™3, increase with increasing T, since the optical band

gap gp1(T,Ia) decreases with increasing T.

TinK 20 30 50 100 200 300
o = gp1(T,Tga) ineV 1.7675 1.7669 1.7649 1.7568 1.7318 1.6999
n(fea ) 4.206 4.2065 4208 4216 4.240 4271
(Fea ) 1.521 1.523 1.527 1.544 1.598 1.668
1(reas ) 15.375 15.376 15.379 15.391 15.425 15.458
2(fear ) 12.796 12.809 12.851 13.019 13.551 14.250
(fge ) in 102 Q71 1 4.383 4.387 4.401 4.459 4.641 4.881
(fga ) in 105 1 4.933 4.938 4,951 5.007 5.182 5.410
R(rga ) 0.428 0.4282 0.4286 0.430 0.435 0.441
o= gor(T,rp) ineV 1.7580 1.7573 1.7553 1.7473 1.7223 1.6903
n(fn, ) 4.111 4.1116 4.113 4.121 4.145 4.176
i ) 1.542 1.543 1.547 1.564 1.619 1.689
1(fny ) 14.523 14.524 14.527 14.536 14.563 14.585
(M ) 12.675 12.688 12.729 12.895 13.421 14.111
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(fp, ) in 102 Q71 2 4.341 4.346 4.360 4.417 4.597 4.833

(fyyy ) in 105 % 4.999 5.004 5.017 5.073 5.250 5.479
R(fpn, ) 0.423 0.4231 0.4235 0.425 0.430 0.436
TinK 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type degenerate GaAs-crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in I, II and III, and further, by taking into account the
corrected values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the
refraction index N and extinction coefficient K, as the photon energy ( - ©0), all the numerical results,
obtained in III, are now revised and performed.
So, by basing on our following basic expressions, as:
()the effective static dielectric constant, €(Fq(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),
(i) the critical donor(acceptor)-density, Ncpnnpp)(Fda)) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N = N —
Ncon(cop) (Fd(ay)» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N =N — Ncpn(cppy =0 or N = Ncpn(cpp) » noting that Nepn(cppy can also be explained as the

density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT), NESI(CDF,), as

that determined in Eq. (21), with a precision of the order of 2.35 % 1073, as observed in Table 1,

(iii) the Fermi energy, pnrpy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables
2a, 2b, 2c¢, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical
results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@)  Fnorpo)(N =0, T=0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )3,

(b) as discussed in Eq. (5), in the MIT, in which gnl(gpl)(N =014, T= 0) = gni(gpi)(rd(a))a

where  gn1gp1) and  gnicrgpiy are the optical band gap and intrinsic band gap, respectively, and
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¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = gni(gpi)(rd(a)) or the effective photon energy E =
gni(gpi)(rd(a)) =0, one has: K(E =0, rd(a)) =0, &(E =0, rd(a)) =0, go(E =0, rd(a)) =0 and
a(E = 0,rge) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type GaAs-crystals, the Fermi energy pnrp) = ( Fp = [ v fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10~# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — N¢pncop)(Fdca)) > Neon(cop) (Fdea)) being
the critical density, characteristic of the insulator-metal transition phenomenon, and their numerical results
are given in Table 1. It means that = O at this transition.

First, we define the reduced electron density by:

3
2

M) <ksT —
U(N o T) = U T) = = Nogy (T) = 2% Gy % (P22 (em™), (A1)

where Neqy)( ) is the conduction (Valence)-band density of states, the values of gcy( = 1), and m,,)/Mo,

defined in Section 2, can be equal to : My(py/m, = 0.066 (0.291), and to m,/m, = 2 = 0.0538. Then,

mnp +m
in particular, as used in Section 3 for determining the optical band gap in degenerate GaAs-crystals, M)/
my= m,/my, = 0.0538 was chosen. Then, the reduced Fermi energy in the n(p)-type GaAs is determined
by :

NOYEO) G(u)+AuBF(u) _ V(u)
o ( o ) =B = 6, (u) = w5 A= 00005372 and B = 4.82842262, (A2)

2
2 4 8\ 3
where F(N , rqc), T) = aus (1 +bu s+ cu“S) °, obtained foru 1, according to the degenerate cas,

2 3
= [(BVT/4)]¥3, b= %(g) , =% 3739855( ) and then G(u) Ln(u)+22xuxe % foru

1920
. _ L 4 — 9372
1, according to the non — degenerate case, with: d =2 [ﬁ == 0.
So, in the present degenerate case (U 1), one has:
4 8 _g
= _° 3
(N Ta@: T) = Enepy(N . T) = Enogrpoy (U) < (1 +bu 3+cu 3) : (A3)

Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:

_ Ky (N)

Fno(Fpo)(N ) = 2XMy ) (A4)

)2/3

being proportional to (N , and equal to 0, gno(rpo)(N = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.
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Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type GaAs-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

rsn(sp)(N 'rd(a)) - (4T[N ) x aBn(Bp)(rd(a)) =11723=10% = ( N ) x S(I’d(a)) ’ (Bl)

In particular, in the following, Mp;,/M = M/M,, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)), is found to

be given by [1]:

087553 (2[1-In(2)] _
(o) = (N ) = o255y Ty e )1 0085 B2)
CE\Tsn(sp)) = CEU +1d(@)) ™ 0.0908+rgysp) 1-+0.03847728xrL57378876 '
Then, the band gap narrowing (BGN) can be determined by [1]:
o x NY3 4 N O

Bogn(N Tg)  agx oo N8 4 x Jfos o NE (2.503 X[ = celron) X ronl) +ag x [225] %

3
1/4 1/2 & |2 e — N =N—=Ncpn(rq)
\/:r XN +ay x 1’8( *Np'm > 2+ a5 x [e(r ) >Ny, Nr T 9.999x10Y7 ¥ (B3)

where €, = g5 = 13.13, a; = 6.8256 x 1073(eV), a, = 1.1681 x 1073(eV), az = 5.0316 x 1073(eV),
a; = 10.1 x 1073(eV) and ag = 1.4556 x 10‘3(eV) and

. 1/3 a . 5/4 -
B (N ra) 8y % 2o x N +ay x fos x N3 % (2503 % [~ ce(rsp) x repl) +az x L(r‘;)] x % x
1/4 vz 6 — (N =N=Ncpp(ra)
Ny + 2ay x 1/s( D Nr 5% [ (a)] *Np, Nr = (9.999x1017 cm—3)’ (B4

where €, = €5, = 13.13, a; = 9.3290 x 1073(eV), a, = 1.5958 x 1073(eV), a3 = 6.874 x 1073(eV),
a, = 13.7 x 1073(eV) and as = 1.9886 x 103(eV).

Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any lge), A gngp)(N =0,rg@) =0
according to the MIT.
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