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Abstract

In the n(p)-type degenerate InP-crystals, at low temperature T and high d(a)-density N, our expression for
the static dielectric constant, S(Vd(a)) , expressed as a function of the donor (acceptor) radius, Fqc), and
determined by using an effective Bohr model, as that investigated in [1,2], suggests that, for an increasing
Fdca)> due to such the impurity size effect, S(Vd(a)) decreases, affecting strongly the critical d(a)-density in
the metal-insulator transition (MIT), Ncpn(cpp)(Fdca))» determined by Eq. (3), and its values are reported in
Table 1, and also our accurate expressions for optical coefficients, obtained in Equations (24, 25, 28, 29),
and their numerical results are given in Tables 2-6. Furthermore, one notes that, as observed in Table 3c, our
obtained results of those optical coefficients are found to be more accurate than the corresponding ones,
obtained from the FB-PM [11], suggesting thus that our present model, used here to study the optical
properties of the n(p)-type degenerate InP-crystals, is a good improved FB-PM, as observed in Table 3c.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy
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1. Introduction

Our new expression for the extrinsic static dielectric constant, s(rd(a)), Fdca) being the donor (acceptor) d(a)-
radius, was determined by using an effective Bohr model, suggesting that, with an increasing ryc,), due thus
to such the impurity size effect, 8(rd(a)) decreases, affecting strongly: the critical impurity density in the
metal-insulator transition [1], figure of merit ZT [2], and also optical properties given in degenerate
semiconductors [3].

In the following Sections 2-5 [4, 11], in the n(p)-type degenerate InP-crystals, our numerical results of the
optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-Bloomer
parameterization model (FB-PM), are presented, and also compared with the corresponding experimental-
and-theoretical ones [9, 11], suggesting that our present model is found to be a good improved FB-PM, as

that observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in
the n(p)-type InP -crystal, such as: (i) if denoting the free electron mass by m,, the effective electron (hole)

mass, Mppy/Mo, which is respectively equal to the relative effective mass, Mppy/m, = 0.073 (0.339) [2],

as used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

Mp>xMp _

(MIT), and (ii) to the reduced effective mas, m,/m, = e 0.060, as used in Sections 3 and 5 to

determine the optical band gap and the optical coefficients given in the n(p)-type degenerate InP-crystal.
Further, 4o = gop(goin) = 1.424 €V [2] is the unperturbed intrinsic band gap, & = €p(ny = 12.5 is the
relative static intrinsic dielectric constant of the InP-crystal, and finally, the effective averaged numbers of
equivalent conduction (valence)-band edge, gy = 1(1).

Table 1. For increasing r'q(z), while £(ry) decreases, the functions: gni(gpi)(rd(a)), Neon(nop) (Fdgay) and N(E:B-rl;(CDp)(rd(a)) increase.

The relative deviations between the numerical results of Nep,(rq) and NEBT(r,), calculated using Equations (3, 21), are verry

small, of the order of 7.61 % 104, suggesting that Nepnpp)(facay) can be well explained by NEB! (ry), being localized in the

EBT.

Donor P As Te Sb Sn

rg (nm) [4] 0.110 0.118 0.132 0.136 0.140

e(rg) 12.5 12.20 10.57 9.987 9.40
gni(Fg) in meV 1424 1424.3 1426 1428 1429

Ncon(rg) in 1016 cm™3 2.09 225 3.456 4.10 491

NEBT(r,) in 106 cm™3 2.09 2.24882 3.45636 4.0988 491274

|RD| in 10~* 0 5.24 1.05 2.89 5.57
=1

X <1 (Physical condition)  0.4012 0.4012 0.4012 0.4012 0.4012

=
ksn
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Acceptor Ga(Al) Mg In

ra (nm) [4] 0.126 0.140 0.144
&(ra) 13.418 12.543 125
gpi(ra) in meV 1420 1423.8 1424
Nepp(ra) in 108 cm™2 1.692 2.072 2.090
NEpp(ra) in 108 cm™3 1.692 2.0713 2.0916
IRD| in 10~# 0 3.45 7.61
ELg < 1 (Physical condition) 0.3364 0.3364 0.3363

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the MIT, as follows.

2.1. Expression for ( ( ))

In the [d(a)-semiconductors]-systems, since Ig(a), given in tetrahedral covalent bonds, is usually either larger
or smaller than Fgo(a0) = p(iny, @ local mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: rye)y > Fdocac) (Fd(a) < Fdo(ac)): due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc,) -effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(Iq(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
&
gni(gpi)(rd(a)) = go(Fdoao)) = d(a)(rd(a)) —  do(ao)(Fdo(ao)) =  do(ao)(Fdo(ao)) > [(ﬁ) - 1]» (D
__ 13600 meVx(mp(p)/mo)
where  go(ao)(Fdo(ao)) = &2 and

g
e(rae@)= = = =< &, for ry(a) = docao),
fd@ " _ "d(a)
\/1+[(rdo(20)) 1]><In(rdo(20))
g(r ): €o >¢ [(M)g — ]_] x |n(rd&)3 <1
d@ ) \° aw \° ©> [ \rdocao) do(ao) ’
l_[(rdo(ao)) _l]xm(rdo(ao))
for 0.07014 (0.09182 nM) < ry(ay =< ldo(ac), respectively. 2)

One notes that €(I'q(a)) decreases with an increasing rqy(a), as observed in the above Table 1. In particular,

in the B-InP system, in which rg =0.088 nm r,, =014 | the condition, given in Eq. (2), is found to
3 3
be not satisfactory, since [(r%) - 1] X In(r%) = 1.1402 > 1. Therefore, as observed in Table 1, the B-InP

system is absent.
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2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate InP-crystals, the critical donor(acceptor)-density, Ncpnnpp) (Fdca)), is determined
from the generalized effective Mott criterion in the MIT, as:
1
Neonop) (Faay) 73 * agn(epy(Fdca)) = 0.25, (3)

and the effective Bohr radius agn(gp)(Fdca)) is given by:

e(ray)* 2 _ &(r,
(d(a—))zz 053 x 108 cm XM]
Mn(p) >4 (mn(p)/mo)

C))

asnp) (Fd(a)) =
where —q is the electron charge, €(ry@)) is determined in Eq. (2), and My /My = Mpy/mg =
0.073 (0.339). From Eq. (3), the numerical results of Ncpnnpp)(F'aca)) are obtained and given in the above
Table 1, in which we also report those of the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, NEB-rI;(CDp)(rd(a))a obtained using Eq. (21), as investigated in Section
4, noting that the maximal relative deviations (RD), in absolute values, between Ncpnpp)(aca)) and
NGoncop) (fa@ay) are found to be equal to: 557(7.61) x 107*, respectively. Thus, Nepnop) (Fa(a))
determined in Eq. (3), can be explained by the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, Ngpn(cpp) (Taay): determined in Eq. (21).

Furthermore, in our recent work [7], we also showed that, in n(p)-type degenerate InP-crystals, the
critical densities of electrons (holes) can also be determined from the spin-susceptibility singularities (SSS),
obtained at N = N&&, copy (Facay). at which the metal-insulator transition (MIT) occurs.

In summary, Table 1 also indicates that, for an increasing I'qca), €(rge)) decreases, while gni(gpi)(rd(a)),
Neonvop () and Nepheop) (facay) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap
Here, m,/my is chosen as: mMpp,/mMg =m/m, =0060 , and then, if denoting N =N -
Nconnop) (Fda)) » the optical band gap (OBG) is found to be given by:

o1 (N Ta@ T) = gnagp2)(N 1 Ta@. T) + Faep(N . T, )
where the Fermi energy pnep)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

an2(gp2) (N Ta@: T) = gneicgpen (Fa@» T) =8 gngn)(N - Taa))-

Here, the effective intrinsic band gap  gnei(gpei) 18 determined by:

_ 49%x1074xT2
aneicoped (Td@» T) = gnicopiy (Fa(@) ~ ~agzr i

and the band gap narrowing, A gn(gp)(N , rd(a)), are determined in Equations (B3, B4) of the Appendix B

and the values of gni(gpi)(rd(a)) are given in Table 1.
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Then, as noted in the Appendix A and B, at T=0K, as N =0, one has:  pnep)(N . T) = gnorpo)(N ) =
0,as givenin Eq. (A4), and A gn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, gniigp1) = gn2(gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate InP, if denoting the Fermi wave number by: Kencrpy(N) = (3 2N/ gc(v))l 3, the

effective reduced Wigner-Seitz radius 'sn(sp), characteristic of the interactions, is defined by

— kEnl(F )
X Tonp)(N s oy M) == 2 < 1, (6)
being proportional to N T3 Here, = (4/9 )3, kEnl(Fch) means the averaged distance between ionized

donors (acceptors), and agngp)(I'd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is

defined by

Ksngsp) _ Keagem) _ =r
K =N snWS(spWS) + [RsnTF(spTF) - RanS(spWS)] sn(sp) < 1, (7)
Fn(Fp) sn(sp)

Rengsp)(N - a(@y) =
These ratios, Rsntr(sptry @Nd Rsnws(spws), can be determined as follows.
First, for Nconnop) (Fd(a))» according to the Thomas-Fermi (TF)-approximation, the ratio Rsyrr(snr) 18

reduced to

__ KenTF(spTR) I(l?riL(Fp) 4 Tsn(sp)
R T N,r == = — = 1 8
sn F( d(a)) Ken(rp) ksanF(spTF) ’ ( )

being proportional to N=/6,

Secondly, for < Ncpnnpp)(Fdg)) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) is respectively reduced to

Ksn(s d gns x N rd@a
Rancomis(N Tocw) = 22 = 05 (1) x (2 — Loy el rao]) ©)

d sn(sp)
where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the
Appendix B.
Furthermore, as given in [, in the highly degenerate case, the physical conditions, as those observed in Table

1, are found to be given by :

Ken(ep) Nn(p) 1 Ken(Ep) Fno(Fpo)
< = <= =R <1 A = _"no{fpo) 10
Ben@p) | Fropo)  Ang)  Kawspy  SNCP) T ) T a (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,

Rsn(sp) 1s defined in Eq. (7).
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Then, in degenerate d(a)-InP systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the InP- crystal, is defined by
O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)-InP system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total InP -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined in II, as :

Fno(Fpo). ( 1 2)

_ —  XRsn(sp) (N Faca)) _ V2N 2,,—1/2 —
Wngp) (Vn(ey: N - Tacay) = Ny < €XP <—2 - M@ N Fa@) = 50005 A Kangsp)- Vo) =
n(p)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

0.4721 (1.585), respectively, will be chosen such that the determination of the density of electrons localized

in the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally V) = ,
Fno(Fpo)

where  is the total electron energy and  pno(rpoy 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z, fora=1,

2xk

2
K = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
)

2% (
two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In heavily doped d(a)- InP systems, the effective Gaussian distribution probability is defined by

1 —V?2
P(V) = ——— x ex [ ]
V) V2 Wn(p) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) a3 = Z_f is defined by

(C =V D= S dm= _o( =V ExPV)AV, for a=1.
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Then, by variable changes: s = ( — V)/\/Wr, and X ==/ /Wy = Anp) X n(p) X EXP _Rone) ,
4x v

and using an identity:

o s x exp (— XS — %)ds =T( +3) xexp (x*/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp( —X2/4)xW exp (—x2/4)xn._ 2 x 2a—
8> |[[vn(p)|
3 x D_aﬁ;(x). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t = and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

D_, 1(X == <) (a)xexp((va+ LYX—2+ zzg)ao, @ =5——.

1682 27 rG+d)

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:
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2xk2

N =
I

(D T2, = T (14)
i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D_,_1(x » ) P(a) xexp -(Va +)x— = W -0, B(@ = % noting that
2 16a2 27 1@+
B = and B(5/2) = 23/2
24X (5/4)
Then, putting f(a) = n(p) x I'(a+3) % B(a), Eq. (13) yields
(x 2)kim R x(2a-1)
Ho)( n) =+ 0 Tagey @) = —5— = exp | = ——B—— — (\/5 +%) Gk e ig| - O (13)
8 ||Vn(p)| 16a2.
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X ¥42x "7 . 0. Therefore, Eq. (13) yields
a3
{ k xm 1 Fay )2 L
—_— n n —a—=
Kn)( n) =+ . 4@, a) = & @ xexp (——"5=) X (Pay X ngp)) © 2 0. (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fr)( n@ey: Tacay @) = Ko ( nep): Tay @) + [Hae)( ney: Fa@ @) = Koy ( ngpy: Tacay, )] > exp [

(Ao )] (17)
such that: Fnpy( n(p): Fd(a) @) ~ Hne)( np)y Fa@@) for 0= <16 , and Fnp)( nep) Fdea) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InP systems at T=0 K, in which my;,/mMg = My)/m, = 0.073(0.339), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

( CWkm = gc(v)( mn(p)) x( k)KIM = gzc(vz) (2mn(p))E i <\724—)an x F(%) x D_g(X) = (), (18)

Nl w

xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP —=nh)

4 [[va)|
Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My =myy/m, and =
0.4721 (1.585), respectively, being chosen such that the following determination of NEBE(CDP)(N, Fd(a))

would be accurate.
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Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:
3

{ kM 3/2

<0 Gew) X (Mn(p) XMo) ™% /"n(p)
f(a=1) = Q: Fn(p)( n(p): rd(a)la = l)a 0] = p2 2 3 : x (a = 1)’ (a = 1) = 3 \/— .

° 24x1(5/4)
(19)
Therefore, NEBE(CDP)(N, ld) can be defined by

0
Neoncop (N fa@) = o ( =0)d ,
where (= 0) is determined in Eq. (19). Then, by a variable change: () = ooy one obtains:
Fno(Fpo,
3/2
_ 9ew)*(Mn)) ™/ n@) > Fno(Fpo) 16 _ _
NGBneom (N Faa) = e 2x{ 5" @=1)%Fog( e Fa@a=1)d npy + I}
(20)
where
2
o w0 ~(An@* n) -3/2

he = 16 @=D*Kip(a@la@a=Ddae = 16 2 (Ao @) d ne)-
Here, (a=1)=— A

24x[(5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:
_ 1 b—1 a—tdt = I Yn))
In(p) — —25/4An(p) x Yn(p) t e dt = 25/4xAn(p)’

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 2o *(M@) ™ @ * Frocepo) 6, _
Ncon(eop) [N = Neoniop) (Fa@): Fa@] = R x { o (@=1)x

Fa( ey Fa@r @ =1)d o) +;§Zx—f£} 21)
being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBI(CDF,)[N = Neonop) (Fdgay): Fdayl = NEB-rII—(CDp)(rd(a)) , for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp)(Fd(a)) »

calculated using Eq. (3), with a precision of the order of 5.57(7.61) x 10™4, respectively. In other word,
this critical d(a)-density Ncpnpp)(Fdea))) can thus be explained by the density of electrons(holes)

localized in the EBT, NEBE(CDF,)( l'd(a)), respectively.
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So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the

degenerate d(a)- InP systems, can thus be expressed by:
N =N—Neonop N = Neonccop)- (22)

2xkEn(epy(N )

, then the
2XMn(p)

Then, if N = Ncpnnpp), according to the Fermi energy, rnocrpo)(N = Nconinop)) =

value of the density of electrons(holes), NEEE(CDP) , localized in the EBT for <0, is almost equal to

Ncpn(npp)> given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

N(EZBE(CDp) Neonnop) @ N = Nepnnop)- (23)

5. Optical coefficients
Here, Mp;)/Mo is chosen as: My, y/my = m,/m, = 0.060, as that used in Section 3, for determining the

optical band gap in degenerate GaAs-crystals.

The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n-—iK and € =&, —ig,, where i =— 1 and €= 2. Therefore, the real and
imaginary parts of € denoted by €; and €, can thus be expressed in terms of the refraction index n and the
extinction coefficient K as: & = n? — k? and £, = 2nK. One notes that the optical absorption coefficient a is

related to €, n, K, and the optical conductivity 0g by [3]

N(E)%&free space XCE

a(E) = xJE )= Exep(E) — 2ExK(E) — _  4mop(E) €, =n?—K2and &, = 2K, (24)

cn(E) c cn(E)*&free space ’

where the effective photon energy: E = E — gn¢gp) =  is the reduced photon energy, the band gap  gn(gp)
can be equal to the optical band gap gn1(gp1) and intrinsic band gap  gni(gpiy, determined in Eq. (5). Here,
E= w,-q, ,|V(E)], W, &freespace> C and J(E ) respectively represent: the photon energy, electron charge,
Dirac’s constant, matrix elements of the velocity operator between valence (conduction)-and-conduction
(valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light,
and joint density of states. It should be noted that, if the three functions such as: |V(E)|?, J(E ) and n(E) are
known, then the other optical dispersion functions given in Eq. (24) can thus be determined. Moreover, the

normal-incidence reflectance, R(E), can be expressed in terms of K(E) and n(E) as:

_ [n(E)—112+k(E)?

RE) = ey

(25)

From Equations (24, 25), if the two optical functions, €; and €,, (or n and K), are both known, the other ones
defined above can thus be determined.

Then, using a transformation for the joint density of states, given in allowed direct InP -transitions, at low

values of E, gni(gpi) = E< =25
1 2m\3/2 _ — 1 2m\32 13730
ey () =72 (_2) * Egnitgpi) X (B = Egnggey)*™ 42 = 5.7 (_z) * Egnicp < (B~ Egno))™ for  a=17/30,
(26)
and at large values of EEE= =25 |
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3/2 _ a—(1/2) 3/2 _ 2
1 2my (E—Egn(gp)) _ 1 2m, (E— gn@p) _
Jn(p)( ) - 2.‘.[2 x ( 2 ) x Ea_'l . - 2_‘_[2 x ( 2 ) x 3/2 ) fOI’ 3_5/2 (27)
gni(gpi) Egni(gpi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E — o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o(E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, taking into account Equations (26, 27) and also above remarks, an improved Forouhi-Bloomer
parameterization model (FB-PM), used to determine the accurate expressions of the optical coefficients,
obtained in the degenerate n(p) type InP-crystals, is proposed as follows.

If defining the band gap gn(gp), Which can be equal to the optical band gap  gn1(gp1), the effective intrinsic

. .. _ 4 Aj .
band gap  gneigpei), O to the intrinsic band gap  gnigpi)> and (E)= 10 4x§)—BiE+ci’ we propose:
29/15 — 1/15
K(E) =f(E) x gni(gpi) X (E = E-— gnl(gpl)) , for gni(gpi) = E<25eV,
=f(E)x (E = E~ gnygpp)  for E=25eV, (28)

being equal to 0 for E =0 (or for E = ¢51(gp1)), and also going to 0 as E™! asE - oo, and further,

BoiE+Coi
N(E) = Ne(rye)) + ?zlm, (29)

, . _ _ wr — 13 o—1

going to a constant as E - oo, since N(E - 0, I4(z)) = Neo(Fa)) = /€(Faga)) > o ©T 53x10*°s

[5] and w0, = 1.1023 x 10 s, according to N (rp) = 1.6999, obtained from the Lyddane-Sachs-Teller

relation [5], from which T(L) represents the transverse (longitudinal) optical phonon mode, while in the FB-

PM [11], Ny = 1.766 and the band gap Eqg =127 eV < yyiqgpiy, for the InP-crystal, as observed in
_ 2

Table 1. Here, other parameters are determined by [11]:Bgi = % X [— B?' + Egnei(gpei)Bi — Egnei(gpei) + G|,

A [B<(E2 eicgneiy+Ci) 4Ci—B7 .
Coi :ax %—2 gnei(gpei)Ci , O :T, where, for i=(1, 2, 3, and 4), A; = 1.18 %

Ajre) = 0.2389, 0.0276,0.0363,0.052, B; = Bjrgy = 6.311,9.662,10.726 , 13.604, and C; = Cirp) =
10.357,23.472,29.36, 47.602.

The important numerical results of the above optical functions, at T=0K, N = N¢pn(cpp), and for E = gnj(giy,
are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of
those numerical results, calculated using the corresponding data given by Aspnes and Studna [9], suggesting
that our obtained numerical results of these optical coefficients are found to be more accurate than the

corresponding ones, obtained from the FB-PM, as observed in Table 3c.
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Table 2a. At the MIT, T=0K, N=NCDn(p)(rd(a)), and the critical photon energy =E= gni(gpi)(rd(a)), ( gni(gpi): rd(a)) =

0, 2( )( gni(gpi)s rd(a)) = 0, ( )( gni(gpi) rd(a)) =0 and ( gni(gpi)s rd(a)) =0 y and the other functions such as :

witC gnigpiy: Fd@) > 1¢ )( gnicgpi): Fd(a))»> and ( gni(gpi): Td(a)) decrease with increasing Fqczy and i (Fgca))-
Donor P As Te Sb Sn
At the MIT, T=0K, N=N¢p,(rg), and the critical photon energy =E= g4n(ra),onhas:
gni(rd) in meV 1424 1424.3 1426 1428 1429
air( gnis o) 3.038 3.0173 2.9002 2.8553 2.8095
( gnirta) 0 0 0 0 0
1 )( gninFa) 9.2294 9.1041 8.4109 8.1530 7.8931
2 ) gninTa) 0 0 0 0 0
¢ 5C gninTa) 0 0 0 0 0
( gnirta) 0 0 0 0 0
( gnirTa) 0.2547 0.2522 0.2374 0.2316 0.2256
Acceptor Ga(Al) Mg In
At the MIT, T=0K, N=Ncp,(ra), and the critical photon energy =E= gi(ra),onhas:
gpi(ra) in meV 1420 1423.8 1424
( gpirTa) 3.1015 3.0410 3.0380
( gpisTa) 0 0 0
1 C gpinta) 9.6192 9.2478 9.2294
2 H( gpirTa) 0 0 0
¢ ) gpinTa) 0 0 0
( gpi» ra) 0 0 0
( gpirTa) 0.2625 0.551 0.2547

Table 2b. In d(a)-InP systems, the values of the following optical coefficients at < 0, expressed as functions of Fdcay » and

calculated using Equations (31-36, 24), for = gni(gpi)(rd(a)), present the exponential tail-states for O -,
T, ~ andR 7, and their variations with increasing Fq(s) are represented by the arrows: and , suggesting that the
obtained results of ~, 1 ~ ,andR 7 arealmost equal to the corresponding ones given in the above Table 2a.
d-GaAs systems P As Te Sb Sn
~(ry) 3.0380 3.0173 2.9002 2.8553 2.8095
~ (r9) 0.1554 0.1555 0.1561 0.1568 0.1572
. (re) 9.2052 9.0799 8.3866 8.1284 7.8684
2 (rd) 0.9439 0.9382 0.9054 0.8957 0.8834
T (rg) in QT 1 14.387 14.302 13.819 13.689 13.511
~(rg) in 108 ! 22.418 22.439 22.557 22.696 22.766
R~ (ry) 0.2558 0.2533 0.2386 0.2329 0.2269
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a-GaAs systems Ga(Al) Mg In

= () 3.1015 3.0410 3.0380

- () 0.1539 0.1553 0.1554

(D) 9.5955 9.2237 9.2052

, () 0.9545 0.9444 0.9439

“(ry in QT 1 14.507 14.392 14.387

= (ry) in 108 1 22.144 22.405 22.418

R~ (r) 0.264 0.256 0.2558

Table 2c. Here, the choice of the real refraction index: (- 0, fy) = w(Fa@) = /E(fa@) X—, =53 X 108 1

[5] and =1.1023 x 10** 1 obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the

transverse (longitudinal) optical phonon mode, giving rise to o (rp) = 1.6999, and further, that of the asymptotic behavior, given
for the extinction coefficient: o( - ©0,ry) - 0, as ~1, so that og( - oo, i) and a( - oo,rge)) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
Donor P As Te Sb Sn
g(rq) 12.5 12.20 10.57 9.987 9.40
wo(rd) 1.6999 1.6794 1.5632 1.5195 1.4741
(rd) 0 0 0 0 0
1.00(rq) 2.8898 2.8204 2.4436 2.3088 2.1731
zym(rd) 0 0 0 0 0
5
e(ra) ino- 7.7441 7.6506 7.1212 6.9220 6.7155
w(fg) in(0°x Y 2.1566 2.1566 2.1566 2.1566 2.1566
w(rd) 0.0672 0.0643 0.0483 0.0425 0.0367
Acceptor Ga(Al) Mg In
e(ra) 13.418 12.543 12.5
wo(la) 1.7612 1.7029 1.6999
w(ra) 0 0 0
1.00(Fa) 3.1020 2.8997 2.8898
2,0(la) 0 0 0
. 10°
w(ra) in o 8.0234 7.7574 7.7441
w(fa) in(10°x 1) 2.1566 2.1566 2.1566
wo(Fa) 0.076 0.068 0.067

235



Table 3a. In the P-InP system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28, 29), for ¢1(rp) = gni(rp)[ = 1.4240 €V], and the corresponding ones, obtained from the
FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,
for 1.5 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: K,(E - ,rp) - 0
and g, (E - 00,rp) - 0, while, in the FB-model, Keo(rg)(E ~ 0, 1p) = 0.3079 and €5 oo () (E ~ 0, 1p) = 1.3275.

EineV

(RD%)

(RD%)

1 (RD%)

2 (RD%)

(RD%) (RD%) 3  (RD%) 2( ) (RD%)
15 3.081 (10.9) 0.138 32.1) 9.472 (20.4)  0.849 (39.4)  3.088 (10.6) 0.0037 (98.2)  9.537 (19.9) 0.023 (98.4)
1.6 3.142(9.4) 0.162(25.9) 9.844(17.8) 1.015(32.7)  3.147(9.2) 0.008 (96.1)  9.902 (17.3) 0.053 (96.5)
1.7 3.208(7.7) 0.186(23.3) 10260 (14.7) 1.191(29.1)  3.211(7.6) 0.016 (93.4)  10.310 (14.2) 0.103 (93.9)
1.8 3.282(6.0) 0.212(21.4) 10.725(11.5) 1.393(26.2)  3.281 (6.0) 0.027 (89.9)  10.766 (11.2) 0.179 (90.5)
1.9 3362 (44) 0243 (17.0) 11247 (84) 1.635(20.7)  3.359 (4.5) 0.043 (852)  11.279 (8.2) 0.291 (85.9)

2 3.451(2.7) 0279(11.9) 11.834(5.3) 1927 (144)  3.444 (3.0) 0.066 (79.2)  11.855 (5.1) 0.455 (79.8)
2.1 3.549(0.9) 0.322(72)  12495(1.9)  2285(8.1)  3.537(1.3) 0.097 (71.9)  12.504 (1.8) 0.689 (72.3)
2.2 3.657(0.8) 0373 (1.8) 13.237(1.6)  2.729(0.9)  3.640(0.3) 0.140 (63.0) 13.229 (1.6) 1.022 (62.9)
2.3 3.775(2.5) 0434 (44) 14063 (5.1)  3.280(7.2)  3.751(L.9) 0.199 (52.2) 14.033 (4.9) 1.493 (51.2)
24 3.902(42) 0508 (11.2) 14.967 (8.4)  3.965(15.8)  3.871 (3.3) 0.278 (39.1) 14.904 (7.9) 2.153 (37.1)
2.5 4.035(5.7) 0596 (16.7) 15928 (11.3) 4.812(23.2)  3.995 (4.6) 0.384 (24.8) 15.810 (10.5) 3.069 (21.4)
2.6 4169 (6.8) 0.483 (16.5) 17.149(15.1)  4.031(10.9) 4.118(5.5) 0.524 (9.5) 16.679 (11.9) 4317 (4.6)
27 4293(72) 0.662(0.7)  17.992(154) 5.684(6.5)  4.228(5.6) 0.705 (5.7) 17.381 (11.5) 5.961 (11.7)
2.8 4390 (6.5) 0.886(12.8) 18.484(12.9) 7.782(20.0)  4.310 (4.6) 0929 (182)  17.709 (8.2) 8.010 (23.6)
2.9 4436 (42) 1.152(19.5) 18354(6.8) 10.222(24.6) 4.339(2.0) 1.192(23.6)  17.410 (12.9) 10.343 (26.0)
3 4409 (0.3) 1.440(15.5) 17.369(2.2) 12700 (15.9)  4.295(2.03)  1472(18.0)  16.283 (8.3) 12.647 (15.4)
3.1 4297 27) L1715(1.1)  15518(5.9) 14.742(3.8)  4.167 (5.6) 1735 (0.002)  14.352 (12.9) 14.462 (5.6)
32 4.108 (3.3) 1.937(9.6)  13.124(17.1) 15.912(6.6)  3.966 (0.2) 1.941 (9.4) 11.965 (6.7) 15.396 (9.7)
33 3.878(8.4) 2.074(6.1)  10.735(35.7) 16.087(1.8)  3.729 (4.3) 2.061 (6.7) 9.657 (22.1) 15.372 (2.7)
34 3.650(10.6) 2.123(3.1)  8.814(32.8) 15500 (14.0) 3.498 (6.0) 2.094 (16.3)  7.854 (18.3) 14.648 (7.8)
35 3.460(83) 2.102(7.9)  7.551(18.0) 14.542(16.9) 3.308 (3.6) 2.058 (5.6) 6.706 (4.8) 13.614 (9.4)

3.6 3.324(6.1) 2.037 (8.8) 6.900 (9.3)  13.547 (15.5) 3.174(1.3) 1.982 (5.9) 6.144 (2.7) 12.582 (7.2)

37 3247 (4.6) 1.956 (7.7) 6.718 (6.1)  12.706 (12.8)  3.098 (0.2) 1.892 (4.2) 6.018 (4.9) 11.723 (4.1)

3.8 3224(42) 1.878(5.9) 6.867 (6.8)  12.109 (10.3)  3.075 (0.6) 1.806 (1.9) 6.190 (3.8) 11.108 (1.2)

39 3.247(45) 1.816 (4.1) 7243(9.5)  11.792(8.8)  3.096 (0.4) 1.738 (0.3) 6.563 (0.8) 10.761 (0.7)

4 3.308(53) 1780 (29)  7.777(13.1) 11.779(8.3)  3.154(0.4) 1.696 (2.0) 7.073 (2.9) 10.699 (1.6)

4.1 3.404 (6.5 1.780 2.6)  8.418(16.8) 12.115(9.3)  3.244(L5) 1.688 (2.7) 7.674 (6.5) 10.955 (1.2)

4.2 3.527(7.7) 1.825(3.6)  9.106(19.5) 12.875(11.6)  3.360 (2.6) 1725 (2.1) 8.314(9.1) 11.594 (0.5)

43 3.670 (84) 1.932(5.8)  9.734(19.9) 14.184(14.8)  3.495(3.3) 1.820 (0.3) 8.899 (9.6) 12.723 (3.0)

4.4 3.817(82) 2.122(8.9)  10.069 (16.5) 16204 (17.9)  3.633(3.0) 1.994 (2.3) 9.225 (6.7) 14.486 (5.4)

45 3.935(6.4) 2420 (10.7)  9.625(8.3)  19.048(17.9)  3.743(1.3) 2.269 (3.8) 8.866 (0.3) 16.987 (5.1)

4.6 3.952(4.0) 2.840(7.7)  7.555(0.9)  22.450(12.0)  3.761(1.0) 2.659 (0.8) 7.072 (5.5) 19.998 (0.2)

47 3764 (5.7) 3.336(3.5)  3.044 (32.8) 25.112(9.4)  3.585(0.7) 3.121 (3.2) 3.114 (35.9) 22.376 (2.5)

4.8 3.306 (10.8) 3.747 (6.5) —3.108 (10.4)  24.775(18.0)  3.155(5.7) 3.502(0.4)  —2.310 (33.4) 22.101 (5.3)

49 2.694(5.8) 3.882(10.5) —7.811(33.1)  20.911(16.9) 2.581 (1.4) 3.620 (3.0) —6.446 (9.8) 18.687 (4.4)

5 2164 (1.6)  3.732(6.8) —9.245(204) 16158 (8.5)  2.088(2.0) 3.469 (0.7) —7.675 (0.4) 14.484 (2.8)

5.1 1.834 (4.5)  3.462(5.2) —8.624(10.7) 12.699(10.6) 1.783(2.2) 3.205 (2.6) —7.094 (0.4) 11.433 (0.4

5.2 1.661 (6.6)  3.205(6.2) —7.510(12.6) 10.647 (13.3) 1.628 (4.5) 2,957 (2.0) —6.092 (8.6) 10.944 (16)

53 1571 (6.0)  3.001(7.1) —6.537(15.6)  9.428(13.5) 1.549 (4.5) 2.760 (1.5) —5.221(7.6) 8.551(2.9)

54 1514(40) 2.844(72) —5794(179) 8.610(11.6)  1.500 (3.1) 2,609 (1.6)  —4.557(7.3) 7.830 (1.5)

55 1470(3.1)  2715(6.0) —5.209(15.0)  7.983(9.2)  1.464 (2.7) 2.486 (3.0) —4.036 (11) 7.278 (0.4)

56 1436(44)  2.602(48) —4.709 (10) 7474 (9.4)  1.436 (4.4) 2378 (43)  —3.592(16.1) 6.828 (0.5)

57 1413(67)  2.501(49) —4256(8.5)  7.068 (11.9)  1.418(7.0) 2281 (43)  —3.192(18.7) 6.467 (2.4)

58 1.402(8.0) 2411(5.7) —3.846(9.6)  6.762(14.1) 1411 (8.6) 2.195(3.7)  —2.828 (19.4) 6.192 (4.5)

5.9 1402 (7.8)  2.335(7.0) —3.487(13.5) 6.550 (153)  1413(8.6)  2.122(2.8)  —2.507 (18.4) 5.999 (5.6)
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6 1410 (5.5)  2.276(7.7) —3.192(19.1) 6.417(13.7)  1422(6.5)  2.065(2.3)  —2.241(17.8) 5.875 (4.1)

1.6999 0 2.8898 0 1.766 0.3006 3.0284 1.0616
1.6999 0 2.8898 0 1.766 0.3006 3.0284 1.0616
EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 (RD%) 2 (RD%)

Table 3b. In the P-InP system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28, 29), for ¢1(rp) = gni(rp)[ = 1.5198 €V], and the corresponding ones, obtained from the
FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,
for 1.6 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2¢, one obtains: o (E - o0,1p) =

21602 x 10° cm™ and 0w (E - ©0,1p) =9.4912 x 10° (;), while, in the FB-model, ¢ - o0, and oggs) — ©0, which should be not

Qxcm.

correct.
EineV  (10°x “):;RD%  R;RD% (=) () (10°x  ~1);RD% ; RD%
15 20.946; 32.0 0.261; 15.5 13.631 0.367 0.563; 98.2 0.261; 14.5
1.6 26.203; 25.8 0.268; 12.5 17.389 0.911 13715 96.1 0.2680; 12.7
1.7 31.97,23.2 0.277; 10.1 21.670 1.870 2.756; 93.4 0.2757; 10.5
1.8 38.73;21.5 0.2857; 7.8 26.847 3.444 4.969; 89.9 0.2840; 8.4
1.9 46.80; 17.1 0.2955; 5.6 33.243 5.926 8.352; 85.2 0.2929; 6.4
2 56.57; 12.0 0.3060; 3.5 41.248 9.737 13.38,79.2 0.3026; 4.5
2.1 68.51;73 0.3175; 1.4 51.366 15.490 20.73; 71.9 0.3130; 2.8
22 83.16; 1.7 0.3299; 0.9 64.252 24.072 31315 63.0 0.3243; 0.8
23 101.25; 4.5 0.3432; 3.1 80.743 36.751 46.398; 52.1 0.3365; 1.0
24 123.58; 1.1 0.3574; 4.8 101.86 55.310 67.65;39.2 0.3495; 2.5
25 151.04; 16.6 0.3722; 6.6 128.75 82.133 97.33;24.9 0.3633; 4.1
26 127.38; 16.6 0.3813; 5.9 112.18 120.14 138.13;9.5 0.3776; 4.9
27 181.13; 0.7 0.3965; 6.6 164.26 17228 192.88; 5.7 0.3923; 5.5
28 25151 12.7 0.4115; 6.6 233.22 240.06 263.70; 18.1 0.4067; 5.4
2.9 338.58; 19.5 0.4254; 5.3 31729 321.03 350.23;23.6 0.4200; 4.0
3 437.82; 154 0.4371; 2.4 407.81 406.08 44755, 18.0 0.4312; 1.0
3.1 538.93; 1.2 0.4455; 1.9 489.13 479.85 545.16;0.02 0.4390; 3.3
32 628.07;9.7 0.4494; 1.9 545.01 52734 629.40; 9.5 0.4420; 3.5
33 693.67; 6.1 0.4479; 0.4 568.21 542.94 689.27,6.7 0.4395; 14.6
3.4 731.57;3.0 0.4413;53 564.05 533.05 721.36; 1.6 0.4316; 3.0
35 745.46; 7.8 0.4306; 6.9 544.78 510.00 729.91;5.6 0.4195; 4.1
36 743315 8.8 0.4181; 6.9 521.97 484.80 723.13; 5.9 0.4054; 3.7
3.7 733.55, 7.7 0.4060; 6.0 503.20 464.26 709.43; 4.2 0.3918; 2.3
3.8 723.21;5.9 0.3965; 4.9 492.52 451.81 695.64; 1.9 0.3809; 0.8
3.9 717.71; 4.1 0.3912; 4.0 49222 449.22 686.92; 0.4 0.3745; 0.4
4 721.60; 2.9 0.3910; 4.0 504.31 458.08 687.48; 2.0 0.3734; 0.7
4.1 739.43; 2.6 0.3965; 4.3 531.65 480.76 701.53; 2.7 0.3780; 0.5
42 776.93; 3.6 0.4079; 5.4 578.81 521.21 73431;2.1 0.3887; 0.4
43 842.10; 5.8 0.4253; 63 652.82 585.58 793.26; 03 0.4056; 1.4
44 946.33; 8.9 0.4490; 7.2 763.12 682.23 888.95;2.3 0.4288; 2.3
45 1103.7; 10.7 0.4790; 6.7 917.43 818.18 1034.7; 3.8 0.4584; 2.1
4.6 1323.9;7.7 0.5149; 4.4 1105.3 984.61 1239.5; 0.8 0.4941; 0.2
47 1588.7;3.5 0.5548; 2.2 1263.3 1125.6 1486.4; 3.2 0.5338; 1.7
48 1822.6; 6.5 0.5941; 2.9 1272.8 1135.5 1703.6; 0.4 0.5726; 0.7
49 1927.5; 10.4 0.6247; 5.7 1096.7 980.07 1797.7; 3.0 0.6019; 1.8
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5 1891.15 6.7 0.6384; 4.1 864.69 775.15 1757.7; 0.8 0.6128; 0.03
5.1 1789.4; 5.2 0.6335; 2.2 693.17 624.11 1656.7; 2.6 0.6042; 2.5
52 1688.7; 6.2 0.6170; 2.7 592.57 535.74 1558.0; 2.0 0.5839; 2.8
53 1611.7; 7.1 0.5976; 3.6 534.81 485.10 1482.7; 1.5 0.5611;2.7
54 155615 7.2 0.5796; 4.6 497.62 452.58 1427.9; 1.6 0.5405; 2.4
55 1513.2; 5.9 0.5635; 4.0 469.95 428.44 1385.5; 3.0 0.5220;3.7
56 1476.7; 4.7 0.5479; 2.6 448.00 409.27 1349.4; 4.3 0.5043; 5.5
5.7 1444.5; 4.9 0.5319; 1.9 43120 394.54 1317.4; 4.3 0.4867; 6.8
5.8 1417.0; 5.7 0.5157;23 41978 384.40 1290.15 3.7 0.4691; 6.9
5.9 1396.2; 6.9 0.5003; 3.6 413.62 378.82 1269.0; 2.8 0.4527; 63
6 1383.8; 7.7 0.4867; 5.6 412.09 377.29 1255.7; 2.3 0.4385; 4.9

x 0.0672 x x x 0.0875

x 0.0672 x x x 0.0875
EineV  (10°x ~);RD% R; RD% (=) () (10°x  H;RD% ; RD%

Table 3c. Here, our maximal relative deviation (MRD)-values and those of (MRD)gg, calculated using the (AS)-data [9], are

reported, suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the

corresponding ones, obtained from the FB-model.

MRD n K € € R

E (eV)

1.5 10.9% 32.1% 39.4% 32% 15.5%
33 35.7%

(MRD)¢g Nk Krg €1(rB) €2(FB) FB Res
E (eV)

1.5 10.6% 98.2% 98.4% 98.2% 14.5%
4.7 35.9%

Some important cases, given in various physical conditions, are considered as follows.
5.1. Metal-insulator transition (MIT)-case
As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT

are: T=0K, N =0 or N = Ncpnccpp) NEBI(CDp) , vanishing the Fermi energy:

2xkEn(epy(N )

Fro(Fpo)(N ) = Xy =0. Further, from the discussions given Eq. (5) for the optical band gap:

gnl(gpl)(N = 0, rd(a), T= 0) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)), according also to the MIT.
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Then, in this MIT-case, replacing both  gneigpeiy and  gn1(gp1)> DY  gni(gpi)» given in Equations (28, 29), and
consequently from Eq. (24), one gets, for the effective photon energy E = E—  gpj(gpiy = 0:

K(E , rg@) =0, &(E , rg@) = 0, 00(E ,ry@m) = 0 and a(E , rye@)) = 0, corresponding also to the MIT.
Thus, in this case, the photon energy E becomes the critical photon energy, defined by:

ECPE(rd(a)) = gni(gpi)(rd(a))- Therefore, Equations (28, 29), obtained in the MIT-case, become:

29/ _ 1/15
KE =0) =f(E)x ooy X (E = E~ gy =0) =0, and (30)
— — 4  BoiE+Coi . . —
n(E = gni(gpi)) = noo(rd(a)) + i E2—BE+Cy in which gnei(gpei) =  gni(gpi)- (31)

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients
for <= 0, representing the exponential tail-states, which can be deduced from Eq. (30), by putting: E =

KECT( gnicop) = F(Eqnigpd) > Gricoi- (32)
Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, given for

the following exponential tail-states of €5, 0g(E), 0, and R as:

5T ( gnicgpiy) =2 % KEECTT( gnicapiy) X NE = gnigapi))» 33)
G(E)OC_T( gni(gpi)) __ Efree space gni(ng:SElmD_T( gni(gpi))’ (34)
QEOACT( o) = 2% gni(gpi>><KEfZ_T( gni(gpi))’ and (35)
RYRTT( gniggpiy) = ) AP o) (36)

[0 gnicapiy)+L2HKEST( gnigapiy)”
The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.
5.2. Extrema values of () as functions of photon energy E
From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, rq(a))
in following physical conditions by: T=0K and N = Ncpnnpp), and by: T=20K and N = 1020 -3,
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and
(¢ 1) the minimum and the extrema-values of those occur at the same corresponding photon energy E.
Table 4n. In d-InP systems, and for two types of physical conditions such as: (T=0K and N = N¢p,(rg)) and (T=20K, N =
10%° cm™3), the extrema values of ;( ) and ,( ), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: tori, suggesting that those extrema occur at the same E.

EineV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 10%

In the P- GaAs system, at T=0K and N = Ngpy(rp) = 2.09x10% ecm™3, ,(rp) = ni(rp)[ = 1.424 eV]

() 15.93 T 1848 | 17.37 1312 1 672 1t 10.07 + 304 1+ —-924 1 0.5 2.62 2.8898
2() 4.81 7.78 1270+ 1591 | 1271 1 16.20 t2511 1 16.16 | 1.76 1.24 0
In the As-GaAs system, at T=0K and N = Ngpn(ras) = 2.25x10%° cm™3, an(Fas) = gni(ras)[ = 1.4243 eV]

1) 15.76 T 1830 1 17.18 1295 1 659 1t 991 1+ 28 1+ —-933 1t 0.12 2.55 2.8204
2() 4.79 7.74 1263 t 1583 | 12.62 1 16.11 T 2497 | 1600 | 1.72 1.23 0

In the Te- GaAs system, at T=0K and N = Ngpq(rre) = 3.456x10% cm™3, g.(rre) = gni(rre)[ = 1.426eV]
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10) 14.81 1727 L 16.16 1202 1 586 1 905 + 205 1+ —-978 1t —0.09 2.18 2.4436

() 4.66 7.51 1226 t+ 1534 1 1215 1 1560 t 2416 1 1513 | 1.52 1.14 0
In the Sb- GaAs system, at T=0K and N = Nepn(rsp) = 4.1x10% cm™, 1 (rsp) = gni(rsp)[ = 1.428eV]

() 14.44 t 1687 | 15.77 11.70 '+ 5.60 1t 8.73 ) 1.76 1 —992 1t -0.16 2.05 2.3088
() 46l 7.40 1210 1 1513 1 1195 1 1539 1 2384 | 1479 | 144 111 0
In the Sn- GaAs system, at T=0K and N = Nepn('sn) = 4.91x10%6 cm™3, 1(rsn) = gni(rs)[ = 1.429eV]

() 14.08 Tt 1648 | 15.38 1131 L 533 1t 8.41 ) 145 | -—10.08 1t —-0.23 1.92 2.1731
() 4.56 7.31 1195 v+ 1493 1+ 11.77 1 1518 t+ 2352 | 1445 | 1.36 1.07 0
EineV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 102
In the P- GaAs system, at T=20K and N = 10%° cm~3, gn(rp) = gna(rp)[ = 2.4567 eV]

() 16.05 19.28 1 1942 | 1676 1 1020 1 1376 1 11.72 .12+ 048 1t 2.62 2.8898
2() 3.88 1 048 1t 1.51 2.79 3.79 6.91 t 1177 L 8.17 1.36 1.21 0

In the As- GaAs system, at T=20K and N = 10%° cm~3, gon(fas) = gna(rag)[= 24525 eV]
() 15.89 19.09 1t 1924 | 1659 1 10.07 1 13.59 1 11.55 1.01 1044 1t 255 2.8204

20) 389 049 1t 1.52 2.80 3.79 690 t 11.75 | 8.12 1.33 1.20 0

In the Te- GaAs system, at T=20K and N = 102 cm™3, (1) = gn1(rre)[ = 24254 €V]

1) 14.93 18.06 t 1820 1 1562 + 930 t 1267 | 10.57 037 + 022 t 219 2.4436

20) 389 1 056 1 1.63 2.92 3.82 688 t 11.66 | 7.85 1.18 1.12 0

In the Sb- GaAs system, at T=20K and N = 1020 cm™3, ,(rsp) = gn1(rsp)[ = 2.415eV]

10) 14.55 17.66 1t 1779 1 1525 + 9.01 t 1232 | 10.20 0.14 + 0.15 t 2.05 2.3088

20) 389+ 058 1 1.67 2.97 3.82 686 t 11.63 | 7.74 1.13 1.08 0

In the Sn- GaAs system, at T=20K and N = 10%° cm™3, an(fsn) = gna(rsp)[ = 2.4022 V]

1) 14.19 17.26 1t 1739 1 1488 1+ 872 't 1197 1 981 -011 + 008 t 192 2.1731
20) 3.88 1 0.61 t 1.73 3.03 3.84 687 1t 11.61 | 7.65 1.07 1.05 0
EineV 2.5 2.8 3 32 3.7 4.4 4.7 5 10 100 10%

Table 4p. In a-InP systems, and for two types of physical conditions such as: (T=0K and N = Ncpp(ry)) and (T=20K, N =
10%° cm™3), the extrema values of 1( ) and ,( ), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 Or | , suggesting that their extrema occur at the same E.

EineV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 10%

In the Ga- InP system, at T=0K and N = Ncpp(rea) = 1.692x10%8em™3, 1(rg,) = gpi(re)[ = 1.42 V]
1) 16.49 T 19.09 | 17.95 13.64 7.10 t 1053 | 347 I —905 1 0.27 2.82 3.1020

20) 4.87 7.95 12.96 1624 1 1299 t 1652 1t 2559 | 16.64 1.87 1.29 0

In the Mg- InP system, at T=0K and = NCDp(ng) =2072x10*®¥ cm~3, gp(ng) = gi(rvg)[=14238 ]
1) 15.95 t1851 17.40 13.15 6.74 1t 1009 | 306 | —923 1 0.16 2.62 2.8997

2() 4.81 7.79 12.71 t 1593 1 1272 1 1622 ot 2513 | 16.18 1.77 1.24 0

In- InP system, at T=0K and N = N¢pp(rin) = 2.09x10%8cm™, (1)) = gu(rn)[ = 1424 eV]
() 15.93 T 1848 | 17.37 13.12 6.72 1 10.07 3.04 | —-924 1 0.156 2.617 2.8898

2() 4.81 7.79 12.71 t 1593 1 1272 1 1622 ot 2513 | 16.18 1.77 1.24 0
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EineV 2.5 2.8 3 32 3.7 4.4 4.7 5 10

100 10%

In the Ga- InP system, at T=20K and N = 10%2° cm™3, w(ea) = gp1(rea)[=2.3822eV]

() 16.59 19.88 t 20.01 17.26 10.52 1t 14.11 | 11.86 094 + 058 1t 283 3.1020
2() 420 | 0.73 1t 1.98 3.43 4.34 7.57 1t 12.78 | 8.89 1.47 1.26 0
In the Mg-InP system, at T=20K and N = 102 cm™3, ,(ryg) = gp1(rmg)[= 2.3690eV]
() 16.01 19.30 1t 1943 | 16.73 10.12 1t 13.62 | 11.34 0.61 + 046 1t 263 2.8997
2() 4.18 1 0.76 1 2.04 3.49 4.35 7.55 1 1272 8.76 1.40 1.22 0
In the In-InP system, at T=20K and N = 10%° cm~3, w(n) = gpa(nn)[=2.3683 eV]
() 16.02 19.27 1 19.40 | 16.70 10.10 1t 13.60 | 11.32 0.60 | 0456 1t 2.62 2.8898
() 4.181 077 1 2.041 3.49 4.35 755 1 12.72 L 8.75 1.39 1.22 0
EineV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 10%*

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-InP systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, typically for E=3.2 eV and for some (P, Te, Sn)-InP systems and (Ga, In)- InP ones, being

indicated by the arrows:  and

, as tabulated in following Tables 5n and 5p, in which the physical

condition N > Nepnnppy (or N > 0) must be respected, and their variations thus depend on the ones of the

optical band gap, gnl(gpl)(N .rd(a))-

Table 5n. In (P, Te, Sn)- InP systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2 ¢V and T=20K, present the variations by arrows, (

optical gap gn1(N , rg) increase with increasing N, at T=20 K.

and ), since those of the

N (108 cm™3) 4 8.5 15 50 80 100
gn1(N ,Tp,20K) in eV 1.5059 1.5805 1.6714 2.0447 23016 2.4567
n(rp)=4.1086
( ,rp) 1.762 1.610 1.435 0.820 0.495 0.339
1C,rp) 13.775 14.287 14.823 16.209 16.635 16.766
2( . 1p) 14.481 13.233 11.789 6.735 4.072 2.787
( ,rp) in 102 Q71 1 4.960 4.532 4.038 2.307 1.395 0.955
(,rp) in 10° 1 5.715 5.222 4.652 2.658 1.607 1.100
R( ,rp) 0.437 0.427 0.416 0.386 0.376 0.373
gn1(N , r7e, 20K) in eV 1.4976 1.5692 1.6571 22012 2.2731 2.4254
n(  )=3.9695
( ,rre) 1.779 1.633 1.462 0.853 0.527 0.368
1( ) 12.590 13.090 13.620 15.029 15.478 15.621
2( ,Tre) 14.127 12.964 11.604 6.774 4.188 2.925
( ,rp) in 102 Q71 1 4.839 4.440 3.974 2.320 1.434 1.002
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( ,rp) in 105 1 5.771 5.295 4.740 2.767 1.711 1.195
R( ,rre) 0.430 0.420 0.408 0.375 0.364 0.361
g1 (N ,Isn, 20K) in eV 1.4924 1.5616 1.6471 2.0040 2.2520 2.4022
n( )=3.8768
( . rsn) 1.791 1.648 1.481 0.878 0.552 0.391
1C ., ren) 11.824 12.312 12.837 14.258 14.725 14.877
2( Ten) 13.883 12.781 11.481 6.810 4278 3.031
( ,rgy) in 102 Q71 1 4.755 4378 3.932 2.332 1.465 1.038
( .rg) in 10%5 ¢ 5.806 5.345 4.802 2.848 1.789 1.267
R( ,rsn) 0.425 0.415 0.403 0.368 0.356 0.352
N (108 cm™3%) 4 8.5 15 50 80 100

Table 5p. In (Ga, In)- InP systems, the numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2eV and T=20K, present the variations by arrows, (  or

optical gap ¢p1(N , Iy) increase with increasing N, at T=20 K.

N (10%8 cm™3) 15 26 60 100
a1 (N, TGa, 20K) in eV 1.6260 1.7533 2.0720 23822
n( )=4.1748
., ) 1.5212 1.2851 0.7814 0.411
10 ) 15.115 15.777 16.818 17.260
20, ) 12.701 10.730 6.524 3.429
(, ) in 102 Q% 1 4.3503 3.6750 2.234 1.174
(, )in 108 4.9331 4.1673 2.534 1332
R(, ) 0.426 0.4116 0.3903 0.380
a1 (N T, 20K) in eV 1.6184 1.7447 2.0606 2.3683
n( )=4.1086
(. ) 1.5359 1.3005 0.797 0.425
) 14.522 15.189 16.245 16.700
20, ) 12.621 10.687 6.551 3.490
(, )in 102Q% 1 4323 3.660 2.244 1.195
(, )in 105 ! 4.981 4.217 2.585 1.377
R(, ) 0.422 0.409 0.385 0.375
N (10%8 cm™3) 15 26 60 100

), since those of the

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- InP systems
Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =

1.5 x 10°cm™3 | respectively, as functions of T, typically for E=3.2 eV and for some (P, Te, Sn)- InP
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systems and (Ga, In)- InP ones, being indicated by the arrows: and , as given in following Tables 6n and
6p, in which their variations thus depend on the ones of the optical band gap, gnl(gpl)(N , rd(a)).

Table 6n. In (P, Te, Sn)-InP systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.2 ¢V and N = 1.5 x 10'® cm™3, increase with increasing T, since the optical band

gap gn1(T,Tg) decreases with increasing T.

TinK 20 30 50 100 200 300
gn = gnl(T, rp) in eV 1.6714 1.6708 1.6688 1.6608 1.6358 1.6039
n(rp, ) 4.109 4.1094 4.1119 4.1218 4.1529 4.193
(D) 1.435 1.436 1.440 1.455 1.502 1.564
(e, ) 14.823 14.826 14.835 14.873 14.989 15.134
2(e ) 11.789 11.802 11.839 11.993 12.478 13.117
(re, ) in 102 @7t t 4.038 4.042 4.055 4.108 4274 4.493
(fp, ) in 105 ! 4.652 4.656 4.668 4718 4.872 5.072
R(rp, ) 0.416 0.4164 0.4168 0.418 0.423 0.430
gn = gnl(T, I'te) ineV 1.6571 1.6565 1.6545 1.6465 1.6215 1.5896
n(Fre, ) 3.969 3.970 3.973 3.983 4,014 4.054
(fre, ) 1.462 1.463 1.467 1.482 1.530 1.592
1(rre, ) 13.620 13.623 13.631 13.665 13.769 13.897
2(Frer ) 11.604 11.616 11.653 11.804 12.282 12.910
(fre, ) in 102 Q71 -1 3.974 3.979 3.991 4,043 4.206 4.422
(fre, ) in 105 1 4.740 4.744 4.756 4.806 4.961 5.164
R(rre, ) 0.408 0.4084 0.4088 0.4105 0.4157 0.422
gn = gnl(T, Isy) in eV 1.6471 1.6465 1.6445 1.6365 1.6115 1.5796
n(rsn, ) 3.877 3.878 3.880 3.890 3.921 3.961
(Fsm ) 1.481 1.482 1.486 1.501 1.549 1.612
1(fsn, ) 12.837 12.840 12.847 12.879 12.974 13.091
2(Fsn, ) 11.481 11.493 11.529 11.678 12.151 12.772
(fsn, ) in 102 Q72 1 3.932 3.936 3.949 4.000 4.162 4375
(fsn, ) in 105 1 4.802 4.806 4818 4.868 5.024 5228
R(rsn ) 0.403 0.4032 0.4036 0.4053 0.4108 0.4177
TinK 20 30 50 100 200 300

Table 6p. In (Ga, In)-InP systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.2 ¢V and N = 1.5 x 10'® cm™, increase with increasing T, since the optical band

gap gp1(T,Ty) decreases with increasing T.

TinK 20 30 50 100 200 300

o = gp1(T,Iga) ineV 1.6260 1.6254 1.6234 1.6154 1.5905 1.5587
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n(lga ) 4.175 4.1756 4.178 4.188 4.219 4.259

(fea ) 1.521 1.522 1.526 1.542 1.591 1.654
1(rea ) 15.115 15.117 15.126 15.161 15.270 15.404
2(fear ) 12.701 12.714 12.754 12.914 13.422 14.090
(fea ) in 102 Q71 1 4350 4355 4368 4.423 4.597 4.826
(fga ) in 105 1 4933 4.937 4.949 5.000 5.158 5.364
R(rga ) 0.426 0.4261 0.4265 0.428 0.433 0.439
o = gp1(T, M) ineV 1.6184 1.6178 1.6158 1.6078 1.5829 1.5512
n(fn, ) 4.109 4.1094 4112 4122 4.153 4.193
T ) 1.536 1.537 1.541 1.557 1.606 1.669
(i ) 14.522 14.524 14.533 14.566 14.668 14.794
2(fny ) 12.621 12.634 12.673 12.833 13.337 13.999
(i, ) in 102 Q71 1 4323 4327 4341 4395 4.568 4.795
(fyy ) in 105 71 4,981 4.985 4.997 5.048 5.207 5.414
R(rpn, ) 0.422 0.4226 0.423 0.4247 0.4298 0.436
TinK 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type degenerate InP-crystal, by using the same physical model, as that given in Eq. (7), and same
mathematical methods, as those proposed in I, II and III, and further, by taking into account the corrected
values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the refraction
index n and extinction coefficient K, as the photon energy ( - ), all the numerical results, obtained in III,
are now revised and performed.

So, by basing on our following basic expressions, as:

(i)the effective static dielectric constant, €(Iy(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),

(i) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N =N — N¢pn(cpp) =0 or N = Ncpn(cppy » noting that Nepncppy can also be explained as the
density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT), NEBE(CDF,), as
that determined in Eq. (21), with a precision of the order of 7.61 x 1074, as observed in Table 1,

(iii) the Fermi energy, pnepy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their

correct asymptotic behaviors,
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we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their

numerical results, given in different physical conditions, have been obtained and discussed in above Tables

2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical

results for those optical coefficients are found to be more accurate than the corresponding ones, calculated

from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@)  Fnorpo)(N =0, T=0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to

(N )2/3,

(b) as discussed in Eq. (5), in the MIT, in which gn1(gp1y(N = 0,rg@), T=0) = gnicgpi)(Faca))-

where  gn1gp1) and  gnicrgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = gni(gpi)(rd(a)) or the effective photon energy E =
gni(gpi)(rd(a)) =0, one has: K(E =0,rg4p) =0, &(E =0,r4)) =0, 0o(E =0,r4) =0 and

a(E = 0,rge) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InP-crystals, the Fermi energy pn(rp) = ( Fp = [ v— fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10~# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — N¢pncop)(Fd(a)) > Neon(cop) (Fdea)) being
the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in
Table 1, meaning that N = O at this transition.

First, we define the reduced electron density by:

3
2

n(p)<ksT _
(N Tay T) = UN |, T) = = Ny (T) = 2 % ogyy < (T35 (em™3), (A1)
where Ny () is the conduction (Valence)-band density of states, the values of gc)( = 1), and my,)/Mo,

defined in Section 2, can be equal to : Myy/m, =0.073 (0.339), and to m;/m, = T = 0.06. In

mp+mp

particular, as used in Section 3 for determining the optical band gap in degenerate InP-crystals, Myp)/

my= m,/my, = 0.06 was chosen. Then, the reduced Fermi energy in the n(p)-type GaAs is determined by :

NOYEO) G(u)+AuBF(u) V()
- ( o ) = = 0 (u) = T A= 00005372 and B = 4.82842262, (A2)

2

2 4 8\ 3
where F(N , rqc), T) = aus (1 +bu s+ cu“S) ° obtained foru 1, according to the degenerate cas,
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— __ 62.3739855 ( )

3
1920 and then G(u) Ln(u)+22xuxe 4 foru

_ 1?2
. FP — 23/2| 1 3
1, according to the non — degenerate case, with: d =2 [ﬁ - E] >0.

So, in the present degenerate case (U 1), one has:

2
-3 8\ 3
(N Ta@: T) = Enepy(N . T) = Enogrpoy (U) < (1 +bu 3+cu 3) : (A3)
Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:

— 2><|(I%n(Fp) (N)

Fno(Fpo)(N ) = 2xMm; ) (A4)

being proportional to (N )2/3, and equal to 0, Fno(Fpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type InP-crystals, we define the effective reduced Wigner-Seitz radius rgn(sp),
characteristic of the interactions, by:

mn(p)/mo
e(rd@)

3gc(v))1/3 < 1

1/3
— —_ 8 gC(V)
rsn(sp)(N 1rd(a)) = ( 2N aonon (ae) 1.1723 x 10° x (—N )

(B1)
In particular, in the following, Mp;,/M = M/M,, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)), is found to

be given by [1]:
087553, (2[1-In(2)] _
B 087553 T —— ( = )xIn (Fsn(sp))—0.093288
CE(rsn(Sp)) = CE(N ! rd(a)) - 0-0908+rsn(sp) + 1+0.03847728xrL: 67378876 . (BQ’)

sn(sp)

Then, the band gap narrowing (BGN) can be determined by [1]:

. & 5/4
e xN3x(2503><[ celran) X ) + 23 % [ 2]
3

e — N =N—=Ncpn(rq)
e(r )] * Ny Nr_9.999x1017 -3 (B3)

A gn(N rg) ap>x 2=xN;

g(rq)

1/4 ,
\/:rxN +ay X 8()

where £, = &p = 12,5, a; =6.8286 x 1073(eV), a, = 1.1681 x 1073(eV) , a3 = 5.0316 x 1073(eV),
as = 10.1 x 1073(eV) and ag = 1.4556 x 10‘3(eV) and

1/2

xN X2+ ag X [

3 5/4
A gp(N 1) agx E(Ero x N;™° + ap x fog x N3 % (2503 x [ = cg(rsp) x rspl) +ag x L(E;) x ’2—‘: x
1/4 v2 6 — (N =N—Ncpp(ra)
N+ 284 > NE (r <Ny 5 [ (a)] * Ny, Np = (9.999x1017 cm—3)’ (B4)

where £, = g, = 12,5, a; = 9.329 x 1073(eV), a, = 1.5958 x 1073(eV), ag = 7.1441 x 1073(eV), a, =
13.7 x 1073(eV) and a5 = 1.9886 x 103(eV).

Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Iq), A gnp)(N =0, rg@) =0
according to the MIT.
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