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Abstract
In the n(p)-type degenerate InP-crystals, at low temperature T and high d(a)-density N, our expression for

the static dielectric constant, ε rd a , expressed as a function of the donor (acceptor) radius, rd a , and

determined by using an effective Bohr model, as that investigated in [1,2], suggests that, for an increasing

rd a , due to such the impurity size effect, ε rd a decreases, affecting strongly the critical d(a)-density in

the metal-insulator transition (MIT), NCDn(CDp)(rd(a)), determined by Eq. (3), and its values are reported in

Table 1, and also our accurate expressions for optical coefficients, obtained in Equations (24, 25, 28, 29),

and their numerical results are given in Tables 2-6. Furthermore, one notes that, as observed in Table 3c, our

obtained results of those optical coefficients are found to be more accurate than the corresponding ones,

obtained from the FB-PM [11], suggesting thus that our present model, used here to study the optical

properties of the n(p)-type degenerate InP-crystals, is a good improved FB-PM, as observed in Table 3c.
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1. Introduction
Our new expression for the extrinsic static dielectric constant, ε rd a , rd a being the donor (acceptor) d(a)-

radius, was determined by using an effective Bohr model, suggesting that, with an increasing rd a , due thus

to such the impurity size effect, ε rd a decreases, affecting strongly: the critical impurity density in the

metal-insulator transition [1], figure of merit ZT [2], and also optical properties given in degenerate

semiconductors [3].

In the following Sections 2-5 [4, 11], in the n(p)-type degenerate InP-crystals, our numerical results of the

optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-Bloomer

parameterization model (FB-PM), are presented, and also compared with the corresponding experimental-

and-theoretical ones [9, 11], suggesting that our present model is found to be a good improved FB-PM, as

that observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters
First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in

the n(p)-type InP -crystal, such as: (i) if denoting the free electron mass by mo, the effective electron (hole)

mass, mn(p)
∗ /mo , which is respectively equal to the relative effective mass, mn(p)/mo = 0.073 (0.339) [2],

as used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

(MIT), and (ii) to the reduced effective mas, mr/mo = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

= 0.060 , as used in Sections 3 and 5 to

determine the optical band gap and the optical coefficients given in the n(p)-type degenerate InP-crystal.

Further, �go = �goP(goIn) = 1.424 eV [2] is the unperturbed intrinsic band gap, εo = εP(In) = 12.5 is the

relative static intrinsic dielectric constant of the InP-crystal, and finally, the effective averaged numbers of

equivalent conduction (valence)-band edge, gc(v) = 1(1).

Table 1. For increasing rd(a), while ε(rd) decreases, the functions: �gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase.

The relative deviations between the numerical results of NCDn(rd) and NCDn
EBT(rd) , calculated using Equations (3, 21), are verry

small, of the order of 7.61 × 10−4 , suggesting that NCDn NDp (rd(a)) can be well explained by NCDn
EBT(rd) , being localized in the

EBT.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

ε(rd) ↘ 12.5 12.20 10.57 9.987 9.40

�gni(rd) in meV ↗ 1424 1424.3 1426 1428 1429

NCDn(rd) in 1016 cm−3 ↗ 2.09 2.25 3.456 4.10 4.91

NCDn
EBT(rd) in 1016 cm−3 ↗ 2.09 2.24882 3.45636 4.0988 4.91274

RD in 10−4 0 5.24 1.05 2.89 5.57
kFn

−1

ksn
−1 < 1 (Physical condition) 0.4012 0.4012 0.4012 0.4012 0.4012

__________________________________________________________________________ ____________________________________________
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Acceptor Ga(Al) Mg In

ra (nm) [4] ↗ 0.126 0.140 0.144

ε(ra) ↘ 13.418 12.543 12.5

�gpi(ra) in meV ↗ 1420 1423.8 1424

NCDp(ra) in 1018 cm−3 ↗ 1.692 2.072 2.090

NCDp
EBT(ra) in 1018 cm−3 ↗ 1.692 2.0713 2.0916

RD in 10−4 0 3.45 7.61
kFp

−1

ksp
−1 < 1 (Physical condition) 0.3364 0.3364 0.3363

__________________________________________________________________________ ____________________________________________

We now determine our expression for extrinsic static dielectric constant, ε rd a , due to the impurity size

effect, and the expression for critical density, NCDn(CDp) rd a , characteristic of the MIT, as follows.

2.1. Expression for � �� �

In the [d(a)-semiconductors]-systems, since rd(a), given in tetrahedral covalent bonds, is usually either larger

or smaller than rdo(ao) ≡ rP(In) , a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: rd(a) > rdo(ao) (rd(a) < rdo(ao)), due to the d(a)-size effect,

respectively [1, 2]. Then, we have shown that this rd(a) -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, ε(rd(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive

(attractive) force increases (decreases) the intrinsic energy gap �gni(gpi) rd(a) and the effective

donor(acceptor)-ionization energy �d(a) rd(a) in absolute values, obtained in an effective Bohr model, as:

�gni(gpi) rd(a) − �go(rdo(ao)) = �d(a) rd(a) − �do(ao)(rdo(ao)) = �do(ao)(rdo(ao)) × εo
ε(rd(a))

2
− 1 , (1)

where �do(ao)(rdo(ao)) ≡ 13600 meV× mn(p)/mo

εo
2 and

ε(rd(a))=
εo

1+
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≤ εo, for rd(a) ≥ rdo(ao),

ε rd a = εo

1−
rd a

rdo ao

3
−1 ×ln

rd a
rdo ao

3
≥ εo,

rd a
rdo ao

3
− 1 × ln rd a

rdo ao

3
< 1,

for 0.07014 �� (0.09182 nm) < rd(a) ≤ rdo(ao), respectively. (2)

One notes that ε(rd(a)) decreases with an increasing rd(a), as observed in the above Table 1. In particular,

in the B-InP system, in which rB = 0.088 nm ≪ rIn = 0.14 ��, the condition, given in Eq. (2), is found to

be not satisfactory, since rB
rIn

3
− 1 × ln rB

rIn

3
= 1.1402 > 1. Therefore, as observed in Table 1, the B-InP

system is absent.
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2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InP-crystals, the critical donor(acceptor)-density, NCDn NDp (rd(a)), is determined

from the generalized effective Mott criterion in the MIT, as:

NCDn NDp (rd(a))
1

3 × aBn(Bp)(rd(a)) = 0.25, (3)

and the effective Bohr radius aBn(Bp)(rd(a)) is given by:

aBn(Bp)(rd(a)) ≡ ε(rd(a))×ℏ2

mn(p)
∗ ×q2 = 0.53 × 10−8 cm × ε(rd(a))

(mn(p)
∗ /mo)

, (4)

where −q is the electron charge, ε(rd(a)) is determined in Eq. (2), and mn(p)
∗ /mo = mn(p)/mo =

0.073 (0.339). From Eq. (3), the numerical results of NCDn NDp (rd(a)) are obtained and given in the above

Table 1, in which we also report those of the densities of electrons (holes) localized in exponential

conduction (valance)-band (EBT) tails, NCDn CDp
EBT (rd(a)), obtained using Eq. (21), as investigated in Section

4, noting that the maximal relative deviations (RD), in absolute values, between NCDn NDp (rd(a)) and

NCDn CDp
EBT (rd(Ba)) are found to be equal to: 5.57(7.61) × 10−4 , respectively. Thus, NCDn NDp (rd(a))

determined in Eq. (3), can be explained by the densities of electrons (holes) localized in exponential

conduction (valance)-band (EBT) tails, NCDn CDp
EBT (rd(a)), determined in Eq. (21).

Furthermore, in our recent work [7], we also showed that, in n(p)-type degenerate InP-crystals, the

critical densities of electrons (holes) can also be determined from the spin-susceptibility singularities (SSS),

obtained at N = NCDn(CDp)
SSS (rd(a)), at which the metal-insulator transition (MIT) occurs.

In summary, Table 1 also indicates that, for an increasing rd(a) , ε(rd(a)) decreases, while �gni(gpi) rd(a) ,

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5 .

3. Optical band gap
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.060 , and then, if denoting N∗≡ N −

NCDn NDp (rd(a)) , the optical band gap (OBG) is found to be given by:

�gn1 gp1 N∗, rd a , T ≡ �gn2 gp2 N∗, rd a , T + �Fn Fp N∗, T , (5)

where the Fermi energy �Fn Fp N∗, T is determined in Eq. (A3) of the Appendix A and the reduced band

gap is defined by:

�gn2 gp2 N∗, rd a , T ≡ �gnei gpei rd a , T − Δ�gn gp N∗, rd a .

Here, the effective intrinsic band gap �gnei gpei is determined by:

�gnei gpei rd a , T ≡ �gni gpi rd a − 4.9×10−4×T2

T+327 K
,

and the band gap narrowing, Δ�gn gp N∗, rd a , are determined in Equations (B3, B4) of the Appendix B

and the values of �gni(gpi) rd(a) are given in Table 1.
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Then, as noted in the Appendix A and B, at T=0K, as N∗ = 0 , one has: �Fn Fp N∗, T = �Fno(Fpo)(N∗) =

0, as given in Eq. (A4), and Δ�gn gp N∗, rd a = 0, according to the MIT, as noted in Appendix A and B.

Therefore, �gn1 gp1 = �gn2 gp2 = �gnei(gpei) rd(a) = �gni(gpi) rd(a) at T=0K and N∗ = 0 , according also

to the MIT.

4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate InP, if denoting the Fermi wave number by: kFn(Fp)(N) ≡ 3�2N/gc(v)
1/3

, the

effective reduced Wigner-Seitz radius rsn(sp), characteristic of the interactions, is defined by

� × rsn(sp) N∗, rd a , mn(p)
∗ ≡

kFn(Fp)
−1

�Bn(Bp)
< 1, (6)

being proportional to N∗−1/3 . Here, � = 4/9� 1/3 , kFn(Fp)
−1 means the averaged distance between ionized

donors (acceptors), and aBn(Bp)(rd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 0 K is

defined by

Rsn(sp) N∗, rd(a) ≡ ksn(sp)

kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = RsnWS(spWS) + RsnTF(spTF) − RsnWS(spWS) �−rsn(sp) < 1. (7)

These ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows.

First, for � ≫ NCDn NDp (rd(a)), according to the Thomas-Fermi (TF)-approximation, the ratio RsnTF(snTF) is

reduced to

RsnTF N∗, rd(a) ≡ ksnTF(spTF)

kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = 4�rsn(sp)

�
≪ 1, (8)

being proportional to N−1/6.

Secondly, for � < NCDn NDp (rd(a)) , according to the Wigner-Seitz (WS)-approximation, the ratio

RsnWS(snWS) is respectively reduced to

Rsn(sp)WS N∗, rd(a) ≡ ksn(sp)WS

kFn
= 0.5 (1) × 3

2�
3

2� − �d �sn(sp)
2 ×�CE N∗,rd(a)

d�sn(sp)
, (9)

where �CE N∗, rd(a) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.

Furthermore, as given in I, in the highly degenerate case, the physical conditions, as those observed in Table

1, are found to be given by :
kFn(Fp)

−1

aBn(Bp)
< ηn(p)

�Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp) < 1, An(p) ≡ �Fno(Fpo)

ηn(p)
, (10)

being needed to determine the expression for electrical conductivity, as investigated in Section 5. Here,

Rsn(sp) is defined in Eq. (7).
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Then, in degenerate d(a)-InP systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, −q +q , at position r�� , and an ionized donor (ionized

acceptor) charge: +q −q at position Rj��� , randomly distributed throughout the InP- crystal, is defined by

V(r) ≡ j=1
ℕ vj r + Vo� , (11)

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and vj r is a

screened Coulomb potential energy for each d(a)-InP system, defined as

vj r ≡− q2×exp (−ksn(sp)× r�� −Rj��� )
ε(rd(a))× r�� −Rj��� ,

where ksn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector k�� -espace is given by

vj k�� =− q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn
2 ,

where Ω is the total InP -crystal volume.

Then, the effective auto-correlation function for potential fluctuations, Wn(p) νn(p), N∗, rd ≡ V r V(r') , was

determined in II, as :

Wn(p) νn(p), N∗, rd(a) ≡ ηn(p)
2 × exp −ℋ×Rsn(sp) N∗,rd(a)

2 νn(p)

, ηn(p)(N∗, rd(a)) ≡ 2πN∗

ε(rd(a))
× q2ksn(sp)

−1/2 , νn(p) ≡ −�
�Fno(Fpo)

. (12)

Here, ε(rd(a)) is determined in Eq. (2), Rsn(sp) N∗, rd(a) in Eq. (7), the empirical Heisenberg parameter ℋ =

0.4721 (1.585), respectively, will be chosen such that the determination of the density of electrons localized

in the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally νn(p) ≡ −�
�Fno(Fpo)

,

where � is the total electron energy and �Fno(Fpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: � − V a−1
2 ≡ �k

a−1
2 , for a ≥ 1 ,

�k ≡ ℏ2×k2

2×��(�)
∗ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on Wn(p) νn(p), N∗, rd(a) .

4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In heavily doped d(a)- InP systems, the effective Gaussian distribution probability is defined by

P V ≡ 1
2�Wn(p)

× exp −V2

2Wn(p)
.

So, in the Kane integration method, the Gaussian average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 KIM ≡ �k

a−1
2

KIM = −∞
� � − V a−1

2� × P V dV, for a ≥ 1.
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Then, by variable changes: s = � − V / Wn(p) and x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

,

and using an identity:

0
∞ sa−1

2� × exp ( − xs − s2

2
s2

2 )ds ≡ Γ(� + 1
2
1
2) × exp (x2/4) × D−a−1

2
(x),

where D−a−1
2
(x) is the parabolic cylinder function and Γ(a + 1

2
1
2) is the Gamma function, one thus has:

�k
a−1

2
KIM =

exp (−x2/4)×Wn(p)

2a−1
4

2π
× Γ(a + 1

2
1
2) × D−a−1

2
(x) =

exp (−x2/4)×ηn(p)
a−1

2

2π
× exp − ℋ×Rsn(sp)× 2a−1

8× νn(p)

× Γ(a +

1
2) × D−a−1

2
(x). (13)

B. Feynman path-integral method (FPIM)

Here, the ensemble average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 FPIM ≡ �k

a−1
2

FPIM ≡ ℏa−1
2

23/2× 2�
×

Γ(a+1
2)

Γ(3
2)

× −∞
∞ �t −a−1

2� × exp ��t
ℏ

−
t Wn(p)

2

2ℏ2 dt, i2 =− 1,

noting that as a=1, it −3
2 × exp −

t Wp
2

2ℏ2 is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = ℏ

Wn(p)

ℏ

Wn(p)
and x =− �/ Wn(p), and then using an identity:

−∞
∞ �s −a−1

2� × exp �xs − s2

2
ds ≡ 23/2 × Γ(3/2) × exp ( − x2/4) × D−a−1

2
(x),

one finally obtains: �k
a−1

2
FPIM ≡ �k

a−1
2

KIM, �k
a−1

2
KIM being determined in Eq. (13).

In the following, with use of asymptotic forms for D−a−1
2
(x) , those given for � − V a−1

2 KIM will be

obtained in the two cases: � ≥ 0 and � ≤ 0.

(i) � ≥ �-case

As � →+ ∞, one has: �n →− ∞ and x →− ∞. In this case, one gets:

D−a−1
2
(x →− ∞) ≈ 2�

Γ(a+1
2)

× �
x2
4 × ( − x)a−1

2.

Therefore, Eq. (13) becomes: �k
a−1

2
KIM ≈ �a−1

2 . Further, as � →+ 0, one has: �n(p) →− 0 and x →− ∞. So,

one gets :

D−a−1
2

x →− ∞ ≃ � a × exp ( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2
16a
x2
16a + x3

24 a
x3

24 a → 0, � a = �

2
2�+1

4 Γ(a
2+3

4)]
.

Thus, as � →+ 0, from Eq. (13), one gets: �k
a−1

2
KIM → 0.

In summary, for � ≥ 0, the expression of �k
a−1

2
KIM can be approximated by:
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�k
a−1

2
KIM ≅ �a−1

2, �k ≡ ℏ2×k2

2×m∗ . (14)

(ii) � ≤ � − ����.

As � →− 0, from Eq. (13), one has: �n(p) →+ 0 and x →+ ∞. Thus, one first obtains, for any a ≥ 1,

D−a−1
2
(x → ∞) ≃ β a × exp −( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2

16a
x2

16a − x3

24 a
x3

24 a → 0, β a = π

2
2a+1

4 Γ(a
2+3

4)]
, noting that

β 1 = π

2
3
4×Γ(5/4)

and β 5/2 = π
23/2.

Then, putting f(a) ≡
ηn(p)

a−1
2

2π
× Γ(a + 1

2
1
2) × β a , Eq. (13) yields

Hn(p) �n(p) →+ 0 , rd(a), a =
�k

a−1
2

KIM

f(a)
= exp −

ℋ×Rsn(sp)× 2a−1

8× νn(p)

− a + 1

16a
3
2

1

16a
3
2

x− 1
4+ 1

16a x2− x3
24 a → 0. (15)

Further, as � →− ∞, one has: �n(p) →+ ∞ and x → ∞. Thus, one gets:

D−a−1
2
(x → ∞ ) ≈ x−a−1

2× �−x2
4 → 0. Therefore, Eq. (13) yields

Kn(p)(�n(p) →+ ∞ , rd(a), a) ≡
�k

a−1
2

KIM

f(a)
≃ 1

� a
× exp ( − (An(p)×�n(p))2

2
) × (An(p) × �n(p))−a−1

2 → 0. (16)

It should be noted that, as � ≤ 0, the ratios (15) and (16) can be taken in an approximate form as:

Fn(p)(�n(p), rd(a), a) = Kn(p)(�n(p), rd(a), a) + Hn(p)(�n(p), rd(a), a) − Kn(p)(�n(p), rd(a), a) × exp  − c1 ×
An(p)�n(p)

c2 , (17)

such that: Fn(p)(�n(p), rd(a), a) → Hn(p)(�n(p), rd(a), a) for 0 ≤ �n ≤ 16 , and Fn(p)(�n(p), rd(a), a) →

Kn(p)(�n(p), rd(a), a) for �n(p) ≥ 16. Here, the constants c1 and c2 may be respectively chosen as: c1 = 10−40

and c2 = 80, as a = 1 , being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NCDn CDp
EBT (N, rd(a)), in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InP systems at T=0 K, in which mn(p)
∗ /mo = mn(p)/mo = 0.073(0.339) , as given in

Section 2, using Eq. (13), for a=1, the density of states �(�) is defined by:

�(�k) KIM ≡
gc(v)

2�2
2mn(p)

ℏ2

3
2 × �k

1
2

KIM =
gc(v)

2�2
2mn(p)

ℏ2

3
2 ×

exp −x2
4 ×Wn

1
4

2�
× Γ 3

2 × D−3
2

x = �(�), (18)

where x is defined in Eq. (13), as: x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

.

Here, �Fno is determined in Eq. (A4) of the Appendix A, with mn(p)
∗ /mo = mn(p)/mo and ℋ =

0.4721 (1.585) , respectively, being chosen such that the following determination of NCDn CDp
EBT (N, rd(a))

would be accurate.
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Going back to the functions: Hn , Kn and Fn , given respectively in Equations (15-17), in which the factor

�k

1
2

KIM

f(a=1) is now replaced by:

�k

1
2

KIM

f(a=1)
= �(�≤0)

�o
= Fn(p) �n(p), rd(a), a = 1 , �o =

gc(v)× mn(p)×mo
3/2

× �n(p)

2�2ℏ3 × � a = 1 , � a = 1 = �

2
3
4×Γ(5/4)

.

(19)

Therefore, NCDn CDp
EBT (N, rd(a)) can be defined by

NCDn CDp
EBT (N, rd(a)) = −∞

0 �(� ≤ 0)� d�,

where �(� ≤ 0) is determined in Eq. (19). Then, by a variable change: �n(p) ≡ −�
�Fno(Fpo)

, one obtains:

NCDn CDp
EBT (N, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) + In(p) ,

(20)

where

In(p) ≡ 16
∞

�(a = 1) × Kn(p) �n(p), rd(a), a = 1� d�n(p) = 16
∞ �

− An(p)×�n
2

2 × An(p)�n(p)
−3/2

� d�n(p).

Here, �(a = 1) = �

2
3
4×Γ(5/4)

.

Then, by another variable change: t = An(p)�n(p)/ 2
2
, the integral In(p) yields:

In(p) = 1
25/4An(p)

1
25/4An(p)

1
25/4An(p)

× yn(p)

∞ tb−1� e−tdt ≡ Γ(b, yn(p))

25/4×An(p)

Γ(b, yn(p))

25/4×An(p)
,

where b =− 1/4, yn(p) = 16An(p)/ 2
2
, and Γ(b, yn(p)) is the incomplete Gamma function, defined by:

Γ(b, yn(p)) ⋍ yn(p)
b−1× �−yn(p) 1 + j=1

16 b−1 b−2 …(b−j)
yn(p)

j� .

Finally, Eq. (20) now yields:

NCDn CDp
EBT [N = NCDn NDp (rd(a)), rd(a)] =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) ×�

Fn(p) �n(p), rd(a), a = 1 d�n(p) + Γ(b, �n(p))
25/4×An(p)

, (21)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),

respectively.

The numerical results of NCDn CDp
EBT [N = NCDn NDp (rd(a)), rd(a)] ≡ NCDn CDp

EBT ( rd(a)) , for a simplicity of

presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of NCDn NDp (rd(a)) ,

calculated using Eq. (3), with a precision of the order of 5.57(7.61) × 10−4 , respectively. In other word,

this critical d(a)-density NCDn NDp (rd(a))) can thus be explained by the density of electrons(holes)

localized in the EBT, NCDn CDp
EBT ( rd(a)), respectively.
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So, the effective density of free electrons (holes), N∗, given in the parabolic conduction (valence) band of the

degenerate d(a)- InP systems, can thus be expressed by:

N∗≡ N − NCDn NDp ≅ N − NCDn CDp
EBT . (22)

Then, if N∗= NCDn NDp , according to the Fermi energy, �Fno(Fpo)(N∗= NCDn NDp ) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mn(p)
∗ , then the

value of the density of electrons(holes), NCDn CDp
EBT , localized in the EBT for � ≤ 0 , is almost equal to

NCDn NDp , given in this parabolic conduction (valence) band, for � ≥ 0. This can thus be expressed as:

NCDn CDp
EBT ≅ NCDn NDp , as N∗≡ NCDn NDp . (23)

5. Optical coefficients
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.060 , as that used in Section 3, for determining the

optical band gap in degenerate GaAs-crystals.

The optical properties of any medium can be described by the complex refraction index ℕ and the complex

dielectric function ε , ℕ ≡ n − iκ and ε ≡ ε1 − iε2 , where i2 =− 1 and ε ≡ ℕ2 . Therefore, the real and

imaginary parts of ε denoted by ε1 and ε2 can thus be expressed in terms of the refraction index n and the

extinction coefficient κ as: ε1 ≡ n2 − κ2 and ε2 ≡ 2nκ. One notes that the optical absorption coefficient α is

related to ε2, n, κ, and the optical conductivity σO by [3]

α(E) ≡ ℏq2× v(E) 2

n E ×εfree space×cE
× J(E∗) = E×ε2(E)

ℏcn(E)
E×ε2(E)
ℏcn(E)

E×ε2(E)
ℏcn(E) ≡ 2E×κ(E)

ℏc
2E×κ(E)

ℏc
2E×κ(E)

ℏc ≡ 4πσO(E)
cn(E)×εfree space

4πσO(E)
cn(E)×εfree space

, ε1 ≡ n2 − κ2 and ε2 ≡ 2nκ, (24)

where the effective photon energy: E∗ = E − �gn(gp) = � is the reduced photon energy, the band gap �gn(gp)

can be equal to the optical band gap �gn1(gp1) and intrinsic band gap �gni(gpi) , determined in Eq. (5). Here,

E ≡ ℏω, -q, ℏ, v(E) , ω, εfree space , c and J(E∗) respectively represent: the photon energy, electron charge,

Dirac’s constant, matrix elements of the velocity operator between valence (conduction)-and-conduction

(valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light,

and joint density of states. It should be noted that, if the three functions such as: v(E) 2, J(E∗) and n E are

known, then the other optical dispersion functions given in Eq. (24) can thus be determined. Moreover, the

normal-incidence reflectance, R(E), can be expressed in terms of κ(E) and n(E) as:

R(E) = [n(E)−1]2+κ(E)2

[n(E)+1]2+κ(E)2 (25)

From Equations (24, 25), if the two optical functions, ε1 and ε2, (or n and κ), are both known, the other ones

defined above can thus be determined.

Then, using a transformation for the joint density of states, given in allowed direct InP -transitions, at low

values of E, �gni(gpi) ≤ E ≤ �� = 2.5 ��,

Jn(p) � = 1
2π2 × 2mr

ℏ2

3/2
× Egni(gpi)

1−a × (E − Egn(gp))a−(1/2) = 1
2π2 × 2mr

ℏ2

3/2
× Egni(gpi)

13/30 × (E − Egn(gp))1/15 , for a=17/30,

(26)

and at large values of E, E ≥ �� = 2.5 ��,
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Jn(p) � = 1
2π2 × 2mr

ℏ2

3/2
× (E−Egn(gp))a−(1/2)

Egni(gpi)
a−1 = 1

2π2 × 2mr
ℏ2

3/2
× (E−�gn(gp))2

Egni(gpi)
3/2 , for a=5/2. (27)

Further, one notes that, as E → ∞ , Forouhi and Bloomer (FB) [11] claimed that κ(E → ∞) → a constant,

while the κ(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as

E−3, and consequently, their numerical results of the optical functions such as: σO(E) and α(E), given in Eq.

(24), both go 0 as E−2.

Now, taking into account Equations (26, 27) and also above remarks, an improved Forouhi-Bloomer

parameterization model (FB-PM), used to determine the accurate expressions of the optical coefficients,

obtained in the degenerate n(p) type InP-crystals, is proposed as follows.

If defining the band gap �gn(gp), which can be equal to the optical band gap �gn1(gp1), the effective intrinsic

band gap �gnei(gpei), or to the intrinsic band gap �gni(gpi), and f(E)≡ i=1
4 Ai

E2×(1+10−4×E
6 )−BiE+Ci

� , we propose:

κ E∗ = f(E) × �gni(gpi)
29/15 × E∗ ≡ E − �gn1(gp1)

1/15
, for �gni(gpi) ≤ E ≤ 2.5 eV,

= f(E) × E∗ ≡ E − �gn1(gp1)
2
, for E ≥ 2.5 eV, (28)

being equal to 0 for E∗ = 0 (or for E = �gn1(gp1)), and also going to 0 as E−1 as E → ∞, and further,

n(E) = n∞(rd(a)) + i=1
4 BoiE+Coi

E2−BiE+Ci
� , (29)

going to a constant as E → ∞, since n(E → ∞, rd(a)) = n∞(rd(a)) = ε(rd(a)) × ωT
ωL
, ωT = 5.3 × 1013 s−1

[5] and ωL = 1.1023 × 1014 s−1 , according to n∞(rP) = 1.6999, obtained from the Lyddane-Sachs-Teller

relation [5], from which T(L) represents the transverse (longitudinal) optical phonon mode, while in the FB-

PM [11], n∞(FB) = 1.766 and the band gap Eg = 1.27 eV < �gni(gpi) , for the InP-crystal, as observed in

Table 1. Here, other parameters are determined by [11]:Boi = Ai
Qi

× − Bi
2

2
+ Egnei(gpei)Bi − Egnei(gpei)

2 + Ci ,

Coi = Ai
Qi

×
Bi×(Egnei(gpei)

2 +Ci)

2
− 2�gnei(gpei)Ci , Qi =

4Ci−Bi
2

2
, where, for i=(1, 2, 3, and 4), Ai = 1.18 ×

Ai(FB) = 0.2389, 0.0276, 0.0363, 0.052 , Bi ≡ Bi(FB) = 6.311, 9.662, 10.726 , 13.604, and Ci ≡ Ci(FB) =

10.357, 23.472, 29.36, 47.602.

The important numerical results of the above optical functions, at T=0K, N = NCDn CDp , and for E = �gni(gi),

are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared

with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of

those numerical results, calculated using the corresponding data given by Aspnes and Studna [9], suggesting

that our obtained numerical results of these optical coefficients are found to be more accurate than the

corresponding ones, obtained from the FB-PM, as observed in Table 3c.
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Table 2a. At the MIT, T=0K, N=NCDn(p)(rd(a)), and the critical photon energy ���� = E = �gni(gpi) rd(a) , ����(�gni(gpi), rd(a)) =

0, �2(���)(�gni(gpi), rd(a)) = 0, ��(���)(�gni(gpi), rd(a)) = 0 and ∝���(�gni(gpi), rd(a)) = 0 , and the other functions such as :

nMIT(�gni(gpi), rd(a)) , �1(���)(�gni(gpi), rd(a)), and ����(�gni(gpi), rd(a)) decrease with increasing rd(a) and �gni(rd(a)).

__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

At the MIT, T=0K, N=NCDn(rd), and the critical photon energy ���� = E = �gni ra , on has :

�gni(rd) in meV ↗ 1424 1424.3 1426 1428 1429

nMIT(�gni, rd) ↘ 3.038 3.0173 2.9002 2.8553 2.8095

����(�gni, rd) 0 0 0 0 0

�1(���)(�gni, rd) ↘ 9.2294 9.1041 8.4109 8.1530 7.8931

�2(���)(�gni, rd) 0 0 0 0 0

��(���)(�gni, rd) 0 0 0 0 0

∝���(�gni, rd) 0 0 0 0 0

����(�gni, rd) ↘ 0.2547 0.2522 0.2374 0.2316 0.2256

__________________________________________________________________________ ___________________________________________

Acceptor Ga(Al) Mg In

At the MIT, T=0K, N=NCDp(ra), and the critical photon energy ���� = E = �gpi ra , on has :

�gpi(ra) in meV ↗ 1420 1423.8 1424

����(�gpi, ra) ↘ 3.1015 3.0410 3.0380

����(�gpi, ra) 0 0 0

�1(���)(�gpi, ra) ↘ 9.6192 9.2478 9.2294

�2(���)(�gpi, ra) 0 0 0

��(���)(�gpi, ra) 0 0 0

∝���(�gpi, ra) 0 0 0

����(�gpi, ra) ↘ 0.2625 0.551 0.2547

__________________________________________________________________________ _____________________________________

Table 2b. In d(a)-InP systems, the values of the following optical coefficients at � ≤ 0 , expressed as functions of rd(a) , and

calculated using Equations (31-36, 24), for �∗ = �gni(gpi) rd(a) , present the exponential tail-states for ����−� , �2
����−�, ��

���−� ,

��
���−� , ∝����−� and R���−� , and their variations with increasing rd(a) are represented by the arrows: ↗ and ↘, suggesting that the

obtained results of ����−�, �1
����−�, and R���−� are almost equal to the corresponding ones given in the above Table 2a.

_______________________________________________________________________________________________________________________

d-GaAs systems P As Te Sb Sn

����−�(rd) ↘ 3.0380 3.0173 2.9002 2.8553 2.8095

����−�(rd) ↗ 0.1554 0.1555 0.1561 0.1568 0.1572

�1
����−�(rd) ↘ 9.2052 9.0799 8.3866 8.1284 7.8684

�2
����−�(rd) ↘ 0.9439 0.9382 0.9054 0.8957 0.8834

��
���−�(rd) in Ω−1��−1 ↘ 14.387 14.302 13.819 13.689 13.511

∝����−�(rd) in 103 ��−1 ↗ 22.418 22.439 22.557 22.696 22.766

R���−�(rd) ↘ 0.2558 0.2533 0.2386 0.2329 0.2269

________________________________________________________________________________________________________________
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a-GaAs systems Ga(Al) Mg In

����−�(ra) ↘ 3.1015 3.0410 3.0380

����−�(ra) ↗ 0.1539 0.1553 0.1554

�1
����−�(ra) ↘ 9.5955 9.2237 9.2052

�2
����−�(ra) ↘ 0.9545 0.9444 0.9439

��
���−�(ra) in Ω−1��−1 ↘ 14.507 14.392 14.387

∝����−�(ra) in 103 ��−1 ↗ 22.144 22.405 22.418

R���−�(ra) ↘ 0.264 0.256 0.2558

________________________________________________________________________________________________________________

Table 2c. Here, the choice of the real refraction index: �(� → ∞, rd(a)) = �∞(rd(a)) = ε(rd(a)) × ��
��
, �� = 5.3 × 1013 �−1

[5] and �� = 1.1023 × 1014 �−1 , obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the

transverse (longitudinal) optical phonon mode, giving rise to �∞(rP) = 1.6999, and further, that of the asymptotic behavior, given

for the extinction coefficient: �∞(� → ∞, rd(a)) → 0 , as �−1 , so that σO(� → ∞, rd(a)) and α(� → ∞, rd(a)) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

ε(rd) ↘ 12.5 12.20 10.57 9.987 9.40

�∞(rd) ↘ 1.6999 1.6794 1.5632 1.5195 1.4741

�∞(rd) 0 0 0 0 0

�1,∞(rd) ↘ 2.8898 2.8204 2.4436 2.3088 2.1731

�2,∞(rd) 0 0 0 0 0

��,∞(rd) in 105

Ω×��
↘ 7.7441 7.6506 7.1212 6.9220 6.7155

∝∞(rd) in 109 × ��−1 2.1566 2.1566 2.1566 2.1566 2.1566

�∞(rd) ↘ 0.0672 0.0643 0.0483 0.0425 0.0367
__________________________________________________________________________ ____________________________________________

Acceptor Ga(Al) Mg In

ε(ra) ↘ 13.418 12.543 12.5

�∞(ra) ↘ 1.7612 1.7029 1.6999

�∞(ra) 0 0 0

�1,∞(ra) ↘ 3.1020 2.8997 2.8898

�2,∞(ra) 0 0 0

��,∞(ra) in 105

Ω×��
↘ 8.0234 7.7574 7.7441

∝∞(ra) in 109 × ��−1 2.1566 2.1566 2.1566

�∞(ra) ↘ 0.076 0.068 0.067
__________________________________________________________________________ ____________________________________________
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Table 3a. In the P-InP system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28, 29), for �gn(rP) = �gni(rP)[ = 1.4240 eV], and the corresponding ones, obtained from the

FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,

for 1.5 ≤ E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: κ∞(E → ∞, rP) → 0

and ε2,∞(E → ∞,rP) → 0, while, in the FB-model, κ∞(FB)(E → ∞, rP) = 0.3079 and ε2,∞(FB)(E → ∞, rP) = 1.3275.

________________________________________________________________________________________________________________

E in eV � (RD%) � (RD%) �1 (RD%) �2 (RD%) ��� (RD%) ��� (RD%) �1(��) (RD%) �2(��) (RD%)

1.5 3.081 (10.9) 0.138 (32.1) 9.472 (20.4) 0.849 (39.4) 3.088 (10.6) 0.0037 (98.2) 9.537 (19.9) 0.023 (98.4)

1.6 3.142 (9.4) 0.162 (25.9) 9.844 (17.8) 1.015 (32.7) 3.147 (9.2) 0.008 (96.1) 9.902 (17.3) 0.053 (96.5)

1.7 3.208 (7.7) 0.186 (23.3) 10.260 (14.7) 1.191 (29.1) 3.211 (7.6) 0.016 (93.4) 10.310 (14.2) 0.103 (93.9)

1.8 3.282 (6.0) 0.212 (21.4) 10.725 (11.5) 1.393 (26.2) 3.281 (6.0) 0.027 (89.9) 10.766 (11.2) 0.179 (90.5)

1.9 3.362 (4.4) 0.243 (17.0) 11.247 (8.4) 1.635 (20.7) 3.359 (4.5) 0.043 (85.2) 11.279 (8.2) 0.291 (85.9)

2 3.451 (2.7) 0.279 (11.9) 11.834 (5.3) 1.927 (14.4) 3.444 (3.0) 0.066 (79.2) 11.855 (5.1) 0.455 (79.8)

2.1 3.549 (0.9) 0.322 (7.2) 12.495 (1.9) 2.285 (8.1) 3.537 (1.3) 0.097 (71.9) 12.504 (1.8) 0.689 (72.3)

2.2 3.657 (0.8) 0.373 (1.8) 13.237 (1.6) 2.729 (0.9) 3.640 (0.3) 0.140 (63.0) 13.229 (1.6) 1.022 (62.9)

2.3 3.775 (2.5) 0.434 (4.4) 14.063 (5.1) 3.280 (7.2) 3.751 (1.9) 0.199 (52.2) 14.033 (4.9) 1.493 (51.2)

2.4 3.902 (4.2) 0.508 (11.2) 14.967 (8.4) 3.965 (15.8) 3.871 (3.3) 0.278 (39.1) 14.904 (7.9) 2.153 (37.1)

2.5 4.035 (5.7) 0.596 (16.7) 15.928 (11.3) 4.812 (23.2) 3.995 (4.6) 0.384 (24.8) 15.810 (10.5) 3.069 (21.4)

2.6 4.169 (6.8) 0.483 (16.5) 17.149 (15.1) 4.031 (10.9) 4.118 (5.5) 0.524 (9.5) 16.679 (11.9) 4.317 (4.6)

2.7 4.293 (7.2) 0.662 (0.7) 17.992 (15.4) 5.684 (6.5) 4.228 (5.6) 0.705 (5.7) 17.381 (11.5) 5.961 (11.7)

2.8 4.390 (6.5) 0.886 (12.8) 18.484 (12.9) 7.782 (20.0) 4.310 (4.6) 0.929 (18.2) 17.709 (8.2) 8.010 (23.6)

2.9 4.436 (4.2) 1.152 (19.5) 18.354 (6.8) 10.222 (24.6) 4.339 (2.0) 1.192 (23.6) 17.410 (12.9) 10.343 (26.0)

3 4.409 (0.3) 1.440 (15.5) 17.369 (2.2) 12.700 (15.9) 4.295 (2.03) 1.472 (18.0) 16.283 (8.3) 12.647 (15.4)

3.1 4.297 (2.7) 1.715 (1.1) 15.518 (5.9) 14.742 (3.8) 4.167 (5.6) 1.735 (0.002) 14.352 (12.9) 14.462 (5.6)

3.2 4.108 (3.3) 1.937 (9.6) 13.124 (17.1) 15.912 (6.6) 3.966 (0.2) 1.941 (9.4) 11.965 (6.7) 15.396 (9.7)

3.3 3.878 (8.4) 2.074 (6.1) 10.735 (35.7) 16.087 (1.8) 3.729 (4.3) 2.061 (6.7) 9.657 (22.1) 15.372 (2.7)

3.4 3.650 (10.6) 2.123 (3.1) 8.814 (32.8) 15.500 (14.0) 3.498 (6.0) 2.094 (16.3) 7.854 (18.3) 14.648 (7.8)

3.5 3.460 (8.3) 2.102 (7.9) 7.551 (18.0) 14.542 (16.9) 3.308 (3.6) 2.058 (5.6) 6.706 (4.8) 13.614 (9.4)

3.6 3.324 (6.1) 2.037 (8.8) 6.900 (9.3) 13.547 (15.5) 3.174 (1.3) 1.982 (5.9) 6.144 (2.7) 12.582 (7.2)

3.7 3.247 (4.6) 1.956 (7.7) 6.718 (6.1) 12.706 (12.8) 3.098 (0.2) 1.892 (4.2) 6.018 (4.9) 11.723 (4.1)

3.8 3.224 (4.2) 1.878 (5.9) 6.867 (6.8) 12.109 (10.3) 3.075 (0.6) 1.806 (1.9) 6.190 (3.8) 11.108 (1.2)

3.9 3.247 (4.5) 1.816 (4.1) 7.243 (9.5) 11.792 (8.8) 3.096 (0.4) 1.738 (0.3) 6.563 (0.8) 10.761 (0.7)

4 3.308 (5.3) 1.780 (2.9) 7.777 (13.1) 11.779 (8.3) 3.154 (0.4) 1.696 (2.0) 7.073 (2.9) 10.699 (1.6)

4.1 3.404 (6.5) 1.780 (2.6) 8.418 (16.8) 12.115 (9.3) 3.244 (1.5) 1.688 (2.7) 7.674 (6.5) 10.955 (1.2)

4.2 3.527 (7.7) 1.825 (3.6) 9.106 (19.5) 12.875 (11.6) 3.360 (2.6) 1.725 (2.1) 8.314 (9.1) 11.594 (0.5)

4.3 3.670 (8.4) 1.932 (5.8) 9.734 (19.9) 14.184 (14.8) 3.495 (3.3) 1.820 (0.3) 8.899 (9.6) 12.723 (3.0)

4.4 3.817 (8.2) 2.122 (8.9) 10.069 (16.5) 16.204 (17.9) 3.633 (3.0) 1.994 (2.3) 9.225 (6.7) 14.486 (5.4)

4.5 3.935 (6.4) 2.420 (10.7) 9.625 (8.3) 19.048 (17.9) 3.743 (1.3) 2.269 (3.8) 8.866 (0.3) 16.987 (5.1)

4.6 3.952 (4.0) 2.840 (7.7) 7.555 (0.9) 22.450 (12.0) 3.761 (1.0) 2.659 (0.8) 7.072 (5.5) 19.998 (0.2)

4.7 3.764 (5.7) 3.336 (3.5) 3.044 (32.8) 25.112 (9.4) 3.585 (0.7) 3.121 (3.2) 3.114 (35.9) 22.376 (2.5)

4.8 3.306 (10.8) 3.747 (6.5) −3.108 (10.4) 24.775 (18.0) 3.155 (5.7) 3.502 (0.4) −2.310 (33.4) 22.101 (5.3)

4.9 2.694 (5.8) 3.882 (10.5) −7.811 (33.1) 20.911 (16.9) 2.581 (1.4) 3.620 (3.0) −6.446 (9.8) 18.687 (4.4)

5 2.164 (1.6) 3.732 (6.8) −9.245 (20.4) 16.158 (8.5) 2.088 (2.0) 3.469 (0.7) −7.675 (0.4) 14.484 (2.8)

5.1 1.834 (4.5) 3.462 (5.2) −8.624 (10.7) 12.699 (10.6) 1.783 (2.2) 3.205 (2.6) −7.094 (0.4) 11.433 (0.4

5.2 1.661 (6.6) 3.205 (6.2) −7.510 (12.6) 10.647 (13.3) 1.628 (4.5) 2.957 (2.0) −6.092 (8.6) 10.944 (16)

5.3 1.571 (6.0) 3.001 (7.1) −6.537 (15.6) 9.428 (13.5) 1.549 (4.5) 2.760 (1.5) −5.221 (7.6) 8.551 (2.9)

5.4 1.514 (4.0) 2.844 (7.2) −5.794 (17.9) 8.610 (11.6) 1.500 (3.1) 2.609 (1.6) −4.557 (7.3) 7.830 (1.5)

5.5 1.470 (3.1) 2.715 (6.0) −5.209 (15.0) 7.983 (9.2) 1.464 (2.7) 2.486 (3.0) −4.036 (11) 7.278 (0.4)

5.6 1.436 (4.4) 2.602 (4.8) −4.709 (10) 7.474 (9.4) 1.436 (4.4) 2.378 (4.3) −3.592 (16.1) 6.828 (0.5)

5.7 1.413 (6.7) 2.501 (4.9) −4.256 (8.5) 7.068 (11.9) 1.418 (7.0) 2.281 (4.3) −3.192 (18.7) 6.467 (2.4)

5.8 1.402 (8.0) 2.411 (5.7) −3.846 (9.6) 6.762 (14.1) 1.411 (8.6) 2.195 (3.7) −2.828 (19.4) 6.192 (4.5)

5.9 1.402 (7.8) 2.335 (7.0) −3.487 (13.5) 6.550 (15.3) 1.413 (8.6) 2.122 (2.8) −2.507 (18.4) 5.999 (5.6)
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6 1.410 (5.5) 2.276 (7.7) −3.192 (19.1) 6.417 (13.7) 1.422 (6.5) 2.065 (2.3) −2.241 (17.8) 5.875 (4.1)

…

���� 1.6999 0 2.8898 0 1.766 0.3006 3.0284 1.0616

…

���� 1.6999 0 2.8898 0 1.766 0.3006 3.0284 1.0616

________________________________________________________________________________________________________________

E in eV � (RD%) � (RD%) �1 (RD%) �2 (RD%) ��� (RD%) ��� (RD%) �1(��) (RD%) �2(��) (RD%)

Table 3b. In the P-InP system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28, 29), for �gn(rP) = �gni(rP)[ = 1.5198 eV], and the corresponding ones, obtained from the

FB-model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated,

for 1.6 ≤ E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: ∝∞(E → ∞, rP) =

2.1602 × 109 cm−1 and σO,∞(E → ∞, rP) = 9.4912 × 105 1
Ω×cm

, while, in the FB-model, ∝FB → ∞, and σO(FB) → ∞, which should be not

correct.
________________________________________________________________________________________________________________

E in eV ∝ 103 × ��−1 ; RD% R; RD% ��
1

Ω×��
��(��)

1
Ω×��

∝�� 103 × ��−1 ; RD% ���; RD%

1.5 20.946; 32.0 0.261; 15.5 13.631 0.367 0.563; 98.2 0.261; 14.5

1.6 26.203; 25.8 0.268; 12.5 17.389 0.911 1.371; 96.1 0.2680; 12.7

1.7 31.97; 23.2 0.277; 10.1 21.670 1.870 2.756; 93.4 0.2757; 10.5

1.8 38.73; 21.5 0.2857; 7.8 26.847 3.444 4.969; 89.9 0.2840; 8.4

1.9 46.80; 17.1 0.2955; 5.6 33.243 5.926 8.352; 85.2 0.2929; 6.4

2 56.57; 12.0 0.3060; 3.5 41.248 9.737 13.38; 79.2 0.3026; 4.5

2.1 68.51; 7.3 0.3175; 1.4 51.366 15.490 20.73; 71.9 0.3130; 2.8

2.2 83.16; 1.7 0.3299; 0.9 64.252 24.072 31.31; 63.0 0.3243; 0.8

2.3 101.25; 4.5 0.3432; 3.1 80.743 36.751 46.398; 52.1 0.3365; 1.0

2.4 123.58; 11.1 0.3574; 4.8 101.86 55.310 67.65; 39.2 0.3495; 2.5

2.5 151.04; 16.6 0.3722; 6.6 128.75 82.133 97.33; 24.9 0.3633; 4.1

2.6 127.38; 16.6 0.3813; 5.9 112.18 120.14 138.13; 9.5 0.3776; 4.9

2.7 181.13; 0.7 0.3965; 6.6 164.26 172.28 192.88; 5.7 0.3923; 5.5

2.8 251.51; 12.7 0.4115; 6.6 233.22 240.06 263.70; 18.1 0.4067; 5.4

2.9 338.58; 19.5 0.4254; 5.3 317.29 321.03 350.23; 23.6 0.4200; 4.0

3 437.82; 15.4 0.4371; 2.4 407.81 406.08 447.55; 18.0 0.4312; 1.0

3.1 538.93; 1.2 0.4455; 1.9 489.13 479.85 545.16; 0.02 0.4390; 3.3

3.2 628.07; 9.7 0.4494; 1.9 545.01 527.34 629.40; 9.5 0.4420; 3.5

3.3 693.67; 6.1 0.4479; 0.4 568.21 542.94 689.27; 6.7 0.4395; 14.6

3.4 731.57; 3.0 0.4413; 5.3 564.05 533.05 721.36; 1.6 0.4316; 3.0

3.5 745.46; 7.8 0.4306; 6.9 544.78 510.00 729.91; 5.6 0.4195; 4.1

3.6 743.31; 8.8 0.4181; 6.9 521.97 484.80 723.13; 5.9 0.4054; 3.7

3.7 733.55; 7.7 0.4060; 6.0 503.20 464.26 709.43; 4.2 0.3918; 2.3

3.8 723.21; 5.9 0.3965; 4.9 492.52 451.81 695.64; 1.9 0.3809; 0.8

3.9 717.71; 4.1 0.3912; 4.0 492.22 449.22 686.92; 0.4 0.3745; 0.4

4 721.60; 2.9 0.3910; 4.0 504.31 458.08 687.48; 2.0 0.3734; 0.7

4.1 739.43; 2.6 0.3965; 4.3 531.65 480.76 701.53; 2.7 0.3780; 0.5

4.2 776.93; 3.6 0.4079; 5.4 578.81 521.21 734.31; 2.1 0.3887; 0.4

4.3 842.10; 5.8 0.4253; 6.3 652.82 585.58 793.26; 0.3 0.4056; 1.4

4.4 946.33; 8.9 0.4490; 7.2 763.12 682.23 888.95; 2.3 0.4288; 2.3

4.5 1103.7; 10.7 0.4790; 6.7 917.43 818.18 1034.7; 3.8 0.4584; 2.1

4.6 1323.9; 7.7 0.5149; 4.4 1105.3 984.61 1239.5; 0.8 0.4941; 0.2

4.7 1588.7; 3.5 0.5548; 2.2 1263.3 1125.6 1486.4; 3.2 0.5338; 1.7

4.8 1822.6; 6.5 0.5941; 2.9 1272.8 1135.5 1703.6; 0.4 0.5726; 0.7

4.9 1927.5; 10.4 0.6247; 5.7 1096.7 980.07 1797.7; 3.0 0.6019; 1.8
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5 1891.1; 6.7 0.6384; 4.1 864.69 775.15 1757.7; 0.8 0.6128; 0.03

5.1 1789.4; 5.2 0.6335; 2.2 693.17 624.11 1656.7; 2.6 0.6042; 2.5

5.2 1688.7; 6.2 0.6170; 2.7 592.57 535.74 1558.0; 2.0 0.5839; 2.8

5.3 1611.7; 7.1 0.5976; 3.6 534.81 485.10 1482.7; 1.5 0.5611; 2.7

5.4 1556.1; 7.2 0.5796; 4.6 497.62 452.58 1427.9; 1.6 0.5405; 2.4

5.5 1513.2; 5.9 0.5635; 4.0 469.95 428.44 1385.5; 3.0 0.5220; 3.7

5.6 1476.7; 4.7 0.5479; 2.6 448.00 409.27 1349.4; 4.3 0.5043; 5.5

5.7 1444.5; 4.9 0.5319; 1.9 431.20 394.54 1317.4; 4.3 0.4867; 6.8

5.8 1417.0; 5.7 0.5157; 2.3 419.78 384.40 1290.1; 3.7 0.4691; 6.9

5.9 1396.2; 6.9 0.5003; 3.6 413.62 378.82 1269.0; 2.8 0.4527; 6.3

6 1383.8; 7.7 0.4867; 5.6 412.09 377.29 1255.7; 2.3 0.4385; 4.9

…

���� �. ���� × ��� 0.0672 �. ���� × ��� �. ���� × ���� �. ��� × ���� 0.0875

…

���� �. ���� × ��� 0.0672 �. ���� × ��� �. ���� × ���� �. ��� × ���� 0.0875

________________________________________________________________________________________________________________

E in eV ∝ 103 × ��−1 ; RD% R; RD% ��
1

Ω×��
��(��)

1
Ω×��

∝�� 103 × ��−1 ; RD% ���; RD%

Table 3c. Here, our maximal relative deviation (MRD)-values and those of MRD FB , calculated using the (AS)-data [9], are

reported, suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the

corresponding ones, obtained from the FB-model.
_______________________________________________________________________________________________________________________

MRD n κ ε1 ε2 ∝ R

___________________________________________________________________________________________________________________

E (eV)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.5 10.9% 32.1% 39.4% 32% 15.5%

3.3 35.7%

__________________________________________________________________________________________________________________________

MRD FB nFB κFB ε1(FB) ε2(FB) ∝FB RFB

______________________________________________________________________________________________________________

E (eV)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.5 10.6% 98.2% 98.4% 98.2% 14.5%

4.7 35.9%

________________________________________________________________________________________________________________

Some important cases, given in various physical conditions, are considered as follows.

5.1. Metal-insulator transition (MIT)-case

As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT

are: T=0K, N∗ = 0 or N = NCDn CDp ≅ NCDn CDp
EBT , vanishing the Fermi energy:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)
2×mn(p)

∗ =0. Further, from the discussions given Eq. (5) for the optical band gap:

�gn1 gp1 N∗ = 0, rd a , T = 0 = �gnei(gpei) rd(a) = �gni(gpi) rd(a) , according also to the MIT.
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Then, in this MIT-case, replacing both �gnei(gpei) and �gn1 gp1 , by �gni(gpi), given in Equations (28, 29), and

consequently from Eq. (24), one gets, for the effective photon energy E∗ ≡ E − �gni(gpi) = 0:

κ(E∗, rd(a)) = 0 , ε2(E∗, rd(a)) = 0 , σO(E∗, rd(a)) = 0 and α(E∗, rd(a)) = 0 , corresponding also to the MIT.

Thus, in this case, the photon energy E becomes the critical photon energy, defined by:

ECPE rd(a) ≡ �gni(gpi) rd(a) . Therefore, Equations (28, 29), obtained in the MIT-case, become:

κ E∗ = 0 = f(E) × �gni(gpi)
29/15 × E∗ ≡ E − �gni(gpi) = 0 1/15 = 0, and (30)

n(E = �gni(gpi)) = n∞(rd(a)) + i=1
4 BoiE+Coi

E2−BiE+Ci
� , in which �gnei(gpei) = �gni(gpi). (31)

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients

for � ≤ 0, representing the exponential tail-states, which can be deduced from Eq. (30), by putting: E∗ =

κEEC−T �gni(gpi) = f(Egni(gpi)) × �gni(gpi)
2 . (32)

Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for � ≤ 0 the expressions, given for

the following exponential tail-states of ε2, σO(E), α, and R as:

ε2
EImDC−T �gni(gpi) = 2 × κEEC−T �gni(gpi) × n(E = �gni(gpi)), (33)

σO
EOC−T �gni(gpi) = εfree space×�gni(gpi)×ε2

EImD−T �gni(gpi)

4πℏ
, (34)

αEOAC−T �gni(gpi) = 2×�gni(gpi)×κEEC−T �gni(gpi)

ℏ×c
, and (35)

RNIR−T �gni(gpi) =
[n �gni(gpi) −1]2+κEEC−T �gni(gpi)

2

[n �gni(gpi) +1]2+κEEC−T �gni(gpi)
2. (36)

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and

reported in the above Table 2b.

5.2. Extrema values of ��(�) as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions ε1(2)(E, rd(a))

in following physical conditions by: T=0K and N = NCDn NDp , and by: T=20K and N = 1020��−3 ,

respectively, as given in following Tables 4n and 4p, in which the arrows ( ↑ ↓ ) indicates the maximum, and

( ↓ ↑ ) the minimum and the extrema-values of those occur at the same corresponding photon energy E.
Table 4n. In d-InP systems, and for two types of physical conditions such as: (T=0K and N = NCDn(rd) ) and (T=20K, N =

1020 cm−3), the extrema values of �1 � and �2 � , calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: ↑ or ↓ , suggesting that those extrema occur at the same E.
________________________________________________________________________________________________________________________

E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

In the P- GaAs system, at T=0K and N = NCDn(rP) = 2.09 x1016 cm−3, �gn rP ≡ �gni rP [ = 1.424 eV]

�1 � 15.93 ↑ 18.48 ↓ 17.37 13.12 ↓ 6.72 ↑ 10.07 ↓ 3.04 ↓ −9.24 ↑ 0.15 2.62 2.8898

�2 � 4.81 7.78 12.70 ↑ 15.91 ↓ 12.71 ↑ 16.20 ↑ 25.11 ↓ 16.16 ↓ 1.76 1.24 0
In the As-GaAs system, at T=0K and N = NCDn(rAs) = 2.25 x1016 cm−3, �gn rAs ≡ �gni rAs [ = 1.4243 eV]

�1 � 15.76 ↑ 18.30 ↓ 17.18 12.95 ↓ 6.59 ↑ 9.91 ↓ 2.89 ↓ −9.33 ↑ 0.12 2.55 2.8204

�2 � 4.79 7.74 12.63 ↑ 15.83 ↓ 12.62 ↑ 16.11 ↑ 24.97 ↓ 16.00 ↓ 1.72 1.23 0

In the Te- GaAs system, at T=0K and N = NCDn(rTe) = 3.456x1016 cm−3, �gn rTe ≡ �gni rTe [ = 1.426eV]
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�1 � 14.81 ↑ 17.27 ↓ 16.16 12.02 ↓ 5.86 ↑ 9.05 ↓ 2.05 ↓ −9.78 ↑ −0.09 2.18 2.4436

�2 � 4.66 7.51 12.26 ↑ 15.34 ↓ 12.15 ↑ 15.60 ↑ 24.16 ↓ 15.13 ↓ 1.52 1.14 0

In the Sb- GaAs system, at T=0K and N = NCDn(rSb) = 4.1 x1016 cm−3, �gn rSb ≡ �gni rSb [ = 1.428 eV]

�1 � 14.44 ↑ 16.87 ↓ 15.77 11.70 ↓ 5.60 ↑ 8.73 ↓ 1.76 ↓ −9.92 ↑ −0.16 2.05 2.3088

�2 � 4.61 7.40 12.10 ↑ 15.13 ↓ 11.95 ↑ 15.39 ↑ 23.84 ↓ 14.79 ↓ 1.44 1.11 0

In the Sn- GaAs system, at T=0K and N = NCDn(rSn) = 4.91x1016 cm−3, �gn rSn ≡ �gni rSn [ = 1.429 eV]

�1 � 14.08 ↑ 16.48 ↓ 15.38 11.31 ↓ 5.33 ↑ 8.41 ↓ 1.45 ↓ −10.08 ↑ −0.23 1.92 2.1731

�2 � 4.56 7.31 11.95 ↑ 14.93 ↓ 11.77 ↑ 15.18 ↑ 23.52 ↓ 14.45 ↓ 1.36 1.07 0
E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

In the P- GaAs system, at T=20K and N = 1020 cm−3, �gn rP ≡ �gn1 rP [ = 2.4567 eV]

�1 � 16.05 19.28 ↑ 19.42 ↓ 16.76 ↓ 10.20 ↑ 13.76 ↓ 11.72 1.12 ↓ 0.48 ↑ 2.62 2.8898

�2 � 3.88 ↓ 0.48 ↑ 1.51 2.79 3.79 6.91 ↑ 11.77 ↓ 8.17 1.36 1.21 0

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In the As- GaAs system, at T=20K and N = 1020 cm−3, �gn rAs ≡ �gn1 rAs = 2.4525 eV

�1 � 15.89 19.09 ↑ 19.24 ↓ 16.59 ↓ 10.07 ↑ 13.59 ↓ 11.55 1.01 ↓ 0.44 ↑ 2.55 2.8204

�2 � 3.89 ↓ 0.49 ↑ 1.52 2.80 3.79 6.90 ↑ 11.75 ↓ 8.12 1.33 1.20 0

In the Te- GaAs system, at T=20K and N = 1020 cm−3, �gn rTe ≡ �gn1 rTe [ = 2.4254 eV]

�1 � 14.93 18.06 ↑ 18.20 ↓ 15.62 ↓ 9.30 ↑ 12.67 ↓ 10.57 0.37 ↓ 0.22 ↑ 2.19 2.4436

�2 � 3.89 ↓ 0.56 ↑ 1.63 2.92 3.82 6.88 ↑ 11.66 ↓ 7.85 1.18 1.12 0

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In the Sb- GaAs system, at T=20K and N = 1020 cm−3, �gn rSb ≡ �gn1 rSb [ = 2.415 eV]

�1 � 14.55 17.66 ↑ 17.79 ↓ 15.25 ↓ 9.01 ↑ 12.32 ↓ 10.20 0.14 ↓ 0.15 ↑ 2.05 2.3088

�2 � 3.89 ↓ 0.58 ↑ 1.67 2.97 3.82 6.86 ↑ 11.63 ↓ 7.74 1.13 1.08 0

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In the Sn- GaAs system, at T=20K and N = 1020 cm−3, �gn rSn ≡ �gn1 rSn [ = 2.4022 eV]

�1 � 14.19 17.26 ↑ 17.39 ↓ 14.88 ↓ 8.72 ↑ 11.97 ↓ 9.81 −0.11 ↓ 0.08 ↑ 1.92 2.1731

�2 � 3.88 ↓ 0.61 ↑ 1.73 3.03 3.84 6.87 ↑ 11.61 ↓ 7.65 1.07 1.05 0

________________________________________________________________________________________________________________________________

E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

Table 4p. In a-InP systems, and for two types of physical conditions such as: (T=0K and N = NCDp(ra) ) and (T=20K, N =

1020 cm−3), the extrema values of �1 � and �2 � , calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: ↑ or ↓ , suggesting that their extrema occur at the same E.
________________________________________________________________________________________________________________________________
E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

In the Ga- InP system, at T=0K and N = NCDp(rGa) = 1.692 x1018 cm−3, �gp rGa ≡ �gpi rGa [ = 1.42 eV]

�1 � 16.49 ↑ 19.09 ↓ 17.95 13.64 7.10 ↑ 10.53 ↓ 3.47 ↓ −9.05 ↑ 0.27 2.82 3.1020

�2 � 4.87 7.95 12.96 ↑ 16.24 ↓ 12.99 ↑ 16.52 ↑ 25.59 ↓ 16.64 1.87 1.29 0

In the Mg- InP system, at T=0K and � = NCDp rMg = 2.072 x1018 cm−3, �gp rMg ≡ �gpi rMg = 1.4238 ��

�1 � 15.95 ↑ 18.51 ↓ 17.40 13.15 6.74 ↑ 10.09 ↓ 3.06 ↓ −9.23 ↑ 0.16 2.62 2.8997

�2 � 4.81 7.79 12.71 ↑ 15.93 ↓ 12.72 ↑ 16.22 ↑ 25.13 ↓ 16.18 1.77 1.24 0

In- InP system, at T=0K and N = NCDp(rIn) = 2.09 x1018 cm−3, �gp rIn ≡ �gpi rIn [ = 1.424 eV]

�1 � 15.93 ↑ 18.48 ↓ 17.37 13.12 6.72 ↑ 10.07 ↓ 3.04 ↓ −9.24 ↑ 0.156 2.617 2.8898

�2 � 4.81 7.79 12.71 ↑ 15.93 ↓ 12.72 ↑ 16.22 ↑ 25.13 ↓ 16.18 1.77 1.24 0
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E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

In the Ga- InP system, at T=20K and N = 1020 cm−3, �gp rGa ≡ �gp1 rGa = 2.3822 eV

�1 � 16.59 19.88 ↑ 20.01 ↓ 17.26 10.52 ↑ 14.11 ↓ 11.86 0.94 ↓ 0.58 ↑ 2.83 3.1020

�2 � 4.20 ↓ 0.73 ↑ 1.98 3.43 4.34 7.57 ↑ 12.78 ↓ 8.89 1.47 1.26 0

In the Mg-InP system, at T=20K and N = 1020 cm−3, �gp rMg ≡ �gp1 rMg = 2.3690 eV
�1 � 16.01 19.30 ↑ 19.43 ↓ 16.73 10.12 ↑ 13.62 ↓ 11.34 0.61 ↓ 0.46 ↑ 2.63 2.8997

�2 � 4.18 ↓ 0.76 ↑ 2.04 3.49 4.35 7.55 ↑ 12.72 ↓ 8.76 1.40 1.22 0

In the In-InP system, at T=20K and N = 1020 cm−3, �gp rIn ≡ �gp1 rIn = 2.3683 eV

�1 � 16.02 19.27 ↑ 19.40 ↓ 16.70 10.10 ↑ 13.60 ↓ 11.32 0.60 ↓ 0.456 ↑ 2.62 2.8898

�2 � 4.181 ↓ 0.77 ↑ 2.041 3.49 4.35 7.55 ↑ 12.72 ↓ 8.75 1.39 1.22 0

________________________________________________________________________________________________________________________
E in eV 2.5 2.8 3 3.2 3.7 4.4 4.7 5 10 100 1021

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-InP systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, typically for E=3.2 eV and for some (P, Te, Sn)-InP systems and (Ga, In)- InP ones, being

indicated by the arrows: ↗ and ↘ , as tabulated in following Tables 5n and 5p, in which the physical

condition N > NCDn NDp (or N∗ > 0) must be respected, and their variations thus depend on the ones of the

optical band gap, �gn1(gp1) N∗, rd(a) .

Table 5n. In (P, Te, Sn)- InP systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2 eV and T=20K, present the variations by arrows, (↘ and ↗ ), since those of the
optical gap �gn1(N∗, rd) increase with increasing N, at T=20 K.

_______________________________________________________________________________________________________________________

N (1018 cm−3) ↗ 4 8.5 15 50 80 100

�gn1(N∗, rP, 20K) in eV ↗ 1.5059 1.5805 1.6714 2.0447 2.3016 2.4567

n(rP)=4.1086

�(�, rP) ↘ 1.762 1.610 1.435 0.820 0.495 0.339

�1 �, rP ↗ 13.775 14.287 14.823 16.209 16.635 16.766

�2 �, rP ↘ 14.481 13.233 11.789 6.735 4.072 2.787

��(�, rP) in 102 Ω−1��−1 ↘ 4.960 4.532 4.038 2.307 1.395 0.955

∝ (�, rP) in 105 ��−1 ↘ 5.715 5.222 4.652 2.658 1.607 1.100

R(�, rP) ↘ 0.437 0.427 0.416 0.386 0.376 0.373

________________________________________________________________________________________________________________

�gn1(N∗, rTe, 20K) in eV ↗ 1.4976 1.5692 1.6571 2.2012 2.2731 2.4254

n(���)=3.9695

�(�, rTe) ↘ 1.779 1.633 1.462 0.853 0.527 0.368

�1 �, rTe ↗ 12.590 13.090 13.620 15.029 15.478 15.621

�2 �, rTe ↘ 14.127 12.964 11.604 6.774 4.188 2.925

��(�, rTe) in 102 Ω−1��−1 ↘ 4.839 4.440 3.974 2.320 1.434 1.002
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∝ (�, rTe) in 105 ��−1 ↘ 5.771 5.295 4.740 2.767 1.711 1.195

R(�, rTe) ↘ 0.430 0.420 0.408 0.375 0.364 0.361

________________________________________________________________________________________________________________

�gn1(N∗, rSn, 20K) in eV ↗ 1.4924 1.5616 1.6471 2.0040 2.2520 2.4022

n(���)=3.8768

�(�, rSn) ↘ 1.791 1.648 1.481 0.878 0.552 0.391

�1 �, rSn ↗ 11.824 12.312 12.837 14.258 14.725 14.877

�2 �, rSn ↘ 13.883 12.781 11.481 6.810 4.278 3.031

��(�, rSn) in 102 Ω−1��−1 ↘ 4.755 4.378 3.932 2.332 1.465 1.038

∝ (�, rSn) in 105 ��−1 ↘ 5.806 5.345 4.802 2.848 1.789 1.267

R(�, rSn) ↘ 0.425 0.415 0.403 0.368 0.356 0.352

________________________________________________________________________________________________________________

N (1018 cm−3) 4 8.5 15 50 80 100

Table 5p. In (Ga, In)- InP systems, the numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2eV and T=20K, present the variations by arrows, (↘ or ↗ ) , since those of the
optical gap �gp1(N∗, ra) increase with increasing N, at T=20 K.

______________________________________________________________________________________________________________________

N (1018 cm−3) 15 26 60 100

�gp1(N∗, rGa, 20K) in eV 1.6260 ↗ 1.7533 ↗ 2.0720 ↗ 2.3822

n(���)=4.1748

�(�, ���) 1.5212 ↘ 1.2851 ↘ 0.7814 ↘ 0.411

�1 �, ��� 15.115 ↗ 15.777 ↗ 16.818 ↗ 17.260

�2 �, ��� 12.701 ↘ 10.730 ↘ 6.524 ↘ 3.429

��(�, ���) in 102 Ω−1��−1 4.3503 ↘ 3.6750 ↘ 2.234 ↘ 1.174

∝ (�, ���) in 105 ��−1 4.9331 ↘ 4.1673 ↘ 2.534 ↘ 1.332

R(�, ���) 0.426 ↘ 0.4116 ↘ 0.3903 ↘ 0.380

________________________________________________________________________________________________________________

�gp1(N∗, rIn, 20K) in eV 1.6184 ↗ 1.7447 ↗ 2.0606 ↗ 2.3683

n(���)=4.1086

�(�, ���) 1.5359 ↘ 1.3005 ↘ 0.797 ↘ 0.425

�1 �, ��� 14.522 ↗ 15.189 ↗ 16.245 ↗ 16.700

�2 �, ��� 12.621 ↘ 10.687 ↘ 6.551 ↘ 3.490

��(�, ���) in 102 Ω−1��−1 4.323 ↘ 3.660 ↘ 2.244 ↘ 1.195

∝ (�, ���) in 105 ��−1 4.981 ↘ 4.217 ↘ 2.585 ↘ 1.377

R(�, ���) 0.422 ↘ 0.409 ↘ 0.385 ↘ 0.375

______________________________________________________________________________________________________________________

N (1018 cm−3) 15 26 60 100

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- InP systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =

1.5 × 1019cm−3 , respectively, as functions of T, typically for E=3.2 eV and for some (P, Te, Sn)- InP
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systems and (Ga, In)- InP ones, being indicated by the arrows: ↗ and ↘ , as given in following Tables 6n and

6p, in which their variations thus depend on the ones of the optical band gap, �gn1(gp1) N∗, rd(a) .

Table 6n. In (P, Te, Sn)-InP systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.2 eV and N = 1.5 × 1019 cm−3 , increase with increasing T, since the optical band

gap �gn1(T, rd) decreases with increasing T.

________________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

�gn ≡ �gn1(T, rP) in eV ↘ 1.6714 1.6708 1.6688 1.6608 1.6358 1.6039

n(rP, �) ↗ 4.109 4.1094 4.1119 4.1218 4.1529 4.193

�(rP, �) ↗ 1.435 1.436 1.440 1.455 1.502 1.564

�1 rP, � ↗ 14.823 14.826 14.835 14.873 14.989 15.134

�2 rP, � ↗ 11.789 11.802 11.839 11.993 12.478 13.117

��(rP, �) in 102 Ω−1��−1 ↗ 4.038 4.042 4.055 4.108 4.274 4.493

∝ (rP, �) in 105 ��−1 ↗ 4.652 4.656 4.668 4.718 4.872 5.072

R(rP, �) ↗ 0.416 0.4164 0.4168 0.418 0.423 0.430

________________________________________________________________________________________________________________

�gn ≡ �gn1(T, rTe) in eV ↘ 1.6571 1.6565 1.6545 1.6465 1.6215 1.5896

n(rTe, �) ↗ 3.969 3.970 3.973 3.983 4.014 4.054

�(rTe, �) ↗ 1.462 1.463 1.467 1.482 1.530 1.592

�1 rTe, � ↗ 13.620 13.623 13.631 13.665 13.769 13.897

�2 rTe, � ↗ 11.604 11.616 11.653 11.804 12.282 12.910

��(rTe, �) in 102 Ω−1��−1 ↗ 3.974 3.979 3.991 4.043 4.206 4.422

∝ (rTe, �) in 105 ��−1 ↗ 4.740 4.744 4.756 4.806 4.961 5.164

R(rTe, �) ↗ 0.408 0.4084 0.4088 0.4105 0.4157 0.422

________________________________________________________________________________________________________________

�gn ≡ �gn1(T, rSn) in eV ↘ 1.6471 1.6465 1.6445 1.6365 1.6115 1.5796

n(rSn, �) ↗ 3.877 3.878 3.880 3.890 3.921 3.961

�(rSn, �) ↗ 1.481 1.482 1.486 1.501 1.549 1.612

�1 rSn, � ↗ 12.837 12.840 12.847 12.879 12.974 13.091

�2 rSn, � ↗ 11.481 11.493 11.529 11.678 12.151 12.772

��(rSn, �) in 102 Ω−1��−1 ↗ 3.932 3.936 3.949 4.000 4.162 4.375

∝ (rSn, �) in 105 ��−1 ↗ 4.802 4.806 4.818 4.868 5.024 5.228

R(rSn, �) ↗ 0.403 0.4032 0.4036 0.4053 0.4108 0.4177

____________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

Table 6p. In (Ga, In)-InP systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.2 eV and N = 1.5 × 1019 cm−3 , increase with increasing T, since the optical band

gap �gp1(T, ra) decreases with increasing T.

________________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

�gp ≡ �gp1(T, rGa) in eV ↘ 1.6260 1.6254 1.6234 1.6154 1.5905 1.5587

_________________________________________________________________________________________________
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n(rGa, �) ↗ 4.175 4.1756 4.178 4.188 4.219 4.259

�(rGa, �) ↗ 1.521 1.522 1.526 1.542 1.591 1.654

�1 rGa, � ↗ 15.115 15.117 15.126 15.161 15.270 15.404

�2 rGa, � ↗ 12.701 12.714 12.754 12.914 13.422 14.090

��(rGa, �) in 102 Ω−1��−1 ↗ 4.350 4.355 4.368 4.423 4.597 4.826

∝ (rGa, �) in 105 ��−1 ↗ 4.933 4.937 4.949 5.000 5.158 5.364

R(rGa, �) ↗ 0.426 0.4261 0.4265 0.428 0.433 0.439

________________________________________________________________________________________________________________

�gp ≡ �gp1(T, rIn) in eV ↘ 1.6184 1.6178 1.6158 1.6078 1.5829 1.5512

____________________________________________________________________________________________________

n(rIn, �) ↗ 4.109 4.1094 4.112 4.122 4.153 4.193

�(rIn, �) ↗ 1.536 1.537 1.541 1.557 1.606 1.669

�1 rIn, � ↗ 14.522 14.524 14.533 14.566 14.668 14.794

�2 rIn, � ↗ 12.621 12.634 12.673 12.833 13.337 13.999

��(rIn, �) in 102 Ω−1��−1 ↗ 4.323 4.327 4.341 4.395 4.568 4.795

∝ (rIn, �) in 105 ��−1 ↗ 4.981 4.985 4.997 5.048 5.207 5.414

R(rIn, �) ↗ 0.422 0.4226 0.423 0.4247 0.4298 0.436

________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

6. Concluding remarks
In the n(p)-type degenerate InP-crystal, by using the same physical model, as that given in Eq. (7), and same

mathematical methods, as those proposed in I, II and III, and further, by taking into account the corrected

values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the refraction

index n and extinction coefficient κ, as the photon energy �( → ∞), all the numerical results, obtained in III,

are now revised and performed.

So, by basing on our following basic expressions, as:

(i)the effective static dielectric constant, ε(rd(a)), due to the impurity size effect, determined by an effective

Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, NCDn NDp (rd(a)) , determined from the generalized effective Mott

criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N∗ ≡ N −

NCDn(CDp)(rd(a)), which gives a physical condition, needed to define the metal-insulator transition (MIT) at

T=0K, as: N∗ ≡ N − NCDn(CDp) =0 or N = NCDn(CDp) , noting that NCDn(CDp) can also be explained as the

density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT), NCDn CDp
EBT , as

that determined in Eq. (21), with a precision of the order of 7.61 × 10−4, as observed in Table 1,

(iii) the Fermi energy, �Fn(Fp)(N∗, T) , determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 × 10−4 [3], and finally,

(iv) the refraction index n and the extinction coefficient κ, determined in Equations (28, 29), verifying their

correct asymptotic behaviors,
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we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their

numerical results, given in different physical conditions, have been obtained and discussed in above Tables

2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), 5n(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3c, our numerical

results for those optical coefficients are found to be more accurate than the corresponding ones, calculated

from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(a) �Fno(Fpo)(N∗ = 0, T = 0) = 0 , determined by Eq. (A4) of the Appendix A, since it is proportional to

N∗ 2/3,

(b) as discussed in Eq. (5), in the MIT, in which �gn1 gp1 N∗ = 0, rd a , T = 0 = �gni gpi rd a ,

where �gn1 gp1 and �gni Fgpi are the optical band gap and intrinsic band gap, respectively, and

c) as discussed in Section 5.1, as E = ECPE rd(a) ≡ �gni(gpi) rd(a) or the effective photon energy E∗ ≡

� − �gni(gpi) rd(a) = 0 , one has: κ(E∗ = 0, rd(a)) = 0 , ε2(E∗ = 0, rd(a)) = 0 , σO(E∗ = 0, rd(a)) = 0 and

α(E∗ = 0, rd(a)) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix
Appendix A. Fermi Energy and generalized Einstein relation

A1. In the n(p)-type InP-crystals, the Fermi energy �Fn(Fp) ≡ �fn − �c �Fp ≡ �v − �fp , �c(v) being

the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated

in our previous paper, with a precision of the order of 2.11 × 10−4 [3], is now summarized in the following.

In this work, N is replaced by the effective density N∗ , N∗ ≡ N − NCDn(CDp)(rd(a)) , NCDn(CDp)(rd(a)) being

the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in

Table 1, meaning that N∗ = 0 at this transition.

First, we define the reduced electron density by:

u N∗, rd a , T ≡ u N∗, T ≡ N∗

Nc(v)
, Nc(v)(T) = 2 × gc(v) × mn(p)

∗ ×kBT

2πℏ2

3
2 (cm−3), (A1)

where Nc(v)(�) is the conduction (valence)-band density of states, the values of gc(v)( = 1), and mn(p)
∗ /mo,

defined in Section 2, can be equal to : mn(p)/mo = 0.073 (0.339) , and to mr/mo = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

= 0.06 . In

particular, as used in Section 3 for determining the optical band gap in degenerate InP-crystals, mn(p)
∗ /

mo= mr/mo = 0.06 was chosen. Then, the reduced Fermi energy in the n(p)-type GaAs is determined by :
�Fn(u)

kBT
�Fp(u)

kBT
= G u +AuBF(u)

1+AuB = θn(u) ≡ V(u)
W(u)

, A = 0.0005372 and B = 4.82842262, (A2)

where F N∗, rd a , T = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, obtained for u ≫ 1, according to the degenerate cas,
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a = (3 π/4) 2/3 , b = 1
8

π
a

2
, c = 62.3739855

1920
π
a

4
, and then G u ≃ Ln u + 2−3

2 × u × e−du for u ≪

1, according to the non − degenerate case, with: d = 23/2 1
27
1
27

− 3
16
3
16 > 0.

So, in the present degenerate case (u ≫ 1), one has:

�Fn(Fp) N∗, rd a , T ≡ �Fn(Fp)(N∗, T) = �Fno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A3)

Then, at T=0K, since u−1 = 0, Eq. (A.3) is reduced to:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mn(p)
∗ , (A4)

being proportional to N∗ 2/3, and equal to 0, �Fno(Fpo)(N∗ = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type InP-crystals, we define the effective reduced Wigner-Seitz radius rsn(sp),

characteristic of the interactions, by:

rsn(sp) N∗, rd(a) ≡ 3gc(v)

4πN∗

1/3
× 1

aBn(Bp)(rd(a))
= 1.1723 × 108 × gc(v)

N∗

1/3
×

mn(p)
∗ /mo

ε(rd(a))
. (B1)

In particular, in the following, mn(p)
∗ /mo = mr/mo , is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, �CE rsn(sp) , is found to

be given by [1]:

�CE rsn(sp) ≡ �CE N∗, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

Δ�gn(N∗, rd) ≃ a1 × εo
ε(rd)

εo
ε(rd) × Nr

1/3 + a2 × εo
ε(rd)

εo
ε(rd)

εo
ε(rd) × Nr

1
3 × 2.503 × [ − �CE rsn × rsn] + a3 × εo

ε(rd)

5/4
×

mp

mr
× Nr

1/4 + a4 × εo
ε(rd)

× Nr
1/2 × 2 + a5 × εo

ε(rd)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDn(rd)

9.999×1017��−3, (B3)

where εo = εP = 12.5, a1 = 6.8286 × 10−3(eV) , a2 = 1.1681 × 10−3(eV) , a3 = 5.0316 × 10−3(eV) ,

a4 = 10.1 × 10−3(eV) and a5 = 1.4556 × 10−3(eV), and

Δ�gp(N∗, ra) ≃ a1 × εo
ε(ra)

εo
ε(ra) × Nr

1/3 + a2 × εo
ε(ra)

εo
ε(ra)

εo
ε(ra) × Nr

1
3 × 2.503 × [ − �CE rsp × rsp] + a3 × εo

ε(ra)

5/4
× mn

mr
×

Nr
1/4 + 2a4 × εo

ε(ra)
× Nr

1/2 + a5 × εo
ε(ra)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDp(ra)

9.999×1017 cm−3 , (B4)

where εo = εIn = 12.5, a1 = 9.329 × 10−3(eV), a2 = 1.5958 × 10−3(eV), a3 = 7.1441 × 10−3(eV), a4 =

13.7 × 10−3(eV) and a5 = 1.9886 × 10−3(eV).

Therefore, in Equations (B3, B4), at T=0 K and N∗ = 0 , and for any rd(a) , Δ�gn(gp)(N∗ = 0, rd(a)) = 0 ,

according to the MIT.
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