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Abstract

In the n(p)-type degenerate Ge-crystals, at low temperature T and high d(a)-density N, our expression for the
static dielectric constant, S(Vd(a)) , expressed as a function of the donor (acceptor) radius, Fqe) , and
determined by using an effective Bohr model, as that investigated in [1,2], suggests that, for an increasing
Fdca)» due to such the impurity size effect, S(Vd(a)) decreases, affecting strongly the critical d(a)-density in
the metal-insulator transition (MIT), Ncpn(cppy(dca)) » determined by Eq. (3), and its values are reported in

Table 1, and also our accurate expressions for optical coefficients, obtained in Equations (24, 25, 28, 29),
and their numerical results are given in Tables 2-6. Furthermore, one notes that, as observed in Table 3c, our
obtained results of those optical coefficients are found to be more accurate than the corresponding ones,
obtained from the FB-PM [11], suggesting thus that our present model, used here to study the optical
properties of the n(p)-type degenerate Ge-crystals, is a good improved FB-PM, as observed in Table 3c.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy
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1. Introduction

Our new expression for the extrinsic static dielectric constant, s(rd(a)), Fdca) being the donor (acceptor) d(a)-
radius, was determined by using an effective Bohr model, suggesting that, with an increasing ryc,), due thus
to such the impurity size effect, 8(rd(a)) decreases, affecting strongly: the critical impurity density in the
metal-insulator transition [1], figure of merit ZT [2], and also optical properties given in degenerate
semiconductors [3].

In the following Sections 2-5 [4, 11], in the n(p)-type degenerate Ge-crystals, our numerical results of the
optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-Bloomer
parameterization model (IFB-PM), are presented, and also compared with the corresponding experimental-
and-theoretical ones [9, 11], suggesting that our present model is found to be a good IFB-PM, as that

observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given
in the n(p)-type Ge -crystal, such as: (i) if denoting the free electron mass by m,, the effective electron (hole)

mass, My, /My, which is respectively equal to the relative effective mass, Mpy/m, = 0.12 (0.3) [2], as

used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

mnxmp —

(MIT), and (ii) to the reduced effective mas, m,//m, = e 0.0857, as used in Sections 3 and 5 to

determine the optical band gap and the optical coefficients given in the n(p)-type degenerate Ge-crystal.
Further, go= ¢ge = 0.6405¢€V [2] is the unperturbed intrinsic band gap, €ce = 12.5 is the relative static
intrinsic dielectric constant of the Ge-crystal, and finally, the effective averaged numbers of equivalent
conduction (valence)-band edge, gcvy = 3(2).

Table 1. For increasing r'qa), while £(ry) decreases, the functions: gni(gpi)(rd(a))r Nconenop) (Faga)) and N(E;BE(CDP)(I‘d(a)) increase.

The relative deviations between the numerical results of Nep,(rq) and NEBT(r,), calculated using Equations (3, 21), are verry

small, of the order of 1.967 % 1075, suggesting that Neonnop) (Faay) can be well explained by NEBT (r,), being localized in the

EBT.
Donor P As Te Sb Sn
rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 16.499 15.8757 15.3246 14.8927 14.3575
gni(re) in eV 0.64 0.6404 0.6409 0.6413 0.6419
( )in10**cm™3 4.038 4.5328 5.0393 5.4906 6.1277
( )in10%cm™3 4.037962 4.5324772 5.039265 5.4905399 6.1276939
| |in107® 9.411 5.025 6.949 10.94 1.002
Acceptor B Ga(Al) Mg In
ry (nm) [4] 0.088 0.126 0.140 0.144
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e(ra) 25.3735 15.7229 14.3575 13.7495

ani(ra) ineV 0.6305 0.6407 0.6439 0.6457
Nepp(ra) in 101" cm™2 1.7347 7.2906 9.5746 10.902
N&pp(ra) in 1017 cm™3 1.7347 7.290673 9.5747884 10.901964
IRD| in 107° 0 1.001 1.967 0.3291

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a))’ characteristic of the MIT, as follows.
2.1. Expression for ( ( ))

In the [d(a)-Ge]-systems, since lq(,), given in tetrahedral covalent bonds, is usually either larger or smaller
than rge = 0.122 | a local mechanical strain (or deformation potential energy) is induced, according to a
compression (dilation) for: ryca) > rge (Fgea) < rge), due to the d(a)-size effect, respectively [1, 2]. Then, we
have shown that this ry(s)-effect affects the changes in all the energy-band-structure parameters, expressed in
terms of the static dielectric constant, €(ry(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
— — £G
gni(gpi)(rd(a)) — gGe — d(a)(rd(a)) — do(ao) = do(ao) X [(@) - 1]3 (1)

__ 13600 meVX(mn(p)/mo)

where  go(a0) = =6.5374 (16.3 ), and

EGe
€Ge

1+| () d@)” ~1]n(. d<a>)

= €Gges for ld(a) = Ige,

e(ra))= \/

€ce

e(ra@) =
[le ey

fGe

3 3
= & , [(rd(a)) —1:|x|n(%) <1, for lda) = rge - 2)

fGe

2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate Ge-crystals, the critical donor(acceptor)-density, Ncpnnpp)(Fde)) » 1S

determined from the generalized effective Mott criterion in the MIT, as:

1
NCDn(NDp)(rd(a)) /3 x aBn(Bp)(rd(a)) =0.25, €©))
and the effective Bohr radius agn(gp)(raca)) is given by:
_ &ra@)x 2 — -8 €(rd(a))
agn(ep) (Md(a)) = Ty eq? = 053 % 1078 em x o 4)

where —q is the electron charge, €(rye)) is determined in Eq. (2), in which m,,)/Mg = My /my =
0.12 (0.3). From Eq. (3), the numerical results of Ncpnnpp) (Fd(a)) are obtained and given in the above Table

1, in which we also report those of the densities of electrons (holes) localized in exponential conduction
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(valance)-band (EBT) tails, NEBE(CDp)(rd(a))a obtained using Eq. (21), as investigated in Section 4, noting
that the maximal relative deviations (RD), in absolute values, between Ncpnnpp)(Fay) and
NGoncop) (fa@ay) are found to be equal to: 1.094(1.967) x 107, respectively. Thus, Nepnop) (Fa(a))
determined in Eq. (3), can be explained by the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, N&pncpp) (Faay), determined in Eq. (21).

In summary, Table 1 also indicates that, for an increasing rqc), €(rqe)) decreases, while gni(gpi)(rd(a)):
Nconnop) (Faga)) and NEBE(CDP)(rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, my/My is chosen as: My, /Mo =my/m, =0.0857 , and then, if denoting N =N -
Nconnop) (da)) > the optical band gap (OBG) is found to be given by:

an1@eD(N @ T) = gn2gp2) (N Fa@ T) + engepy (N D, (5)
where the Fermi energy gn(rpy(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

an2ge)(N - Ta@) T) = gneicgped (o) T) =8 gnign)(N - Foca))-

Here, the effective intrinsic band gap  gnei(gpei) 18 determined by:

1
B 2 220172201
aneicopei (Td@» T) = gnicopiy (Fa@) —0.109 [1 + (m) ]

and the band gap narrowing, A gn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of gni(gpi)(rd(a)) are given in Table 1.

Then, as noted in the Appendix A and B, at T=0K, as N =0, one has:  pnep)(N . T) = gnorpoy(N ) =
0,as givenin Eq. (A4), and A gn(gp)(N , I’d(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, gnigp1) = gn2(gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also

to the MIT.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate Ge, if denoting the Fermi wave number by: Krnrpy(N) = (3 2N/ gc(v))l 3, the

effective reduced Wigner-Seitz radius I'sn(sp), characteristic of the interactions, is defined by

Ken
*Tnspy(N Y@ M) == 2 < 1, (6)
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being proportional to N 3, Here, = (4/9 )V/3, kEnl(Fp) means the averaged distance between ionized
donors (acceptors), and agngp)(I'd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

Ksnsp) _ Kenep) _

Rengsp) (N Faga)) = kenny Koy STWS(SPWS) + [RsnrspTr) — Renws(spwsy] ~"e < 1. (7
n sn(sp

These ratios, Rsntr(sptry @Nd Rsnws(spws), can be determined as follows.

First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rgyrr(sntry i8
reduced to
__ KsnTF(spTF) kl?nl(Fp) 4 Tsn(sp)
R N,r == =— = 1, 8
snTF( d(a)) Ken(Fp) ksanF(spTF) ®
being proportional to N=1/6,

Secondly, for < Ncpnnpp)(Fde) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) is respectively reduced to

s _ (3 oL b sl 1)
RSH(SP)WS(N ) rd(a)) = k—Fn = (2_ s (sp)d = a ’ (9)

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
Kenep) Nn(p) 1 Kengep) Fno(Fpo)
< = <—=P=R <1, Ayp) = — 10
dn@p)  FroFpo)  Anp)  Ken(sp) sn(sp) n(P) Nn(p) (19)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,
Rsn(sp) 1s defined in Eq. (7).
Then, in degenerate d(a)-Ge systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized

acceptor) charge: +q(—q) at position R; , randomly distributed throughout the Ge- crystal, is defined by

V(N = v+ Vo, (In

i=1
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a
screened Coulomb potential energy for each d(a)-Ge system, defined as

_ g2xexp (—Ksn(spy<|r—Rj])
&(ra@))<|r—Rj|

vi(n) =
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2
_ q an 1

vi(k) =— x D =

J( ) (@) Q  K2+kdy

where Q is the total Ge -crystal volume.
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Then, the effective auto-correlation function for potential fluctuations, Wy (vn(p), N ,rd) = (V(V(r)), was

determined in II, as :

_ —  XRsnesp)(N () _ V2nN® -1/2 __ -
Wa) (Vny: N Ta@)) = Ny * exp< ool ) Nngy(N | Fa@ay) = * 0?Kengsp): Vn(p) = (12)

(r ’
2 |Vn(p)| (d(a)) Fno(Fpo)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =
. ), respectively, will be chosen such that the determination of the density of electrons

localized in the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally

Vn(p) = , Where s the total electron energy and  rno(rpo) 1S the Fermi energy at 0 K, determined in

Fno(Fpo)
Eq. (A4) of the Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2><k2
kKT,

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on W) (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In heavily doped d(a)- Ge systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) = —=— x ex [—]
g V2 Wn(p) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = i 2 is defined by

(C =V D =( & Daw= _o( =V 2xPW)AV, for a=1.

*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /W) = Anp) X np) X eXp| ——= |,
4 [[vn)|

and using an identity:
Om sa"% xexp (—Xs —%)ds =T1( +§) x exp (x2/4) x D_a_%(x),
where D___1 (X) is the parabolic cylinder function and '(a + %) is the Gamma function, one thus has:
2

2a—1 1

2a-1 al
a—1 exp (—x2/4)xw_ 4 exp (—x2/4)=n_ 2 xR x(2a—1)
2 — NP o +1 x — nP) 5 — _TTsnep) TAeem ) ] o +
( & Dxm — Ma+3) D_a_%(x) = exp o o] M(a
n(p
1
H*D_, 1. (13)

B. Feynman path-integral method (FPIM)

1 -1
Here, the ensemble average of ( —V)* 2= Z 2 is defined by

1 2
_\pa—t _ a—3 _ 2 M(a+3) 0 _al t (W) 5 _
(C =) 2 = deriv = o725 < 16 X (D 2xexp —=2 —(dt 1" =-1,
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...3
noting that as a=1, (it) 72 x exp{ ( “/_) } is found to be proportional to the averaged Feynman propagator
given the dense donors(acceptors).

_moo( s)"a"% x exp{ XS — %} ds = 2%2 x [(3/2) x exp ( — x2/4) x D_,_1(x),
2

Then, by variable changes: t = and X == /,/Wp(p), and then using an identity:

_1 -1 -1
one finally obtains: i Derm = Dkams € i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_a_%(x) , those given for (( —V)a_%)K”\A will be

obtained in the two cases: =0and <0O0.
(i) _= -case

As -+ 0o onehas: , -— o0 andX -— oo, In this case, one gets:

vz o2 -1
D g »—o0) =5 imx ax (=X

-1
Therefore, Eq. (13) becomes: ( Z am = a_%. Further, as -+ 0, one has: @y -— 0 and X -— 0. So,
one gets :

D_, 1(X == ) (a)xexp((ﬁ+ )x—m%ﬁ)w, @ = = —

1682 27 r@+d)

_1
Thus,as -+ 0, from Eq. (13), one gets: ( z v — 0.

-1
In summary, for __= 0, the expression of ( Z “)xim can be approximated by:

_% _1 22
( « M 2, k= (14)
i) = -
As -—0, from Eq. (13), one has: ppy -+ 0and X -+ oo. Thus, one first obtains, for any a = 1,
2 VT .
D_,_1(x » ) PB(a) xexp|—(vVa +—3) x — = W -0, B(a) = 1> hoting that
2 16a2 27 1@+
B(D) = " —and B(5/2) = 295
24xr(5/4)
L1
2
Then, putting f(a) = n”—\/é_‘: x I'(a+3) % B(a), Eq. (13) yields
( 2)kim <R x(2a-1)
Hoy( npy =+ 0, Faqay @) = @ XP [_ #\)}()7_ (‘/5 + ML%) X~(3+15) 2 JV - 0. (15)
n(p al

Further,as - — oo, one has: ) -+ © and X - oo. Thus, one gets:

N

X

1(X > 00) = xeIx 7 0. Therefore, Eq. (13) yields
2

—a—
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P

Kng)( n(p) =+ % Fa(a) ) = kf(—a) =% exp(—w) X (Aap) X o) 7~ 0. (16)
It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:
Fa) ( n(ey Faa): @) = Ko@) ( ney: (@ @) + [Ha) ( ne: Faa): @) ~ Kngy( nco): Facay )] < exp [= ¢y x
(Ao n))”]: (17)
such that: Fnoy( nep): Mdga): @ ~ Hn)( nepy: Fday@)  for 0= <16 , and Fnpy( nep) M) @) -
Kn)( nep): Mdcay: @) for n¢py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢q = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDIO)(N, Fd(ay), in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- Ge systems at T=0 K, in which mp;/mM, = Mpp)/mg = 0.12(0.3), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

1

3 3 2
cv) (2Mn(p)\2 : cv) (2Mnp)\2 _ &P 5 Wq
¢ Cdm = gz(z) (#)2 x{ am = gz(z)( 2(p))2 x <\/;—) xT(3) x D_g(x) = () (18)
where x is defined in Eq. (13), as: X == /,/Wpy = Anpy X n(p) X EXP X Rones)
4x [V

Here, fpo is determined in Eq. (A4) of the Appendix A, with M) /My = Mypy/m, and =
. ) , respectively,  being chosen such that the following determination of
NEB&CDF’)(N, I'd(a)) Would be accurate.

Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:

1
( Dxm 3/2

<0 9e@) X (M) *Mo) ™% /"n(p)

- =—)=Fn(p)( n(p)lrd(a)lazl), 0o~ é 23 2 x @=1, (@=1= §\/_ .
f(a=1) 0 2 24x[(5/4)
(19)

Therefore, NEBI(CDP)(N, ldea)) can be defined by
0
Neoncop(N: fa@) = o ( <0)d ,
where (=< 0) is determined in Eq. (19). Then, by a variable change: ¢ = —— one obtains:
no(Fpo
9o * (M) 7@ _Fooepo) 16
NEBncop (N Fa@ay) = PO 5 [ 7 (= 1) % Fagy( ey Fa@ @ = 1) d ey * Iny -
(20)
where
oo oo —(An(p)x n)z -3/2
) = 36 @=1) XKy ( ey Ta@ 8= 1) d ey = 16 e (A nw) 9 )

262



Here, (a=1)= 3L
23X (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/i] , the integral 1) yields:

—1 A— — b ynp))
I — 1 x tt—letdt = n(p) ,
n(p) ey ) LTV

2
where b =—1/4, yp(p) = [16An(p)/ \/E] , and I'(b, Yn(p)) is the incomplete Gamma function, defined by:

- — 16 (b—1)(b=2)..(b—j)
"Bye)  Yap* " [1+ Jw—()]

Finally, Eq. (20) now yields:

6o *(Mne) > @)% Fro(epo) 16
c(v) ><{Mn n(p) > Fno(Fpo
Neonccop) [N = Neonvop) (Facay): Fa@y] = : 23 ° % x { o (@=1)x

= r(, ne)
Faw)( n@) M@ @ =1)d ngp) +25/TA2,3)}

21
being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBI(CDF,)[N = Neonop) (Fdgay): Fday] = NEEE(CDp)("d(a)) , for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp) (Fdca)) »
calculated using Eq. (3), with a precision of the order of 1.094(1.967) x 10>, respectively. In other word,
this critical d(a)-density Ncpnvpp)(Fdca))) can thus be explained by the density of electrons(holes)
localized in the EBT, NEBI(CDF,)( Fd(a)), respectively.

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the

degenerate d(a)- Ge systems, can thus be expressed by:
N =N —Neonwop) N = NeBnceop)- (22)

2xIEnepy(N )

, the value
2XMn(p)

Then, if N = Nepnnpp)» according to the Fermi energy, rnoepo)(N = Nconnop)) =

of the density of electrons(holes), NEBI(CDF,), localized in the EBT for =< 0, is almost equal to Ncpn(Npp)»
given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

N(EJBE(CDp) NCDn(NDp), asN = NCDn(NDp)- (23)

5. Optical coefficients
Here, Mp /Mg is chosen as: My, ,)/M = my/mg = 0.0857, as that used in Section 3, for determining the

optical band gap in degenerate Ge-crystals.
The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n—iK and € =&, —ig,, where i* =— 1 and €= 2. Therefore, the real and

imaginary parts of € denoted by €, and €, can thus be expressed in terms of the refraction index n and the
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extinction coefficient K as: & = n? — K? and €, = 2nK. One notes that the optical absorption coefficient a is

related to €5, n, K, and the optical conductivity G by [3]

g*x|v(E)[?
N(E) %&free space XCE

a(E) = x J(E ) = &20 = 26 = 4196 g1 =n?—kZand g, = 2nK, (24)

cn(E) c n(E)*¢free space

where the effective photon energy: E = E — gn(gp) =  is the reduced photon energy, the band gap  gn(gp)
can be equal to the optical band gap gn1(gp1), the effective intrinsic band gap  gnei(gpei)» Or to the intrinsic
band gap gni(gpi), determined in Eq. (5). Here, E= , -q, , [V(E)|, W, Efree space> € and J(E ) respectively
represent: the photon energy, electron charge, Dirac’s constant, matrix elements of the velocity operator
between valence (conduction)-and-conduction (valence) bands in n(p)-type semiconductors, photon
frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if
the three functions such as: [V(E)|2, J(E ) and n(E) are known, then the other optical dispersion functions
given in Eq. (24) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be

expressed in terms of K(E) and n(E) as:

SR

(25)

From Equations (24, 25), if the two optical functions, €; and £,, (or n and K), are both known, the other ones
defined above can thus be determined.

Then, using a transformation for the joint density of states, given in allowed indirect Ge -transitions, at low

values OfE, gni(gpi) <E=s =16 ,
1 (2m0\? . a- - 1 (2m\¥2  _—13/4
Ine( ) =53% (_2) * Egnicgpi) < (E — Egngn))™ 2 = e < (_2) % Egnicgpiy > (E = Egn(gn))**"*, for a=17/4, (26)
and at large valuesof EEE= =16 |
3/2 — a—(1/2) 3/2 — 2
_ 1 2m (E—Egn(gp)) _ 1 2m (E—= gn(gp)) _
() = Pl (_zr) X—m1 2% (—zr) X ———  for a=5/2. 27
gni(gpi) Egnicapi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E - o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o (E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, taking into account Equations (26, 27) and also above remarks, an improved Forouhi-Bloomer
parameterization model (IFB-PM), used to determine the accurate expressions of the optical coefficients,
obtained in the degenerate n(p) type Ge-crystals, is proposed as follows.

If, defining the band gap  gn(gp), Which can be equal to the optical band gap  gn1(gp1), the effective intrinsic

band gap  gnei(gpei), Or to the intrinsic band gap  gni(gpi), determined in Equations (1, 5), and defining the

4 Aj

function: f(E)= =1 5(E)—BE+C;

where g(E)=E? x (1 + 1074 x E)’ we propose:

— -7/4 — 1574
KE) =fE) % gigpy < (E = E— grapn) - for gnicgpi) <E<1.6eV,
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=f(E)x (E = E~ gnipn)) - for E= 166V, (28)

being equal to 0 for E =0 (or for E = ¢51(gp1)), and also going to 0 as E1 asE - oo, and further,

4 BoiE+Coi
i=1g(E)-BiE+C/’

: — — wr - 13 o-1
going to a constant, as E - o, N(E - 0,Iya)) = Neo(Fga)) = /€(Na@)) < o WT 57x10"°s [5]

s
L

N(E) = Neo(rga)) + (29)

and w_ = 1.1576 x 1014 s™1 | obtained from the Lyddane-Sachs-Teller relation [5], from which T(L)
represents the transverse (longitudinal) optical phonon mode, while in the FB-PM [11], Neo(r—pmy = 2.046

and the band gap Egrm-pmy = 0.6 €V < gpi(gpiy » for the Ge-crystal, as observed in Table 1. Here, other

. A B?
parameters are determined by [11]: Bgi(Egnei(gpei)) = % x [—?+ Egnei(gpeiyBi — ESnei(gpei) +GC| ,

Ai Bix(EZnei eiy +Ci) \ 4Ci_Bi2 .
Coi(Egnei(gpeiy) =3 > [%— 2 gnei(gpei)Ci|» Qi ==—5—, where, for i=(1, 2, 3, and 4), the

numerical values of the parameters for the Ge-crystal, such as: A;, B;, and Cj, are given in Ref. [11], for the
FB-PM.

The important numerical results of the above optical functions, at T=0K, N = N¢pn(cpp), and for E = gyi(gi»
are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of
those numerical results, calculated using the corresponding data given by Aspnes and Studna [9], suggesting
that our obtained numerical results of these optical coefficients are found to be more accurate than the
corresponding ones, obtained from the FB-PM, as observed in Table 3c.

Table 2a. At the MIT, T=0K, N=N¢pn(py(Faa))» and the critical photon energy Ecpe = E = gni(gpi)(rd(a)), Kmit( gnigpi): Fd(a)) = O,
Emimy( gnigpiy: Md@) = 0, Gomimy( gnicgpiy: M) = 0and  mit( gnicgpiy: Fd(a)) = O . and the other functions such as :

mit( gniggpiy: Fd@)) » E2emimyC gniggpiy: Tdcay)> and Rmir( gniggpiy: Mdy) decrease with increasing rgeay and  gni(Faga))-

Donor P As Te Sb Sn

At the MIT, T=0K, N=N¢p,(rg), and the critical photon energy Ecpe = E = 4pi(ra), on has :

gni(rg) in eV 0.64 0.6404 0.6409 0.6413 0.6419
Mwir( gnis Fa) 3.5689 3.5305 3.4958 3.4682 3.4334
Kmit( gnir a) 0 0 0 0 0
g1y gnisTa) 12.7368 12.4642 12.2207 12.0285 11.7882
Emimy( gnir M) 0 0 0 0 0
Somimy( gnir ') 0 0 0 0 0

mit( gnir M) 0 0 0 0 0
Rt gnis Ta) 03161 0.3120 0.3082 03051 03013
Acceptor B Ga(Al) Mg In

At the MIT, T=0K, N=N¢p,(ra), and the critical photon energy Ecpg = E = ¢5i(ra), on has :
goi(ra) ineV 0.6305 0.6407 0.6439 0.6457
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it ( gpis ) 4.0549 3.5208 3.4322 3.3911

kmiT( gpir Fa) 0 0 0 0
groamy ( gpir Ta) 16.4422 12.3962 11.7798 11.4999
Eomimy( gpir a) 0 0 0 0
Somimy( gpir Fa) 0 0 0 0
mit( gpis ) 0 0 0 0
Rur( gpis Fa) 0.3652 03109 03011 0.2965

Table 2b. In d(a)-Ge systems, the values of the following optical coefficients at < 0, expressed as functions of Fd) > and

calculated using Equations (31-36, 24), forE = gni(gpi)(rd(a)), present the exponential tail-states for KEEC™T | SE'mD_T, G(EJOC_T

s

G(EJOC_T , EOACTT and RNIR=T "and their variations with increasing ld) are represented by the arrows:  and , suggesting that the

obtained results of NERI™T, gEREDT "4 g RNIRT are almost equal to the corresponding ones given in the above Table 2a.

d-Ge systems P As Te Sb Sn
nERI=T(ry) 3.5689 3.5305 3.4958 3.4682 3.4334
KEEC=T(ry) 0.0259 0.0259 0.0260 0.0260 0.0261
eEReD=T (1)) 12.7361 12.4636 12.2200 12.0278 11.7875
o () 0.1848 0.1831 0.1817 0.1805 0.1791
0% T(ry) in Q'cm™t 1.2659 1.2551 1.2462 1.2391 1.2308
EOAC-T(ry) in 103cm™  1.6792 1.6829 1.6876 1.6914 1.6970
RVR=T(r,) 0.3162 0.3120 0.3082 0.3052 0.3013
a-Ge systems B Ga(Al) Mg In
nERI=T(r,) 4.0549 3.5208 3.4322 3.3911
KEEC=T(r,) 0.0249 0.0260 0.0263 0.0265
gEReD-T (1) 16.4415 12.3955 11.7791 11.4992
e5MPD=T(r,) 0.2021 0.1828 0.1805 0.1796
05 T(ry) in Q7tem™t 1.3637 1.2537 1.2441 1.2415
EOAC-T(r.) in 103 cm™t 1.5921 1.6857 1.7160 1.7332
RNR=T(r,) 0.3652 0.3109 0.3012 0.2965

. . . _ — wT — 13 -1
: R = = x — = x
Table 2c. Here, the choice of the real refraction index: N(E - o0, ryy) = Noo(Fga)) = +/€(Faca)) oL wr =57x10"°s
[5] and w, =1.1576 x 10* s7! | obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the
transverse (longitudinal) optical phonon mode, giving rise to Ny, (rp) = 2, and further, that of the asymptotic behavior, given for

the extinction coefficient: Ko (E ~ 0, rgy) - 0, as E~1, so that o(E - oo, lyca)) and a(E - o0, ryc)) both go to their appropriate

limiting constants, are found to be very important, affecting strongly the numerical results of the other optical coefficients.

Donor P As Te Sb Sn
e(rq) 16.499 15.8757 15.3246 14.8927 14.3575
N (rg) 2 1.9619 1.9276 1.9002 1.8658
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Koo (Iq) 0 0 0 0 0
£1.0(rg) 4 3.8492 3.7155 3.6108 3.4811
€2,00(I'a) 0 0 0 0 0
6
00.0(rg) in% 1.0469 1.0270 1.0090 0.9947 0.9766
w(rg) in (20°xcm™) 2.478 2.478 2.478 2.478 2.478
Reo(rg) 0.1111 0.1055 0.1004 0.0963 0.0913
Acceptor B Ga(Al) Mg In
€(ra) 25.3735 15.7229 14.3575 13.7495
Noo(ra) 2.4803 1.9525 1.8658 1.8258
Koo (ra) 0 0 0 0
€1.0(ra) 6.152 3.8121 3.4811 3.3336
€2,0(a) 0 0 0 0
6
00.0(ra) in% 1.2983 1.0220 0.9766 0.9557
o(ra) in (10°xcm™) 2.478 2.478 2.478 2.478
Reo(ra) 0.1809 0.1041 0.0913 0.0854

Table 3a. In the P-Ge system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and

calculated using Equations (24, 25, 28, 29), for 4n(rp) = gni(rp)[ = 0.64 eV], and the corresponding ones, obtained from the FB-

model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated, for

1.5 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: K,(E - o0,1p) - 0and

€200(E — 0,1p) — 0, while, in the FB-model, Keo(eg) (E ~ ©,1p) = 04075 and € c.(p)(E - ©,rp) = 1.6677.

EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 3 (RD%) 2 (RD%)
0.64 3.5689 0 12.7368 0 3.664 x — 13.4245 RS
15 4391 (5.6) 0219 (26.4) 19.237(10.8)  1.927(30.5)  4.515(3.0) 0.143 (51.9)  20.362 (5.6) 1.293 (53.3)
1.6 4552 (44) 0395(14.5) 20.566(8.9)  3.596(9.4)  4.681(1.7) 0.211(38.9)  21.865(3.1) 1.974 (40.0)
1.7 4734 (3.3) 0.288(28.2) 22333(6.2)  2.725(30.6)  4.869 (0.5) 0310 (22.7)  23.615 (0.8) 3.019 (23.1)
1.8 4939 (2.5) 0428 (14.4) 24208(48)  4.225(16.6)  5.080 (0.3) 0.458 (8.4)  25.600 (0.7) 4.653 (8.2)
1.9 5.152(2.7) 0.638(0.05) 26.136 (5.4)  6571(2.8)  5.305(0.2) 0.681 (6.8)  27.679 (0.2) 7.227 (6.9)
2 5359 (4.1) 0957 (2.6) 27.806(8.4) 10263 (1.6)  5.513(1.3) 1.015(8.8)  29.358 (3.3) 11.193 (7.3)
2.1 5469 (4.9) 1.403 (14)  27.938(8.0) 15343 (18.3)  5.626 (2.1) 1.486 (9.1)  29.447 (3.0) 16.720 (11.0)
22 5374(1.7) 2.054(02) 25.137(6.0)  20.804 (3.9)  5.520 (4.5) 2.043(03)  26.295 (10.9) 22.560 (4.2)
2.3 5.009(1.0) 2.368(2.1)  19.486(3.8)  23.722(10.5)  5.130(1.3) 2.493(7.5)  20.103 (0.7) 25.575 (9.0)
24 4530 (1.7) 2511 (2.3)  14215(6.6)  22.755(0.5)  4.622(0.3) 2.637(74)  14.416 (5.3) 24.375 (1.7)
25 4.175(3.8) 2412(1.2) 11611 (11.7)  20.139 (2.7) 4248 (2.1) 2.525(5.9)  11.666 (11.3) 21.453 (3.7)
2.6 4012 (4.0) 2245(2.7) 11.056(8.9)  18.018(6.7) 4.076 (2.5) 2345(1.6)  11.119 (8.4) 19.119 (1.0)
27 3984(24) 2122(53) 11366 (24)  16.909 (7.5)  4.046 (0.9) 2211(1.3)  11.480 (1.4) 17.894 (2.2)
2.8 4018 (0.4) 2.072(5.0)  11.853(2.8)  16.651 (5.4) 4.081 (1.1) 2154 (12) 12,015 (4.2) 17.587 (0.1)
2.9 4.069 (0.8) 2.091(2.2)  12.186(4.0)  17.022(1.5) 4.133 (2.4) 2167 (1.3)  12.385(5.7) 17.916 (3.7)
3 4109 (0.6) 2.157(0.5)  12.231(1.4)  17.724(1.42) 4173 (2.2) 2232 (4.0) 12436 (3.1) 18.628 (6.4)
3.1 4.124(0.4) 2253 (1.7)  11.934 (2.5) 18.582(1.3)  4.189 (1.1) 2328(5.1)  12.125(0.9) 19.501 (6.3)
32 4112 (1.1) 2.361(0.9)  11.330 (4.0) 19.413 (0.1)  4.175 (0.4) 2437(4.1)  11.492 (2.6) 20.351 (4.6)
33 4.076 (1.3) 2.468 (0.03)  10.520 (3.9) 20.119 (1.3)  4.138 (0.2) 2544 (3.1)  10.646 (2.7) 21.056 (3.3)
34 4.026(1.1)  2.564 (0.6) 9.638 (2.8) 20.643 (1.7)  4.086 (0.4) 2.640 2.4)  9.726 (1.9) 21.577 (2.8)
35 3.975(1.1) 2.646 (0.8)  8.804 (2.7) 21.040 (1.9)  4.034 (0.3) 27222.1)  8.861(2.1) 21.961 (2.4)
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36 3.936(1.2) 2720 (14)  8.095(2.1) 21412 (2.6) 3.993(0.2) 2796 (1.3)  8.129 (1.7) 22.330 (1.5)
3.7 3917(1.0) 2.799 (22)  7.509 (0.5) 21923 (33)  3.974 (0.4) 2.874(0.4)  7.527(0.8) 22.844 (0.8
3.8 3.920 (0.4) 2.901 2.8)  6.952(5.8) 22743 (33)  3.977(1.0) 2977(03)  6.955(5.8) 23.685 (0.7)
39 3.938(0.4) 3.051(27)  6.195(12.2) 24.030 (2.3)  3.996 (1.9) 3.130(02)  6.172(11.8) 25.020 (6.4)
4 3.943(0.9) 3.277(1.8)  4.811(16.7) 25.843 (0.8)  4.004 (2.5) 3.361(0.7)  4.733 (14.8) 26911 (3.3)
4.1 3.881(0.3) 3.594(0.5)  2.149 (12.5) 27.901 (0.2)  3.942 (1.9) 3.687(2.0)  1.949 (2.1) 29.070 (3.9)
4.2 3.667(2.7) 3.975(0.8) —2.348 (14.8) 29.155(2.9)  3.724 (0.5) 4079(1.7) — .  (35.4) 30.380 (1.2)
43 3236 (3.0) 4302 (4.5) —8.037(12.4) 27.848 (7.4)  3.282 (1.7) 4418 (2.0) —8.744(4.7) 28.996 (3.6)
4.4 2,651 (5.4) 4.411(5.5 —12.430(19.7) 23.393 (0.4)  2.680 (6.5) 4529 (3.0) —13.331(13.8) 24.275 (3.3)
45 2.106 (7.8) 4.250 (1.1) —13.631 (7.0) 17.900 (6.7)  2.118 (8.5) 4360 (1.5) —14.521 (2.0) 18.472 (10.1)
4.6 1740 (1.2)  3.935(0.6) —12.458 (2.1) 13.699 (0.6)  1.744 (1.4) 4.031(6.2) —13.210 (3.8) 14.063 (3.2)
4.7 1557 (1.8)  3.606 (2.8) —10.581 (5.9) 11.228 (4.6)  1.557 (1.8) 3.689(0.5) —11.183(0.5) 11.492 (2.3)
48 1491 (0.5) 3.333(5.0) —8.885(11.8) 9.937(5.4)  1.492 (0.4) 3.405(2.9) —9.371(6.9) 10.162 (3.3)
49 1484 (3.4) 3.129(6.4) —7.591 (16.6) 9.286/(3.2)  1.487 (3.6) 3.194 (4.4) —7.994(12.2) 9.499 (1.0)

5 1498 (7.4)  2.987 (6.6) —6.678 (19.3) 8.947(0.4)  1.503 (7.8) 3.047(4.7) —7.024 (15.1) 9.158 (2.8)
5.1 1512 (104)  2.891(5.9) —6.070 (19.8) 8.743(3.8)  1.519(11) 2,947 (4.1) —6.377 (15.7) 8.954 (6.3)
52 1516(11.1) 2.827(4.9) —5.694 (18.4) 8.572(5.6)  1.524 (11.8) 2.881 (3.1) —5.975 (14.4) 8.784 (8.2)
53 1505 (9.7)  2.784 (3.9) —5.485 (15.7) 8.378(5.65) 1.514 (10.4) 2.835(2.1) —5.746 (11.7) 8.587 (8.1)
54 1477(68) 2750 (3.6) —5.383 (13.6) 8.127(3.0)  1.487(7.5) 2.801(1.9) —5.631(9.6) 8.331 (5.5)
55  1435(4.0) 2.720(43) —5.336(13.6) 7.807 (0.4)  1.445 (4.7) 2768 (2.6) —5.574(9.7) 8.003 (2.0)
56  1382(1.6)  2.685(5.6) —5.300(15.1) 7421 (41)  1.392(23) 2732 (4.0) —5.528 (11.5) 7.607 (1.7)
57 1321(0.8)  2.643(7.8) —5.241(19.4) 6.986(6.9)  1.331(1.6) 2.689(6.2) —5.458 (16.0) 7.159 (4.6)
58  1258(4.1)  2.592(9.8) —5.138 (24.4) 6.524(6.1)  1.268 (4.9) 2.636(82) —5.344 (21.3) 6.685 (3.9)
59  1.196(8.0)  2.533(10.4) —4.983 (26.6) 6.060 (3.4)  1.205 (8.8) 2.575(9.0) —5.177 (23.7) 6.208 (1.1)
6 1139 (11.3)  2.465(11.1) —4.778 (28.1) 5.614(1.0) 1.148 (12.2) 2.505(9.7) —4.958 (25.4) 5.750 (1.4)

2.0000 0 4.0000 0 2.046 0.4075 4.02 1.6677
2.0000 0 4.0000 0 2.046 0.4075 4.02 1.6677

EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 (RD%) 2 ) (RD%)

Table 3b. In the P-Ge system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E, and
calculated using Equations (24, 25, 28, 29), for 4n(rp) = gni(rp)[ = 0.64 eV], and the corresponding ones, obtained from the FB-
model [11], are reported in the following Table 2a, in which the relative deviations (RDs) of those are also given and calculated, for
1.6 < E(eV), using the Aspnes-and-Studna (AS)-data [9]. Here, as noted in above Table 2c, one obtains: (E - o, rp) = 2478 x

10°cm™ and 0o (E - ©0,rp) = 1.0469 x 10° (;), while, in the FB-model, ¢ - 0, and gges) — ©°, which should be not correct.

Qxcm.

EineV  (10°x “1;RD%  R;RD% (=) () (10°x  ~1);RD% ;RD%
0.64 0 0.3161 0 T x - T x - 0.3262
15 33.343; 26.4 0.397; 5.3 30,931 20.766 21.775; 51.9 0.407; 2.96
1.6 64.044; 14.4 0.412;3.7 61.583 33.799 34.183; 38.9 0.421; 1.7
1.7 49.583; 28.2 0.426; 3.1 49.588 54.930 53.402;22.7 0.436; 0.6
1.8 78.034; 14.5 0.443;2.3 81.409 89.636 83.525; 8.5 0.453; 0.1
1.9 123.16; 0.2 0.462; 2.0 134.16 146.96 131.14;6.7 0.472; 0.3
2 194.06; 2.6 0.482;2.7 219.70 239.60 205.76; 8.8 0.492; 0.5
2.1 299.32; 14 0.501; 4.2 346.09 375.82 31622;9.1 0.512; 2.1
22 432.56;5.3 0.516; 0.0 491.47 53121 455.57;03 0.527; 2.1
23 553.15; 2.4 0.520; 0.2 585.71 629.59 580.99; 7.5 0.531; 2.4
24 612.15;2.5 0.509; 0.2 586.04 626.14 641.24;7.4 0.520; 2.5
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25 612315 1.3 0.488; 0.7 540.13 574.04 639.75; 5.9 0.499; 1.4
26 592.77; 2.6 0.468; 2.4 502.50 532.04 617.85; 1.5 0.478; 0.3
27 581.75; 5.1 0.457; 2.9 489.64 517.11 605.05; 1.3 0.467; 0.9
2.8 588.93; 4.9 0.455; 1.9 499.98 527.06 61135; 1.2 0.464; 0.02
29 614.64; 2.3 0.459; 0.5 528.36 556.10 636.95; 1.2 0.467; 1.4
3 655715 0.5 0.466; 0.5 569.13 598.14 678.50; 4.0 0.474; 2.4
3.1 707715 1.7 0.473;0.5 616.54 647.04 73131; 5.0 0.482;2.3
32 765.77; 0.9 0.481; 0.05 665.11 697.04 790.33; 4.1 0.490; 1.8
33 825.39; 0.06 0.488; 0.4 710.62 743.18 850.91; 3.0 0.496; 1.3
3.4 88332 0.6 0.494; 0.6 751.24 785.20 909.68; 2.3 0.502; 1.1
35 938.43; 0.8 0.499; 0.5 788.07 822.71 965.51; 2.1 0.507; 1.1
3.6 992.29; 1.5 0.504; 0.9 825.04 860.40 1020.0; 1.3 0.512; 0.6
37 1049.3;2.3 0.510; 1.3 868.20 904.67 1077.8; 0.3 0.518; 0.2
38 1117.1;2.9 0.519; 1.4 925.01 963.34 1146.6; 0.3 0.527; 0.01
3.9 1205.9; 2.8 0.532; 1.2 1003.1 1044.4 1237.2;02 0.540; 0.2
4 1328.3; 1.9 0.552; 0.8 1106.4 1152.1 1362.4;0.7 0.559; 0.6
41 1493.3; 0.6 0.577;0.3 1224.4 1275.6 1531.8;2.0 0.585; 1.1
42 1691.7; 0.9 0.610; 0.4 1310.6 1365.8 1736.1; 1.7 0.618; 0.9
43 1874.8; 4.6 0.645; 2.1 1281.7 13345 1925.0;2.0 0.653; 0.9
44 1967.0; 5.5 0.677; 4.0 1101.7 11432 2019.5; 3.0 0.685; 2.8
45 1938.3; 1.1 0.696; 2.4 862.15 889.70 1988.2; 1.4 0.70s; 1.1
46 1834.5; 0.6 0.697; 0.7 67448 692.37 1879.3; 1.8 0.707; 0.7
47 1717.6;2.8 0.681; 1.3 564.84 578.10 1757.1; 0.6 0.691; 0.1
48 1621.2;5.0 0.655; 3.2 510.55 522.10 1656.5; 3.0 0.665; 1.8
49 1553.9; 6.4 0.628; 5.4 487.02 498.19 1586.3; 4.4 0.637; 4.0
5 1513.4; 6.6 0.605; 6.9 478.83 490.12 1543.8; 4.7 0.613; 5.6
5.1 1494.0; 6.0 0.588; 7.6 477.24 488.78 1523.1; 4.1 0.596; 6.3
5.2 1489.8; 4.9 0.577,7.3 477.11 488.87 1518.1; 3.1 0.584; 6.0
53 1495.1; 3.9 0.571; 6.3 475.25 487.11 1522.9; 2.1 0.578; 5.0
5.4 1505.2; 3.6 0.569; 5.2 469.72 481.50 1532.6; 1.9 0.576; 4.0
5.5 1515.8; 43 0.569; 4.8 459.58 47111 1542.9;2.6 0.572; 3.6
5.6 1523.8; 5.7 0.571;5.2 444.83 455.94 1550.6; 4.0 0.578; 4.0
5.7 1526.9; 7.8 0.573; 6.5 42622 436.79 1553.3; 6.2 0.580; 5.4
538 1523.8;9.8 0.574; 9.1 405.02 414.98 1549.7; 8.2 0.581; 8.1
5.9 1514.3; 10.6 0.5742; 10.8 382.68 392.00 1539.5; 9.1 0.580; 9.9
6 1498.7; 11.2 0.572; 12.4 360.54 369.27 1523.2;9.7 0.578; 11.4
x 0.1111 x x 0.1334
x 0.1111 x x 0.1334

EineV  (10°x ~);RD% R; RD% (=— () (10*x  ~1);RD% ;RD%
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Table 3c. Here, our maximal relative deviation (MRD)-values and those of (MRD)gg, calculated using the (AS)-data [9], are
reported, suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the

corresponding ones, obtained from the FB-PM.

MRD n K & & R

E (eV)

1.7 28.2% 30.6% 28.2%

6 11.3% 28.1% 12.4%

(MRD)gg Nrs Krg €1(FB) €2(FB) FB Res

E (eV)

1.5 51.9% 53.3% 51.9%

42 35.4%

6 12.2% 11.4%

Some important cases, given in various physical conditions, are considered as follows.
5.1. Metal-insulator transition (MIT)-case

As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT
are: T=0K, N =0 or N = Ncpnccop) NEB}E(CDp) , vanishing the Fermi energy:

2xkn(epy(N )

Fro(rpo)(N ) = =0. Further, from the discussions given Eq. (5) for the optical band gap:

2XMn(p)
gnl(gpl)(N =014, T = O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a))a according also to the MIT.

Then, in such the MIT-case, replacing both  gneicgpeiy and  gn1(gp1)> Y  gni(gpi)> £iven in Equations (28, 29),

and consequently from Eq. (24), one gets, for the effective photon energy E = E —  gyj(gpiy = O:

K(E , rg@) =0, &(E , rq@) = 0, 00(E ,rg@) = 0 and a(E , ry@)) = 0, corresponding also to the MIT.

Thus, in this case, the photon energy E becomes the critical photon energy, defined by:

ECPE(rd(a)) = gni(gpi)(rd(a))- Therefore, Equations (28, 29), obtained in the MIT-case, become:

-7/4 _ 15/4
KE =0) =f(E) x oy < (E = E— qnigoy =0) =0, forE= grigoiy <16 , (30)
and
BoiE+Coi - : —
NE = gigpi)) = Noo(aa)) + ?:1 9E)—BE+c, 1 which  gnei(gpei) = gni(gpi)- (31

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients

for =0, representing the exponential tail-states, which can be deduced from Eq. (30), for E = gyj(gpi)» as:

KEEC—T( gni(gpi)) =f(Egni(gpi)) X gni(gpi)- (32)
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Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, given for

the following exponential tail-states of €,, 0g(E), Q, and R as:

5T nicapiy) =2 % KEECTT( gnicapiy) X NE = gnigapi))» 33)
G(E)OC_T( gni(gpi)) __ Efree space gni(ng:SElmD_T( gni(gpi)), (34)
QEOAC-T( gni(gpi)) _ 2 gni(gpi)XKEi_T( gni(gpi))’ and (35)
RNIR=T(ieapiy) = [n(_gnitgni)~11P+<EST(gnicgp)” (36)

[N gnicopd)*+ 112+KE5~T( gnicapi)”
The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, rq(a))

-3

in following physical conditions by: T=0K and N = NCDn(NDp) , and by: T=20K and N = 1020 ,
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and
( 1 1) the minimum and the extrema-values of those occur at the same corresponding photon energy E.

Table 4n. In d-Ge systems, and for two types of physical conditions such as: (T=0K and N = N¢p,(rg)) and (T=20K, N =
10%° cm™3), the extrema values of £;(E) and £€,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: tori, suggesting that those extrema occur at the same E.

EineV 1.5 2.1 2.3 2.6 2.8 3 42 45 10 100 10%

In the P- Ge system, at T=0K and N = Nepn(rp) = 4.038x10™ cm™3, (1) = 4ni(r))[ = 0.64 eV]
() 19.24 T 2794 | 19.49 ! 11.06 1t 11.85 1t 12.23 1 =235 | —1363 1t 0.94 3.64 4

() 1.93 1540 1 23.79 1 1806 | 1668 1t 17.72 1 29.15 | 17.90 | 2.46 1.69 0
In the As- Ge system, at T=0K and N = N¢py(ras) = 45328 x10%° cm™2, (1(ras) = 4ni(ras)[ = 0.6404 eV]

1) 18.90 Tt 2756 | 19.11 L1074 0t 1154 1 1192 1 —262 | —13.78 t 0.84 3.49 3.8492

20) 1.90 1528 t  23.60 L 17.88 L 1652 1t 17.55 1t 28.84 | 17.57 | 2.39 1.65 0

In the Te- Ge system, at T=0K and N = Npa(rre) = 5.0393x10% cm™2, (re) = 4qi(rre)[ = 0.6409 eV]
() 18.59 T 2717 L 18.77 ! 1047 v 11.27 1t 11.64 | —286 | —1391 1 0.75 3.36 3.7155

() 1.88 1517 1 23.41 1 1771 1 1637 1 1740 1t 28.56 | 17.28 | 2.33 1.63 0
In the Sb- Ge system, at T=0K and N = Npa(rsp) = 5.4906 X106 cm™3, 1(rsp) = gni(rsp)[ = 0.6413 eV]

10) 18.35 T 2687 | 18.50 L1026 t 11.06 t 1143 |+ =305 | —14.01 1 0.68 3.26 3.6108

2() 1.86 15.08 1t 23.27 ! 17.58 + 1625 1t 17.27 T 2834 | 17.05 | 2.28 1.60 0
In the Sn- Ge system, at T=0K and N = Npa(sp) = 6.1277x10%6 cm™3,  1(rsp) = gni(rsy)[ = 0.6419 V]

1) 18.05 T 2649 | 18.16 {1000 1t 1079 1t 1115 1 =328 | —1414 1 0.60 313 34811

20) 1.84 1497 1t 23.09 L1741 1 16.09 1 17.11 1t 28.06 | 16.75 | 221 1.57 0

EineV 1.5 2.1 23 2.6 2.8 3 4.2 4.5 10 100 10%

In the P- Ge system, at T=20K and N = 10%° cm~3, gn(rp) = gna(rp)[= 0.9361 eV]
() 19.29 2917 22.56 L1348 1t 1376 1t 1416 | 2.29 . —869 1 1.04 3.64 4

20) 0.40 9.78 1 16.06 L1301 1 1242 1 1355 1 2451 | 1526 2.31 1.68 0
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In the As- Ge system, at T=20K and N = 10%° cm™3, an(fas) = gn1(ras)[=0.9328 eV]

1) 18.95 Tt 2873 1 22.15 L1315t 1344 1 13.83 | 1.96 L —890

1 0.94 349 3.8492
() 040 977 t 1601 1 1294 1 1235 1 1347 1 2430 1 1501 1 224 1.65 0
In the Te- Ge system, at T=20K and N = 10%° cm™3, an(rre) = gn1(rre)[ =0.9299 eV]

() 1864 1 2834 1 2178 1 1286 1 13.15 1 1354 1 167 1 —9.08 1 0.85 336 3.7155
() 040 977 1 1601 1 1294 1 1235 1 1347 1 2430 1 1501 1 224 1.65 0
In the Sb- Ge system, at T=20K and N = 102 cm™3, . (rsp) = gn1(rsp)[ = 0.9274 V]

1() 1840 1 2802 1 2148 1 1262 1t 1292 1 1330 1 144 1 -923 1 0.78 326  3.6108
20) 041 975 t 1594 1 12.82 1 1223 1 1334 1 2397 1 1461 1 214 1.59 0
In the Sn- Ge system, at T=20K and N = 10%° cm™3, gn(fsn) = gn1(rsp)[ = 0.9242eV]

() 1809 1 2763 1 2111 4 1233 1 1263 1 1301 1 116 1 —941 1 0.70 313 34811
() 0413 973 t 1590 1 1276 1 1216 1 1326 t 2378 1 1439 1 2.08 1.56 0
EineV 15 2.1 23 2.6 2.8 3 42 45 10 100  10%

Table 4p. In a-Ge systems, and for two types of physical conditions such as: (T=0K and N = N¢pp(ra)) and (T=20K, N =

10%° cm™3), the extrema values of &;(E) and £,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 or | , suggesting that their extrema occur at the same E.

EineV 1.5 2.1 2.3 2.6 2.8 3 4.2 4.5 10 100 10%
In the B- Ge system, at T=0K and N = Nepn(rg) = 1.7347x10%7 cm™3, 4,(rg) = gni(rg)[ = 0.6305 eV]
() 238 ot 3371 4 2459 1 1507 1 1589 1 1637 1 12403 1 —1159 1 243 574 6.1520
,() 2.29 17.04 1+ 2645 1 2043 | 1886 1t 1997 1 3315 | 2203 + 334 2.10 0
In the Ga- Ge system, at T=0K and N = N¢pp(rgs) = 7.2906 X102 cm™3, ,(rg)) = gpi(rea)[ = 0.6407 eV]
) 18.81 1 2745 1 1902 ¢ 1067 t 1147 1 11.84 | —268 | —1381 1t 082 345  3.8121
,() 1.89 1524 1+ 2354 | 1783 | 1647 1t 1751 1 2876 | 1749 237 1.65 0
In the Mg- Ge system, at T=0K and = NCDp(ng) = 9.5746 x10* cm~3, gp(ng) = gpi(ng)[Z 0.6439 ]
) 18.01 1t 2644 1 1815 ¢+ 1001 t 1080 1 11.16 1+ =325 | —1409 1t  0.60 3.13  3.4811
»() 1.81 1491 1+ 2301 1 1737 | 1606 1t 17.08 1 28.02 | 1675 + 221 1.57 0
In the In- Ge system, at T=0K and N = N¢pp(rj,) = 1.0902x10%¥ cm™3,  (r;)) = 4,i(rn)[ = 0.6457 eV]
®) 17.65 1 2598 1 1776 1 971 1t 1050 t 1085 1+ —350 1 —1421 1  0.51 299 33336
,() 1.77 1475 1+ 2276 1 1716 | 1587 1t 1688 1 27.68 | 1641 1+ 214 1.54 0
EineV 1.5 2.1 2.3 2.6 2.8 3 42 4.5 10 100 10%
In the B- Ge system, at T=20K and N = 102 cm™3, ,(rg) = 4p1(rg)[= 1.1006 eV]
() 2392 1 3532 4 2882 1 1850 1 1863 1t 1915 I 813 I —422 1t 2.59 5.75 6.1520
,() 0.12 7.88 1 1365 L 11.84 | 11,57 1 1283 1 2499 17.00 1 3.01 2.08 0
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In the Ga- Ge system, at T=20K and N = 102 cm™3, ,(rgs) = gp1(rea)[= 1.0724eV]

() 18.86 T 2894 | 22.96 ! 13.86 t 14.01 1t 1442 | 3.69 I —6.99 1 0.96 3.46 3.8121
2() 0.14 7.55 1 12.88 ! 10.84 | 1054 1t 11.69 t2221 L 13.80 | 2.16 1.63 0
_ — 1020 o3 — —
In the Mg- Ge system, at T=20K and N = 10" cm™°, gp(ng) = gpl(ng)[— 1.0664 eV]
() 18.06 T 2791 22.02 ! 13.13 t 13.29 1t 13.69 ! 3.00 I =741 1 0.75 3.13 3.4811
20) 0.14 7.55 1 12.88 ! 1084 | 1054 1t 11.69 t 2221 | 13.80 1 2.16 1.63
In the In- Ge system, at T=20K and N = 100 cm=3, w(n) = gp1(np)[=1.0636eV]
() 17.70 T 2743 | 21.58 ! 12.81 t 1296 t 13.35 ! 2.68 I =760 1t 0.65 2.99 3.3336
2() 0.14 749 1 12.72 ! 1061 1 1031 1t 11.42 T 2155 13.04 | 1.95 1.52
EineV 1.5 2.1 2.3 2.6 2.8 3 42 4.5 10 100 10%

5.3. Variations of various optical coefficients as functions of N, typically for some

Also, from Equations (24, 28, 29), we can determine the variations of various optical

d(a)-Ge systems

coefficients at 20K, as

functions of N, typically for E=3.2 eV and for some (P, Te, Sn)-Ge systems and (Ga, In)- Ge ones, being

indicated by the arrows: and , as tabulated in following Tables 5n and 5p,

in which the physical

condition N > Nepn(nppy (or N > 0) must be respected, and their variations thus depend on the ones of the

optical band gap, gnl(gpl)(N ,rd(a))-

Table 5n. In (P, Te, Sn)- Ge systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2 eV and T=20K, present the variations by arrows, (

optical gap gn1(N , rg) increase with increasing N, at T=20 K.

and ), since those of the

N (108 cm™3) 4 8.5 15 50 80 100
gn1(N ,Tp,20K) in eV 0.6553 0.6756 0.7014 0.8114 0.8889 0.9361
n(rp)=4.1118
( .,rp) 2.333 2.296 2.249 2.056 1.924 1.847
1C,1p) 11.463 11.635 11.847 12.681 13.204 13.497
2( ,1p) 19.188 18.882 18.499 16.906 15.826 15.186
( ,rp) in 102 Q71 1 6.572 6.467 6.336 5.7905 5.421 5.201
(,rp) in 10° 1 7.566 7.446 7.295 6.667 6.241 5.988
R( ,rp) 0.479 0.476 0.473 0.458 0.449 0.443
gni(N ,I'1e, 20K) in eV 0.6541 0.6738 0.6989 0.8068 0.8833 0.9361
n(rre)=4.039
( ,rre) 2.335 2.299 2.254 2.064 1.934 1.847
1( ) 10.858 11.025 11.232 12.054 12.573 13.497
20, Tre) 18.866 18.575 18.208 16.670 15.622 15.186
( .re) in 102 Q7Y 1 6.462 6.362 6.236 5.710 5.351 5.201
( ,re) in 105 1 7.574 7.457 7.310 6.692 6.271 5.988
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R( ,rre) 0.476 0.473 0.470 0.455 0.445 0.443
g1 (N, Fsn, 20K) in eV 0.6531 0.6721 0.6966 0.8027 0.8781 0.9242
n(rs,)=3.9767

( ,rsn) 2.337 2.302 2.258 2.071 1.942 1.866
1C e 10.351 11.513 10.715 11.526 12.041 12.331
20, Tsn) 18.590 18.313 17.959 16.469 15.450 14.843

( ,rg,) in 102 Q7+ 1 6.367 6.272 6.151 5.641 5.292 5.084
( ,rgy) in 105 1 7.580 7.467 7.322 6.715 6.299 6.052
R( ,rsn) 0.474 0.471 0.467 0.452 0.443 0.437
N (108 cm™3) 4 8.5 15 50 80 100

Table Sp. In (Ga, In)-Ge systems, the numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.2eV and T=20K, present the variations by arrows, ( or ), since those of the

optical gap ¢p1(N , Ip) increase with increasing N, at T=20 K.

N (10%8 cm™3) 15 26 60 100
a1 (N, Ga, 20K) in eV 0.7382 0.7942 0.9350 1.0724
n( )=4.0639
(, ) 2.1837 2.0855 1.8485 1.6310
1) 11.747 12.166 13.098 13.855
20, ) 17.749 16.951 15.025 13.256
(, ) in 102 Q% 1 6.0790 5.8058 5.1460 4.5404
(, )in 108 7.0813 6.7631 5.9545 5.2891
R(, ) 0.4655 0.4580 0.4406 0.4257
a1 (N, T, 20K) in eV 0.7354 0.7902 0.9284 1.0636
n( )=3.9352
(., ) 2.1886 2.0925 1.8594 1.6447
) 10.695 11.107 12.028 12.781
20, ) 17.225 16.468 14.634 12.944
(, )in 102Q% 1 5.900 5.640 5.012 4.433
(, )in 1208 7.097 6.785 6.030 5.333
R(, ) 0.460 0.452 0.434 0.418
N (10%8 cm™3) 15 26 60 100

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- Ge systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =

1.5 x 10%cm™3 | respectively, as functions of T, typically for E=3.2 eV and for some (P, Te, Sn)- Ge
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systems and (Ga, In)- Ge ones, being indicated by the arrows: and , as given in following Tables 6n and
6p, in which their variations thus depend on the ones of the optical band gap, gnl(gpl)(N , rd(a)).

Table 6n. In (P, Te, Sn)-Ge systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.2 ¢V and N = 1.5 x 10'® cm™3, increase with increasing T, since the optical band

gap gn1(T,Tg) decreases with increasing T.

TinK 20 30 50 100 200 300
gn = gnl(T, rp) in eV 0.7014 0.7011 0.6999 0.6940 0.6710 0.6390
n(rp, ) 4112 4.112 4112 4.115 4.126 4.141
s, ) 2.249 2.250 2.252 2.263 2.305 2.363
(e, ) 11.847 11.847 11.841 11.815 11.712 11.561
2(Tp, ) 18.499 18.505 18.524 18.624 19.017 19.570
(re, ) in 102 @7t t 6.336 6.338 6.345 6.379 6.513 6.703
(re, ) in 105 ! 7.295 7.297 7.303 7.338 7.473 7.663
R(rp, ) 0.473 0.473 0.473 0.4739 0.477 0.483
gn = gn1(T, I'1e) ineV 0.6989 0.6985 0.6974 0.6915 0.6684 0.6365
n(rre, ) 4.039 4.039 4.040 4.042 4,053 4.068
(fre, ) 2.254 2.255 2.257 2.267 2.309 2.368
1(rre, ) 11.232 11.231 11.226 11.200 11.094 10.940
2(rre, ) 18.208 18.213 18.233 18.331 18.719 19.264
(fre, ) in 102 Q71 -1 6.236 6.238 6.245 6.278 6.411 6.598
(fre ) in 105 1 7.310 7311 7.318 7.353 7.488 7.679
R(rre, ) 0.470 0.470 0.470 0.471 0.4748 0.480
gn = gn1(T, lsp) ineV 0.6966 0.6963 0.6952 0.6893 0.6662 0.6343
n(rsn, ) 3.977 3.977 3.9774 3.980 3.9908 4.006
(fsn, ) 2.258 2.2586 2.2607 2271 2313 2372
1(rsn, ) 10.715 10.714 10.709 10.682 10.575 10.419
2(Tsn, ) 17.959 17.965 17.984 18.081 18.463 19.002
(rsn ) in 102 Q1 -1 6.151 6.153 6.159 6.193 6.324 6.508
(fsn ) in 105 1 7.322 7.324 7.331 7.3657 7.502 7.692
R(rsn ) 0.467 0.4675 0.4676 0.4686 0.4725 0.478
TinK 20 30 50 100 200 300

Table 6p. In (Ga, In)-Ge systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Bquations (31-36, 24), for E=3.2 ¢V and N = 1.5 x 10'® cm™3, increase with increasing T, since the optical band

gap gp1(T,Ia) decreases with increasing T.

TinK 20 30 50 100 200 300

w= gu(T.rea)ineV 07382 0.7379  0.7367 0.7307 07071  0.6741
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n(rea, ) 4.064 4.0641 4.0646 4.0674 4.0780 4.093

(fear ) 2.184 2.1843 2.1863 2.1971 2.2393 2.299
1(Fea ) 11.747 11.7458 11.7411 11.7164 11.6158 11.4658
2(fear ) 17.749 17.754 17.773 17.872 18.263 18.818
(fea ) in 102 Q71 1 6.079 6.081 6.087 6.121 6.255 6.445
(rga ) in 105 1 7.081 7.083 7.090 7.125 7.261 7.455
R(fga ) 0.465 0.4655 0.4657 0.4667 0.4704 0.4756
g = gpl(T, rn)ineV 0.7354 0.7351 0.7339 0.7279 0.7044 0.6714
n(ry, ) 3.935 3.9353 3.9359 3.9386 3.9493 3.964
(D) 2.189 2.1892 2.1913 2202 2.2442 2.304
1(fn ) 10.6955 10.6942 10.6893 10.6639 10.5605 10.4068
2 ) 17.225 17.230 17.249 17.346 17.726 18.265
(rn, ) in 102 Q7% 1 5.900 5.901 5.908 5.941 6.071 6.256
(fp ) in 105 ¢ 7.097 7.099 7.106 7.141 7.277 7.471
R(fn, ) 0.4599 0.4600 0.4602 0.4612 0.4651 0.4706
TinK 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type degenerate Ge-crystal, by using the same physical model, as that given in Eq. (7), and same
mathematical methods, as those proposed in I, I and III, and further, by taking into account the corrected
values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the refraction
index n and extinction coefficient K, as the photon energy E( - o0), all the numerical results, obtained in III,
are now revised and performed.

Then, by basing on our following basic expressions, such as:

()the effective static dielectric constant, €(rq(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Ncon(cop) (Fd(ay), Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N =N — N¢pn(cpp) =0 or N = Ncpn(cpp) » noting that Nepn(cppy can also be explained as the
density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT), NEEI(CDD), as
that determined in Eq. (21), with a precision of the order of 2 x 107>, as observed in Table 1,

(iii) the Fermi energy, pnrpy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,
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(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables
2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical
results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@)  Fnorpo)(N =0, T=0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )2/3,

(b) as discussed in Eq. (5), in the MIT, in which gn1(gp1y(N = 0,rg@@), T=0) = gnicgpi)(Faca))-

where  gn1gp1) and  gni(rgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = gni(gpi)(rd(a)) or the effective photon energy E =
E — gni(gpi)(rd(a)) =0, one has: K(E =0,ry@) =0, &2(E =0,r4@) =0, 0g(E =0,r4)) =0 and
a(E = 0,rge)) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type Ge-crystals, the Fermi energy enrp) = [ 1 — oJ( Fp = [ v— fp]), ¢(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10™# [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(a)) > Neon(copy (Fda)) being the
critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in Table
1, meaning that N = O at this transition.

First, we define the reduced electron density by:
3

N My <KBT\2 _
U(N ’rd(a)'T) =u(N,T) Er(v), New)(T) = 2 X geqyy ¥ ( ® 2B )2 (cm™3), (A1)

2n

where N¢(yy(T) is the conduction (valence)-band density of states, the values of ey = 3(2), and my,)/ Mg,

defined in Section 2, can be equal to : Mpp) /M, =0.12(0.3), and to m,/m, =222 =0,0857. In

mn+mp
particular, as used in Section 3 for determining the optical band gap in degenerate Ge-crystals, My )/

my= m,/my, = 0.0857 was chosen. Then, the reduced Fermi energy in the n(p)-type Ge is determined by :

Fnrp) (W) [ Fp(U)Y _ G(u)+AuBF(u) _ — V(W A _ _
= ( o ) =20 = 6 () = Wiy A= 00005372 and B = 482842262, (A2)

277



2
2 4 8\ 3
where F(N Tdca)s T) = aus (1 +bu 3+ cu_E) 3, obtained foru 1, according to the degenerate cas,

— __ 62.3739855 ( )

3
1920 and then G(u) Ln(u)+272xuxe % foru

—_ 1 s 2
1, according to the non — degenerate case, with: d = 23/2 [% - %] >0.

So, in the present degenerate case (U 1), one has:
2

_4 &\ 3
)N Ta@: T) = enEp)(N T) = Fno(epoy (U) X (1 +bu z+cu 3) : (A3)

Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:

_ Ky (N)

Fno(Fpo)(N ) = 2xMy ) (A4)

being proportional to (N )2/3, and equal to 0, Fno(Fpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.
Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type Ge-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),
characteristic of the interactions, by:

y/Mg

— 30c(v) 13 1 — 8 9ew) 13 an
rsn(SD)(N ’rd(a)) - (4T[N ) x aBn(Bp)(rd(a)) - 11723 x 10 x ( N ) x S(I’d(a)) )

(B1)
In particular, in the following, My;,/My = M/M,, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(sp)), is found to

be given by [1]:

087553 (2[1-In(2)] _
—0.87553 + 0,0908+rsn(sp) " ( T(2 )Xln (rsn(Sp)) 0.093288

CE(rsn(sp)) = CE(N : rd(a)) = 0.0908+ Fonep) 14003847728 =1 L67378876 . (B2)

sn(sp)

Then, the band gap narrowing (BGN) can be determined by [1]:

54 [
A gn(N,rg) apx :(fe x Nl/3 +ap % Eee x N3 X (2503 x [— ce(rsn) X rsp]) +az x [:(ES)] x ’m_r: x

3
1/4 e
N +ay X )

x N1/2 x 2+ ag x [ge_e 2 x NE, Nr = N =N—Ncpn(rq) (B3)
and

e(rg) 9.999x1017 —¥

A N £Ge_ ><N1/3+ x_Qe_xN;x 2503 %[ — x + g, x |Zce 5/4>< M
gp( ura) az % e(ra) ay &(ra) ( ' [ CE(rsp) rsp]) as e(ra) E

Nl/4

3
£Ge vz €ce 6 — (N =N=Ncpp(ra)
+ 23y X g(ra) * N +ag x [ e(r a)] Nr, Nr = (9.999x1017 cm—3)’ (B4)

Here, €5, = 15.8, a; = 3.80 x 1073(eV), a, = 6.5 % 107%(eV), az = 2.85 x 1073(eV) , a, = 5.597 x
1073(eV) and a5 = 8.1 x 1074(eV).

Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Iq), A gnp)(N =0, rg@) =0
according to the MIT.
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