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Abstract

This paper makes use of the Planck constant based definition of the Bohr magneton

expression and the standard derivation of the magnetic moment of a point-like electron

orbiting on a circle with a radius equal to its Compton wavelength. This illustrates the wave-

like nature of the normal electron magnetic moment. Additionally, an analytical expression

for the so-called electron anomalous magnetic moment is derived by supposing a non-

concentric electron charge distribution which give rise to a current circuit with a radius rc of

approximately 0.4478 (fm) inferred from well-established experimental data; this magnetic

moment has instead a particle-like behavior. A possible electron spin self-propelling engine

based on a pair of shear forces created by a built-in charge-dipole interaction. Finally, a

minimalist Planck constant energy-frequency interpretation is disclosed.
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The normal electron magnetic moment

The Bohr magneton, μB (A‧m2), is given by
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where e (C) is the electron charge, s)(J  is the quantum unit of action or Planck constant h

divided by 2π, and me (kg) is the electron rest mass, respectively, see the NIST Bohr

_Magneton page.

Using the electron Compton wavelength definition given by (m) λ // eeC, cmh , (1) can be

written as
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where c (m/s) is the photon speed in vacuum. (m) eC, is known as the reduced electron

Compton wavelength. (2) represents (1) as if the Bohr magneton were produced by a point-

like electron CCW orbiting in a circle of radius defined by the reduced electron Compton

wavelength. A direct derivation of (2) is shown in Fig. 1. Note that the combination of (1) and

(2) gives for the electron angular momentum or spin Le (J‧s) the following expression

s)(J 
22

 eeC,
e 

 cm
L (3)

Considering that (m)  e00eC, raa  and s)/(m  /1 vc  where α is the ubiquitous

Sommerfeld’s or fine-structure constant, a0 (m) is the H atom radius, re (m) the classical

electron radius and v1 is the electron orbit fastest speed, (3) can be transformed into the

following expressions
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Figure 1. Derivation of the electron magnetic moment in (2) and its angular momentum or spin Le (J‧s).
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where eEe (J) is the electron mass-energy equivalent and τ1 (cyc‧s-1) is a frequency which

gives rise to the following handy frequency times energy  equality
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Arrows sense in Fig. 1 are determined by the vector nature of the involved parameters. (2) in

vector form is
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whose sense would be inverted for either a positive charge case or a negative speed, that is, a

CW sense orbit is considered; if both changes are involved, the magnetic moment sense

would remain as shown. Strictly speaking, inverting the positions of the terms in the vector

operation or a negative going radius would also switch the magnetic moment sense.

The vector form for (3) is
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whose sense implications with respect to c and λC,e directions are the same as above.

Using the α expressions given above, the wave nature of (2) can be transformed into a particle

nature expression given by
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whose derivation can be done using Fig. 1 by just changing the new radius and speed terms.

Some noteworthy expressions involving H atom parameters for (2) and (9) are
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where Ry (eV) is the Rydberg energy or H ionization energy, FC (N) is the proton-electron

Coulomb force for an a0 separation, and ε0 (F/m) is the vacuum permittivity. We will return to

this expression further down.
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The abnormal electron magnetic moment

On the other side, for the isolated electron, the experimentally determined magnetic moment

is
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as can be obtained from the ElectronMagneticMoment and which, as compared to (2),

provides a magnetic moment difference of
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(12), (11) and (2) give rise to the so-called anomaly of the electron magnetic moment

e_MM_a given by
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The carted electron eccentric current circuit and charge distribution

proposed model

(12) can be expressed likewise (2) was derived in Fig. 1 as follows
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where an electron current orbital radius, rc (m), is defined and whose magnitude has to be of
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Then, (11) can be calculated with
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In order to create a current circuit with an rc radius, let’s consider the electron as having a

non-uniform charge density whose geometrical center is not coincident with the particle

rotation center. Two charge distribution cases eccentrically rotating while carted by a neutral

region hauler are depicted in Fig. 2. A two-sphere charge distribution case is shown in Fig. 3
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Figure 2. An sphere, a), and a cylinder, b), electron charge distributions carted along an eccentric circle of

rc radius able to produce a magnetic moment of Δμe,B’ as in (12). Dimensions are in fermis. Possible spin

propelling magnetic shear forces are indicated.

Figure 3. Two spheres electron charge distributions carted along an eccentric circle of rc radius able to

produce a magnetic moment of Δμe,B’ as in (12) . Again, possible spin propelling magnetic shear forces are

shown.

Fig. 4 portrays the representation of the involved terms in (16).

Figure 4. Representation of the electron magnetic moment terms in (16).
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On regards to the proposed presence of electron self-propelling shear charge-dipole

interaction forces mentioned in Figures 2 and 3, the authors manifest that their conjecture is

based only on considering that the equivalent expression for (10) associated to the magnetic

moment B'e,μ in (12) is
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which, current wise, is over seven orders of magnitude stronger than the current for the

magnetic moment of the H atom.

Finally, elaborating on (16), it can obtained
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which has a relative standard uncertainty of -3.56382E-13 with respect to the numeric value

recommended by the 2018 CODATA [1] inv alpha NIST.

Useful information on this topic can be found on [2,3,4].

Conclusions

A plausible explanation of the anomaly of the electron magnetic moment was disclosed based

on the assumption that the electron charge distribution is not uniform in such a way that its

geometrical center is located a characteristic rc distance away of the center of the particle.

This creates an eccentrically hauled charge rotation on a circle of rc radius which was shown

to produce a magnetic moment equal in magnitude to the one associated to the referred

anomaly. A supposed electron spin propelling feature based on the presence of charge-dipole

shear forces was expressed. An expression for the inverse Sommerfeld’s constant was derived.
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