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Abstract
In the n(p)-type heavily doped InSb-crystals, at the temperature T and high d(a)-density N, our expression

for the static dielectric constant, s(rd(a)), expressed as a function of the donor (acceptor) radius, Iqcs), and
determined by using an effective Bohr model, as that investigated in [1,2], suggests that, for an increasing
Fdca)» due to such the impurity size effect, 8(rd(a)) decreases, affecting strongly the critical d(a)-density in
the metal-insulator transition (MIT), Ncpn(cpp)(Faca))» determined by Eq. (3), and its values are reported in
Table 1, and also our accurate expressions for optical coefficients, obtained in Equations (24, 25, 28, 29),
and their numerical results are given in Tables 2-6. Furthermore, one notes that, as observed in Table 3¢, our
obtained results of those optical coefficients are found to be more accurate than the corresponding ones,
obtained from the FB-PM [11], suggesting thus that our present model, used here to study the optical
properties of the n(p)-type heavily doped InSb -crystals, is a good improved FB-PM, as observed in Table 3c.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy
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1. Introduction

Our new expression for the extrinsic static dielectric constant, s(rd(a)), Fdca) being the donor (acceptor) d(a)-
radius, was determined by using an effective Bohr model, suggesting that, with an increasing ryc,), due thus
to such the impurity size effect, 8(rd(a)) decreases, affecting strongly: the critical impurity density in the
metal-insulator transition [1], and also optical properties, defined in heavily doped semiconductors [2, 3].

In the following Sections 2-5 [4, 11], in the n(p)-type heavily doped InSb-crystals, our numerical results of
the optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-
Bloomer parameterization model (IFB-PM), are presented, and also compared with the corresponding
experimental-and-theoretical ones [9, 11], suggesting that our present model is found to be a good IFB-PM,

as that observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given
in the n(p)-type InSb -crystal, such as: (i) if denoting the free electron mass by mg, the effective electron
(hole) mass, my,,)/M,, which is respectively equal to the relative effective mass, Mppy/mMg = 0.015 (0.39)
[5], as used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

(MIT), and (ii) to the reduced effective mas, m/m, = =2 = (0,014444, as used in Sections 3 and 5 to

mn+mp

determine the optical band gap and the optical coefficients given in the n(p)-type heavily doped InSb-

crystals. Further, o= ginsb= gsb= gin = 0.23 eV [2] is the unperturbed intrinsic band gap, €,5p= €n =

€ — 16.8 is the relative static intrinsic dielectric constant of the InSb-crystal, and finally, the effective
averaged numbers of equivalent conduction (valence)-band edge, gy = 1(1).
Table 1. For increasing I'qc), while £(ry) decreases, the functions: gni(gpi)(rd(a)), Neonnop) (Fagay) and N(E;BE(CDP)(I‘d(a)) increase.

The relative deviations between the numerical results of Nepn(rg) and NEB! (), calculated using Equations (3, 21), are found to

be 11%, suggesting that Nepnpp) (Faay) can be explained by NEB (ry), being localized in the EBT. So, in the n(p)-type InSb, in

which (M) /mMy) = 0.015 (0.39) [4], all the numerical results for the energy-band-structure parameters and
Necon(copy (Fda))» expressed as functions of I'yc)-radius, are obtained respectively, by using Equations (3, 9, 10, 11, 12,
13, 21), suggesting that, with an increasing Iy, €(ry)) decreases, while Ege)(raa)), Egni(gpiy (Faca)) and

Ncon(eop) (Faca)) (or N&pa(ry)) increase, respectively.

Donor P As Te Sb Sn
rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 20.0758 18.1977 16.8648 16.8 16.734
Eq(rg) in meV 0.50615 0.61602 0.71724 0.72279 0.72850
gni(rg) ineV 0.2298 0.2299 0.229994 0.23 0.230006
Neon(rg) in 107 cm™3 1.172 1.5737 1.977038 2 2.023761
NEB! (ry) in 1017 cm™3 1.2631659 1.5703305 1.859051 1.8750136 1.8914837
IRD| % 7.8% 0.2% 5.9% 6.2% 6.5%
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Acceptor Ge Ga(Al, Mn) Mg In

r) (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 18.723503 18.034591 16.857828 16.8
Ea(ra) in mev 15.13 16.308 18.664 18.793
ani(ra) ineV 0.226337 0.227515 0.229871 0.23
Nepp(ra) in 107 cm™3 1.444768 1.616741 1.979495 2
NEpp(ra) in 1017 cm™3 1.6037286 1.6975683 1.8821582 1.8921462
IRD|% 11% 5% 4.9% 5.4%

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the metal-insulator transition

(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)-InSb]-systems, since Iq(q), given in tetrahedral covalent bonds, is usually either larger or
smaller than rgp(n) = 0.136 (0.144 ), alocal mechanical strain (or deformation potential energy) is
induced, according to a compression (dilation) for: Fgcay > rspany (Faca) < Fsbany), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc) -effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(Iq(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

€ n 2
onicond (Fa@) = g0 = a@(Fd@) = dot@o) = do(ao) X [(s(i(('af) - 1]’ (1)
13600 meVx (Mp(py/!
where  dogacy = mesz"(m ©)/M) _ 7227891 meV (18.793 meV), and
Sh(In)
€sb(In
&(raea)= Ssb(' . = = Esp(n), for ryey = I'sp(in),
'@ \"_q|xIn( 9@
jl+[<f3b(7n)> 1] In( (a)>
€ 3 r 3
s(rd(a))z o 3Ge X =&, [( rd((a)) - 1] X In(%) <1, for rd(a) < er(m). (2)
a d
jl"[( ) _1]’“”(%)
In particular, in the B-InSb system, in which % =061 1 this condition is not satisfied, since
In—=\Y.

3 3
[(LB) - 1] X In(rrl%) = 1.140245 > 1. Therefore, as observed in Table 1, this B-InSb system was absent.

fIn
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2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate InSb-crystals, the critical donor(acceptor)-density, Ncpniop)(Fda)) » is

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonvop) (Faca)) 73 * asn(ep)(Ta@) = 34714 (0.133515), 3)
and the effective Bohr radius agn(gp)(Fdca)) is given by:
_ E(rd@)> 2 — %< 10-8 « €(rdca))
asnp) (Fd(a)) = oy 0.53x107°cm T/ 4)

where —q is the electron charge, €(ry(a)) is determined in Eq. (2), in which My, /my = Mppy/mg =
0.015 (0.39). From Eq. (3), the numerical results of Ncpnnpp)(Fd(a)) are obtained and given in the above
Table 1, in which we also report those of the densities of electrons (holes), being localized in exponential
conduction (valance)-band (EBT) tails, NEBE(CDp)(rd(a))a obtained using the next Eq. (21), as investigated in
Section 4, noting that the maximal relative deviations (RD), in absolute values, between Ncpnnpp) (Fdca))
and NGphcop) (faeay) are found to be equal to: 7.8% (11%), respectively. Thus, Nepnnop)(Fdcay)
determined in Eq. (3), can be explained by the densities of electrons (holes) localized in exponential
conduction (valance)-band (EBT) tails, Ngpn(cop) (Faay): determined from Eq. (21).

In summary, Table 1 also indicates that, for an increasing ryc), €(rqe)) decreases, while gni(gpi)(rd(a)):
Nconnop) (faga)) and NEBE(CDP)(rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, M, /My is chosen as: My, /Mo = my/m, = 0.014444 , and then, if denoting N =N —
Nconnop) (Fda)) > the optical band gap (OBG) is found to be given by:

i@ (N Fa@ T) = gnagpy(N Ta@: T) + Faem(N . T, )
where the Fermi energy gn(rpy(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

an2p2) (N Ta@ T) = gneigpeiy (T T) =4 gnigpy (N Tdca))-

Here, the effective intrinsic band gap  gnei(gpei) 1 determined by:

1
3 5 220172201
gnei(gpei)(rd(a)l T) = gni(gpi)(rd(a)) —0.0935 x [1 + (M) ]

and the band gap narrowing, A gn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B

and the values of gni(gpi)(rd(a)) are given in Table 1. In particular, in the P-InSb crystal, one has;
gnei(rp, T = 300 K)=0.169779 eV.
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Then, as noted in the Appendix A and B, at T=0K, as N =0, one has:  pnep)(N . T) = gnorpo)(N ) =
0,as givenin Eq. (A4), and A gn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, gniigp1) = gn2(gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

4. Physical model and mathematical methods

4.1. Physical model

In the n(p)-type degenerate InSb, if denoting the Fermi wave number by: Kenrp)(N) = (3 2N/gc(\,))l/s,

the effective reduced Wigner-Seitz radius I'sy(sp), characteristic of the interactions, is defined by

Ken
* Fon(sp) (N @) M) = ﬁ <L ©
being proportional to N 3 Here, =(4/9 )3, kEnl(Fp) means the averaged distance between ionized

donors (acceptors), and agnep)(Fd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is

defined by

Ksngsp) _ Kengep) _ R

— + [R -R x Q] “Fsnesp) < 1., 7
KEn(Fp) ksnl(sp) sNWS(spWs) [ sNTF(spTF) SNWS(SpWS) ] @)

Ransmy(N + Ta@ey) =

These ratios, Rsntr(sptr) @Nd Rsnws(spws) can be determined as follows.

First, for Nconnop) (Fda))» according to the Thomas-Fermi (TF)-approximation, the ratio Rsyrr(sntry 18
reduced to
_ KsnTF(spTF) I(l?riL(Fp) 4 Tsn(sp)
R N,r == =—= = 1, 8
SnTF( d(a)) Ken(rp) ksn%I'F(spTF) ( )

being proportional to N~1/6.

Secondly, for < Ncpnmpp)(Faca)) > according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

Ksn df 2 x N T

Rancspws(N + Fage)) =242 = 0,03(1.04) (zi — Lo, s:(i,i "(""))]), ©)
where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the
Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
I(l?riL(Fp) ey _— 1 I(l?riL(Fp) _ __ Fno(Fpo)

< = < = p <1, Ay = —oEp0) 10
anEp) | o) A Kepy P ") T o) (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) 1 defined in Eq. (7).
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Then, in degenerate d(a)-InSb systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the InSb - crystal, is defined by
O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)- InSb system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total InSb -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined in II, as :

(r '
2 |Vn(p)| (d(a)) Fno(Fpo)

=2 — *Ransp)(N @) _ VZiN —172 _ -
Wao) (Vngey: N Taa)) = Ny > exp <L> NN Fa@) = 27— X 8Kgnienyr Yn(p) = —— (12)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

3 (1.5), respectively, will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally v,y = ,
Fno(Fpo)

where  is the total electron energy and  pno(rpoy 18 the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z, fora=1,

2xk

2
K = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
)

2% (
two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In heavily doped d(a)- InSb systems, the effective Gaussian distribution probability is defined by

1 —V?2
P(V) = ——— x ex [ ]
V) V2 Wn(p) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) a3 = Z_f is defined by

(C =V D= S dm= _o( =V ExPV)AV, for a=1.
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*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /Wy = Ayp) X n(p) X eXP| ——= |,
4x [[vne)|

and using an identity:
(o) _1 2
0 sf2xexp (—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp (—x2/4)xW exp (—x2/4)xn.. 2 x -
( )KIM p(- \/2_; h(®) xT(a+xD_ 1(x) _ = "0 5 exp [ — Ranepy*(2a—1) | Fa+
8% | Vnp)|
9 *D_1(0). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

3 Vo
_a_l(X -—o)  (a)xexp <(\/5 + ) x—X sza) -0, @@= AR
1622 2 4 Tl

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:
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2xk2

N =
I

(D T2, = T (14)
(i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D_,_1(x » ) P(a) xexp -(Va +)x— = W -0, B(@ = % noting that
2 16a2 27 1@+
B = and B(5/2) = 23/2
24X (5/4)
Then, putting f(a) = n(p) x I'(a+3) % B(a), Eq. (13) yields
(x 2)kim R x(2a-1)
H”(P)( n(p) -+0, rd(a)’a) = f(a) = exp l_ s (T\)) T - (\/5 +L§) (411 1:éa) 2 Zf/é - 0. (15)
> [Vn(p) 16a
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X ¥42x "7 . 0. Therefore, Eq. (13) yields
al
(& Pk 1 Py n(e))? 1
—_— n n —a—=
Kn)( n) =+ . 4@, a) = & @ xexp (——2") X (Aay X np)) 2 - 0. (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fam)( n(p)s Td(ay @) = Kn)( np): Facay @) + [Ha)( ngpys @y @) = Ky ( npy: Facay @] > exp [—

(Ao )] (17)
such that: Fnoy( nepy: Fdgay: @ - Hnp)( nepy: Ta@ay @) for 0= =16 , and Fnpy( nep) Fd@) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.

C. Critical impurity density in the MIT
In degenerate d(a)- InSb systems at T=0 K, in which m,,y/my = Mp;y/m, = 0.015 (0.39), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

( CWkm = gc(v)( mn(p)) x( k)KIM = gzc(vz) (2mn(p))E exp(z—)an x F(%) x D_g(X) = (), (18)

Nlw

xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP )

4 [|vne)|
Here, fpo is determined in Eq. (A4) of the Appendix A, with My /My = Mpy/my and =3 (1.5),

respectively, being chosen such that the following determination of NEBE(CDP)(N, l'd(a)) Would be accurate.
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Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:
3

{ kM 3/2

<0 Gew) X (Mn(p) XMo) ™% /"n(p)
f(a=1) = Q: Fn(p)( n(p): rd(a)la = l)a 0] = p2 2 3 : x (a = 1)’ (a = 1) = 3 \/— .

0 24x1(5/4)
(19)
Therefore, NEBE(CDP)(N, ld) can be defined by

0
Neoncop (N fa@) = o ( =0)d ,
where (= 0) is determined in Eq. (19). Then, by a variable change: () = ooy one obtains:
Fno(Fpo
3/2
_ gc(v)x(mn( )) V n()* Fno(Fpo) 16 _ _
NGBneom (N Faa) = e 2x{ 5" @=1)%Fog( e Fa@a=1)d npy + I}
(20)
where
2
o w0 ~(An@* n) -3/2
he = 16 @=D*Kip(a@la@a=Ddae = 16 2 (Ao @) d ne)-
Here, (a=1)=— A
2% (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

—1 o= — T ynp))
In(o) = =7m— X ttletdt = @7
n(p) 572, ©® Yn(p) 578, ®

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 2o *(M@) ™ @ * Frocepo) 6, _
Ncon(eop) [N = Neoniop) (Fa@): Fa@] = R x { o (@=1)x

Fa( ey Fa@r @ =1)d o) +;§Zx—f£} 1)
being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBI(CDF,)[N = Neonop) (Fdgay): Fdayl = NEB-rII—(CDp)(rd(a)) , for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 7.8% (11%), respectively. In other word, this
critical d(a)-density Ncpnnpp) (Fdcay)) can thus be explained by the density of electrons(holes) localized in

the EBT, N&phcop) ( Fd@ay)-
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So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- InSb systems, can thus be expressed by:
N =N —Neonnop) N = NeBnceop)- (22)

2xIEn(epy(N )

, the value
2XMn(p)

Then, if N = Ncpn(npp), according to the Fermi energy, rnocrpoy(N = Neonnop)) =

of the density of electrons(holes), NEBI(CDIO), localized in the EBT for < 0, is almost equal to Ncpn(Npp)»

given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

N(EZBE(CDp) Nconnopys @ N = Nepnnop)- (23)

5. Optical coefficients

Here, Mp;)/ Mo is chosen as: Mpy/My = mi/m, = 0.014444, as that used in Section 3, for determining
the optical band gap in degenerate InSb -crystals.

The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n-—iK and € = &; —i€>, where i2=—1 and €= 2. Therefore, the real and
imaginary parts of € denoted by €, and €, can thus be expressed in terms of the refraction index n and the
extinction coefficient K as: & = n? — k? and £, = 2nK. One notes that the optical absorption coefficient a is

related to €, n, K, and the optical conductivity Og by [3]

g*x|v(E)[?
N(E)%&free space XCE

a(E) = x J(E ) = Ex2® = 2@ = __41906E) g, =n?—k2and g, = 2nK, (24)

cn(E) c cn(E)¥efree space

where the effective photon energy: E = E —  gqgp) =  is the reduced photon energy, the band gap  gn(gp)
can be equal to the optical band gap gn1(gp1). the effective intrinsic band gap  gnei(gpei)» OF to the intrinsic
band gap  gni(gpi), determined in Eq. (5). Here, E= , -q, , [V(E)|, W, Efree space> € and J(E ) respectively
represent: the photon energy, electron charge, Dirac’s constant, matrix elements of the velocity operator
between valence (conduction)-and-conduction (valence) bands in n(p)-type InSb-semiconductors, photon
frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if
the three functions such as: [V(E)|2, J(E ) and n(E) are known, then the other optical dispersion functions
given in Eq. (24) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be

expressed in terms of K(E) and n(E) as:

[n(E)—1]2+K(E)?

RE) = memmer

(25)

From Equations (24, 25), if the two optical functions, €; and £,, (or n and K), are both known, the other ones
defined above can thus be determined.

Then, using a transformation for the joint density of states, J(E ), given in allowed direct InSb -transitions,

. 54415
one obtains: at low values of E, gnigpiy = E =166V, and for = >
1 omn 372 - s 1 om\3/2 % 44415
heE) =57% (_2r) * Egnigpiy % (E = Egngp))™ 2 = 52 % (_2r) % Egnicgpiy < (B~ Egngn))™ 2> (26)
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and, at large values of E, E = 1.6 eV and for a=5/2,

3/2 _ a—(1/2) 3/2 _ 2

1 2m, (E—Egn(gp)) _ 1 2m; (E= gn(gp))

Iny(E ) =5 () e O = L ()7 e gt @7)
gni(gpi) Egni(gpi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E - o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o (E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, taking into account Equations (26, 27) and also those remarks, an improved Forouhi-Bloomer
parameterization model (IFB-PM), used to determine the accurate expressions of the optical coefficients,
obtained in the degenerate n(p) type InSb-crystals, is proposed as follows.

If, defining the band gap  ¢4n(gp), Which can be equal to the optical band gap  gn1(gp1), the effective intrinsic
band gap gnei(gpei), OF to the intrinsic band gap  gni(gpi), determined in Equations (1, 5), and defining the

4 Aj
=1 g(B)-BiE+C
—0.4415 4.4415

K(E ) =f(E) x gniz(gpi) x (E = E- gnl(gpl))Ta for gni(gpi) = E<16eV,

function: f(E)= where g(E)=E? x (1 + 1074 x g), we propose:

=f(E)x (E = E~ gnipp)) »for E= 166V, (28)
being equal to 0 for E =0 (or for E = ¢p1(gp1)), and also going to 0 as E™1 asE - oo, and further,
BoiE+Coi
N(E) = Nw(rye)) + ?zlm, S0 (29)

: — — wr — 13 o1
going to a constant, as E - 0, N(E - 0, ry)) = Ne(Fea)) = /€(Fd@) X ol wr =35x10~ s~ [5]

and w_ = 8.935675 x 103 s71, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L)
represents the transverse (longitudinal) optical phonon mode, so that, in the P-InSb system, in which

gni(rp) = 0.2298 eV, we obtain: N, (rp) = 1.755, while, in the FB-PM [11], Noo(rg—pmy = 1.803 and the

2

band gap Eqrm—pmy = 0.12 8V < gnigpi), as observed in Table 1. Here, Bi(Egneigpei)) = % X [— B?i +

2 Ai . [Bi*(Egeicapen*Ci)
Egnei(gpei)Bi - Egnei(gpei) + Ci]’ Coi(Egnei(gpei)) = o x - 5, 2 gnei(gpei)ci]a Qi = 5 where,

for i=(1, 2, 3, and 4), the numerical values of the parameters for the InSb-crystal, such as: A;, B;, and C;, are
given in Ref. [11], as used in the FB-PM.

The important numerical results of the above optical functions, at T=0K, N = N¢pn(cpp), and for E = gsi(giy»
are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of
those numerical results, calculated using the corresponding data, given by Aspnes and Studna [9], suggesting
that our obtained numerical results of these optical coefficients are found to be more accurate than the

corresponding ones, obtained from the FB-PM, as observed in Table 3c.
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Table 2a. At the MIT, T=0K, N=NCDn(p)(rd(a)), and the critical photon energy Ecpg = E = gni(gpi)(rd(a)), Kmir( gni(gpi) rd(a)) =0,
82(MIT)( gni(gpi) rd(a)) = 0, OO(MIT)( gni(gpi): rd(a)) =0and MIT( gni(gpi): rd(a)) =0 , and the other functions such as :

it ( gnicgpiy: Fd@)) » E1euimyC gnicgpi): Fdcay)> and Rvir( gnicgpiy: Fda)) decrease, with increasing gy and — gni(Faca))-

Donor P As Te Sb Sn

At the MIT, T=0K, N=N¢p,(ry), and the critical photon energy Ecpe = E = 4pj(ra), on has :

gni(rd) ineV 0.2298 0.2299 0.229994 0.23 0.230006
Nwir( gnis a) 2.9923 2.9082 2.8458 2.8427 2.8395
Kmit( gnir ') 0 0 0 0 0
Exmimy( gnir ) 8.9540 8.4575 8.0984 8.0808 8.0629
Eemimy( gni Td) 0 0 0 0 0
Gomimy( gnis M) 0 0 0 0 0

mit( gni a) 0 0 0 0 0
Rwmit( gnir M) 0.2490 0.2384 0.2303 0.2299 0.2295
Acceptor Ge Ga(Al, Mn) Mg In

At the MIT, T=0K, N=Ncp,(ra), and the critical photon energy Ecpg = E = gi(ra), on has :

gpi(ra) ineV 0.226337 0.227515 0.229871 0.23
Murr( gpis o) 2.9338 2.9018 2.8455 2.8427
kmit( gpir Fa) 0 0 0 0
exuimy( gpis Fa) 8.607353 8.420442 8.096886 8.080836
Emmy( gpir Fa) 0 0 0 0
Tomimy( gpir Fa) 0 0 0 0

mit( gpis Ta) 0 0 0 0
Rwit( gpi,ra) 0.24166 0.237574 0.230315 0.229949

Table 2b. In d(a)-InSb systems, the values of the following optical coefficients at < 0, expressed as functions of ld@) > and

calculated using Equations (31-36, 24), forE = gni(gpi)(rd(a)), present the exponential tail-states for KEEC™T | SE'mD_T, G(E)OC_T ,
G(E)OC_T , EOACTT and RNIR=T "and their variations with increasing Fdea) are represented by the arrows:  and , suggesting that the

obtained results of nERI=T gERED=T 5 q RNIR=T are almost equal to the corresponding ones given in the above Table 2a.

d-InSb systems P As Te Sb Sn
nER=T(ry) 2.9923 2.9082 2.8458 2.8427 2.8395
KEEC=T(ry) 0.002984007 0.002986859 0.00298954 0.002989712 0.002989883
gEReD-T (1) 8.9540 8.4575 8.0984 8.0808 8.0629
o () 0.0178 0.0174 0.0170 0.016998 0.01698
0% T(ry) in Qtcm™t 0.0439 0.0427 0.0419 0.0418 0.0418
EOAC-T(r) in 103cm™!  0.0695 0.0696 0.0697 0.0697 0.0697
RNR=T(rg) 0.2490 0.2384 0.2303 0.2299 0.2295
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a-InSb systems Ge Ga(Al, Mn) Mg In

nERI=T(r,) 2.9338 2.9018 2.8455 2.8427
KEEC=T(r,) 0.00288625 0.002919289 0.00298603 0.002989712
eEReD=T(r ) 8.6073 8.4204 8.0969 8.0808
e5'MP=T(r,) 0.016936 0.016942 0.016994 0.016998
05 T(r) in Q7tem™t 0.0410 0.0412 0.0418 0.04184
EOAC-T(r) in 103cm™  0.0662 0.0673 0.0695 0.0697
RNR=T(r,) 0.2417 0.2375 0.2303 0.2299

. .. ® _ _
Table 2¢. Here, the choice of the real refraction index: N(E -~ o0, Fyy) = Noo(Fa@a)) = +/€(Faqa) > m—z, wr =35x1018s71
[5] and @, = 8.935675 x 103 s, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the
transverse (longitudinal) optical phonon mode, giving rise to Ny, (rp) = 1.755, and further, that of the asymptotic behavior, given

for the extinction coefficient: Ko(E - 00,ryz)) - 0, as E™L, so that og(E - oo, rya)) and a(E - o0,ry) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
Donor P As Te Sb Sn
g(rq) 20.0758 18.1977 16.8648 16.8 16.734
Noo(rg) 1.755 1.6709 1.6085 1.6054 1.6023
Koo (rg) 0 0 0 0 0
€1.00(g) = Noo(Ig)? 3.080025 2.791887 2.587394 2.577452 2.567327
Szvoo(rd) 0 0 0 0 0
5

00 eo(rq) in% 7.457275 7.099896 6.834934 6.821791 6.808378

w(fg) in (10° x cm™) 2.0116 2.0116 2.0116 2.0116 2.0116
Roo () 0.075102 0.063095 0.054423 0.053999 0.053567
Acceptor Ge Ga(Al, Mn) Mg In
e(ry) 18.723503 18.034591 16.857828 16.8
N (ra) 1.6949 1.6634 1.6082 1.6054
Koo (Ia) 0 0 0 0
€1.00(ra) 2.8725 2.7669 2.5863 2.5774
€2,00(ra) 0 0 0 0

5

O0es(Fa) i 7.2017 7.0680 6.8335 6.8218

w(ra) in (10°xcm™) 2.0115 2.0115 2.0115 2.0115
R (ra) 0.0665 0.0620 0.0544 0.0540
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Table 3a. In the P-InSb system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for n(rp) = gni(rep)[ = 0.2298 eV], and the corresponding ones, obtained from
the FB-model [11], are reported in this Table 3a, in which the relative deviations (RDs) of those are also given and calculated, using
the Aspnes-and-Studna (AS)-data [9]. Here, as repoted in above Table 2c, one also obtains here: Ko, (E » ©0,1p) - 0and &, (E -

0,1p) - 0, while, in this Table 3a, Keo(rg)(E - ©0,1p) = 0.33083 and € (rp)(E » ©,rp) = 1192973

EineV  (RD%) (RD%) 1 (RD%) , (RD%) (RD%) (RD%) 1 ,(RD%) 2 ) (RD%)
0.2298  2.9923 0 8.954045 0 3.146328 x 9.899382 x -
15 4114 (6.9) 0571 (11.1) 16597 (13.1) 4701 (17.3)  4.359 (1.3) 0.462 (28.1)  18.792 (1.6) 4.032 (29.0)
1.6 4281 (6.3) 0.805(7.5) 17.676(12.9)  6.895(0.8)  4.539 (0.6) 0.634(15.4)  20.204 (0.5) 5.753 (15.9)
1.7 4471 (5.9) 0.783 (17.5) 19.377(10.7)  7.000 (23.4)  4.744 (0.2) 0.904 (4.7)  21.689 (0.04) 8.583 (4.8)
1.8 4599 (6.3) 1.251(10.4) 19.588(11.5)  11.506(16)  4.876 (0.7) 14352.8)  21.718 (1.9) 13.996 (2.1)
1.9 4.161 (6.1) 1.686(9.9) 14473 (10.3) 14.036 (15.4)  4.365 (L.5) 1.923 (2.7)  15.353 (4.9) 16.787 (1.1)
2 3.952(5.7) 1.566 (11.6)  13.168 (8.9) 12.384(16.7)  4.120 (1.8) 1769 (0.2)  13.845 (4.2) 14.577 (2.0)
2.1 3.957(43) 1.626(8.1)  13.013(6.9) 12.867(12.1) 4.118 (0.4) 1.823(3.0)  13.636 (2.4) 15.018 (2.6)
22 3.905(5.6) 1765 (4.6) 12.132(11.3)  13.784(9.9)  4.054 (1.9) 1.968 (6.4)  12.565 (8.1) 15.958 (4.3)
2.3 3.793(7.7) 1.895(8.0)  10.801 (14.6)  14.375(15.1) 3.926 (4.5) 2,102 (2.0)  10.997 (13.1) 16.503 (2.5)
24 3.652(4.4)  1.982 (13) 9.409 (0.3) 14474 (17.2)  3.766 (1.5) 2.188 (4.3)  9.393(0.2) 16.480 (5.7)
25 3.509 (1.7)  2.020 (9.0) 8.235(54)  14.177(10.6)  3.606 (1.0) 2220(0.0)  8.071(3.3) 16.017 (1.0)
2.6 3.388(1.7)  2.018 (5.9) 7.405(1.7)  13.673(7.5)  3.471(0.7) 2210(3.0)  7.162 (1.6) 15.342 (3.7)
27 3.300(23)  1.991 (4.4) 6.924(2.0)  13.140 (6.6)  3.373(0.1) 2173 (43)  6.659 (5.8) 14.660 (4.2)
2.8 3249 (2.9)  1.955 (4.0) 6.734(44) 12707 (6.7)  3.317(0.8) 2127 (44)  6.482 (8.0) 14.111 (3.6)
2.9 3234(32)  1.924 (4.0) 6.758(5.5)  12.450 (7.0)  3.301(1.2) 2087 (4.1)  6.540 (8.5) 13.776 (2.8)
3 3251 (34) 1.910 (4.2) 6.922(5.9)  12.417(7.5)  3318(1.4) 2.065(3.5)  6.744 (8.3) 13.702 (2.1)
3.1 3292(3.7)  1.920 (4.7) 7.152(62)  12.643(82)  3.362(L.7) 2.071(2.8)  7.014 (8.0) 13.922 (1.0)
32 3351(3.7)  1.964 (6.2) 7373(48)  13.163(9.7)  3.424(1.6) 2.113(0.9)  7.262 (6.2) 14.469 (0.7)
33 3.418(3.0)  2.049 (7.6) 7.482(03)  14.005 (10)  3.495 (0.8) 2.199(0.8)  7.377(L.7) 15.371 (1.7)
34 3478 (1.2)  2.182(7.9) 7339(82)  15.181 (9) 3.559 (1.1) 2337(13)  7.204 (6.2) 16.637 (0.2)
35 3.515(0.1)  2367(5.9)  6.751(12.6) 16.643 (5.8) 3.597 (2.4) 2.531(0.6)  6.532(8.9) 18.209 (3.0)
36 3.502(0.5) 2.602(3.8)  5.492(13.7) 18223 (3.3) 3.582 (2.8) 277727 5.117(5.9) 19.896 (5.5)
37 3.410(0.5) 2.868 (2.2)  3.400 (8.0) 19.564 (2.7)  3.483 (1.6) 3.057(42) 2789 (11.4) 21.298 (5.9)
3.8 3218(2.1) 3.130(23)  0.560 (4.8) 20.148 (43)  3.279 (0.2) 3.331(4.0) —0.345 (164.6) 21.847 (3.7)
39 2928 (3.8) 3.335(41) —2547(102)  19.533(7.8) 2.971(24) 3.544(1.9) —3.735(31.6) 21.063 (0.5)
4 2577(2.1) 3437(7.0) —5172(23.0)  17.711(8.9) 2.599 (1.2) 3.648(12) —6.551(2.5) 18.959 (2.5)
4.1 2222(4.5) 3420(67) — . (242) 15199 (2.5) 2.225(4.6) 3.624(1.1) —8187(8.1) 16.126 (3.4)
4.2 1.918 (7.1) 3.306 (3.7) —7.248 (15.5) 12.685(3.2)  1.905 (6.4) 3499 (1.9)  —8.609 (0.3) 13.331 (8.4)
43 1.692 (4.6) 3.137(2.2) —6.976(9.1) 10.618 (2.3)  1.668 (3.1) 3315(33) —8204(6.8) 11.061 (6.5)
44 1544 (1.9) 2953 (2.7) —6.337(8.3) 9.119(0.8) 1.514 (0.08) 3116 (2.7)  —7.418(7.3) 9.434 (2.6)
45 1458 (1.0) 2.782(3.9) —5.612(10.9) 8.110 (2.9) 1.425(1.2) 2.931(1.3)  —6560 (4.2) 8.354 (0.03)
4.6 1.415(22) 2.636(5.0) —4.948 (14.5) 7461 (3.0) 1.382(0.2) 2.774 (0.06) —5.787 (0.02) 7.669 (0.3)
47 1398 (4.3) 2.522(5.5) —4.406 (17.2) 7.053 (1.5) 1.367 (1.9) 2.651(0.7)  —5.159 (3.1) 7.246 (1.2)
4.8 1.394 (6.2) 2.438(5.3) —4.001 (18.5) 6.795(0.5) 1.364 (3.9) 2,559 (0.6)  —4.692 (4.5) 6.981 (3.2)
49 1390 (6.9) 2.380 (4.6) —3.731(17.7) 6.619(1.9) 1.362 (4.7) 2496 (0.04) —4375(3.5) 6.800 (4.7)
5 1381 (5.7) 2.343(4.0) —3.580 (15.7) 6472 (1.5) 1.354 (3.6) 2454 (0.5)  —4191(1.4) 6.648 (4.2)
5.1 1361 (4.0) 2319 (45) —3.527(15.8) 6.313(0.7) 1.335(1.9) 2428 (0.08) —4.114(1.8) 6.481 (1.9)
52 1327 (4.5) 2303 (5.7) —3.544 (18.7) 6.113 (1.5)  1.301 (2.4) 2409 (1.4)  —4112 (5.6) 6.268 (1.0)
53 1.280 (7.2) 2.287 (6.0) —3.595 (20.2) 5.854(0.7) 1.253 (4.9) 2391 (1.8)  —4.147 (1.9) 5.990 (3.0)
5.4 1221 (9.4) 2266 (5.3) —3.646 (18.7) 5.534(3.5) 1.193 (6.9) 2367(1.1)  —4.180 (6.8) 5.647 (5.6)
55 1.155(9.2) 2236 (4.2) —3.664 (15.3) 5163 (4.7) 1.125(6.4) 2333(0.0) —4178(3.4) 5.250 (6.5)
5.6 1.086 (5.9) 2.193 (3.6) —3.630 (12.0) 4764 (2.1)  1.055(2.9) 2287(0.5)  —4.120(0.2) 4.826 (3.5)
5.7 1.019(1.9) 2.139 (43) —3.536(11.5) 4362 (2.4) 0.987 (1.3) 2229(02)  —3.996 (0.02) 4.400 (1.5)
5.8 0.959 (10.5) 2.075 (6.1) —3.386 (14.2) 3.979(7.1)  0.925 (4.5) 2161 (22) —3814(3.3) 3.997 (6.6)
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59 0.907 (1.7) 2.003 (8.3) —3.191(18.7) 3.632(9.8) 0.872(5.4) 2.085(4.6)  —3586 (8.6) 3.636 (9.8)

6 0.864 (0.4) 1.927(9.9) —2.966 (22.6) 3331(9.5) 0.829(3.7) 2.004(6.3)  —3.328(13.2) 3324 (9.7)
1.755 0 . = . 0 1.803 0.33083 3.141361 1.192973
1.755 0 . = . 0 1.803 0.33083 3.141361 1.192973

EineV  (RD%) (RD%) 1 (RD%) » (RD%) (RD%) (RD%) 1 (RD%) 2 ) (RD%)

Table 3b. In the P-InSb system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for 4n(rp) = gni(rp)[ = 0.2298 eV], and the corresponding ones, obtained from
the FB-model [11], are reported in this Table 3b, in which the relative deviations (RDs) of those are also given and calculated, using
the AS-data [9]. Here, as reported in above Table 2¢, one also obtains here: (E - ©0,rp) = 20116 x 10°cm™ and 65 (E -

00, fp) = 7.457275 % 10° (ﬁ), while, in the FB-model, 5 - 0, and dgg — ©, which should be not correct.

Einev  (108x ~1):RD% R; RD% (= ) ; )(Q: ) (10°x  ~1);RD% . RD%
0.2298 0 0.24904 0 0.010544 0.015865 0.267957
15 86.854; 11.2 0.378; 6.8 75.475 64.736 70.295; 28.1 0.397; 2.1
1.6 130.58; 7.6 0.400; 5.0 118.08 98.51 102.74; 15.4 0.416; 1.2
17 134.87; 17.5 0.414; 6.0 127.37 156.18 155.84; 4.7 0.439; 0.5
1.8 228.17; 10.4 0.441; 5.5 21.67 269.64 261.78; 2.8 0.467; 0.01
1.9 324.72;10.0 0.435; 5.9 285.45 34138 370.26; 2.7 0.462; 0.1
2 317513117 0.414; 6.5 265.09 312.04 358.54; 0.2 0.438; 1.0
2.1 346.01; 8.1 0.418; 4.7 289.21 337.56 388.02; 3.0 0.442; 0.7
22 393.50; 4.6 0.425; 4.4 32457 375.76 438.75; 6.3 0.449; 0.8
23 441.60; 8.0 0.429; 6.4 353.87 406.27 489.87; 2.0 0.452; 1.2
2.4 481.99; 13 0.429;7.4 371.82 42335 532.20;4.3 0.452; 2.3
25 511.75; 9.0 0.425; 4.9 379.35 428.60 562.67; 0.04 0.448; 0.3
2.6 531.69; 5.9 0.419;3.4 380.49 426.95 582.32;3.0 0.442; 1.8
2.7 544.79; 4.4 0.412;3.0 379.74 423.66 594.53; 4.3 0.434; 2.2
2.8 554.83;3.9 0.406; 3.1 380.81 422.90 603.473; 4.4 0.427; 1.9
2.9 565.58; 4.0 0.402; 3.1 386.43 427.60 613.28; 4.1 0.422; 1.7
3 580.58; 4.2 0.401; 3.5 398.70 439.96 627.75; 3.5 0.421; 1.4
3.1 603.21; 4.7 0.404; 3.7 419.50 461.93 650.49; 2.7 0.423; 0.7
32 636.88; 6.2 0.412; 4.4 450.83 495.60 685.12; 0.9 0.430; 0.2
33 685.20; 7.6 0.423; 4.8 494.66 542.93 735.45; 0.8 0.442; 0.7
3.4 751.82; 7.9 0.439; 4.3 552.44 605.44 805.30; 1.3 0.458; 0.3
35 839.70; 5.9 0.459; 3.1 623.48 682.14 897.75; 0.5 0.477; 0.7
3.6 949.28; 3.8 0.482; 2.0 702.18 766.62 1013.2; 2.6 0.501; 1.8
3.7 1075.6; 2.2 0.507; 1.3 774.79 843.46 1146.3; 4.2 0.527;2.5
3.8 1205.4; 2.3 0.533; 1.4 819.48 888.56 1282.8; 3.9 0.554; 2.4
3.9 1318.1; 4.1 0.559; 2.3 815.38 879.24 1400.9; 1.9 0.580; 1.5
4 1393.1; 6.9 0.581; 4.4 758.27 811.71 1478.6; 1.3 0.604; 0.6
4.1 1420.9; 6.7 0.597; 5.6 666.99 707.68 1505.9; 1.1 0.622; 1.7
42 1407.1; 3.7 0.605; 4.5 570.24 599.288 1489.0; 1.9 0.631; 0.4
43 1366.9; 2.2 0.604; 3.1 488.70 509.07 1444.4;3.2 0.631; 1.3
4.4 1316.8; 2.6 0.593;2.7 429.43 44428 1389.4; 2.7 0.622; 2.0
45 1268.5; 3.9 0.577; 3.5 390.61 402.37 1336.6; 1.2 0.606; 1.3
4.6 1229.0; 5.0 0.557; 4.9 367.36 377.61 1293.3; 0.08 0.586; 0.09
47 1201.3; 5.5 0.538; 6.2 354.83 364.49 1262.6; 0.7 0.567; 1.2
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48 1185.9; 5.3 0.522; 7.0 349.12 358.64 1245.0; 0.6 0.551; 2.0
49 1181.8; 4.6 0.511;6.7 347.13 356.65 1239.4; 0.0 0.539; 1.7
5 1187.0; 4.0 0.505; 6.0 346.34 355.79 12437, 0.5 0.532; 1.0
5.1 1198.7; 4.5 0.503; 5.8 344.61 353.78 1254.9; 0.08 0.529; 0.8
52 1213.7;5.8 0.505; 7.0 340.24 348.84 1269.6; 1.4 0.531; 2.2
53 1228.6; 6.1 0.509; 8.4 332.11 339.80 1284.2; 1.8 0.536; 3.6
5.4 1240.2; 5.4 0.515; 8.5 319.86 326.36 1295.3; 12 0.542;3.8
5.5 1246.1; 4.2 0.521;7.5 303.96 309.09 1300.4; 0.0 0.548; 2.6
5.6 1244.6; 3.6 0.526; 5.8 285.56 289.24 1298.0; 0.5 0.554; 0.8
5.7 1235.6; 43 0.529; 4.7 266.10 268.42 1287.7; 0.3 0.557; 0.4
5.8 1219.6; 6.1 0.529; 5.2 247.01 248.15 1270.1;2.2 0.558; 0.04
5.9 1197.8; 8.3 0.526; 6.9 229.39 229.59 1246.5; 4.6 0.556; 1.6
6 1171.7;9.9 0.519; 9.2 21391 213.44 1218.5; 6.3 0.549; 3.9
x 0.075102 7.457275% x x 0.094682
x 0.075102 7.457275% x x 0.094682
EineV  (10°x ~1);RD% R; RD% (=— (& (10°x  ~1);RD% ;RD%

Table 3c. Here, our highest relative deviation (HRD)-values and those of (HRD)gg, calculated using the (AS)-data [9], are reported,

suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the corresponding ones,

obtained from the FB-PM.

HRD

€

)

E (eV)

1.7

4.1

5.8

10.5%

17.5%

24.2%

23.4%

17.5%

9.2%

(HRD)gg

Kr

€1(FB)

€2(FB)

FB

Res

E (eV)

1.5

38

39

5.4

6.9%

28.1%

164.6%

31.6%

29.0%

28.1%

3.9%

Some important cases, given in various physical conditions, are considered as follows.
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5.1. Metal-insulator transition (MIT)-case
As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT

are: T=0K, N =0 or N = Ncpnccop) NEB}E(CDp) , vanishing the Fermi energy:

_ ke (N)

Fro(rpo)(N ) = p— 0. Further, from the discussions given Eq. (5) for the optical band gap:

gnl(gpl)(N =014, T = O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)), according also to the MIT.
Then, in such the MIT-case, replacing both  gnei(gpeiy and  gn1(gp1)> BY  gnigpi)> given in Equations (28, 29),
and consequently from Eq. (24), one gets, for the effective photon energy E = E —  gyj(gpiy = O:

K(E , rg@) =0, &(E , rq@) = 0, 00(E ,ry@m) = 0 and a(E , rye@)) = 0, corresponding also to the MIT.

Thus, in this case, the photon energy E becomes the critical photon energy, defined by:
—04415 4415 44415

anicapiy < (E = E— gnicgp) =0) 2
ECPE(rd(a)) = gni(gpi)(l’d(a)). Therefore, Equations (28, 29), obtained in the MIT-case, become:

—0.4415 44415
KE =0) =) > giigpi) * (E = E— guigpiy) ° =0.forE=gnigpi <1.6eV, (30)
and
BoiE+Coi . : —
NE =" gni(gpi)) = Neo(Fa(a)) + ?zlm, in which  gnei(gpei) = gni(gpi)- (31

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients
for <0, representing the exponential tail-states, from Eq. (30), by putting: E = gnj(gpi), as:

T gnicm) = F(Egnicapi) < Gricapiy- (32)
Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, given for

the following exponential tail-states of €,, 0g(E), Q, and R as:

g5 ( gnicgpiy) = 2 % KECTT( gnl(gpl)) xnFITE = gniggpi))s (33)
G(E)OC_T( gni(gpi)) — Efree space gnl(gpz:SZ ( gm(gpl)) (34)
QEOACT( o) = 2% gni(gpi)XKEjZ_T( gni(gpi))’ and (35)
RNRT( o) = [N _gnicapd) ~11°+<E%~T(_gnicapi)’ (36)

[N gnicopd)*+ 112+E5~T( gnicapi)”
The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, Iq(a))
in following physical conditions by: T=0K and N = Ncpnnpp) » and by: T=20K and N = 10%¥%cm3
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and

(¢ 1) the minimum and the extrema-values of those occur at the same corresponding photon energy E.
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Table 4n. In d-InSb systems, and for two types of physical conditions such as: [T=0K and N = N¢p,(rq)] and [T=20K, N =

10 cm™2], the extrema values of & (E) and &,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: tori, suggesting that those extrema occur at the same E.
E in eV 1.7 1.8 1.9 2 24 3 33 3.8 5.1 100
In the P- InSb system, at T=0K and N = Ngp,(rp) = 1.172x10%7 cm™3, g (rp)[ = 0.2298 eV]
() 19.99 2115 17.32 15.62 13.34 10.57 + 11.68 I 1036 | 185 2.95 3.080025
2() 7.00 11.50 1t 14.04 | 1238 t 1447 | 1242 t 1400 1t 20.15 | 6.31 1.2 0
In the As- InSb system, at T=0K and N = N¢p,(ras) = 1.5737 x10%7 cm™3,  g(ras)[ = 0.2299 eV]
() 1924 t 2038 | 16.62 14.96 12.73 10.03 1t 11.11 | 9.82 | 1.63 2.67 2.791887
20) 6.87 11.29 1 13.75 1 1212+ 1414 v 1209 1t 13,66 1t  19.62 | 5.92 1.1 0
In the Te-InSb system, at T=0K and N = N¢p,(rre) = 1.977038x10%7 cm™3, i(rre)[ = 0.229994 eV]
() 1870 t 19.82 | 16.12 14.48 12.29 9.64 1 10.70 | 944 | 1.47 2.47 2.587394
20) 6.77 11.13 1 1354 L 1192 1+ 1389 |1 11.85 t 1340 r 1923 | 5.63 1.098 0
In the Sb- InSb system, at T=0K and N = Nepa(rsp) = 2 X107 cm™3,  gi(rsp)[ = 0.23 eV]
() 18.67 t 19.80 | 16.09 14.46 12.26 9.62 1 10.68 | 942 | 1468 2.46 2.577452
20) 6.76 11.13 1 13.54 L 1192 1+ 1389 |1 11.85 t 1340 r 1923 | 5.63 1.098 0
In the Sn- InSb system, at T=0K and N = Nepa(rs,) = 2.023761x10% cm™3,  g(rsy)[ = 0.230006 eV]
() 1864 t 19.77 | 16.07 14.44 12.24 9.60 1 10.66 | 9.40 | 1.460 2.45 2.567327
2() 6.759 11.12 1 1352 L 1190 + 1387 |+ 11.83 t 1338 1t 1920 | 5.60 1.094 0
E in eV 1.7 1.8 1.9 2 2.4 3 33 3.8 5.1 100
In the P- InSb system, at T=20K and N = 10*° cm™3, ,;(rp)[ = 1.330931 eV]
() 19.993 T 21157 | 17.32 15.62 13.34 10.57 1t 11.68 | 1036 | 1.85 2.95 3.080025
2() 0.44 1.03 1.63 1.77 3.51 4.51 576 1 9.64 | 3.78 1.17 0
In the As- InSb system, at T=20K and N = 10%° cm™3, gn1(ras)[= 1.322763 eV]
1) 19.25 1 20.39 | 16.62 14.96 12.73 10.03 t+ 1L.11 | 9.82 I 1.63 2.67 2.791887
() 0.45 1.04 1.64 1.77 3.48 4.43 5.66 1 945 | 3.56 1.12 0
In the Te- InSb system, at T=20K and N = 10%° cm™3, gn1(rre)[ = 1.315395 eV]
() 18.70 1 19.83 | 16.12 14.48 12.29 9.64 1 10.70 | 944 | 1.47 2.47 2.587394
2() 0.46 1.06 1.66 1.78 3.47 4.38 5.60 1 931 3.40 1.07 0
In the Sb- InSb system, at T=20K and N = 101%cm™3, ;; (rsp)[ = 1.314995eV]
1) 18.67 t 1980 | 16.09 14.46 12.27 9.62 1t 1068 I+ 942 I 1467 2.46 2.577452
2() 0.46 1.06 1.66 1.78 3.47 4.38 5.60 1t 9.31 3.39 1.07 0
In the Sn- InSb system, at T=20K and N = 101%cm™3, ;1 (rsp)[ = 1.314583 eV]
() 18.65 1 19.77 | 16.07 14.44 12.24 9.60 1 1066 | 940 | 1.46 2.45 2.567327
2() 0.46 1.06 1.66 1.78 3.47 4.38 559 1 9.30 3.38 1.07 0
E in eV 1.7 1.8 1.9 2 2.4 3 33 3.8 5.1 100
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Table 4p. In a-InSb systems, and for two types of physical conditions such as: (T=0K and N = Ncpp(ra)) and (T=20K, N =
10%° cm™3), the extrema values of €;(E) and £,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 or | , suggesting that their extrema occur at the same E.

E in eV 1.7 1.8 1.9 2 2.4 3 33 3.8 5.1 100

In the Ge- InSb system, at T=0K and N = Nep,(ree) = 1.444768x10% ecm™2,  4(ree)[ = 0.226337 eV]
1) 1890 1t 19.09 | 13.99 L1270 8.96 652 1t 7.06 L 014 1+ =371 1t 2.63 2.872556

20) 6.95 11.42 1t 13.91 L1225 11429 1 1222 0t 1379 0t 1981 U 6.03 1.16 0

In the Ga- InSb system, at T=0K and N = N¢pp(rgs) = 1.616741 x10Y cm™3, i(rg)[ = 0.227515 eV]
() 18.60 1t 18.79 | 13.73 L 12,46 8.74 632 1t 6.85 I —=0.04 + =378 1 252 2.766863

20) 6.88 11.32 1t 13.77 L1213 0t 1415 1 12,09t 1365 1 19.60 | 5.89 1.14 0

In the Mg- InSb system, at T=0K and = NCDp(ng) = 1.979495 x10%" cm~3, gpi(ng)[Z 0.229871 ]
() 18.60 1t 18.79 13.73 ! 12.46 8.74 632 1t 6.85 I —0.04 | =378 1 252 2.766863

20) 6.88 11.32 1t 13.77 L1213 0t 1415 1 12,09t 1365 1 19.60 | 5.89 1.14 0

In the In- InSb system, at T=0K and N = N¢p,(rj,) = 1.8921462 x10%7 cm™3, (r,,)[ = 0.23eV]

1) 18.06 t 1823 | 13.25 L 12,01 8.34 597 t 648 L —038 1 —391 1t 234 2.577452
20) 6.76 11.13 1 13.53 L1191 11388 1 11.84 t 1339 t 1921 | 5.62 1.09 0
E in eV 1.7 1.8 1.9 2 24 3 33 3.8 5.1 100

In the Ge- InSb system, at T=20K and N = 102 cm™3, ; (rge)[= 1.340164 eV]

10) 19.52 t20.67 | 16.86 15.18 12.92 10.18 t  11.28 1998 1 168 t 275 2.872556

20) 0.41 0.97 1.56 1.70 3.40 438 561 1 9.39 | 3.59 1.13 0

In the Ga- InSb system, at T=20K and N = 10° cm~3, go1(Fea) [= 1.338843 eV]

1) 19.22 Tt 2036 L 16.59 14.93 12.69 998 1t 11.07 1978 1 161 1t 265 2.766863

20) 0.41 0.97 1.55 1.69 3.37 4.34 556 t 930 3.51 1.11 0

In the Mg- InSb system, at T=20K and N = 10%° cm~3, gpl(ng)[= 1.336203 eV]

1) 18.70 T 19.83 L 16.12 14.48 12.29 9.63 1t 10.70 1943 1 147 v 247 2.586324

2() 0.41 0.97 1.54 1.68 3.34 4.28 548 t 9.16 1 3.36 1.07 0

In the In- InSb system, at T=20K and N = 10° cm~3, go1(rin)[= 1.336059 eV]

1) 18.67 T 19.80 1 16.09 14.46 12.27 9.62 1t 10.68 1942 1 147 1t 246 2.577452
2() 0.41 0.97 1.54 1.68 3.34 4.27 548 1 9.15 | 3.36 1.07 0
EineV 1.7 1.8 1.9 2 2.4 3 33 3.8 5.1 100

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-InSb systems
Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, at E=3.3 eV, for example, and for some (P, Te, Sn)-InSb systems and for some (Ga, In)- InSb
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ones, being indicated by the arrows:

and

, as tabulated in following Tables 5n and 5p, in which the

physical condition N > Ncphnpp) (or N > 0) must be respected, and their variations thus depend on the

ones of the optical band gap, gnl(gpl)(N , rd(a)).

Table Sn. In (P, Te, Sn)- InSb systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows, (

optical gap gn1(N , rg) increase with increasing N, at T=20 K.

and ), since those of the

N ( ) 4 8.5 15 50
gn1(N ,Ip) ineV 0.810464 1.213906 1.685051 3.532931
n(rp)=3.417687
(.rp) 1.3472 0.9459 0.5669 0.0118
1C.rp) 11.680586 11.680586 11.680586 11.680586
20 1p) 9.208 6.4658 3.875 0.081
( ,rp) in 10> @t ¢ 3.252 2.284 1.369 0.028
(.,rp) in 105 4.505 3.163 1.896 0.039
R( ,rp) 0.359 0.330 0311 0.2995
gnl(N ,I1e) ineV 0.795309 1.198549 1.668850 3.512681
n(rre)=3.271171
(., re) 1.3636 0.9599 0.5783 0.0098
1C o) 10.700562 10.700562 10.700562 10.700562
20 rre) 8.921 6.280 3.784 0.064
( ,fr) in 102 Q71 1 3.151 2.218 1.336
( ,re) in 105 1 4.560 3.210 1.934 0.033
R( ,rre) 0.349 0.317 0.296 0.2827
gnl(N ,I'sp) ineV 0.794495 1.197742 1.668014 3.511666
n(rg,)=3.264918
( . rsn) 1.3645 0.9606 0.5789 0.0097
1C 1 rsn) 10.65969 10.65969 10.65969 10.65969
20 Ten) 8.910 6.273 3.780 0.063
( ,rgy) in 102 Q71 1 3.147 2216 1.335 0.022
( ,rgy) in 105 1 4.563 3.212 1.936 0.032
R( ,rsn) 0.349 0.317 0.295 0.2820
N ( ) 4 8.5 15 50

Table Sp. In (Ga, In)- InSb systems, the numerical results of the following optical coefficients, expressed as functions of N, and
calculated using Equations (31-36, 24), for E=3.3 ¢V and T=20K, present the variations by arrows, ( or ), since those of the

optical gap 4,1 (N ,Ip) increase with increasing N.

N ( ) 15 26 60
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ap1(N ,Tca) in eV 1.69462 2.3605 3.982224
n( )=3.326709

., ) 0.5602 0.1918 0.1012
100 11.067 11.067 11.067
20, ) 3.727 1.276 0.6731

(, ) in102Q?t -t 13165 0.4509 0.2377
(, ) in 120° 1.8734 0.6416 0.3383
R(, ) 0.3009 0.2906 0.2896
gp1(N , 1p) ineV 1.691789 2.357407 3.978205
n( )=3.268076

(., ) 0.5622 0.1931 0.1000
1C0) 10.680 10.680 10.680
20, ) 3.674 1.262 0.6535
(, ) in 102Q*t 1.2979 0.4458 0.2308
(, )in 100 1.8800 0.6458 0.3343
R(, ) 0.2946 0.2838 0.2828
N( ) 15 26 60

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- InSb systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =
1.5 % 10¥%m3, respectively, as functions of T, at E=3.3 eV, for example, and for some (P, Te, Sn)-InSb
systems and for some (Ga, In)- InSb ones, being indicated by the arrows:

Tables 6n and 6p, in which their variations thus depend on the ones of the optical band gap,

an1(gpr) (N Tacay)-

Table 6n. In (P, Te, Sn)- InSb systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.3 eV and N = 1.5 x 10'° cm™3, increase with increasing T, since the optical band

gap gn1(T,Iq) decreases with increasing T.

and

, as given in following

TinK

20 30 50 100 200 300
o= gu(T.rp)ineV 1685051  1.684743 1.683668  1.678167  1.656560  1.625784
n(rp, ) 3.4177 3.4178 3.4181 4.4196 3.4255 3.434
(re, ) 0.570 0.567 0.5678 0.5717 0.5871 0.609
1(rp, ) 11.680 11.681 11.683 11.694 11.734 11.791
o(rp, ) 3.875 3.876 3.882 3.910 4.022 4.184
(rp, ) in 10201t 1 1.369 1.3692 1.3712 1.381 1.4207 1.478
(rp, ) in 105 1t 1.896 1.8965 1.899 1.912 1.963 2.037
R(rp, ) 0.3108 0.3109 0.311 0.3112 0.3125 0.314
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gn = gn1(T,Ire) ineV 1.66885 1.668542 1.667467 1.661967 1.64036 1.609586
n(rre, ) 3.2712 3.27126 3.27155 3.2730 3.2790 3.2873
(rre, ) 0.578 0.5685 0.5793 0.5832 0.5978 0.6211
1(Fre, ) 10.700 10.7011 10.703 10.713 10.752 10.806
2(rres ) 3.784 3.7852 3.790 3.8179 3.9264 4.084
(fre, ) in 102 Q71 1 1.336 1.3369 1.3388 1.3485 1.3868 1.4424
(fre, ) in  10° 71 1.934 1.9347 1.9373 1.9504 2.0022 2.077
R(rre, ) 0.29566 0.29568 0.2957 0.2961 0.2974 0.299
gn = gn1(T,Tsp) ineV 1.66801 1.667706 1.666631 1.66113 1.639524 1.608749
n(rsn, ) 3.2649 3.2650 3.2653 3.2668 3.2728 3.281
(rsn, ) 0.5789 0.5791 0.5799 0.5838 0.5993 0.622
1(Fsny ) 10.659 10.660 10.662 10.672 10.711 10.766
2(rsn, ) 3.780 3.7818 3.787 3.814 3.9229 4.080
(rsn, ) in 102 Q71 1 1.335 1.3358 1.3376 1.347 1.3856 1.441
(rgn, ) in  10° 1.936 1.9368 1.9393 1.952 2.004 2.079
R(rsn, ) 0.2950 0.29503 0.29509 0.2954 0.2967 0.2987
Tin K 20 30 50 100 200 300

Table 6p. In (Ga, In)- InSb systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.3 ¢V and N = 1.5 x 10® cm™, increase with increasing T, since the optical band

gap gp1(T,Ty) decreases with increasing T.

TinK 20 30 50 100 200 300
w= gu(Tlea)ineV  1.6946 16943 1.6932 1.6877 1.6661  1.6353
n(rga, ) 3.227 3.3271 3.32711 3.3286 3.3345 3.3428
(rea ) 0.560 0.5604 0.5612 0.5650 0.5803 0.6023
1(feas ) 11.067 11.0671 11.069 11.079 11.1193 11.1747
2(gar ) 3.727 3.729 3.7341 3.7615 3.8699 4.0270
(rga ) in 102 Q71 1 1.316 1.317 1.3189 1.3286 1.3669 1.4224
(rg ) in 10 1 1.873 1.874 1.877 1.889 1.940 2.014
R(reas ) 0.301 0.301 0.301 0.301 0.302 0.304
w= (T rn)ineV 16918 1.6915  1.6904 1.6849 1.6633  1.6325
n(r,, ) 3.268 3.2682 3.26846 3.26999 3.2759 3.2842
(rn ) 0.562 0.5624 0.5631 0.5670 0.5823 0.6043
1(rn ) 10.680 10.6809 10.6828 10.6928 10.7318 10.7863
AT 3.674 3.676 3.681 3.7082 3.8150 3.9699
(fn ) in 102 Q°* 1 1.298 1.2984 1.3002 1.3098 1.3475 1.4022
(ry ) in 105 1 1.880 1.8808 1.8832 1.896 1.9472 2.0211
R(rm, ) 0.2946 0.29461 0.2947 0.2950 0.2963 0.2982
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Tin K 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type heavily doped InSb-crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in I, II and III, and further, by taking into account the
corrected values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the
refraction index N and extinction coefficient K, as the photon energy E( - o), all the numerical results,
obtained in III, are now revised and performed.

Then, by basing on our following basic expressions, such as:

(i)the effective static dielectric constant, €(ry(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy(Fdca)) » which gives a physical condition, needed to define the MIT at T=0K, as: N =N —
Nepn(cop) =0 or N = Ncpncppy » noting that Nepncppy can also be explained as the density of electrons
(holes) localized in the exponential conduction(valence)-band tails (EBT), NEBE(CDF,), as that determined in
Eq. (21), with a precision of the order of 11%, as observed in Table 1,

(iii) the Fermi energy, gnrp)(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables
2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical
results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@)  Fnorpo)(N =0, T=0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )2/3,

(b) as discussed in Eq. (5), in the MIT, in which gn1(gp1y(N = 0,7g@@), T=0) = gnicgpi)(Faca))-

where  gn1gp1) and  gnicrgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = gni(gpi)(rd(a)) or the effective photon energy E =
E — gni(gpi)(rd(a)) =0, one has: K(E =0,ry@) =0, &2(E =0,r4@) =0, 0g(E =0,r4z)) =0 and

a(E = 0,rge)) = 0, according also to the MIT-case, being new results.
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In summary, all the numerical results, given in III [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InSb-crystals, the Fermi energy pnrp) = ( Fp = [ v fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10™# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — Ncpn(cpp) (Faca)) » Neon(copy (Fday) being
the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in
Table 1, meaning that N = O at this transition.

First, we define the reduced electron density by:

3
N n(p) <ksT
U(N ,rd(a),T) = r(v)’ NC(V)(T) =2x gC(V) x ( (p) d ) ( m 3)a (Al)

where Ny (T) is the conduction (valence)-band density of states, the values of gevy = 1(1), and mp;)/mo,

defined in Section 2, can be equal to : Mpp)/M, = 0.015 (0.39), and to mM/m, = =72 = 0.014444. In

mn+mp
particular, as used in Section 3 for determining the optical band gap in degenerate InSb-crystals, My )/
mo= m,/my, = 0.014444 was chosen. Therefore, from Eq. (Al), N =N, and thus u(N ,rgq,T) =
UN 1y, T) =

Then, the reduced Fermi energy in the n(p)-type InSb crystals is determined by :

Fn(Fp) (W) Fp(U) G(U)"'AUBF(U) = V(u)
= ( o ) =2 = g, () = Wy A = 00005372 and B = 4.82842262, (A2)

8\ —=

2 4
where F(N , rqea), T) = aus (1 +bu 3+ cu“s) ° obtained foru 1, according to the degenerate cas,

— _ 623739855 ( )

3
1920 and then G(u) Ln(u)+22xuxe % foru

= [(@VR/I73, b=2(5)", ¢ =

1, according to the non — degenerate case, with:  d = 23/2 [ ] >0 . As noted above, one has:

7z 16
r(U) = gp(u), in the this d(a)-InSb systems.

So, in the degenerate case (U 1), one has:

2
_4 8\ 3
(N Ta@ T) = rnEp)(N . T) = Enogepoy(U) % (1 +bu 3+cu 3) : (A3)
Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:

2xkEnpy(N )
2xm;

Fno(Fpo)(N ) = P (A4)

being proportional to (N )%3, and equal to 0, Fno(Fpo) (N = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

Appendix B. Approximate forms for band gap narrowing (BGN)

303



First of all, in the n(p)-type InSb-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

1/3 /mg
=1.1723 x 108 x (%) x%.

3gc(v))1/3 % 1

rsn(sp)(N ) rd(a)) = (4nN a8n(ep) (Td(a)) (Bl)

In particular, in the following, My,)/Me = M /My, is taken for evaluating the band gap narrowing (BGN),

as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)), is found to

be given by [1]:
087553 2[1-In(2)] _
B . __—osmss 0 0908+rsn(sp)+( = )xln (Fsn(sp))—0.093288 -

ce(Fonemy) = ce(N Fow) = 0.0908+1n(sp) 1-+0.03847728xr157378876 ' (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:
£5p 1/3 £5p ; ) 5/4 mp

A gn(N rg) apx ) XNy~ +ap x G )XN X (2503 % [— ce(rsp) X rsp]) +ag x ol m_rx

1/4 esp o N1/2 [sst,] — N =N—-Ncpn(ra)
Np™ +ag x / g NP X2+ a5 x Nr = Sosowiotr 2 (B3)

and

5/4
A (N, 1)) 2% ?n < N1/3 +a, x sm x N3 x (2 503 x [ — CE(rsp) x rsp]) +ag x Lilrr;) x \/2:’: x

3
1/4 &I 1/2 Ein_ 2 5 — N =N—Ncpp(ra)
Ny + 284 > €(ra) >N ds [E(I'a)] *Np, Ny = (9.999x1017 cm—3)’ (B4)

Here, €5, =&, =16.8, a; =3.80x1073(eV), a, =65x107%(eV), a3 =285x10"3(eV), a, =
5597 x 1073(eV) and a5 = 8.1 x 107 4(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Iq), A gnp)(N =0, rg) =0

according to the metal-insulator transition (MIT).
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