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Abstract
As given in Eq. (2) and Table 1, our analytical expression for the static dielectric constant, ε rd a , given in

the n(p)-type InAs crystal, expressed as a function of the donor (acceptor) radius, rd a , and determined from

an effective Bohr model, decreases with increasing rd a . It strongly affects the critical d(a)-density in the

metal-insulator transition (MIT) at the temperature T (=0K), NCDn(CDp)(rd(a)), determined in Eq. (3), and all

the expressions for optical coefficients, determined in Equations (24, 25, 28, 29) for the n(p)-type heavily

(lightly) doped InAs semiconductors at any T.

In particular, in the P-InAs system at T=0K, Table 3c shows that our obtained results for those optical

coefficients are found to be more accurate than the corresponding ones, obtained from the FB-PM [11],

suggesting that the present model, used here to study the optical properties of the n(p)-type heavily (lightly)

doped InSb -crystal at any T, could be a good improved FB-PM.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential
fluctuations; optical coefficients; critical photon energy

SCIREA Journal of Physics

ISSN: 2706-8862

http://www.scirea.org/journal/Physics

July 11, 2023

Volume 8, Issue 4, August 2023

https://doi.org/10.54647/physics140561



307

1. Introduction
Our new expression for the extrinsic static dielectric constant, ε rd a , rd a being the donor (acceptor) d(a)-

radius, was determined by using an effective Bohr model, suggesting that, with an increasing rd a , due thus

to such the impurity size effect, ε rd a decreases, affecting strongly: the critical impurity density in the

metal-insulator transition [1], and also optical properties, defined in heavily doped semiconductors [2, 3].

In the following Sections 2-5 [4, 11], in the n(p)-type heavily doped InAs-crystals, our numerical results of

the optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-

Bloomer parameterization model (IFB-PM), are presented, and also compared with the corresponding

experimental-and-theoretical ones [9, 11], suggesting that our present model is found to be a good IFB-PM,

as that observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters
First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given

in the n(p)-type InAs -crystal, such as: (i) if denoting the free electron mass by mo , the effective electron

(hole) mass, mn(p)
∗ /mo, which is respectively equal to the relative effective mass, mn(p)/mo = 0.026 (0.41)

[5], as used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

(MIT), and (ii) to the reduced effective mas, mr/mo = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

= 0.02445 , as used in Sections 3 and 5 to

determine the optical band gap and the optical coefficients given in the n(p)-type heavily doped InAs-

crystals. Further, Ego= EgInAs= EgAs= EgIn = 0.43 eV [2, 5] is the unperturbed intrinsic band gap,

εInAs= εIn = εAs = εo = 14.55 is the relative static intrinsic dielectric constant of the InAs-crystal, and

finally, the effective averaged numbers of equivalent conduction (valence)-band edge, gc(v) = 1(1).

Table 1. For increasing rd(a), while ε(rd(a)) decreases, the functions: �gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a))

increase. The maximal relative deviations between the numerical results of NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)), in absolute

values, calculated using Equations (3, 21), are found to be equal to: 7.4% (11.6)%, respectively, suggesting that NCDn NDp (rd(a))

can be explained by NCDn
EBT(rd), being localized in the EBT. So, in the n(p)-type InAs, in which (mn(p)/mo) = 0.026 (0.41) [5],

all the numerical results for the energy-band-structure parameters and NCDn(CDp)(rd(a)), being expressed as functions of

rd(a)-radius, are obtained, by using Equations (3, 9, 10, 11, 12, 13, 21).

__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

ε(rd) ↘ 14.8500 14.55 13.6604 13.1399 12.5521

Ed(rd) in meV ↗ 1.6035 1.6703 1.8949 2.0480 2.2443

Egni(rd) in eV ↗ 0.4299 0.43 0.4302 0.4304 0.4306

NCDn(rd) in 1017 cm−3 ↗ 1.2228 1.3000 1.5709 1.7651 2.0248

NCDn
EBT(rd) in 1017 cm−3 ↗ 1.3063 1.3646 1.5625 1.6987 1.8749

RD 6.8% 4.9% 0.5% 3.7% 7.4%

Rsn < 1, from Eq. (7), 0.0157 0.0155 0.0147 0.0142 0.0136
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__________________________________________________________________________ ____________________________________________

Acceptor Ge Ga(Al, Mn) Mg In

ra (nm) [4] ↗ 0.122 0.126 0.140 0.144

ε(ra) ↘ 16.2159 15.6192 14.6001 14.55

Ea(ra) in meV ↗ 21.205 22.856 26.158 26.34

Egpi(ra) in eV ↗ 0.4249 0.4265 0.4298 0.43

NCDp(ra) in 1017 cm−3 ↗ 0.9391 1.0509 1.2867 1.3000

NCDp
EBT(ra) in 1017 cm−3 ↗ 1.0485 1.0882 1.1618 1.1656

RD 11.6% 3.5% 9.7% 10.3%

Rsp < 1, from Eq. (7), 0.732 0.730 0.726 0.7259

__________________________________________________________________________ ____________________________________________

We now determine our expression for extrinsic static dielectric constant, ε rd a , due to the impurity size

effect, and the expression for critical density, NCDn(CDp) rd a , characteristic of the metal-insulator transition

(MIT), as follows.

2.1. Expression for � �� �

In the [d(a)-InAs]-systems, since rd(a) , given in tetrahedral covalent bonds, is usually either larger or

smaller than rAs(In) = 0.118 �� (0.144 ��), a local mechanical strain (or deformation potential energy) is

induced, according to a compression (dilation) for: rd(a) > rAs(In) (rd(a) < rAs(In)), due to the d(a)-size effect,

respectively [1, 2]. Then, we have shown that this rd(a) -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, ε(rd(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive

(attractive) force increases (decreases) the intrinsic energy gap �gni(gpi) rd(a) and the effective

donor(acceptor)-ionization energy �d(a) rd(a) in absolute values, obtained in an effective Bohr model, as:

Egni(gpi) rd(a) − Ego = Ed(a) rd(a) − Edo(ao) = Edo(ao) × εo
ε(rd(a))

2
− 1 , (1)

where Edo(ao) ≡ 13600 meV× mn(p)/mo

εo
2 = 1.6703 meV (26.34 meV), and

ε(rd(a))=
εo

1+
rd(a)

rAs(In)

3
−1 ×ln

rd(a)
rAs(In)

3
≤ εo, for rd(a) ≥ rAs(In),

ε rd a = εo

1−
rd(a)

rAs(In)

3
−1 ×ln

rd(a)
rAs(In)

3
≥ εo,

rd(a)
rAs(In)

3
− 1 × ln rd(a)

rAs(In)

3
< 1, for rd(a) ≤ rAs(In). (2)

In particular, in the B-InAs system, in which rB=0.088 ��
rIn=0.144 ��

= 0.61 ≪ 1 , this condition is not satisfied, since

rB
rIn

3
− 1 × ln rB

rIn

3
= 1.140245 > 1. Therefore, as observed in Table 1, this B-InSb system was absent.
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2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InAs-crystals, the critical donor(acceptor)-density, NCDn NDp (rd(a)) , is

determined from the generalized effective Mott criterion in the MIT, as:

NCDn NDp (rd(a))
1

3 × aBn(Bp)(rd(a)) = y, (3)

and the effective Bohr radius aBn(Bp)(rd(a)) is given by:

aBn(Bp)(rd(a)) ≡ ε(rd(a))×ℏ2

mn(p)
∗ ×q2 = 0.53 × 10−8 cm × ε(rd(a))

(mn(p)
∗ /mo)

, (4)

where −q is the electron charge, ε(rd(a)) is determined in Eq. (2), in which mn(p)
∗ /mo = mn(p)/mo =

0.026 (0.41). Here, instead of ����� = 0.25, we have chosen, in this work, y=1.5025 (0.09528001) so that

we obtain: NCDn NDp (rAs(In)) = 1.3 × 1017 ��−3 . Then, from Eq. (3), the numerical results of

NCDn NDp (rd(a)) are obtained and given in the above Table 1, in which we also report those of the densities

of electrons (holes), being localized in exponential conduction (valance)-band (EBT) tails, NCDn CDp
EBT (rd(a)),

obtained using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations

(RD), in absolute values, between NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) are found to be equal to: 7.4%

(11.6%), respectively. Thus, the numerical results of NCDn NDp (rd(a)) are obtained, using Eq. (3), can

be explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)

tails, NCDn CDp
EBT (rd(a)), being determined from Eq. (21).

In summary, Table 1 also indicates that, for an increasing rd(a) , ε(rd(a)) decreases, while Egni(gpi) rd(a) ,

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5 .

3. Optical band gap
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.02445 , and then, if denoting N∗≡ N −

NCDn NDp (rd(a)) , the optical band gap (OBG) is found to be given by:

Egn1 gp1 N∗, rd a , T ≡ Egn2 gp2 N∗, rd a , T + EFn Fp N∗, T , (5)

where the Fermi energy EFn Fp N∗, T is determined in Eq. (A3) of the Appendix A and the reduced band

gap is defined by:

Egn2 gp2 N∗, rd a , T ≡ Egnei gpei rd a , T − ΔEgn gp N∗, rd a .

Here, the effective intrinsic band gap �gnei gpei is determined by:

Egnei gpei rd a , T ≡ Egni gpi rd a − 0.109 �� × 1 + 2�
440.0613 �

2.201
1

2.201
− 1 ,
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and the band gap narrowing, ΔEgn gp N∗, rd a , are determined in Equations (B3, B4) of the Appendix B

and the values of Egni gpi rd a are given in Table 1. In particular, in the As(In)-InAs crystals, one has:

Egnei rAs(In), T = 300 K = 0.36 eV.

Then, as noted in the Appendix A and B, at T=0K, as N∗ = 0 , one has: EFn Fp N∗, T = EFno(Fpo)(N∗) =

0, as given in Eq. (A4), and ΔEgn gp N∗, rd a = 0 , according to the MIT, as noted in Appendix A and B.

Therefore, Egn1 gp1 = Egn2 gp2 = �gnei(gpei) rd(a) = �gni(gpi) rd(a) at T=0K and N∗ = 0 , according also

to the MIT.

4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate InAs, if denoting the Fermi wave number by: kFn(Fp)(N) ≡ 3�2N/gc(v)
1/3

,

the effective reduced Wigner-Seitz radius rsn(sp), characteristic of the interactions, is defined by

� × rsn(sp) N∗, rd a , mn(p)
∗ ≡

kFn(Fp)
−1

�Bn(Bp)
< 1, (6)

being proportional to N∗−1/3 . Here, � = 4/9� 1/3 , kFn(Fp)
−1 means the averaged distance between ionized

donors (acceptors), and aBn(Bp)(rd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 0 K is

defined by

Rsn(sp) N∗, rd(a) ≡
ksn(sp)

kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = a × RsnWS(spWS) + b × RsnTF(spTF) − a × RsnWS(spWS) �−rsn(sp) < 1, (7)

where the empirical parameters: � = 0.075 (1.01) and b= 0 (1.01), respectively, were chosen so that the

relative deviations between NCDn NDp and NCDn CDp
EBT , in absolute values, are minimized, as observed in Table

1. Here, these ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows.

First, for � ≫ NCDn NDp (rd(a)) , according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(spTF) N∗, rd(a) is reduced to

RsnTF(spTF) N∗, rd(a) ≡ ksnTF(spTF)

kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = 4�rsn(sp)

�
≪ 1, (8)

being proportional to N−1/6.

Secondly, for � < NCDn NDp (rd(a)) , according to the Wigner-Seitz (WS)-approximation, the ratio

RsnWS(snWS) is respectively reduced to

Rsn(sp)WS N∗, rd(a) ≡ ksn(sp)WS

kFn
= 3

2�
3

2� − �d �sn(sp)
2 ×�CE N∗,rd(a)

d�sn(sp)
, (9)

where �CE N∗, rd(a) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.

Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
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kFn(Fp)
−1

aBn(Bp)
< ηn(p)

�Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp) < 1, An(p) ≡ �Fno(Fpo)

ηn(p)
, (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) is defined in Eq. (7).

Then, in degenerate d(a)- InAs systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, −q +q , at position r�� , and an ionized donor (ionized

acceptor) charge: +q −q at position Rj��� , randomly distributed throughout the InAs -crystal, is defined by

V(r) ≡ j=1
ℕ vj r + Vo� , (11)

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and vj r is a

screened Coulomb potential energy for each d(a)- InAs system, defined as

vj r ≡− q2×exp (−ksn(sp)× r�� −Rj��� )
ε(rd(a))× r�� −Rj��� ,

where ksn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector k�� -espace is given by

vj k�� =− q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn
2 ,

where Ω is the total InAs -crystal volume.

Then, the effective auto-correlation function for potential fluctuations, Wn(p) νn(p), N∗, rd ≡ V r V(r') , was

determined as [3] :

Wn(p) νn(p), N∗, rd(a) ≡ ηn(p)
2 × exp

−ℋ×Rsn(sp) N∗,rd(a)

2 νn(p)

, ηn(p)(N∗, rd(a)) ≡ 2πN∗

ε(rd(a))
× q2ksn(sp)

−1/2 , νn(p) ≡ −�
�Fno(Fpo)

. (12)

Here, ε(rd(a)) is determined in Eq. (2), Rsn(sp) N∗, rd(a) in Eq. (7), the empirical Heisenberg parameter ℋ =

0.1 (4.72), respectively, will be chosen such that the determination of the density of electrons localized in

the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally νn(p) ≡ −�
�Fno(Fpo)

,

where � is the total electron energy and �Fno(Fpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: � − V a−1
2 ≡ �k

a−1
2 , for a ≥ 1 ,

�k ≡ ℏ2×k2

2×��(�)
∗ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on Wn(p) νn(p), N∗, rd(a) .

4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In heavily doped d(a)- InAs systems, the effective Gaussian distribution probability is defined by

P V ≡ 1
2�Wn(p)

× exp −V2

2Wn(p)
.
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So, in the Kane integration method, the Gaussian average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 KIM ≡ �k

a−1
2

KIM = −∞
� � − V a−1

2� × P V dV, for a ≥ 1.

Then, by variable changes: s = � − V / Wn(p) and x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

,

and using an identity:

0
∞ sa−1

2� × exp ( − xs − s2

2
s2

2 )ds ≡ Γ(� + 1
2
1
2) × exp (x2/4) × D−a−1

2
(x),

where D−a−1
2
(x) is the parabolic cylinder function and Γ(a + 1

2
1
2) is the Gamma function, one thus has:

�k
a−1

2
KIM =

exp (−x2/4)×Wn(p)

2a−1
4

2π
× Γ(a + 1

2
1
2) × D−a−1

2
(x) =

exp (−x2/4)×ηn(p)
a−1

2

2π
× exp − ℋ×Rsn(sp)× 2a−1

8× νn(p)

× Γ(a +

1
2) × D−a−1

2
(x). (13)

B. Feynman path-integral method (FPIM)

Here, the ensemble average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 FPIM ≡ �k

a−1
2

FPIM ≡ ℏa−1
2

23/2× 2�
×

Γ(a+1
2)

Γ(3
2)

× −∞
∞ �t −a−1

2� × exp ��t
ℏ

−
t Wn(p)

2

2ℏ2 dt, i2 =− 1,

noting that as a=1, it −3
2 × exp −

t Wp
2

2ℏ2 is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = ℏ

Wn(p)

ℏ

Wn(p)
and x =− �/ Wn(p), and then using an identity:

−∞
∞ �s −a−1

2� × exp �xs − s2

2
ds ≡ 23/2 × Γ(3/2) × exp ( − x2/4) × D−a−1

2
(x),

one finally obtains: �k
a−1

2
FPIM ≡ �k

a−1
2

KIM, �k
a−1

2
KIM being determined in Eq. (13).

In the following, with use of asymptotic forms for D−a−1
2
(x) , those given for � − V a−1

2 KIM will be

obtained in the two cases: � ≥ 0 and � ≤ 0.

(i) � ≥ �-case

As � →+ ∞, one has: �n →− ∞ and x →− ∞. In this case, one gets:

D−a−1
2
(x →− ∞) ≈ 2�

Γ(a+1
2)

× �
x2
4 × ( − x)a−1

2.

Therefore, Eq. (13) becomes: �k
a−1

2
KIM ≈ �a−1

2 . Further, as � →+ 0, one has: �n(p) →− 0 and x →− ∞. So,

one gets :

D−a−1
2

x →− ∞ ≃ � a × exp ( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2
16a
x2
16a + x3

24 a
x3

24 a → 0, � a = �

2
2�+1

4 Γ(a
2+3

4)]
.
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Thus, as � →+ 0, from Eq. (13), one gets: �k
a−1

2
KIM → 0.

In summary, for � ≥ 0, the expression of �k
a−1

2
KIM can be approximated by:

�k
a−1

2
KIM ≅ �a−1

2, �k ≡ ℏ2×k2

2×m∗ . (14)

(ii) � ≤ � − ����.

As � →− 0, from Eq. (13), one has: �n(p) →+ 0 and x →+ ∞. Thus, one first obtains, for any a ≥ 1,

D−a−1
2
(x → ∞) ≃ β a × exp −( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2

16a
x2

16a − x3

24 a
x3

24 a → 0, β a = π

2
2a+1

4 Γ(a
2+3

4)]
, noting that

β 1 = π

2
3
4×Γ(5/4)

and β 5/2 = π
23/2.

Then, putting f(a) ≡
ηn(p)

a−1
2

2π
× Γ(a + 1

2
1
2
) × β a , Eq. (13) yields

Hn(p) �n(p) →+ 0 , rd(a), a =
�k

a−1
2

KIM

f(a)
= exp −

ℋ×Rsn(sp)× 2a−1

8× νn(p)

− a + 1

16a
3
2

1

16a
3
2

x− 1
4+ 1

16a x2− x3

24 a → 0. (15)

Further, as � →− ∞, one has: �n(p) →+ ∞ and x → ∞. Thus, one gets:

D−a−1
2
(x → ∞ ) ≈ x−a−1

2× �−x2
4 → 0. Therefore, Eq. (13) yields

Kn(p)(�n(p) →+ ∞ , rd(a), a) ≡
�k

a−1
2

KIM

f(a)
≃ 1

� a
× exp ( − (An(p)×�n(p))2

2
) × (An(p) × �n(p))−a−1

2 → 0. (16)

It should be noted that, as � ≤ 0, the ratios (15) and (16) can be taken in an approximate form as:

Fn(p)(�n(p), rd(a), a) = Kn(p)(�n(p), rd(a), a) + Hn(p)(�n(p), rd(a), a) − Kn(p)(�n(p), rd(a), a) × exp  − c1 ×
An(p)�n(p)

c2 , (17)

such that: Fn(p)(�n(p), rd(a), a) → Hn(p)(�n(p), rd(a), a) for 0 ≤ �n ≤ 16 , and Fn(p)(�n(p), rd(a), a) →

Kn(p)(�n(p), rd(a), a) for �n(p) ≥ 16. Here, the constants c1 and c2 may be respectively chosen as: c1 = 10−40

and c2 = 80, as a = 1 , being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NCDn CDp
EBT (N, rd(a)), in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InAs systems at T=0 K, in which mn(p)
∗ /mo = mn(p)/mo = 0.026 (0.41), as given in

Section 2, using Eq. (13), for a=1, the density of states �(�) is defined by:

�(�k) KIM ≡
gc(v)

2�2
2mn(p)

ℏ2

3
2 × �k

1
2

KIM =
gc(v)

2�2
2mn(p)

ℏ2

3
2 ×

exp −x2
4 ×Wn

1
4

2�
× Γ 3

2 × D−3
2

x = �(�), (18)

where x is defined in Eq. (13), as: x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

.
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Here, �Fno is determined in Eq. (A4) of the Appendix A, with mn(p)
∗ /mo = mn(p)/mo and ℋ = 0.1 (4.72),

respectively, being chosen such that the following determination of NCDn CDp
EBT (N, rd(a)) would be accurate.

Going back to the functions: Hn , Kn and Fn , given respectively in Equations (15-17), in which the factor

�k

1
2 KIM

f(a=1) is now replaced by:

�k

1
2

KIM

f(a=1)
= �(�≤0)

�o
= Fn(p) �n(p), rd(a), a = 1 , �o =

gc(v)× mn(p)×mo
3/2× �n(p)

2�2ℏ3 × � a = 1 , � a = 1 = �

2
3
4×Γ(5/4)

.

(19)

Therefore, NCDn CDp
EBT (N, rd(a)) can be defined by

NCDn CDp
EBT (N, rd(a)) = −∞

0 �(� ≤ 0)� d�,

where �(� ≤ 0) is determined in Eq. (19). Then, by a variable change: �n(p) ≡ −�
�Fno(Fpo)

, one obtains:

NCDn CDp
EBT (N, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) + In(p) ,

(20)

where

In(p) ≡ 16
∞

�(a = 1) × Kn(p) �n(p), rd(a), a = 1� d�n(p) = 16
∞ �

− An(p)×�n
2

2 × An(p)�n(p)
−3/2� d�n(p).

Here, �(a = 1) = �

2
3
4×Γ(5/4)

.

Then, by another variable change: t = An(p)�n(p)/ 2
2
, the integral In(p) yields:

In(p) = 1
25/4An(p)

1
25/4An(p)

1
25/4An(p)

× yn(p)

∞ tb−1� e−tdt ≡ Γ(b, yn(p))

25/4×An(p)

Γ(b, yn(p))

25/4×An(p)
,

where b =− 1/4, yn(p) = 16An(p)/ 2
2
, and Γ(b, yn(p)) is the incomplete Gamma function, defined by:

Γ(b, yn(p)) ⋍ yn(p)
b−1× �−yn(p) 1 + j=1

16 b−1 b−2 …(b−j)
yn(p)

j� .

Finally, Eq. (20) now yields:

NCDn CDp
EBT [N = NCDn NDp (rd(a))] =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a =�

1 d�n(p) + Γ(b, �n(p))
25/4×An(p)

, (21)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),

respectively.

The numerical results of NCDn CDp
EBT [N = NCDn NDp (rd(a))] ≡ NCDn CDp

EBT ( rd(a)) , for a simplicity of

presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of NCDn NDp (rd(a)) ,

calculated using Eq. (3), with a precision of the order of 7.4% (11.6%), respectively. In other words, this
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critical d(a)-density NCDn NDp (rd(a))) can thus be explained by the density of electrons(holes) localized in

the EBT, NCDn CDp
EBT ( rd(a)).

So, the effective density of free electrons (holes), N∗, given in the parabolic conduction (valence) band of the

degenerate d(a)- InAs systems, can thus be expressed by:

N∗≡ N − NCDn NDp ≅ N − NCDn CDp
EBT . (22)

Then, if N∗= NCDn NDp , according to the Fermi energy, �Fno(Fpo)(N∗= NCDn NDp ) ≡
ℏ2×kFn(Fp)

2 (N∗)
2×mn(p)

∗ , the value

of the density of electrons(holes), NCDn CDp
EBT , localized in the EBT for � ≤ 0, is almost equal to NCDn NDp ,

given in this parabolic conduction (valence) band, for � ≥ 0. This can thus be expressed as:

NCDn CDp
EBT ≅ NCDn NDp , as N∗≡ NCDn NDp . (23)

5. Optical coefficients
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.02445, as that used in Section 3, for determining the

optical band gap in degenerate InAs-crystals.

The optical properties of any medium can be described by the complex refraction index ℕ and the complex

dielectric function ε , ℕ ≡ n − iκ and ε ≡ ε1 − iε2 , where i2 =− 1 and ε ≡ ℕ2 . Therefore, the real and

imaginary parts of ε denoted by ε1 and ε2 can thus be expressed in terms of the refraction index n and the

extinction coefficient κ as: ε1 ≡ n2 − κ2 and ε2 ≡ 2nκ. One notes that the optical absorption coefficient α is

related to ε2, n, κ, and the optical conductivity σO by [3]

α(E) ≡ ℏq2× v(E) 2

n E ×εfree space×cE
× J(E∗) = E×ε2(E)

ℏcn(E)
E×ε2(E)
ℏcn(E)

E×ε2(E)
ℏcn(E) ≡ 2E×κ(E)

ℏc
2E×κ(E)

ℏc
2E×κ(E)

ℏc ≡ 4πσO(E)
cn(E)×εfree space

4πσO(E)
cn(E)×εfree space

, ε1 ≡ n2 − κ2 and ε2 ≡ 2nκ, (24)

where the effective photon energy: E∗ = E − Egn(gp) is the reduced photon energy, the band gap Egn(gp) can

be equal to the optical band gap Egn1(gp1), the effective intrinsic band gap Egnei(gpei), or to the intrinsic band

gap Egni(gpi) , determined in Eq. (5). Here, E ≡ ℏω , -q, ℏ , v(E) , ω , εfree space , c and J(E∗) respectively

represent: the photon energy, electron charge, Dirac’s constant, matrix elements of the velocity operator

between valence (conduction)-and-conduction (valence) bands in n(p)-type InAs-semiconductors, photon

frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if

the three functions such as: v(E) 2 , J(E∗) and n E are known, then the other optical dispersion functions

given in Eq. (24) can thus be determined. Moreover, the normal-incidence reflectance, R(E) , can be

expressed in terms of κ(E) and n(E) as:

R(E) = [n(E)−1]2+κ(E)2

[n(E)+1]2+κ(E)2. (25)

From Equations (24, 25), if the two optical functions, ε1 and ε2, (or n and κ), are both known, the other ones

defined above can thus be determined.

Then, using a transformation for the joint density of states, J(E∗), given in allowed direct InAs -transitions,

one obtains: at low values of E, Egni(gpi) ≤ E ≤ 1.8 eV, and for � = 6.411
2
,
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Jn(p) E∗ = 1
2π2 × 2mr

ℏ2

3/2
× Egni(gpi)

1−a × (E − Egn(gp))a−(1/2) = 1
2π2 × 2mr

ℏ2

3/2
× Egni(gpi)

−4.411
2 × (E − Egn(gp))

5.411
2 , (26)

and, at large values of E, E ≥ 1.6 eV and for a=5/2,

Jn(p) E∗ = 1
2π2 × 2mr

ℏ2

3/2
× (E−Egn(gp))a−(1/2)

Egni(gpi)
a−1 = 1

2π2 × 2mr
ℏ2

3/2
× (E−Egn(gp))2

Egni(gpi)
3/2 . (27)

Further, one notes that, as E → ∞ , Forouhi and Bloomer (FB) [11] claimed that κ(E → ∞) → a constant,

while the κ(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as

E−3, and consequently, their numerical results of the optical functions such as: σO(E) and α(E), given in Eq.

(24), both go 0 as E−2.

Now, taking into account Equations (26, 27) and also those remarks, an improved Forouhi-Bloomer

parameterization model (IFB-PM), used to determine the accurate expressions of the optical coefficients,

obtained in the degenerate n(p) type InAs -crystals, is proposed as follows.

If, defining the band gap Egn(gp), which can be equal to the optical band gap Egn1(gp1), the effective intrinsic

band gap Egnei(gpei) , or to the intrinsic band gap Egni(gpi) , determined in Equations (1, 5), and defining the

function: f(E)≡ i=1
4 Ai

g(E)−BiE+Ci
� , where g(E)=E2 × 1 + 10−4 × �

6
, we propose:

κ E∗ = f(E) × Egni(gpi)

−1.411
2 × E∗ ≡ E − Egn1(gp1)

5.411
2 , for Egni(gpi) ≤ E ≤ 1.8 eV,

= f(E) × E∗ ≡ E − Egn1(gp1)
2
, for E ≥ 1.8 eV, (28)

being equal to 0 for E∗ = 0 (or for E = Egn1(gp1)), and also going to 0 as E−1 as E → ∞, and further,

n(E) = n∞(rd(a)) + i=1
4 BoiE+Coi

E2−BiE+Ci
� , so (29)

going to a constant, as E → ∞, n(E → ∞, rd(a)) = n∞(rd(a)) = ε(rd(a)) × ωT
ωL
, ωT = 3.5 × 1013 s−1 [5]

and ωL = 8.325618 × 1013 s−1, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L)

represents the transverse (longitudinal) optical phonon mode, so that, in the P-InAs system, in which

Egni(rP) = 0.4229 eV, we obtain: n∞(rP) = 1.62, while, in the FB-PM [11], n∞(FB−PM) = 1.691 and the

band gap Eg(FM−PM) = 0.30 eV < Egni(rP) = 0.4229 eV, as observed in Table 1. Here, Boi(Egnei(gpei)) =

Ai
Qi

× − Bi
2

2
+ Egnei(gpei)Bi − Egnei(gpei)

2 + Ci , Coi(Egnei(gpei)) = Ai
Qi

×
Bi×(Egnei(gpei)

2 +Ci)

2
− 2Egnei(gpei)Ci , Qi =

4Ci−Bi
2

2
, where, for i=(1, 2, 3, and 4), the numerical values of the parameters for the InAs-crystal, are chosen

as: �� = 1.12 ��(��), Bi = Bi(FB), and Ci = Ci(FB). Here, the values of ��(��), Bi(FB), and Ci(FB) are given in

Ref. [11].

The important numerical results of the above optical functions, at T=0K, N = NCDn CDp , and for E = Egni(gi),

are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared

with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of

those numerical results, calculated using the corresponding data, given by Aspnes and Studna [9], suggesting
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that our obtained numerical results of these optical coefficients are found to be more accurate than the

corresponding ones, obtained from the FB-PM, as observed in Table 3c.
Table 2a. At the MIT, T=0K, N=NCDn(p)(rd(a)), and the critical photon energy ECPE = E = Egni(gpi) rd(a) , κMIT(Egni(gpi), rd(a)) = 0,

ε2(MIT)(Egni(gpi), rd(a)) = 0, σO(MIT)(Egni(gpi), rd(a)) = 0 and ∝MIT(E, rd(a)) = 0 , and the other functions such

as : nMIT(Egni(gpi), rd(a)) , ε1(MIT)(Egni(gpi), rd(a)), and RMIT(Egni(gpi), rd(a)) decrease, with increasing rd(a) and Egni(rd(a)).

__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

At the MIT, T=0K, N=NCDn(rd), and the critical photon energy ECPE = E = Egni ra , on has :

Egni(rd) in eV ↗ 0.4299 0.43 0.4302 0.4304 0.4306

nMIT(Egni, rd) ↘ 2.887 2.8705 2.8206 2.7907 2.7561

κMIT(Egni, rd) 0 0 0 0 0

ε1(MIT)(Egni, rd) ↘ 8.3348 8.2399 7.9560 7.8790 7.5963

ε2(MIT)(Egni, rd) 0 0 0 0 0

σO(MIT)(Egni, rd) 0 0 0 0 0

∝MIT(Egni, rd) 0 0 0 0 0

RMIT(Egni, rd) ↘ 0.2357 0.2335 0.2271 0.2231 0.2186

__________________________________________________________________________ ___________________________________________

Acceptor Ge Ga(Al, Mn) Mg In

At the MIT, T=0K, N=NCDp(ra), and the critical photon energy ECPE = E = Egpi ra , on has :

Egpi(ra) in eV ↗ 0.4249 0.4265 0.4298 0.43

nMIT(Egpi, ra) ↘ 2.962 2.9298 2.8734 2.8705

κMIT(Egpi, ra) 0 0 0 0

ε1(MIT)(Egpi, ra) ↘ 8.7732 8.5839 8.2562 8.2399

ε2(MIT)(Egpi, ra) 0 0 0 0

σO(MIT)(Egpi, ra) 0 0 0 0

∝MIT(Egpi, ra) 0 0 0 0

RMIT(Egpi, ra) ↘ 0.2452 0.2411 0.2339 0.2335

__________________________________________________________________________ _____________________________________

Table 2b. In d(a)-InAs systems, the values of the following optical coefficients at the total carrier energy � ≤ 0, as that given in

Section 4, being expressed as functions of rd(a) , and calculated using Equations (31-36, 24), for E∗ = Egni(gpi) rd(a) , present the

exponential tail-states for κEEC−T , ε2
EImD−T , σO

EOC−T , σO
EOC−T , ∝EOAC−T and RNIR−T , and their variations with increasing rd(a) are

represented by the arrows: ↗ and ↘ , suggesting that the obtained results of nERI−T , ε1
EReD−T , and RNIR−T are almost equal to the

corresponding ones given in the above Table 2a.
_______________________________________________________________________________________________________________________

d- InAs systems P As Te Sb Sn

nERI−T(rd) ↘ 2.887 2.8705 2.8206 2.7907 2.7561

κEEC−T(rd) in 10−3 ↗ 7.8415 7.8444 7.8539 7.8605 7.8688

ε1
EReD−T(rd) ↘ 8.3347 8.2398 7.9559 7.7878 7.5962

ε2
EImD−T(rd) ↘ 0.0453 0.0450 0.0443 0.0439 0.0434

σO
EOC−T(rd) in Ω−1cm−1 ↘ 0.2083 0.2073 0.2040 0.2021 0.1999
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∝EOAC−T(rd) in 103 cm−1 ↗ 0.3416 0.3418 0.3424 0.3428 0.3433

RNIR−T(rd) ↘ 0.2357 0.2335 0.2271 0.2231 0.2186

________________________________________________________________________________________________________________

a- InAs systems Ge Ga(Al, Mn) Mg In

nERI−T(ra) ↘ 2.962 2.9298 2.8734 2.8705

κEEC−T(ra) in 10−3 ↗ 7.6278 7.6970 7.8367 7.8444

ε1
EReD−T(ra) ↘ 8.7731 8.5839 8.2561 8.2398

ε2
EImD−T(ra) ↘ 0.0452 0.0451 0.0450 0.04499

σO
EOC−T(ra) in Ω−1cm−1 ↗ 0.2055 0.2059 0.2072 0.2073

∝EOAC−T(ra) in 103 cm−1 ↗ 0.3284 0.3327 0.3413 0.3418

RNIR−T(ra) ↘ 0.2452 0.2411 0.2339 0.2335

________________________________________________________________________________________________________________

Table 2c. Here, the choice of the real refraction index: n(E → ∞, rd(a)) = n∞(rd(a)) = ε(rd(a)) × ωT
ωL
, ωT = 3.5 × 1013 s−1

[5] and ωL = 8.325618 × 1013 s−1 , obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the

transverse (longitudinal) optical phonon mode, giving rise to n∞(rP) = 1.62, and further, that of the asymptotic behavior, given

for the extinction coefficient: κ∞(E → ∞, rd(a)) → 0 , as E−1 , so that σO(E → ∞, rd(a)) and α(E → ∞, rd(a)) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

ε(rd) ↘ 14.8500 14.55 13.6604 13.1399 12.5521

n∞(rd) ↘ 1.62 1.6036 1.5538 1.5239 1.4894

κ∞(rd) 0 0 0 0 0

ε1,∞(rd) = n∞(rd)2 ↘ 2.6244 2.5714 2.4142 2.3222 2.2183

ε2,∞(rd) 0 0 0 0 0

σO,∞(rd) in 105

Ω×cm
↘ 6.5515 6.4849 6.2836 6.1627 6.0233

∝∞(rd) in 109 × cm−1 1.9145 1.9145 1.9145 1.9145 1.9145

R∞(rd) ↘ 0.0560 0.0537 0.0470 0.0431 0.0386
__________________________________________________________________________ ____________________________________________

Acceptor Ge Ga(Al, Mn) Mg In

ε(ra) ↘ 16.2159 15.6192 14.6001 14.55

n∞(ra) ↘ 1.6929 1.6614 1.6063 1.6036

κ∞(ra) 0 0 0 0

ε1,∞(ra) ↘ 2.8658 2.7603 2.5802 2.5713

ε2,∞(ra) 0 0 0 0

σO,∞(ra) in 105

Ω×cm
↘ 6.8461 6.7190 6.4961 6.4849

∝∞(ra) in 109 × cm−1 1.9145 1.9145 1.9145 1.9145

R∞(ra) ↘ 0.0662 0.0618 0.0541 0.0537
__________________________________________________________________________ ____________________________________________
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Table 3a. In the P-InAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Egn(rP) = Egni(rP)[ = 0.4299 eV], and the corresponding ones, obtained from

the FB-model [11], are reported in this Table 3a, in which the relative deviations (RDs) of those are also given and calculated, using

the Aspnes-and-Studna (AS)-data [9]. Here, as repoted in above Table 2c, we obtain here: κ∞(E → ∞, rP) → 0 and ε2,∞(E →

∞, rP) → 0, while, in this Table 3a, κ∞(FB)(E → ∞, rP) = 0.28113 and ε2,∞(FB)(E → ∞, rP) = 0.950782.

________________________________________________________________________________________________________________

E in eV n (RD%) κ (RD%) ε1 (RD%) ε2 (RD%) nFB (RD%) κFB (RD%) ε1(FB) (RD%) ε2(FB) (RD%)

0.429933 2.887 0 �. ���2 = �. ����� 0 2.920013 �. ���� × ��−� 8.826478 �. ��� × ��−�

1.5 3.566 (3.9) 0.260 (39.8) 12.651 (7.0) 1.856 (42.1) 3.579 (3.6) 0.154 (64.4) 12.788 (6.0) 1.099 (65.7)

1.6 3.664 (2.4) 0.374 (19.1) 13.283 (4.3) 2.743 (21.1) 3.673 (3.6) 0.204 (56.0) 13.449 (3.1) 1.496 (57.0)

1.7 3.767 (0.8) 0.530 (7.5) 13.913 (1.9) 3.995 (6.7) 3.772 (0.7) 0.268 (45.6) 14.160 (0.1) 2.021 (46.0)

1.8 3.876 (0.6) 0.741 (39.7) 14.477 (0.5) 5.744 (40.7) 3.876 (0.7) 0.350 (33.9) 14.904 (2.5) 2.714 (33.5)

1.9 3.987 (1.8) 0.430 (24.9) 15.715 (4.7) 3.427 (23.5) 3.982 (1.6) 0.454 (20.5) 15.650 (4.2) 3.620 (19.2)

2 4.096 (2.5) 0.559 (11.8) 16.467 (5.8) 4.583 (9.5) 4.084 (2.2) 0.586 (7.6) 16.338 (5.0) 4.783 (5.5)

2.1 4.195 (4.7) 0.720 (1.2) 17.080 (5.4) 6.044 (3.8) 4.175 (4.2) 0.747 (4.9) 16.875 (4.1) 6.240 (7.2)

2.2 4.273 (1.7) 0.915 (11.3) 17.420 (2.7) 7.817 (13.3) 4.244 (1.1) 0.941 (14.5) 17.129 (1.0) 7.990 (15.7)

2.3 4.315 (0.4) 1.140 (15.0) 17.318 (2.6) 9.836 (14.6) 4.277 (1.2) 1.164 (17.5) 16.938 (4.7) 9.960 (16.1)

2.4 4.306 (3.6) 1.385 (8.0) 16.622 (9.2) 11.933 (4.1) 4.259 (4.6) 1.406 (9.6) 16.159 (11.7) 11.977 (4.5)

2.5 4.235 (2.9) 1.632 (8.6) 15.268 (3.7) 13.829 (11.3) 4.178 (4.2) 1.647 (7.8) 14.750 (7.0) 13.766 (11.7)

2.6 4.100 (2.0) 1.855 (1.6) 13.370 (6.0) 15.214 (0.3) 4.036 (0.4) 1.862 (1.2) 12.826 (1.7) 15.029 (0.9)

2.7 3.915 (0.1) 2.027 (0.6) 11.219 (0.09) 15.876 (0.7) 3.846 (1.7) 2.024 (0.4) 10.691 (4.8) 15.572 (12.3)

2.8 3.705 (2.2) 2.133 (3.4) 9.175 (10.9) 15.809 (1.2) 3.632 (0.2) 2.121 (3.9) 8.695 (5.1) 15.406 (3.8)

2.9 3.498 (4.8) 2.172 (2.0) 7.519 (13.8) 15.197 (6.9) 3.424 (2.6) 2.150 (1.0) 7.103 (7.6) 14.726 (3.6)

3 3.318 (3.8) 2.155 (5.9) 6.366 (4.6) 14.302 (10.0) 3.245 (1.5) 2.125 (4.5) 6.013 (1.1) 13.791 (6.1)

3.1 3.179 (2.3) 2.100 (7.3) 5.692 (2.4) 13.354 (9.8) 3.106 (0.05) 2.064 (5.4) 5.390 (7.5) 12.822 (5.4)

3.2 3.084 (1.1) 2.026 (7.2) 5.403 (5.8) 12.499 (8.3) 3.013 (1.2) 1.984 (4.9) 5.139 (10.4) 11.956 (3.6)

3.3 3.012 (0.4) 1.948 (6.1) 5.397 (5.9) 11.810 6.6) 2.961(1.9) 1.901 (3.5) 5.154 (10.1) 11.260 (1.6)

3.4 3.017 (0.4) 1.875 (4.7) 5.590 (3.9) 11.315 (5.2) 2.947 (1.9) 1.825 (1.9) 5.356 (8.0) 10.755 (0.02)

3.5 3.036 (0.9) 1.815 (3.5) 5.922 (0.9) 11.024 (4.5) 2.965 (1.4) 1.762 (0.5) 5.685 (4.8) 10.449 (0.9)

3.6 3.082 (1.7) 1.775 (2.7) 6.353 (2.5) 10.943 (4.5) 3.010 (0.7) 1.718 (0.6) 6.106 (1.5) 10.343 (1.2)

3.7 3.154 (2.8) 1.758 (2.5) 6.857 (5.8) 11.087 (5.3) 3.078 (0.3) 1.697 (1.0) 6.592 (1.8) 10.449 (0.7)

3.8 3.247 (3.7) 1.769 (2.9) 7.411 (8.4) 11.486 (6.8) 3.167 (1.2) 1.704 (0.8) 7.123 (4.2) 10.796 (0.4)

3.9 3.359 (4.7) 1.816 (4.2) 7.985 (10) 12.197 (9.0) 3.274 (2.0) 1.746 (0.2) 7.670 (5.7) 11.432 (2.2)

4 3.487 (5.3) 1.908 (6.1) 8.520 (10) 13.309 (11.7) 3.396 (2.5) 1.832 (1.8) 8.180 (5.6) 12.441 (4.4)

4.1 3.626 (5.1) 2.063 (8.4) 8.889 (7.4) 14.960 (13.9) 3.528 (2.3) 1.977 (3.9) 8.535 (3.2) 13.949 (6.2)

4.2 3.756 (3.9) 2.304 (9.8) 8.797 (1.5) 17.311 (14) 3.651 (1.0) 2.206 (5.1) 8.463 (2.3) 16.109 (6.2)

4.3 3.833 (1.9) 2.661 (7.4) 7.612 (4.8) 20.405 (9.5) 3.723 (1.0) 2.547 (2.8) 7.378 (7.8) 18.966 (1.7)

4.4 3.759 (3.2) 3.137 (3.1) 4.293 (6.7) 23.584 (6.4) 3.651 (0.2) 3.000 (1.3) 4.313 (7.2) 21.933 (1.1)

4.5 3.403 (6.5) 3.620 (5.1) −1.528 (8.1) 24.637 (11.9) 3.311 (3.7) 3.469 (0.7) −�. ��� (35.6) 22.973 (4.4)

4.6 2.790 (3.1) 3.862 (7.8) −�. ��� (29) 21.550 (11.2) 2.729 (0.9) 3.698 (3.3) −6.230 (13) 20.185 (4.2)

4.7 2.211 (0.3) 3.761 (5.2) −9.257 (16.8) 16.633 (5.5) 2.180 (1.1) 3.592 (0.5) −8.152 (2.9) 15.665 (0.6)

4.8 1.855 (2.9) 3.505 (4.6) −8.843 (11.0) 13.002 (7.6) 1.844 (2.3) 3.336 (0.4) −7.732 (2.9) 12.304 (1.9)

4.9 1.671 (3.9) 3.262 (5.9) −7.849 (13.6) 10.898 (9.9) 1.671 (3.9) 3.096 (0.5) −6.797 (1.6) 10.348 (4.4)

5 1.565 (2.7) 3.073 (7.0) −6.992 (18) 9.617 (9.9) 1.573 (3.2) 2.910 (1.4) −5.998 (1.3) 9.155 (4.6)

5.1 1.489 (0.3) 2.922 (6.9) −6.327 (20) 8.703 (7.3) 1.502 (1.2) 2.764 (1.2) −5.383 (2.2) 8.305 (2.4)

5.2 1.426 (0.7) 2.794 (5.6) −5.774 (16.8) 7.969 (4.8) 1.445 (0.6) 2.638 (0.3) −4.874 (1.4) 7.624 (0.3)

5.3 1.375 (0.6) 2.676 (4.7) −5.270 (12.9) 7.358 (5.4) 1.398 (2.4) 2.523 (1.2) −4.413 (5.4) 7.057 (1.1)

5.4 1.337 (1.9) 2.564 (4.7) −4.788 (11.9) 6.860 (6.8) 1.365 (4.0) 2.416 (1.4) −3.973 (7.1) 6.593 (2.6)

5.5 1.315 (2.5) 2.461 (5.0) −4.328 (12.3) 6.471 (7.7) 1.345 (4.9) 2.315 (1.2) −3.552 (7.7) 6.228 (3.6)

5.6 1.306 (2.3) 2.367 (5.3) −3.898 (13.8) 6.184 (7.8) 1.338 (4.9) 2.225 (1.0) −3.158 (7.7) 5.955 (3.8)

5.7 1.310 (2.9) 2.286 (5.7) −3.509 (16.7) 5.987 (8.9) 1.343 (3.9) 2.146 (0.8) −2.800 (6.8) 5.765 (4.9)

5.8 1.323 (0.7) 2.218 (5.5) −3.169 (19.9) 5.868 (4.7) 1.357 (1.8) 2.080 (1.0) −2.486 (5.9) 5.646 (0.8)
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5.9 1.342 (2.9) 2.165 (3.9) −2.886 (18.7) 5.813 (0.8) 1.377 (0.4) 2.029 (2.6) −2.221 (8.6) 5.587 (3.1)

6 1.365 (4.8) 2.128 (0.7) −2.664 (10.8) 5.808 (4.1) 1.399 (2.4) 1.992 (5.7) −2.010 (16.3) 5.575 (7.9)

…

���� 1.62 0 �. ��� = �. ���� 0 1.691 0.28113 2.780447 0.950782

…

���� 1.62 0 �. ��� = �. ���� 0 1.691 0.28113 2.780447 0.950782

________________________________________________________________________________________________________________

E in eV n (RD%) κ (RD%) ε1 (RD%) ε2 (RD%) nFB (RD%) κFB (RD%) ε1(FB) (RD%) ε2(FB) (RD%)

Table 3b. In the P-InAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Egn(rP) = Egni(rP)[ = 0.4299 eV], and the corresponding ones, obtained from the

FB-model [11], are reported in this Table 3b, in which the relative deviations (RDs) of those are also given and calculated, using the

AS-data [9]. Here, as reported in above Table 2c, we obtain here: ∝∞(E → ∞, rP) = 1.9145 × 109 cm−1, σO,∞(E → ∞, rP) = 6.551465 ×

105 1
Ω×cm

and �∞(E → ∞, rP) = 0.055999, while, in the FB-model, ∝FB → ∞, σO(FB) → ∞ and ���(E → ∞, rP) = 0.076021.

________________________________________________________________________________________________________________

E in eV ∝ 103 × cm−1 ; RD% R; RD% σO
1

Ω×cm
σO(FB)

1
Ω×cm

∝FB 103 × cm−1 ; RD% RFB; RD%

0.429933 0 0.235676 0 0.017185 0.027861 0.239902

1.5 39.566; 39.7 0.318; 5.6 29.807 17.654 23.350; 64.4 0.318; 5.6

1.6 60.708; 19.2 0.330; 3.3 46.982 25.620 33.020; 56.0 0.328; 3.9

1.7 91.343; 7.5 0.345; 0.5 72.693 36.784 46.158; 45.6 0.339; 2.1

1.8 135.14; 39.7 0.363; 2.7 110.66 52.300 63.868; 34.0 0.351; 0.5

1.9 82.737; 24.9 0.363; 0.7 69.690 73.614 87.516; 20.5 0.363; 0.7

2 113.37; 11.7 0.377; 1.8 98.103 102.40 118.69; 7.6 0.376; 1.7

2.1 153.30;1.2 0.390; 2.6 135.85 140.26 159.03; 5.0 0.389; 2.4

2.2 203.93; 11.2 0.403; 2.3 184.06 188.14 209.84; 14.5 0.402; 2.0

2.3 265.67; 15.0 0.416; 1.2 242.15 245.20 271.40; 17.5 0.414; 0.8

2.4 336.99; 8.0 0.427; 1.3 306.53 307.67 342.01; 9.6 0.425; 1.8

2.5 413.65; 8.6 0.437; 3.8 370.03 368.37 417.33; 7.8 0.434; 4.4

2.6 488.81; 1.6 0.443; 0.5 423.38 418.23 490.52; 1.3 0.440; 0.2

2.7 554.73; 0.5 0.446; 0.2 458.79 450.00 553.94; 0.4 0.442; 0.6

2.8 605.36; 3.4 0.445; 0.7 473.78 461.71 601.76; 3.9 0.440; 1.7

2.9 638.35; 2.0 0.439; 2.6 471.70 457.08 631.90; 1.0 0.434; 1.4

3 655.20; 5.9 0.430; 4.4 459.26 442.83 646.06; 4.5 0.424; 2.9

3.1 659.90; 7.3 0.419; 4.7 443.10 425.43 648.34; 5.4 0.412; 2.9

3.2 657.17; 7.1 0.406; 4.5 428.10 409.50 643.48; 4.9 0.399; 2.5

3.3 651.36; 6.0 0.395; 3.7 417.14 397.70 635.79; 3.5 0.386; 1.4

3.4 646.03; 4.7 0.386; 2.9 411.79 391.41 628.72; 1.9 0.376; 0.4

3.5 643.96; 3.5 0.380; 2.4 413.00 391.42 624.99; 0.4 0.370; 0.3

3.6 647.54; 2.7 0.378; 2.1 421.67 398.52 626.84; 0.6 0.367; 0.7

3.7 659.06; 2.4 0.380; 2.7 439.07 413.81 636.47; 1.1 0.369; 0.3

3.8 681.21; 2.9 0.386; 3.3 467.18 439.08 656.39; 0.8 0.375; 0.3

3.9 717.59; 4.1 0.397; 4.0 509.13 477.20 690.03; 0.1 0.386; 0.9

4 773.53; 6.1 0.413; 5.2 569.82 532.66 742.46; 1.8 0.401; 2.0

4.1 857.18; 8.4 0.435; 5.7 656.49 612.15 821.49; 3.8 0.422; 2.6

4.2 980.83; 9.8 0.462; 5.7 778.21 724.17 938.98; 5.1 0.449; 2.7

4.3 1159.7; 7.4 0.496; 3.8 939.11 872.90 1109.8; 2.7 0.483; 1.0

4.4 1398.7; 3.1 0.537; 1.9 1110.7 1032.9 1339.1; 1.3 0.523; 0.6

4.5 1650.9; 5.1 0.581; 2.7 1186.6 1106.5 1581.9; 0.7 0.567; 0.2

4.6 1800.2; 7.8 0.619; 4.3 1061.0 993.85 1724.0; 3.2 0.604; 1.9

4.7 1791.4; 5.2 0.638; 3.5 836.75 788.04 1711.0; 0.5 0.621; 0.7

4.8 1704.8; 4.6 0.640; 2.4 667.99 632.12 1623.0; 0.4 0.616; 0.9
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4.9 1619.7; 5.8 0.624; 3.1 571.58 542.71 1537.6; 0.5 0.600; 0.8

5 1556.9; 6.9 0.609; 4.5 514.68 489.94 1474.8; 1.3 0.583; 0.0

5.1 1510.6; 6.9 0.596; 5.5 475.06 453.34 1428.5; 1.1 0.568; 0.5

5.2 1472.4; 5.5 0.583; 4.9 443.52 424.32 1390.4; 0.3 0.553; 0.5

5.3 1437.2; 4.7 0.570; 3.7 417.41 400.34 1355.4; 1.3 0.538; 2.1

5.4 1403.4; 4.7 0.556; 3.5 396.49 381.06 1321.9; 1.4 0.522; 2.7

5.5 1371.7; 4.9 0.539; 3.5 380.92 366.61 1290.5; 1.2 0.505; 3.1

5.6 1343.4; 5.3 0.522; 4.1 370.64 356.93 1262.6; 1.0 0.486; 3.0

5.7 1320.3; 5.6 0.504; 5.2 365.28 351.72 1239.5; 0.8 0.468; 2.3

5.8 1303.6; 5.5 0.487; 6.1 364.30 350.52 1222.7; 1.0 0.451; 1.8

5.9 1294.5; 3.9 0.472; 5.4 367.10 352.80 1213.1; 2.7 0.436; 2.7

6 1293.7; 0.7 0.460; 2.8 373.01 358.00 1211.2; 5.7 0.424; 5.2

…

���� 1.9145× ��� 0.055999 6.551465× ��� �. ������ × ���� �. ������ × ���� 0.076021

…

���� 1.9145× ��� 0.055999 6.551465× ��� �. ������ × ���� �. ������ × ���� 0.076021

________________________________________________________________________________________________________________

E in eV ∝ 103 × cm−1 ; RD% R; RD% σO
1

Ω×cm
σO(FB)

1
Ω×cm

∝FB 103 × cm−1 ; RD% RFB; RD%

Table 3c. Here, our highest relative deviation (HRD)-values and those of HRD FB, calculated using the (AS)-data [9], are reported,

suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the corresponding ones,

obtained from the FB-PM.
_______________________________________________________________________________________________________________________

HRD n κ ε1 ε2 ∝ R
___________________________________________________________________________________________________________________

E (eV)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.5 39.8% 42.1% 39.7%

4.5 6.5%

4.6 29%

5.8 6.1%

________________________________________________________________________________________________________________________

HRD FB nFB κFB ε1(FB) ε2(FB) ∝FB RFB

____________________________________________________________________________________________________________________

E (eV)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.5 64.4% 65.7% 64.4% 5.6%

4.5 35.6%

5.6 4.9%

_______________________________________________________________________________________________________________________

Some important cases, given in various physical conditions, are considered as follows.
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5.1. Metal-insulator transition (MIT)-case

As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT

are: T=0K, N∗ = 0 or N = NCDn CDp ≅ NCDn CDp
EBT , vanishing the Fermi energy:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)
2×mn(p)

∗ =0. Further, from the discussions given Eq. (5) for the optical band gap:

Egn1 gp1 N∗ = 0, rd a , T = 0 = �gnei(gpei) rd(a) = �gni(gpi) rd(a) , according also to the MIT.

Then, in such the MIT-case, replacing both �gnei(gpei) and Egn1 gp1 , by �gni(gpi), given in Equations (28, 29),

and consequently from Eq. (24), one gets, for the effective photon energy E∗ ≡ E − Egni(gpi) = 0:

κ(E∗, rd(a)) = 0, ε2(E∗, rd(a)) = 0, σO(E∗, rd(a)) = 0 and α(E∗, rd(a)) = 0, corresponding also to the MIT.

ECPE rd(a) ≡ Egni(gpi) rd(a) . Therefore, Equations (28, 29), obtained in the MIT-case, become:

κ E∗ = 0 = f(E) × Egni(gpi)

−1.411
2 × E∗ ≡ E − Egni(gpi) = 0

5.411
2 = 0, for E = ����(��(�)) = Egni(gpi), (30)

where ���� is the critical photon energy, and

n(E = Egni(gpi)) = n∞(rd(a)) + i=1
4 BoiE+Coi

E2−BiE+Ci
� , in which Egnei(gpei) = Egni(gpi). (31)

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients

for � ≤ 0, representing the exponential tail-states, from Eq. (30), by putting: E∗ = Egni(gpi), as:

κEEC−T Egni(gpi) = f(Egni(gpi)) × Egni(gpi)
2 . (32)

Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for � ≤ 0 the expressions, given for

the following exponential tail-states of ε2, σO(E), α, and R as:

ε2
EImD−T Egni(gpi) = 2 × κEEC−T Egni(gpi) × nERI−T(E = Egni(gpi)), (33)

σO
EOC−T Egni(gpi) = εfree space×�gni(gpi)×ε2

EImD−T Egni(gpi)

4πℏ
, (34)

αEOAC−T Egni(gpi) = 2×Egni(gpi)×κEEC−T Egni(gpi)

ℏ×c
, and (35)

RNIR−T Egni(gpi) =
[n Egni(gpi) −1]2+κEEC−T Egni(gpi)

2

[n Egni(gpi) +1]2+κEEC−T Egni(gpi)
2. (36)

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and

reported in the above Table 2b.

5.2. Extrema values of ��(�) as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions ε1(2)(E, rd(a))

in following physical conditions by: T=0K and N = NCDn NDp , and by: T=20K and N = 1019cm−3 ,

respectively, as given in following Tables 4n and 4p, in which the arrows ( ↑ ↓ ) indicates the maximum, and

( ↓ ↑ ) the minimum and the extrema-values of those occur at the same corresponding photon energy E.
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Table 4n. In d-InAs systems, and for two types of physical conditions such as: [T=0K and N = NCDn(rd) ] and [T=20K, N =

1019 cm−3], the extrema values of ε1 E and ε2 E , calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: ↑ or ↓ , suggesting that those extrema occur at the same E.
________________________________________________________________________________________________________________________

E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021

In the P- InAs system, at T=0K and N = NCDn(rP) = 1.2228 x1017 cm−3, Egni rP = 0.4299 eV

�1 � 13.91 14.48 15.71 16.47 ↑ 17.42 ↓ 11.22 ↓ 5.40 ↑ 6.35 ↑ 8.9 ↓ −1.5 ↓ −9.26 ↑ 2.36 2.6244

�2 � 3.99 ↑ 5.74 ↓ 3.43 ↑ 4.58 7.82 ↑ 15.87 ↓ 11.8 10.9 ↑ 14.9 ↑ 24.6 ↓ 16.63 1.06 0

In the As- InAs system, at T=0K and N = NCDn(rAs) = 1.3 x1017 cm−3, Egni rAs = 0.43 eV

�1 � 13.79 14.35 15.58 16.33 ↑ 17.28 ↓ 11.09 ↓ 5.30 ↑ 6.25 ↑ 8.77 ↓ −1.6 ↓ −9.33 ↑ 2.31 2.5714

�2 � 3.99 ↑ 5.74 ↓ 3.43 ↑ 4.58 7.82 ↑ 15.87 ↓ 11.8 10.9 ↑ 14.9 ↑ 24.6 ↓ 16.63 1.06 0

In the Te- InAs system, at T=0K and N = NCDn(rTe) = 1.5709x1017 cm−3, Egni rTe = 0.4302 eV

�1 � 13.41 13.96 15.19 15.92 ↑ 16.85 ↓ 10.70 ↓ 5.00 ↑ 5.95 ↑ 8.41 ↓ −1.97 ↓ −9.54 ↑ 2.16 2.4142

�2 � 3.92 ↑ 5.64 ↓ 3.37 ↑ 4.51 7.69 ↑ 15.60 ↓ 11.55 10.71 ↑ 14.68 ↑ 24.15 ↓ 16.13 1.01 0

In the Sb- InAs system, at T=0K and N = NCDn(rSb) = 1.7651 x1017 cm−3, Egni rSb = 0.4304 eV

�1 � 13.19 13.74 14.95 15.68 ↑ 16.60 ↓ 10.47 ↓ 4.82 ↑ 5.77 ↑ 8.20 ↓ −2.17 ↓ −9.67 ↑ 2.07 2.3222

�2 � 3.88 ↑ 5.59 ↓ 3.34 ↑ 4.47 7.63 ↑ 15.48 ↓ 11.43 10.60 ↑ 14.56 ↑ 23.93 ↓ 15.91 0.99 0

In the Sn- InAs system, at T=0K and N = NCDn(rSn) = 2.0248x1017 cm−3, Egni rSn = 0.4306 eV

�1 � 12.94 13.48 14.68 15.41 ↑ 16.31 ↓ 10.21 ↓ 4.62 ↑ 5.57 ↑ 7.96 ↓ −2.39 ↓ −9.81 ↑ 1.97 2.2183

�2 � 3.85 ↑ 5.54 ↓ 3.31 ↑ 4.43 7.57 ↑ 15.33 ↓ 11.29 10.47 ↑ 14.41 ↑ 23.68 ↓ 15.65 0.97 0

E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021

In the P- InAs system, at T=20K and N = 1019 cm−3, Egn1 rP = 1.051922 eV

�1 � 14.19 15.01 15.88 16.74 ↑ 18.11 ↓ 14.19 ↓ 7.76 ↑ 8.18 ↑ 11.12 ↓ 4.83 ↓ −2.65 ↑ 2.37 2.6244

�2 � 0.64 ↑ 1.12 ↓ 1.14 ↑ 1.67 3.29 ↑ 8.37 ↓ 7.24 7.07 ↑ 10.32 ↑ 17.68 ↓ 12.14 1.04 0

In the As- InAs system, at T=20K and N = 1019 cm−3, Egn1 rAs = 1.05057 eV

�1 � 14.06 14.88 15.75 16.61 ↑ 17.97 ↓ 14.05 ↓ 7.66 ↑ 8.08 ↑ 11.00 ↓ 4.70 ↓ −2.73 ↑ 2.31 2.5714

�2 � 0.65 ↑ 1.12 ↓ 1.14 ↑ 1.67 3.28 ↑ 8.35 ↓ 7.21 7.04 ↑ 10.28 ↑ 17.61 ↓ 12.06 1.03 0

In the Te- InAs system, at T=20K and N = 1019 cm−3, Egn1 rTe = 1.315395eV

�1 � 13.69 14.49 15.35 16.20 ↑ 17.54 ↓ 13.66 ↓ 7.35 ↑ 7.77 ↑ 10.63 ↓ 4.33 ↓ −2.98 ↑ 2.16 2.4142

�2 � 0.65 ↑ 1.12 ↓ 1.14 ↑ 1.66 3.27 ↑ 8.28 ↓ 7.12 6.95 ↑ 10.17 ↑ 17.40 ↓ 11.81 1.00 0

In the Sb- InAs system, at T=20K and N = 1019 cm−3, Egn1 rSb = 1.043185eV

�1 � 13.47 14.26 15.12 15.96 ↑ 17.29 ↓ 13.42 ↓ 7.17 ↑ 7.59 ↑ 10.41 ↓ 4.11 ↓ −3.13 ↑ 2.07 2.3222

�2 � 0.65 ↑ 1.12 ↓ 1.13 ↑ 1.66 3.26 ↑ 8.25 ↓ 7.07 6.90 ↑ 10.10 ↑ 17.27 ↓ 11.67 0.98 0
__________________________________________________________________________________________________________

In the Sn- InAs system, at T=20K and N = 1019 cm−3, Egn1 rSn = 1.039486 eV

�1 � 13.21 14.00 14.85 15.68 ↑ 17.00 ↓ 13.14 ↓ 6.96 ↑ 7.37 ↑ 10.15 ↓ 3.86 ↓ −3.31 ↑ 1.97 2.2183

�2 � 0.66 ↑ 1.13 ↓ 1.13 ↑ 1.66 3.26 ↑ 8.21 ↓ 7.01 6.84 ↑ 10.03 ↑ 17.13 ↓ 11.50 0.96 0
_______________________________________________________________________________________________________
E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021
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Table 4p. In a-InAs systems, and for two types of physical conditions such as: (T=0K and N = NCDp(ra) ) and (T=20K, N =

1019 cm−3), the extrema values of ε1 E and ε2 E , calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: ↑ or ↓ , suggesting that their extrema occur at the same E.
_______________________________________________________________________________________________________________________

E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021

In the Ge- InAs system, at T=0K and N = NCDn(rGe) = 0.9391 x1017 cm−3, Egni rGe = 0.4249 eV

�1 � 14.51 15.08 16.36 17.13 ↑ 18.11 ↓ 11.79 ↓ 5.82 ↑ 6.79 ↑ 9.41 ↓ −1.08 ↓ −9.00 ↑ 2.60 2.865787

�2 � 4.15 ↑ 5.97 ↓ 3.52 ↑ 4.70 8.01 ↑ 16.26 ↓ 12.1 11.2 ↑ 15.3 ↑ 25.2 ↓ 17.2 1.11 0

In the Ga- InAs system, at T=0K and N = NCDp(rGa) = 1.0509 x1017 cm−3, Egpi rGa = 0.4265 eV

�1 � 14.25 14.82 16.09 16.85 ↑ 17.81 ↓ 11.54 ↓ 5.63 ↑ 6.60 ↑ 9.18 ↓ −1.28 ↓ −9.12 ↑ 2.49 2.760344

�2 � 4.10 ↑ 5.88 ↓ 3.48 ↑ 4.65 7.93 ↑ 16.10 ↓ 12.0 11.1 ↑ 15.2 ↑ 25.0 ↓ 17.0 1.08 0

In the Mg- InAs system, at T=0K and � = NCDp rMg = 1.2867 x1017 cm−3, Egpi rMg = 0.4298 ��

�1 � 13.81 14.37 15.61 16.36 ↑ 17.30 ↓ 11.11 ↓ 5.31 ↑ 6.27 ↑ 8.79 ↓ −1.62 ↓ −9.32 ↑ 2.32 2.58023

�2 � 3.98 ↑ 5.72 ↓ 3.41 ↑ 4.57 7.79 ↑ 15.82 ↓ 11.76 10.89 ↑ 14.9 ↑ 24.5 ↓ 16.5 1.05 0

In the In- InAs system, at T=0K and N = NCDp(rIn) = 1.3 x1017 cm−3, Egpi rIn = 0.43 eV

�1 � 13.79 14.35 15.58 16.33 ↑ 17.28 ↓ 11.09 ↓ 5.30 ↑ 6.25 ↑ 8.77 ↓ −1.64 ↓ −9.33 ↑ 2.31 2.571379

�2 � 3.98 ↑ 5.72 ↓ 3.41 ↑ 4.56 7.78 ↑ 15.81 ↓ 11.74 10.88 ↑ 14.89 ↑ 24.5 ↓ 16.51 1.046 0

E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021

In the Ge- InAs system, at T=20K and N = 1019 cm−3, Egn1 rGe = 1.066055 eV

�1 � 14.80 15.64 16.53 17.41 ↑ 18.82 ↓ 14.84 ↓ 8.25 ↑ 8.67 ↑ 11.71 ↓ 5.45 ↓ −2.21 ↑ 2.60 2.865787

�2 � 0.63 ↑ 1.09 ↓ 1.12 ↑ 1.65 3.27 ↑ 8.39 ↓ 7.33 7.16 ↑ 10.43 ↑ 17.9 ↓ 12.4 1.09 0
In the Ga- InAs system, at T=20K and N = 1019 cm−3, Egp1 rGa = 1.06602 eV

�1 � 14.54 15.37 16.26 17.13 ↑ 18.52 ↓ 14.58 ↓ 8.05 ↑ 8.48 ↑ 11.47 ↓ 5.23 ↓ −2.35 ↑ 2.50 2.760344

�2 � 0.62 ↑ 1.08 ↓ 1.11 ↑ 1.64 3.24 ↑ 8.32 ↓ 7.25 7.09 ↑ 10.34 ↑ 17.8 ↓ 12.3 1.07 0

In the Mg- InAs system, at T=20K and N = 1019 cm−3, Egp1 rMg = 1.066044 eV

�1 � 14.09 14.90 15.78 16.63 ↑ 18.00 ↓ 14.12 ↓ 7.72 ↑ 8.13 ↑ 11.06 ↓ 4.84 ↓ −2.59 ↑ 2.32 2.58023

�2 � 0.61 ↑ 1.06 ↓ 1.10 ↑ 1.62 3.20 ↑ 8.20 ↓ 7.12 6.96 ↑ 10.18 ↑ 17.5 ↓ 11.97 1.03 0

In the In- InAs system, at T=20K and N = 1019 cm−3, Egp1 rIn = 1.066047 eV

�1 � 14.06 14.88 15.75 16.61 ↑ 17.98 ↓ 14.10 ↓ 7.70 ↑ 8.12 ↑ 11.04 ↓ 4.82 ↓ −2.60 ↑ 2.31 2.571379

�2 � 0.61 ↑ 1.06 ↓ 1.10 ↑ 1.61 3.19 ↑ 8.19 ↓ 7.12 6.95 ↑ 10.18 ↑ 17.4 ↓ 11.96 1.03 0

E in eV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 1021

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-InAs systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, at E=3.3 eV, for example, and for some (P, Te, Sn)-InAs systems and for some (Ga, In)-

InAs ones, being indicated by the arrows: ↗ and ↘ , as tabulated in following Tables 5n and 5p, in which the

physical condition N > NCDn NDp (or N∗ > 0 ) must be respected, and their variations thus depend on the

ones of the optical band gap, Egn1(gp1) N∗, rd(a) .



325

Table 5n. In (P, Te, Sn)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows, (↘ and ↗ ), since those of the
optical gap Egn1(N∗, rd) increase with increasing N, at T=20 K.

_______________________________________________________________________________________________________________________

N (1018 cm−3) ↗ 4 8.5 15 50

Egn1(N∗, rP) in eV ↗ 0.753034 0.984565 1.256105 2.326306

n (rP)=3.031723

�(�, rP) ↘ 1.5339 1.2677 0.9878 0.2242

�1 �, rP ↗ 6.8385 7.5843 8.2156 9.1411

�2 �, rP ↘ 9.301 7.690 5.989 1.359

��(�, rP) in 102 Ω−1��−1 ↘ 3.285 2.715 2.115 0.480

∝ (�, rP) in 105 ��−1 ↘ 5.130 4.239 3.303 0.750

R (�, rP) ↘ 0.348 0.321 0.296 0.256

________________________________________________________________________________________________________________

Egn1(N∗, rTe) in eV ↗ 0.747945 0.97894 1.24981 2.317624

n (rTe)=2.965452

�(�, rTe) ↘ 1.5400 1.2739 0.9939 0.2282

�1 �, rTe ↗ 6.4222 7.1712 7.8061 8.7418

�2 �, rTe ↘ 9.134 7.555 5.895 1.353

��(�, rTe) in 102 Ω−1��−1 ↘ 3.226 2.668 2.082 0.478

∝ (�, rTe) in 105 ��−1 ↘ 5.150 4.260 3.324 0.763

R (�, rTe) ↘ 0.344 0.316 0.290 0.248

________________________________________________________________________________________________________________

Egn1(N∗, rSn) in eV ↗ 0.74196 0.97246 1.242655 2.307967

n (rSn)=2.901054

�(�, rSn) ↘ 1.5473 1.2810 1.0008 0.2327

�1 �, rSn ↗ 6.0221 6.7752 7.4144 8.3620

�2 �, rSn ↘ 8.977 7.432 5.807 1.350

��(�, rSn) in 102 Ω−1��−1 ↘ 3.171 2.625 2.051 0.477

∝ (�, rSn) in 105 ��−1 ↘ 5.174 4.284 3.347 0.778

R (�, rSn) ↘ 0.341 0.312 0.284 0.240

________________________________________________________________________________________________________________

N (1018 cm−3) 4 8.5 15 50

Table 5p. In (Ga, In)- InAs systems, the numerical results of the following optical coefficients, expressed as functions of N, and

calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows, (↘ or ↗ ) , since those of the
optical gap Egp1(N∗, ra) increase with increasing N.

______________________________________________________________________________________________________________________

N (1018 cm−3) ↗ 15 26 60

Egp1(N∗, rGa) in eV ↗ 1.2720 1.6585 2.6024

n(���)=3.073494

�(�, ���) ↘ 0.972 0.637 0.115
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�1 �, ��� ↗ 8.501 9.040 9.433

�2 �, ��� ↘ 5.978 3.916 0.707

��(�, ���) in 102 Ω−1��−1 ↘ 2.111 1.383 0.250

∝ (�, ���) in 105 ��−1 ↘ 3.252 2.131 0.385

R(�, ���) ↘ 0.299 0.277 0.260

________________________________________________________________________________________________________________

Egp1(N∗, rIn) in eV ↗ 1.2718 1.6577 2.6004

n(���)=3.015268

�(�, ���) ↘ 0.973 0.638 0.116

�1 �, ��� ↗ 8.146 8.685 9.078

�2 �, ��� ↘ 5.866 3.846 0.700

��(�, ���) in 102 Ω−1��−1 ↘ 2.072 1.358 0.246

∝ (�, ���) in 105 ��−1 ↘ 3.253 2.133 0.387

R(�, ���) ↘ 0.293 0.270 0.252

______________________________________________________________________________________________________________________

N (���� ��−�) 15 26 60

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- InAs systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =

1.5 × 1019cm−3 , respectively, as functions of T, at E=3.3 eV, for example, and for some (P, Te, Sn)- InAs

systems and for some (Ga, In)- InAs ones, being indicated by the arrows: ↗ and ↘ , as given in following

Tables 6n and 6p, in which their variations thus depend on the ones of the optical band gap,

Egn1(gp1) N∗, rd(a) .

Table 6n. In (P, Te, Sn)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.3 eV and N = 1.5 × 1019 cm−3 , increase with increasing T, since the optical band

gap Egn1(T, rd) decreases with increasing T.

________________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

Egn1(T, rP) in eV ↘ 1.256105 1.255748 1.2545 1.248111 1.223017 1.187299

n (rP, �) ↗ 3.0317 3.0317 3.0319 3.0325 3.0349 3.0381

�(rP, �) ↗ 0.988 0.9881 0.9893 0.9955 1.0200 1.0554

�1 rP, � ↘ 8.2156 8.2151 8.2135 8.2051 8.1705 8.1163

�2 rP, � ↗ 5.989 5.992 5.999 6.038 6.191 6.413

��(rP, �) in 102 Ω−1��−1 ↗ 2.115 2.116 2.119 2.133 2.187 2.265

∝ (rP, �) in 105 ��−1 ↗ 3.303 3.304 3.308 3.329 3.411 3.529

R(rP, �) ↗ 0.296 0.2962 0.2963 0.2969 0.2991 0.3024

________________________________________________________________________________________________________________

Egn1(T, rTe) in eV ↘ 1.2498 1.2494 1.2482 1.2418 1.2167 1.1810

n (rTe, �) ↗ 2.9654 2.9655 2.9656 2.9663 2.9687 2.9719

�(rTe, �) ↗ 0.994 0.9942 0.9954 1.0016 1.0262 1.0617

�1 rTe, � ↘ 7.8061 7.8056 7.8039 7.7954 7.7599 7.7048

�2 rTe, � ↗ 5.895 5.897 5.904 5.942 6.093 6.310
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��(rTe, �) in 102 Ω−1��−1 ↗ 2.082 2.083 2.085 2.099 2.152 2.229

∝ (rTe, �) in 105 ��−1 ↗ 3.324 3.325 3.329 3.349 3.432 3.550

R(rTe, �) ↗ 0.290 0.2903 0.2904 0.2909 0.2933 0.2967

________________________________________________________________________________________________________________

Egn1(T, rSn) in eV ↘ 1.2426 1.2423 1.2410 1.2347 1.2096 1.1738

n (rSn, �) ↗ 2.9010 2.9011 2.9012 2.9018 2.9043 2.9074

�(rSn, �) ↗ 1.0008 1.0012 1.0024 1.0086 1.0333 1.0689

�1 rSn, � ↘ 7.4144 7.4139 7.4122 7.4035 7.3672 7.3009

�2 rSn, � ↗ 5.807 5.809 5.816 5.854 6.002 6.216

��(rSn, �) in 102 Ω−1��−1 ↗ 2.051 2.052 2.054 2.068 2.120 2.195

∝ (rSn, �) in 105 ��−1 ↗ 3.347 3.348 3.352 3.373 3.455 3.575

R(rSn, �) ↗ 0.2846 0.2846 0.2847 0.2853 0.2878 0.2913

____________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

Table 6p. In (Ga, In)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Equations (31-36, 24), for E=3.3 eV and N = 1.5 × 1019 cm−3 , increase with increasing T, since the optical band

gap �gp1(T, ra) decreases with increasing T.

________________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

Egn1(T, rGa) in eV ↘ 1.2720 1.2717 1.2704 1.2640 1.2389 1.2032

n (rGa, �) ↗ 3.0734 3.0735 3.0736 3.0743 3.0767 3.0798

�(rGa, �) ↗ 0.972 0.9728 0.9740 0.9801 1.0044 1.0396

�1 rGa, � ↘ 8.5007 8.5002 8.4987 8.4906 8.4571 8.4047

�2 rGa, � ↗ 5.978 5.980 5.987 6.026 6.181 6.403

��(rGa, �) in 102 Ω−1��−1 ↗ 2.111 2.112 2.115 2.129 2.183 2.262

∝ (rGa, �) in 105 ��−1 ↗ 3.252 3.253 3.257 3.278 3.359 3.476

R(rGa, �) ↗ 0.299 0.29908 0.29918 0.2997 0.3018 0.3050

________________________________________________________________________________________________________________

Egn1(T, rIn) in eV ↘ 1.2718 1.2714 1.2702 1.2638 1.2387 1.2030

n (rIn, �) ↗ 3.0153 3.01531 3.0154 3.0161 3.0185 3.0217

�(rIn, �) ↗ 0.9727 0.9730 0.9742 0.9804 1.0047 1.0398

�1 rIn, � ↘ 8.1457 8.1452 8.1437 8.1355 8.1019 8.0493

�2 rIn, � ↗ 5.866 5.868 5.875 5.914 6.065 6.284

��(rIn, �) in 102 Ω−1��−1 ↗ 2.072 2.073 2.075 2.089 2.142 2.219

∝ (rIn, �) in 105 ��−1 ↗ 3.253 3.254 3.258 3.278 3.360 3.477

R(rIn, �) ↗ 0.293 0.2934 0.2935 0.2941 0.2963 0.2995

________________________________________________________________________________________________________________

T in K 20 30 50 100 200 300

6. Concluding remarks
In the n(p)-type heavily doped InAs -crystal, by using the same physical model, as that given in Eq. (7),

and same mathematical methods, as those proposed Refs. [1-3], and further, by taking into account the
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corrected values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the

refraction index n and extinction coefficient κ , as the photon energy E( → ∞) , all the numerical results,

obtained in [3], are now revised and performed.

Then, by basing on our following basic expressions, such as:

(i)the effective static dielectric constant, ε(rd(a)), due to the impurity size effect, determined by an effective

Bohr model [1], and given in Eq. (2),

(ii) the critical donor(acceptor)-density, NCDn NDp (rd(a)) , determined from the generalized effective Mott

criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N∗ ≡ N −

NCDn(CDp)(rd(a)) , which gives a physical condition, needed to define the MIT at T=0K, as: N∗ ≡ N −

NCDn(CDp) = 0 or N = NCDn(CDp) , noting that NCDn(CDp) can also be explained as the density of electrons

(holes) localized in the exponential conduction(valence)-band tails (EBT), NCDn CDp
EBT , as that determined in

Eq. (21), with a precision of the order of 11.6%, as observed in Table 1,

(iii) the Fermi energy, EFn(Fp)(N∗, T) , determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 × 10−4 [3], and finally,

(iv) the refraction index n and the extinction coefficient κ, determined in Equations (28, 29), verifying their

correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their

numerical results, given in different physical conditions, have been obtained and discussed in above Tables

2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), 5n(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3c, our numerical

results for those optical coefficients are found to be more accurate than the corresponding ones, calculated

from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(a) EFno(Fpo)(N∗ = 0, T = 0) = 0 , determined by Eq. (A4) of the Appendix A, since it is proportional to

N∗ 2/3,

(b) as discussed in Eq. (5), in the MIT, in which Egn1 gp1 N∗ = 0, rd a , T = 0 = Egni gpi rd a ,

where Egn1 gp1 and Egni Fgpi are the optical band gap and intrinsic band gap, respectively, and

c) as discussed in Section 5.1, as E = ECPE rd(a) ≡ Egni(gpi) rd(a) or the effective photon energy E∗ ≡ E −

Egni(gpi) rd(a) = 0, one has: κ(E∗ = 0, rd(a)) = 0, ε2(E∗ = 0, rd(a)) = 0, σO(E∗ = 0, rd(a)) = 0 and α(E∗ =

0, rd(a)) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in [3], are now revised and performed in the present work.
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Appendix

Appendix A. Fermi Energy and generalized Einstein relation
A1. In the n(p)-type InAs-crystals, the Fermi energy �Fn(Fp) ≡ �fn − �c �Fp ≡ �v − �fp , �c(v) being

the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated

in our previous paper, with a precision of the order of 2.11 × 10−4 [3], is now summarized in the following.

In this work, N is replaced by the effective density N∗ , N∗ ≡ N − NCDn(CDp)(rd(a)) , NCDn(CDp)(rd(a)) being

the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in

Table 1, meaning that N∗ = 0 at this transition.

First, we define the reduced electron density by:

u N∗, T ≡ N∗=N−NCDn(CDp)(rd(a))
Nc(v)(�)

, Nc(v)(T) = 2 × gc(v) × mn(p)
∗ ×kBT

2πℏ2

3
2 (cm−3), (A1)

where Nc(v)(T) is the conduction (valence)-band density of states, the values of gc(v) = 1(1), and mn(p)
∗ /mo,

defined in Section 2, can be equal to : mn(p)/mo = 0.026 (0.41) , and to mr/mo = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

= 0.02445 . In

particular, here, as used in Section 3 for determining the optical band gap in degenerate InAs-crystals,

mn(p)
∗ /mo= mr/mo = 0.02445 was chosen.

Then, the reduced Fermi energy in the n(p)-type InAs crystals is determined by :
EFn(Fp)(u)

kBT
= G u +AuBF(u)

1+AuB = θn(u) ≡ V(u)
W(u)

, A = 0.0005372 and B = 4.82842262, (A2)

where F N∗, T = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, obtained for u ≫ 1, according to the degenerate cas,

a = (3 π/4) 2/3 , b = 1
8

π
a

2
, c = 62.3739855

1920
π
a

4
, and then G u ≃ Ln u + 2−3

2 × u × e−du for u ≪

1, according to the non − degenerate case, with: d = 23/2 1
27
1
27

− 3
16
3
16 > 0.

So, in the degenerate case (u ≫ 1), one has:

EFn(Fp)(N∗, T) = EFno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A3)

Then, at T=0K, since u−1 = 0, Eq. (A.3) is reduced to:

EFno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mr
, (A4)

being proportional to N∗ 2/3, and equal to 0, EFno(Fpo)(N∗ = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type InAs-crystals, we define the effective reduced Wigner-Seitz radius rsn(sp),

characteristic of the interactions, by:

rsn(sp) N∗, rd(a) ≡ 3gc(v)

4πN∗

1/3
× 1

aBn(Bp)(rd(a))
= 1.1723 × 108 × gc(v)

N∗

1/3
×

mn(p)
∗ /mo

ε(rd(a))
. (B1)



330

In particular, in the following, mn(p)
∗ /mo = mr/mo = 0.02445, is taken to culculate the band gap narrowing

(BGN), as used in Section 3. Therefore, the correlation energy of an effective electron gas, �CE rsn(sp) , is

found to be given by [1]:

�CE rsn(sp) ≡ �CE N∗, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

Δ�gn(N∗, rd) ≃ a1 × εo
ε(rd)

εo
ε(rd) × Nr

1/3 + a2 × εo
ε(rd)

εo
ε(rd)

εo
ε(rd) × Nr

1
3 × 2.503 × [ − �CE rsn × rsn] + a3 × εo

ε(rd)

5/4
× mp

mr
×

Nr
1/4 + a4 × εo

ε(rd) × Nr
1/2 × 2 + a5 × εo

ε(rd)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDn(rd)

9.999×1017��−3, (B3)

and

Δ�gp(N∗, ra) ≃ a1 × εo
ε(ra)

εo
ε(ra) × Nr

1/3 + a2 × εo
ε(ra)

εo
ε(ra)

εo
ε(ra) × Nr

1
3 × 2.503 × [ − �CE rsp × rsp] + a3 × εo

ε(ra)

5/4
× mn

mr
×

Nr
1/4 + 2a4 × εo

ε(ra)
× Nr

1/2 + a5 × εo
ε(ra)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDp(ra)

9.999×1017 cm−3 , (B4)

Here, εo = 14.55, a1 = 3.80 × 10−3(eV) , a2 = 6.5 × 10−4(eV) , a3 = 2.85 × 10−3(eV) , a4 = 5.597 ×

10−3(eV) and a5 = 8.1 × 10−4(eV).

Therefore, in Equations (B3, B4), at T=0 K and N∗ = 0 , and for any rd(a) , Δ�gn(gp)(N∗ = 0, rd(a)) = 0 ,

according to the metal-insulator transition (MIT).
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