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Abstract

As given in Eq. (2) and Table 1, our analytical expression for the static dielectric constant, s(rd(a)), given in
the n(p)-type InAs crystal, expressed as a function of the donor (acceptor) radius, ryc), and determined from
an effective Bohr model, decreases with increasing Fyc,). It strongly affects the critical d(a)-density in the
metal-insulator transition (MIT) at the temperature T (=0K), Ncpn(cpp) (Fd(a)), determined in Eq. (3), and all
the expressions for optical coefficients, determined in Equations (24, 25, 28, 29) for the n(p)-type heavily
(lightly) doped InAs semiconductors at any T.

In particular, in the P-InAs system at T=0K, Table 3c shows that our obtained results for those optical
coefficients are found to be more accurate than the corresponding ones, obtained from the FB-PM [11],
suggesting that the present model, used here to study the optical properties of the n(p)-type heavily (lightly)
doped InSb -crystal at any T, could be a good improved FB-PM.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy
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1. Introduction

Our new expression for the extrinsic static dielectric constant, s(rd(a)), Fdca) being the donor (acceptor) d(a)-
radius, was determined by using an effective Bohr model, suggesting that, with an increasing ryc,), due thus
to such the impurity size effect, 8(rd(a)) decreases, affecting strongly: the critical impurity density in the
metal-insulator transition [1], and also optical properties, defined in heavily doped semiconductors [2, 3].

In the following Sections 2-5 [4, 11], in the n(p)-type heavily doped InAs-crystals, our numerical results of
the optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-
Bloomer parameterization model (IFB-PM), are presented, and also compared with the corresponding
experimental-and-theoretical ones [9, 11], suggesting that our present model is found to be a good IFB-PM,

as that observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given
in the n(p)-type InAs -crystal, such as: (i) if denoting the free electron mass by m,, the effective electron

(hole) mass, my,,)/M,, which is respectively equal to the relative effective mass, Mppy/mMg = 0.026 (0.41)

[5], as used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

(MIT), and (ii) to the reduced effective mas, m./my, = mmg = 0.02445, as used in Sections 3 and 5 to

mp+m
determine the optical band gap and the optical coefficients given in the n(p)-type heavily doped InAs-
crystals. Further, Eqo= Egnas= Egas= Eqin =0.43€V  [2, 5] is the unperturbed intrinsic band gap,
Enas— €in = €as = & — 14.55 is the relative static intrinsic dielectric constant of the InAs-crystal, and
finally, the effective averaged numbers of equivalent conduction (valence)-band edge, gervy = 1(1).
Table 1. For increasing r'qc), while £(ry(a)) decreases, the functions: gni(gpi)(rd(a)), Neon(nop) (Fagay) @and NEB-II;(CDp)(rd(a))
increase. The maximal relative deviations between the numerical results of Nepnnop) (Facy) and NEEE(CDP)(rd(a)), in absolute
values, calculated using Equations (3, 21), are found to be equal to: 7.4% (11.6)%, respectively, suggesting that Ncpnnop) (Fa(a))
can be explained by N&g1(ry), being localized in the EBT. So, in the n(p)-type InAs, in which (My(5)/m,) = 0.026 (0.41) [5],
all the numerical results for the energy-band-structure parameters and Nepn(cpp) (Fuca))» being expressed as functions of

l4()-radius, are obtained, by using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Te Sb Sn

rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rq) 14.8500 14.55 13.6604 13.1399 12.5521
Eq(rg) in meV 1.6035 1.6703 1.8949 2.0480 2.2443
Egni(rg) in eV 0.4299 0.43 0.4302 0.4304 0.4306
Ncon(rg) in 1017 cm™3 1.2228 1.3000 1.5709 1.7651 2.0248
NEBT(r,) in 1017 cm™3 1.3063 1.3646 1.5625 1.6987 1.8749
IRD| 6.8% 4.9% 0.5% 3.7% 7.4%
Ren < 1, from Eq. (7), 0.0157 0.0155 0.0147 0.0142 0.0136
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Acceptor Ge Ga(Al, Mn) Mg In

r) (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 16.2159 15.6192 14.6001 14.55
Ea(ra) in mev 21.205 22.856 26.158 26.34
Egpi(ra) ineV 0.4249 0.4265 0.4298 0.43
Nepp(ra) in 107 cm™3 0.9391 1.0509 1.2867 1.3000
NEpp(ra) in 1017 cm™3 1.0485 1.0882 1.1618 1.1656
IRD| 11.6% 3.5% 9.7% 10.3%
Rsp < 1, from Eq. (7), 0.732 0.730 0.726 0.7259

We now determine our expression for extrinsic static dielectric constant, s(rd(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)-InAs]-systems, since Iqc), given in tetrahedral covalent bonds, is usually either larger or
smaller than rasgny = 0.118 (0.144 ), alocal mechanical strain (or deformation potential energy) is
induced, according to a compression (dilation) for: Iqcay > rasany (Faca) < Fasqn)), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc,)-effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'q(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicgni)(Fa@) ~ Ego = Ea@) (o) — Edo(ao) = Ediogao) * [(s«:?a))) - 1]’ (1)
13600 meVx /
where Egogaoy = —oo ™ eg(m“@ Mo) — 16703 meV (26.34 meV), and
e(rgea))= :0 = <&, for Taa) = Fasan),
a@ \°_ 1] 0@
\/l+[(rAs(ln)) l] Ir‘("As(ln))

I
_ < rd(a) ) 1 ><In( "d(a) )3 As(In)
TAs(In) TAs(In)

In particular, in the B-InAs system, in which

0 r 3 ld(a) 8
&(ra)= j 32 =&, [(rA(:ETr:)) - 1] x In<£) < 1, for ry(a) = fasn)- ()
1

rg=0.088

—————=0.61 1, this condition is not satisfied, since
rn=0.144

3 3
[(LB) - 1] X In(rrlir‘]) = 1.140245 > 1. Therefore, as observed in Table 1, this B-InSb system was absent.

fIn
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2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate InAs-crystals, the critical donor(acceptor)-density, Ncpnnpp)(Fde)) » 1s
determined from the generalized effective Mott criterion in the MIT, as:
1
Neonvop) (Fdca)) 73 @sneep) (Fdcay) = Y (3)

and the effective Bohr radius agn(gp)(Fdca)) is given by:

x 2
€(rdca)) ~=053x 10-8 cm x €(rdca)) ]
Mnpy>a (My(py/Mo)

C))

asnp) (Fd(a)) = "

where —q is the electron charge, €(ry(a)) is determined in Eq. (2), in which My, /my = Mppy/mg =
0.026 (0.41). Here, instead of = 0.25, we have chosen, in this work, y=1.5025 (0.09528001) so that

we obtain: NCDn(NDp)(rAS(m)) =1.3x 10" -3

. Then, from Eq. (3), the numerical results of
Nconnop) (Fda)) are obtained and given in the above Table 1, in which we also report those of the densities
of electrons (holes), being localized in exponential conduction (valance)-band (EBT) tails, NEBE(CDp)(rd(a)),
obtained using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations
(RD), in absolute values, between Nepnpp) (Facay) and Nephcop) (Facay) are found to be equal to: 7.4%
(11.6%), respectively. Thus, the numerical results of Ncpnnop)(Faca)) are obtained, using Eq. (3), can
be explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)
tails, Nepn(cop) (Td@a). being determined from Eq. (21).

In summary, Table 1 also indicates that, for an increasing r'ye), €(Fy(a)) decreases, while Egni(gpi)(rd(a)),
Neonvop () and Npneop) (Facay) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, mMpy/mM, is chosen as: My /My =m,/m, =0.02445 , and then, if denoting N =N -
Nconop) (Fda)) > the optical band gap (OBG) is found to be given by:
Egnigon)(N  Faca), T) = Egnaggp2) (N Td@@): T) + Eney (N, T, )
where the Fermi energy Egnpy)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

Egn2(gp2y(N + Tacay: T) = Egneicgpei (Facay T) — AEgngny(N + Fdca))-

Here, the effective intrinsic band gap  gnei(gpei) 1S determined by:

1
_ 2 2.20172.201
Egnei(gpei)(rd(a)n T) = Egni(gpi)(rd(a)) — 0109 x [1 + (440.0613 ) ]
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and the band gap narrowing, AEgn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, in the As(In)-InAs crystals, one has:
Egnei(Fasqny, T = 300 K)=0.36 eV.

Then, as noted in the Appendix A and B, at T=0K, as N =0, one has: Epyep)(N , T) = Epno(rpoy(N ) =
0,as givenin Eq. (A4), and AEgn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, Egn1(gp1) = Egn2gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also

to the MIT.

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate InAs, if denoting the Fermi wave number by: Kenep)(N) = (3 2N/gc(\,))l 3,

the effective reduced Wigner-Seitz radius I'sy(spy, characteristic of the interactions, is defined by

_ Keneep)
X Tonp)(N s oy M) == > < 1, (6)
being proportional to N e Here, = (4/9 )3, kEnl(Fch) means the averaged distance between ionized

donors (acceptors), and agngp)(I'dca)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

-1
— Kksnsp) _ Kengp) _ -
Rsn(sp)(N ,rd(a)) ir— ey a % Rgqws(spws) + [b X Rsntr(spTr) — @ % RanS(spWS)] fsnsp) < 1, @)

where the empirical parameters: = 0.075 (1.01) and b= 0 (1.01), respectively, were chosen so that the
relative deviations between Ncpnnpp) and NEBI(CDP), in absolute values, are minimized, as observed in Table
1. Here, these ratios, Rsnr(sptry @Nd Rsnws(spws), can be determined as follows.

First, for Nconnop) (Fdqa)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

KsnTF(spTF) Kentep) 2 Tsntn)
R N,r = == = 1 8
snTF(SPTF)( d(a)) Ken(Fp) KsnTe(spTF) ’ ;

—1/6

being proportional to N
Secondly, for < Ncpnnpp)(Faca)) > according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

= Kncows 9] Snespy* ce (N ra@)]
Rsnspyws(N  Faay) = % = (21 — ey ol o)) o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.

Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
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Ken(ep) Nn(p) 1 Ken(Ep) Fno(Fpo)
< = < P =p <1. A = _opo) 10
aBn(Bp) Fro(po)  An(m)  Ksn(sp) sn(sp) > (e Mn) (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,
Rsn(sp) 18 defined in Eq. (7).
Then, in degenerate d(a)- InAs systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the InAs -crystal, is defined by
V(N = (D) + Vo, (11)
where s the total number of ionized donors(acceptors), V,, is a constant potential energy, and v;(r) is a

screened Coulomb potential energy for each d(a)- InAs system, defined as

g2xexp (—Ksn(sp) <|r—Rj])
&(rd(a))<|r—Rj|

vi(r) == ,

where Kgn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2
_ q 4n 1
vi(k) =— X —X——
J( ) s(rd(a)) Q k2+k§n’

where Q is the total InAs -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wy (vn(p), N, rg) = (V(NV(r)), was

determined as [3] :

x .
e(r
2 |Vn(p)| (d(a)) Fno(Fpo)

_ — xR (N ra@y) _ V2N —-1/2 _  —
Wio) (Vney N Ta)) = Ny > exp <—s"(sp) = ) Nny(N | Fagy) = Ken(spy- Vn(p) = (12)

Here, €(rq(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

0.1 (4.72), respectively, will be chosen such that the determination of the density of electrons localized in

the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally V() = .
Fno(Fpo,

where s the total electron energy and  gno(rpo) 1s the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2><k2
k = 2X

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
(@)

two following integration methods, as developed in II, which strongly depend on W) (Vagy, N Facay)-
4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)

In heavily doped d(a)- InAs systems, the effective Gaussian distribution probability is defined by

1 -2
o =t xoo ||
M 2 Wn(p) XP 2Whn(p)
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1 -1
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = z 2 is defined by

( =V D =( & Daw= _o( =¥ 2xPW)dV, for a=1.

*Rsn(s
Then, by variable changes: s = ( —V)/ Wy and X ==/ /W) = Anp) X n(p) X EXP —=06B)

4% ||[Vnp)|
and using an identity:

o S xexp (—xs—L)ds =T( +1) x exp (x2/4) Do 100,

where D__ 1 (x) is the parabolic cylinder function and (a + %) is the Gamma function, one thus has:
2

2a—1 1

a— exp (—x2/4)=xw,_4 exp (—x2/4)><r]:_i xRan(sp) X (2a—1)

( k 2>KIM Nem ©) x r(a+ 1) x D _E(X) = Noo ©) x exp - D) x r(a+
2 8% | [Vn(p)|
D xD___1(x). (13)
2
B. Feynman path-integral method (FPIM)
1 -1
Here, the ensemble average of ( —V)* 2= Z 2 is defined by

£ 2
_\pa—t _ a—3 _ 2 M(a+3) 0 _al t (4 Wag) 5 _
(C =) 2 = deriv = o755 < ) X (D 2xexp —=z —(dt 1" =-1,

is found to be proportional to the averaged Feynman propagator

noting that as a=1, (it)_g x eXp{ g \/_) }

given the dense donors(acceptors).

_°°00( s)‘a‘% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wp(p), and then using an identity:

-1 -1 -1
one finally obtains: i Derm = Dkams € i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.
(i) _= -case
As -+ 0o onehas: 5 -—o0andX -— oo, In this case, one gets:

V2o
r(a+3)

2
_a_l(x »>—00) = x Tx (- x)a_%.

-1
Therefore, Eq. (13) becomes: ( z v = a_%. Further, as -+ 0, one has: @y -— 0 and X -—o0. So,

one gets :

D_, 1(X =) (a)xexp((f a +1yx—i2 f) 0, @=o=—r

16a2 27 r@+d)
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_1
Thus,as -+ 0, from Eq. (13), one gets: ( z “am — 0.

-1
In summary, for __= 0, the expression of ( Z “)xim can be approximated by:

-5 a—l _ 2><|(2
( « M 2, K E (14)
Gi) = -
As =0, from Eq. (13), one has: ) -+ 0and X -+ oo, Thus, one first obtains, forany a = 1,
D_,_1(x » o) P(a)xexp|—(vVa + )x—16a W -0, B(a) = % noting that
2 162 24 1@+
B(1) = and B(5/2) = 23 ,2
24><r(5/4)
i

Then, putting f(a) = nn_\/;_;:[) x(a+ %) x B(a), Eq. (13) yields

(¢ Dxm R x(2a-1)
Hogy( npy =+ 0, Tagay. ) = @ Xp l_#\i()'_ (\/5 'ng) () JV - 0. (15)

n(p al

Further,as - — oo, one has: ) -+ © and X - oo. Thus, one gets:

»%

D_1(x = o0) = x"¥7x & ., 0. Therefore, Eq. (13) yields

al
( x Pxam

_ (An
Kn)( np) =+ % T4, @) = & ® x exp (— —&)

%p))z) X (Aney % np) 2= 0. (16)

It should be noted that, as < 0, the ratios (15) and (16) can be taken in an approximate form as:

Fe)( ne): P @) = Kne)( nep) Fa(ay @) + [Hne)( neey: Facay @) = Knge)( n(p: Facay @)] < exp [=

Ay ). (17)
such that: Fnoy( nep) Mdga): @ ~ Hnp)( nepy: Tday@) for 0= =16 , and Fnpy( nep) Mdea) @) -
Kn)( nep): Mdcay, @) for n¢py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and ¢, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(ay), in the following.

C. Critical impurity density in the MIT
In degenerate d(a)- InAs systems at T=0 K, in which My y/my = Mppy/m, = 0.026 (0.41), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

1

3 3 2 I
2 > exp (‘%)XW4

c(v) (2Mn c(v) (2Mn n
C O =22 (022 s ( 2y, = 20 (M7 o PP oy o D500 = (), (18)
where x is defined in Eq. (13), as: X == /,/Wnp) = An) X n(p) X EXP %
> J V)
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Here, pno is determined in Eq. (A4) of the Appendix A, with my;,/Mg = My)/My and = 0.1 (4.72),

n(p

respectively, being chosen such that the following determination of NEBE(CDP)(N, I'd(a)) Would be accurate.

Going back to the functions: H,,, K, and F,,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:

1
( Bxam 32

<0 Fe() X (Mngp) XMo) ™" /"n(p)

— == F (e Fa@@=1), o= xR 2x (@=1)., @=1)=51—
f(a=1) 0 2 24xT(5/4)
(19)

Therefore, NEBI(CDP)(N, I'da)) can be defined by
0
Neoneopy(N: fa@) = o ( =0)d ,
where (= 0) is determined in Eq. (19). Then, by a variable change: () = . one obtains:
Fno(Fpo,
3/2

EBT _ 9e)*(Mn())” "/ n@)> Fno(Fpo) 16 _ _

Nconeop) (N Fa@) = 523 x { o @=1)xFyp)( ney Fa@ya=1)d np) + In(p)}a
(20)
where
(o )’
_ow _ _ o T N) -3/2

e = 15 @=1) XK ( nyTa@ @ =1)d 0y = 16 2 (A nw) 9 n)-
Here, (a=1)=— v :

24x1(5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/E] , the integral () yields:

—1 ,— (0, Yn(p))
I — 1 x tt—letdt = n(p) ,
n(p) ~ F7ap o Ve o)

2
where b =— 174, ynqy = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

- 16 (b-1)(b-2)..(b-])
FO.Ya) Y= " [“ = ]

Finally, Eq. (20) now yields:

EBT _ _ gew*(mn) ™ T@* Froeo) 6, _ _
Ncon(eop) [N = Neonnop) (Fa@y)] = 523 x { o (@=1)xFyp)( nepy Faaya=
r, np)
1) d n(p) + 25/4"Ar(12)}’ 21)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBE(CDP)[N = Nconnop) (Fdqa))] = NEBE(CDF,)( ld@) > for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp)(Fd(a)) »

calculated using Eq. (3), with a precision of the order of 7.4% (11.6%), respectively. In other words, this
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critical d(a)-density Ncpnop) (Fdca))) can thus be explained by the density of electrons(holes) localized in
the EBT, NEB-rI;(CDp)( rd(a)).

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- InAs systems, can thus be expressed by:

N =N—Nepnnopy N = N&pheop)- (22)

2xkEncepy (N )

, the value
2>Mn(p)

Then, if N = N¢pn(npp), according to the Fermi energy,  rnocrpoy(N = Neonnop)) =

of the density of electrons(holes), NEBI(CDIO), localized in the EBT for <0, is almost equal to Ncpn(Npp)»
given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

N(EZBE(CDp) Neonnop) @ N = Nepnnop)- (23)

5. Optical coefficients

Here, My /Mg is chosen as: My ;) /My = m/m, = 0.02445, as that used in Section 3, for determining the

n(p n(p

optical band gap in degenerate InAs-crystals.

The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n—ik and € =&, —ig,, where i =—1 and €= 2. Therefore, the real and
imaginary parts of € denoted by €; and €, can thus be expressed in terms of the refraction index n and the
extinction coefficient K as: & = n? — K? and £, = 2nk. One notes that the optical absorption coefficient a is

related to €, n, K, and the optical conductivity Gg by [3]

N(E)%&free space XCE

a(E) = xJE )= Exep(E) — 2ExK(E) — _  4mop(E) €, =n?—K2and &, = 2K, (24)

en(E) ¢ cn(E)¥efree space

where the effective photon energy: E = E — Egp(gp) is the reduced photon energy, the band gap Egn(gpy can
be equal to the optical band gap Egn1(gp1y, the effective intrinsic band gap Egnei(gpeiy» or to the intrinsic band
gap Egni(gpi)» determined in Eq. (5). Here, E= , -q, , [V(E)|, W, Efreespace> C and J(E ) respectively
represent: the photon energy, electron charge, Dirac’s constant, matrix elements of the velocity operator
between valence (conduction)-and-conduction (valence) bands in n(p)-type InAs-semiconductors, photon
frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if
the three functions such as: [V(E)|2, J(E ) and n(E) are known, then the other optical dispersion functions
given in Eq. (24) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be

expressed in terms of K(E) and n(E) as:

[n(E)—1]2+K(E)?

RE) = rerror

(25)

From Equations (24, 25), if the two optical functions, €; and €, (or n and K), are both known, the other ones
defined above can thus be determined.

Then, using a transformation for the joint density of states, J(E ), given in allowed direct InAs -transitions,

one obtains: at low values of E, Egnj(gpiy = E = 1.8 €V, and for = —6";11,
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—4.411
2my

_ 1 82 a1 sy 1 2mr\3/2 5411
Iy (E) =55% (_2) * Egnicgoiy X (E = Egngp))™ 2 = 55 % (_2r) % Eqgnitapiy < (E ~Egneem)) 2 . (26)

and, at large values of E, E = 1.6 eV and for a=5/2,

Iy (E ) = 2—1112 x (2—?)3/2 x —(E_EQEEEZZ: ik 2—]112 x (2—?)3/2 x —(E;el,z/g; (g?))—z. (27)
nigp! gni(gpi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E — o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o (E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, taking into account Equations (26, 27) and also those remarks, an improved Forouhi-Bloomer
parameterization model (IFB-PM), used to determine the accurate expressions of the optical coefficients,
obtained in the degenerate n(p) type InAs -crystals, is proposed as follows.

If, defining the band gap Egn(gpy, Which can be equal to the optical band gap Egnq(gp1), the effective intrinsic
band gap Egnei(gpeiy» or to the intrinsic band gap Egpi(gpiy, determined in Equations (1, 5), and defining the

4 Ai

function: f(E)= i=13(E)—B,E+Cy

where g(E)=E? x (1 + 1074 x E)’ we propose:

—-1411 m
KE ) =f(E) X E iy < (E = E—Egniggpn)) 2 » for Egnicgpi) < E < 1.8eV,
=f(E) x (E = E— Egugpy)) - for E=18eV, (28)
being equal to 0 for E = 0 (or for E = Egny(gp1)), and also going to 0 as E™1 asE - oo, and further,
— 4 BoiE+Coi
N(E) = Nw(fa@) * =172 perc 80 (29)

going to a constant, as E » 0, N(E - 0, Iya)) = Neo(Fg(a)) = /€(raca)) X 2—1, wr =35x108s71 [5]

and w, = 8.325618 x 103 572, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L)
represents the transverse (longitudinal) optical phonon mode, so that, in the P-InAs system, in which
Egni(rp) = 0.4229 eV, we obtain: N, (rp) = 1.62, while, in the FB-PM [11], Noo(rg—pmy = 1.691 and the
band gap Eqrm—pmy = 0.30 8V < Egpi(rp) = 0.4229 eV, as observed in Table 1. Here, Byi(Egnei(gpei)) =

Ai Biz Ai BiX(Eznei ei +Ci)
o x [_? + Egnei(gpei)Bi - Egnei(gpei) +Cil, Coi(Egnei(gpei)) = o) x % - 2Egnei(gpei)ci , Qi =
/4Ci—Bi2
> where, for i=(1, 2, 3, and 4), the numerical values of the parameters for the InAs-crystal, are chosen
as: =112 () Bj = Bjrs), and Cj = Cj(p). Here, the values of (), Bj(rg), and Cj(r) are given in
Ref. [11].

The important numerical results of the above optical functions, at T=0K, N = Ncpn(cpp), and for E = Egpi(giy,

are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of

those numerical results, calculated using the corresponding data, given by Aspnes and Studna [9], suggesting
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that our obtained numerical results of these optical coefficients are found to be more accurate than the
corresponding ones, obtained from the FB-PM, as observed in Table 3c.

Table 2a. At the MIT, T=0K, N=N¢pn(p)(Faca)), and the critical photon energy Ecpg = E = Egni(gpi)(rd(a)), Kmi(Egnicgpiy: Fdca)) = 0,
Emimy (Egnicgpiy: Fd(a)) = 0, Gowiy (Egnicgpiy: Fdy) = 0 and  mit(E, rgay) = 0, and the other functions such

as: nM|T(Egni(gpi), rd(a)) , El(MIT)(Egni(gpi)l rd(a)), and RMIT(Egni(gpi)l rd(a)) decrease, with increasing rd(a) and Egni(rd(a)).

Donor P As Te Sb Sn

At the MIT, T=0K, N=N¢p,(ry), and the critical photon energy Ecpe = E = Egyi(ra), on has :

Egni(rd) ineV 0.4299 0.43 0.4302 0.4304 0.4306
Nt (Egri ") 2.887 2.8705 2.8206 2.7907 27561
Kmit(Egnis a) 0 0 0 0 0
&10m7) Egnis ) 8.3348 8.2399 7.9560 7.8790 7.5963
eomimy (Egnis a) 0 0 0 0 0
oty (Egnis Fa) 0 0 0 0 0
MIT(Egniv rq) 0 0 0 0 0
Ry (Egnis ) 0.2357 0.2335 0.2271 0.2231 0.2186
Acceptor Ge Ga(Al, Mn) Mg In

At the MIT, T=0K, N=Ncp,(ra), and the critical photon energy Ecpe = E = Egpi(ra), on has :

Egpi(ra) ineV 0.4249 0.4265 0.4298 0.43
i (Egpis ) 2,962 2.9298 2.8734 2.8705
kmiT (Egpis ) 0 0 0 0
&1uim) (Eqpis Ta) 8.7732 8.5839 8.2562 8.2399
&2y (Egpis a) 0 0 0 0
oty (Egpis a) 0 0 0 0
miT(Egpis I2) 0 0 0 0
Ruit (Egpir Fa) 0.2452 0.2411 0.2339 0.2335

Table 2b. In d(a)-InAs systems, the values of the following optical coefficients at the total carrier energy < 0, as that given in

Section 4, being expressed as functions of ryc), and calculated using Equations (31-36, 24), for E = Egni(gpi)(rd(a)), present the

exponential tail-states for KEEC-T | EE'mD_T, OEOC_T R O(E)OC_T , EOACTT and RNIR=T and their variations with increasing I'qc) are

represented by the arrows: and , suggesting that the obtained results of NFRI=T gEREDT "apq RNIR=T are almost equal to the

corresponding ones given in the above Table 2a.

d- InAs systems P As Te Sb Sn

() 2.887 2.8705 2.8206 2.7907 2.7561
KEEC"T(ry) in 1073 7.8415 7.8444 7.8539 7.8605 7.8688
£EReD=T (1)) 8.3347 8.2398 7.9559 7.7878 7.5962
o () 0.0453 0.0450 0.0443 0.0439 0.0434
0% T(ry) in Q'cm™t 0.2083 0.2073 0.2040 0.2021 0.1999
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EOAC-T(ry) in 10%cm™ 0.3416 0.3418 0.3424 0.3428 0.3433

RNR=T(ry) 0.2357 0.2335 0.2271 0.2231 0.2186

a- InAs systems Ge Ga(Al, Mn) Mg In

NERI=T(r ) 2.962 2.9298 2.8734 2.8705

KEEC=T(r,) in 1073 7.6278 7.6970 7.8367 7.8444

eFe0T(rp) 8.7731 8.5839 8.2561 8.2398

5" T(r,) 0.0452 0.0451 0.0450 0.04499

05 T(ry) in Q7lem™ 0.2055 0.2059 0.2072 0.2073
EOACT(r,) in 10%cm™ 0.3284 0.3327 0.3413 0.3418

RNIR=T(r,) 0.2452 0.2411 0.2339 0.2335

. . . _ _ wT _ —
Table 2c. Here, the choice of the real refraction index: N(E - o0, Fyy) = Noo(Fa@ay) = +/€(Faa) X o wr =35x1018%s7!

[5] and w, = 8.325618 x 103 s, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the
transverse (longitudinal) optical phonon mode, giving rise to N, (rp) = 1.62, and further, that of the asymptotic behavior, given
for the extinction coefficient: Ke,(E ~ ©,rgy) - 0, as E™1, so that og(E - oo, rya)) and a(E - o0,rym)) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
Donor P As Te Sb Sn
e(rq) 14.8500 14.55 13.6604 13.1399 12.5521
N (rg) 1.62 1.6036 1.5538 1.5239 1.4894
Koo (Ig) 0 0 0 0 0
€100(rg) = Neo (Fg)? 2.6244 2.5714 2.4142 2.3222 2.2183
€.00(rg) 0 0 0 0 0
5

00,00(rd) in% 6.5515 6.4849 6.2836 6.1627 6.0233

w(Fg) in (10°xcm™) 1.9145 1.9145 1.9145 1.9145 1.9145
R (rg) 0.0560 0.0537 0.0470 0.0431 0.0386
Acceptor Ge Ga(Al, Mn) Mg In
e(ry) 16.2159 15.6192 14.6001 14.55
N (o) 1.6929 1.6614 1.6063 1.6036
Koo (F2) 0 0 0 0
£1.0(ra) 2.8658 2.7603 2.5802 2.5713
£20(la) 0 0 0 0

5

00.0(ra) in% 6.8461 6.7190 6.4961 6.4849

o(ra) in (10° x cm™) 1.9145 1.9145 1.9145 1.9145
Reo(ra) 0.0662 0.0618 0.0541 0.0537

318



Table 3a. In the P-InAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Eg,(rp) = Egpni(rp)[ = 0.4299 eV], and the corresponding ones, obtained from
the FB-model [11], are reported in this Table 3a, in which the relative deviations (RDs) of those are also given and calculated, using
the Aspnes-and-Studna (AS)-data [9]. Here, as repoted in above Table 2c¢, we obtain here: Ko,(E - 00,1p) - 0and g, (E -

0,1p) - 0, while, in this Table 3a, Keo(rg)(E - ©0,1p) = 0.28113 and € (rp)(E -~ ©,rp) = 0.950782.

EineV n(RD%) K(RD%) & (RD%) €, (RD%) Neg (RD%) Keg (RD%) &8y (RD%) €28 (RD%)
0.429933  2.887 0 EEE 0 2.920013 . x ~ 8826478 S
15 3.566 (3.9) 0.260 (39.8) 12.651 (7.0)  1.856 (42.1)  3.579 (3.6) 0.154 (64.4)  12.788 (6.0) 1.099 (65.7)
1.6 3.664(24) 0374 (19.1) 13283 (43) 2743 (2L.1)  3.673 (3.6) 0.204 (56.0)  13.449 (3.1) 1.496 (57.0)
1.7 3.767(0.8) 0.530(7.5) 13.913(1.9)  3.995(6.7)  3.772(0.7) 0.268 (45.6)  14.160 (0.1) 2.021 (46.0)
1.8 3.876 (0.6) 0.741 (39.7) 14.477(0.5)  5.744(40.7)  3.876(0.7) 0.350 (33.9)  14.904 (2.5) 2.714 (33.5)
1.9 3.987(1.8) 0430 (24.9) 15.715(47)  3.427(23.5)  3.982(1.6) 0.454 (20.5)  15.650 (4.2) 3.620 (19.2)
2 4.096 (2.5) 0.559 (11.8) 16.467(5.8)  4.583(9.5)  4.084 (2.2) 0.586 (7.6)  16.338 (5.0) 4.783 (5.5)

2.1 4.195(4.7) 0.720(1.2) 17.080(5.4)  6.044(3.8)  4.175(4.2) 0.747 (49)  16.875 (4.1) 6.240 (7.2)

22 4273 (1.7) 0915(11.3)  17.420(2.7)  7.817(13.3)  4.244 (L.1) 0.941 (14.5)  17.129 (1.0) 7.990 (15.7)
2.3 4315 (0.4) 1.140 (15.0) 17.318(2.6)  9.836(14.6)  4.277(1.2) 1.164 (17.5)  16.938 (4.7) 9.960 (16.1)
24 4306 (3.6) 1.385(8.0)  16.622(9.2)  11.933(4.1)  4.259 (4.6) 1.406 (9.6)  16.159 (11.7) 11.977 (4.5)
25 4235(2.9) 1.632(8.6) 15268 (3.7) 13.829(11.3) 4.178 (4.2) 1.647 (7.8)  14.750 (7.0) 13.766 (11.7)
2.6 4100 (2.0) 1.855(1.6)  13370(6.0)  15214(0.3)  4.036(0.4) 1.862(1.2)  12.826 (1.7) 15.029 (0.9)
27 3.915(0.1) 2.027(0.6) 11.219(0.09)  15.876(0.7)  3.846(1.7) 2,024 (04)  10.691 (4.8) 15.572 (12.3)
2.8 3.705(2.2) 2.133(34)  9.175(109)  15.809 (1.2)  3.632(0.2) 2.121 (3.9) 8.695 (5.1) 15.406 (3.8)
2.9 3.498 (4.8) 2.172(2.0)  7.519(13.8)  15.197(6.9)  3.424 (2.6) 2.150 (1.0) 7.103 (7.6) 14.726 (3.6)
3 3318 (3.8) 2.155(5.9)  6.366 (4.6) 14.302 (10.0)  3.245 (1.5) 2.125 (4.5) 6.013 (1.1) 13.791 (6.1)
3.1 3.179 (2.3) 2.100(7.3)  5.692 (2.4) 13.354 (9.8)  3.106 (0.05) 2.064 (5.4) 5.390 (7.5) 12.822 (5.4)
32 3.084 (1.1) 2.026 (7.2)  5.403 (5.8) 12.499 (83)  3.013(1.2) 1.984 (4.9) 5.139 (10.4) 11.956 (3.6)
33 3.012(0.4) 1.948 (6.1)  5.397 (5.9) 11.810 6.6) 2.961(1.9) 1.901 (3.5) 5.154 (10.1) 11.260 (1.6)
34 3.017 (0.4) 1.875(4.7)  5.590 (3.9) 11.315 (5.2) 2.947 (1.9) 1.825 (1.9) 5.356 (8.0) 10.755 (0.02)
35 3.036(0.9) 1.815(3.5) 5.922(0.9) 11.024 (4.5) 2.965 (1.4) 1.762 (0.5) 5.685 (4.8) 10.449 (0.9)
36 3.082(1.7) 1.77527) 6353 (2.5) 10.943 (4.5) 3.010 (0.7) 1.718 (0.6) 6.106 (1.5) 10.343 (1.2)
37 3.154 (2.8) 1.758 (2.5) 6.857 (5.8) 11.087 (5.3) 3.078 (0.3) 1.697 (1.0) 6.592 (1.8) 10.449 (0.7)
3.8 3247(3.7) 1769 (2.9) 7.411 (8.4) 11.486 (6.8) 3.167 (1.2) 1.704 (0.8) 7.123 (4.2) 10.796 (0.4)
39 3.359 (4.7) 1.816 (4.2)  7.985 (10) 12.197 (9.0) 3.274 (2.0) 1.746 (0.2) 7.670 (5.7) 11.432 (2.2)
4 3.487(5.3) 1.908 (6.1)  8.520 (10) 13.309 (11.7)  3.396 (2.5) 1.832 (1.8) 8.180 (5.6) 12.441 (4.4)
4.1 3.626 (5.1) 2.063 (8.4) 8.889 (7.4)  14.960 (13.9)  3.528 (2.3) 1.977 (3.9) 8.535(3.2) 13.949 (6.2)
4.2 3.756 (3.9) 2.304 (9.8) 8.797(L.5)  17.311(14) 3.651 (1.0) 2.206 (5.1) 8.463 (2.3) 16.109 (6.2)
43 3.833(1.9) 2.661 (74) 7.612(4.8)  20.405 (9.5) 3.723 (1.0) 2.547 (2.8) 7.378 (7.8) 18.966 (1.7)
44 3.759(32) 3.137(3.1) 4293(6.7)  23.584(6.4) 3.651 (0.2) 3.000 (1.3) 4313 (7.2) 21.933 (1.1)
45 3.403 (6.5) 3.620 (5.1) —1528 (8.1)  24.637(11.9)  3.311 (3.7) 3469(0.7) — .  (35.6) 22.973 (4.4)
4.6 2790 (3.1) 3.862(78) — .  (29) 21550 (11.2)  2.729 (0.9) 3.698 (33) —6.230 (13) 20.185 (4.2)
4.7 2.211(0.3) 3.761 (5.2) —9.257 (16.8)  16.633 (5.5) 2.180 (1.1) 3.592(0.5) —8152(2.9) 15.665 (0.6)
4.8 1.855 (2.9) 3.505 (4.6) —8.843 (11.0)  13.002 (7.6) 1.844 (2.3) 3.336(04) —7.732(2.9) 12.304 (1.9)
49 1.671 (3.9) 3.262(5.9) —7.849 (13.6)  10.898 (9.9) 1.671 (3.9) 3.096 (0.5) —6.797 (1.6) 10.348 (4.4)
5 1.565 (2.7) 3.073 (7.0) —6.992 (18) 9.617 (9.9) 1.573 (3.2) 2910 (1.4) —5998(1.3) 9.155 (4.6)
5.1 1.489 (0.3) 2.922 (6.9) —6.327 (20) 8.703 (7.3) 1.502 (1.2) 2764 (12) —5383(2.2) 8.305 (2.4)
5.2 1.426 (0.7) 2.794 (5.6) —5.774 (16.8)  7.969 (4.8) 1.445 (0.6) 2.638(0.3) —4.874(1.4) 7.624 (0.3)
53 1.375 (0.6) 2.676 (4.7) =5.270 (12.9)  7.358 (5.4) 1.398 (2.4) 2.523(12) —4413(5.4) 7.057 (1.1)
54 1337 (1.9) 2.564 (4.7) —4.788 (11.9)  6.860 (6.8) 1.365 (4.0) 2416 (14) —3973(7.1) 6.593 (2.6)
55 1.315 (2.5) 2.461 (5.0) —4.328 (12.3)  6.471 (7.7) 1.345 (4.9) 2315(1.2) —3552(7.7) 6.228 (3.6)
56 1.306 (2.3) 2.367 (5.3) —3.898 (13.8)  6.184 (7.8) 1.338 (4.9) 2225(1.0) —3.158(7.7) 5.955 (3.8)
57 1.310 (2.9) 2.286(5.7) —3.509 (16.7)  5.987 (8.9) 1.343 (3.9) 2.146 (0.8)  —2.800 (6.8) 5.765 (4.9)
5.8 1.323 (0.7) 2.218 (5.5) —3.169 (19.9)  5.868 (4.7) 1.357 (1.8) 2.080 (1.0)  —2.486 (5.9) 5.646 (0.8)
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59 1.342 (2.9) 2.165 (3.9) —2.886 (18.7)  5.813 (0.8) 1.377 (0.4) 2,029 (2.6) —2221(8.6) 5.587 3.1)

6 1.365 (4.8) 2.128 (0.7) —2.664 (10.8)  5.808 (4.1) 1.399 (2.4) 1992(5.7)  —2.010 (16.3) 5.575 (7.9)
1.62 0 .= 0 1.691 0.28113 2780447 0.950782
1.62 0 .= 0 1.691 0.28113 2780447 0.950782
EineV n(RD%) K (RD%) & (RD%) &, (RD%) Neg (RD%) Kes (RD%)  €1¢m) (RD%) €2em) (RD%)

Table 3b. In the P-InAs system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Eg,(rp) = Egpni(rp)[ = 0.4299 eV], and the corresponding ones, obtained from the
FB-model [11], are reported in this Table 3b, in which the relative deviations (RDs) of those are also given and calculated, using the
AS-data [9]. Here, as reported in above Table 2¢, we obtain here: o (E - o0, rp) = 1.9145 x 10°cm™, 650 (E - 00,rp) = 6.551465 x

10° (@) and o(E - o0,rp) = 0055999, while, in the FB-model, ¢ - o, ggegy » @ and  (E - o0, rp) = 0.076021.

EineV  (10° xcm™); RD% R; RD% o (Qxlcm) Oore) (ﬁ) s(108 x cm™2); RD%  Reg; RD%

0.429933 0 0.235676 0 0.017185 0.027861 0.239902

1.5 39.566; 39.7 0318;5.6 29.807 17.654 23.350; 64.4 0.318; 5.6
1.6 60.708; 19.2 0.330; 3.3 46.982 25.620 33.020; 56.0 0.328;3.9
17 91.343;7.5 0.345; 0.5 72.693 36.784 46.158; 45.6 0.339; 2.1
1.8 135.14; 39.7 0.363; 2.7 110.66 52.300 63.868; 34.0 0.351;0.5
1.9 82.737; 24.9 0.363;0.7 69.690 73.614 87.516; 20.5 0.363; 0.7
2 113.37; 11.7 0377; 1.8 98.103 102.40 118.69; 7.6 0.376; 1.7
2.1 153.30;1.2 0.390; 2.6 135.85 140.26 159.03; 5.0 0.389; 2.4
22 203.93; 11.2 0.403; 2.3 184.06 188.14 209.84; 14.5 0.402; 2.0
23 265.67; 15.0 0.416; 1.2 242.15 245.20 271.40;17.5 0.414; 0.8
2.4 336.99; 8.0 0.427; 1.3 306.53 307.67 342.01;9.6 0.425; 1.8
25 413.65; 8.6 0.437;3.8 370.03 368.37 417.33;7.8 0.434; 4.4
2.6 488.81; 1.6 0.443; 0.5 42338 418.23 490.52; 1.3 0.440; 0.2
2.7 554.73; 0.5 0.446; 0.2 458.79 450.00 553.94; 0.4 0.442; 0.6
2.8 605.36; 3.4 0.445; 0.7 473.78 461.71 601.76; 3.9 0.440; 1.7
2.9 638.35;2.0 0.439;2.6 471.70 457.08 631.90; 1.0 0.434; 1.4
3 655.20; 5.9 0.430; 4.4 459.26 442.83 646.06; 4.5 0.424;2.9
3.1 659.90; 7.3 0.419; 4.7 443.10 425.43 648.34; 5.4 0.412;2.9
32 657.17; 7.1 0.406; 4.5 428.10 409.50 643.48; 4.9 0.399;2.5
33 651.36; 6.0 0.395; 3.7 417.14 397.70 635.79;3.5 0.386; 1.4
34 646.03; 4.7 0.386;2.9 411.79 391.41 628.72; 1.9 0.376; 0.4
35 643.96; 3.5 0.380; 2.4 413.00 391.42 624.99; 0.4 0.370; 0.3
3.6 647.54;2.7 0.378; 2.1 421.67 398.52 626.84; 0.6 0.367; 0.7
3.7 659.06; 2.4 0.380;2.7 439.07 413.81 636.47; 1.1 0.369; 0.3
3.8 681.21;2.9 0.386; 3.3 467.18 439.08 656.39; 0.8 0.375;0.3
3.9 717.59; 4.1 0.397; 4.0 509.13 477.20 690.03; 0.1 0.386; 0.9
4 773.53; 6.1 0.413;5.2 569.82 532.66 742.46; 1.8 0.401; 2.0
4.1 857.18; 8.4 0.435; 5.7 656.49 612.15 821.49; 3.8 0.422;2.6
42 980.83; 9.8 0.462; 5.7 778.21 724.17 938.98; 5.1 0.449;2.7
43 1159.7; 7.4 0.496; 3.8 939.11 872.90 1109.8; 2.7 0.483; 1.0
44 1398.7; 3.1 0.537; 1.9 1110.7 1032.9 1339.1; 1.3 0.523; 0.6
45 1650.9; 5.1 0.581;2.7 1186.6 1106.5 1581.9; 0.7 0.567; 0.2
46 1800.2; 7.8 0.619;4.3 1061.0 993.85 1724.0; 3.2 0.604; 1.9
47 1791.4; 5.2 0.638;3.5 836.75 788.04 1711.0; 0.5 0.621;0.7
48 1704.8; 4.6 0.640; 2.4 667.99 632.12 1623.0; 0.4 0.616; 0.9

320



49 1619.7; 5.8 0.624; 3.1 571.58 54271 1537.6; 0.5 0.600; 0.8
5 1556.9; 6.9 0.609; 4.5 514.68 489.94 1474.8; 1.3 0.583; 0.0
5.1 1510.6; 6.9 0.596; 5.5 475.06 453.34 1428.5; 1.1 0.568; 0.5
5.2 1472.4; 5.5 0.583; 4.9 443.52 424.32 1390.4; 0.3 0.553; 0.5
53 1437.2; 4.7 0.570; 3.7 417.41 400.34 1355.4; 1.3 0.538; 2.1
5.4 1403.4; 4.7 0.556; 3.5 396.49 381.06 1321.9; 1.4 0.522;2.7
5.5 1371.7; 4.9 0.539; 3.5 380.92 366.61 1290.5; 1.2 0.505; 3.1
5.6 1343.4; 5.3 0.522; 4.1 370.64 356.93 1262.6; 1.0 0.486; 3.0
5.7 13203; 5.6 0.504; 5.2 365.28 351.72 1239.5; 0.8 0.468; 2.3
5.8 1303.6; 5.5 0.487; 6.1 364.30 350.52 1222.7; 1.0 0.451; 1.8
5.9 1294.5; 3.9 0.472; 5.4 367.10 352.80 1213.1;2.7 0.436; 2.7
6 1293.7; 0.7 0.460; 2.8 373.01 358.00 1211.2;5.7 0.424; 5.2

1.9145% 0.055999 6.551465% x x 0.076021

1.9145x 0.055999 6.551465 x x 0.076021
EinevV  (10®xcm™);RD% R;RD% o (ﬁ) Oogrey (ﬁ) (103 x cm™); RD%  Res; RD%

Table 3c. Here, our highest relative deviation (HRD)-values and those of (HRD)gg, calculated using the (AS)-data [9], are reported,
suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the corresponding ones,

obtained from the FB-PM.

HRD n K €1 & R

E (eV)

1.5 39.8% 42.1% 39.7%
4.5 6.5%
4.6 29%

5.8 6.1%

(HRD)gg Krg €1(FB) €2(FB) FB Res

E (eV)

1.5 64.4% 65.7% 64.4% 5.6%

4.5 35.6%

5.6 4.9%

Some important cases, given in various physical conditions, are considered as follows.
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5.1. Metal-insulator transition (MIT)-case
As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT
are: T=0K, N =0 or N = Ncpnccop) NEB}E(CDp) , vanishing the Fermi energy:

2xkEnpy(N )

Fro(rpo)(N ) = =0. Further, from the discussions given Eq. (5) for the optical band gap:

2XMn(p)
Egnl(gpl)(N =0, Fd@) T= O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)), according also to the MIT.

Then, in such the MIT-case, replacing both  gnei(gpeiy and Egn1(gp1)> by  gni(gpi)> given in Equations (28, 29),
and consequently from Eq. (24), one gets, for the effective photon energy E = E — Egpj¢gpiy = 0:

K(E , ra)) = 0, &(E , rge)) = 0, 0o(E , r4(ay)) = 0 and a(E , rye)) = 0, corresponding also to the MIT.

ECPE(rd(a)) = Egni(gpi)(rd(a)). Therefore, Equations (28, 29), obtained in the MIT-case, become:

—l411 5411

KE =0) =f(E) x Eyr iy % (E = E—Egniggoi) =0) * =0,forE= C () = Egigpi»  (30)
where is the critical photon energy, and

BoiE+Coi . . —
N(E = Egni(gpi) = Neo(Fd(a)) + ?zlwiEJrCia in which Egnei(gpei) = Egni(gpi)- (3D

Then, going back to the remark given in Eq. (23), we can determine the values of some optical coefficients
for = 0, representing the exponential tail-states, from Eq. (30), by putting: E = Egpi(gpiy, as:

EEC-T — 2
K= (Egnicapi)) = T(Egnicapiy) > Egnicpi)- (32)
Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, given for

the following exponential tail-states of €,, 0g(E), Q, and R as:

€50 T (Ericap) = 2 % KEECT (Egnicapiy) X MER'"T(E = Egnigpi): (33)

G(E)OC_T(Egni (gpi)) — Efree space™ gni(gpz:eglmD_T(Egni(gpi))’ (34)
2%Eqnicani KEECT (Egniani

OEOACT(E i gpiy) = rtan) K><C (Eq (gp)), and (35)

_ 2
[n(Egni(gpiy) ~L1%+K=ECT (Egni(gpiy )

_ 2
[n(Egnicgpiy) + 11 +K=ECT (Egni(gpiy)

RMET (Egnicapn) = (30

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2)(E, rq(a))
in following physical conditions by: T=0K and N = Ncpnnpp) » and by: T=20K and N = 10%cm=3
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and

(¢ 1) the minimum and the extrema-values of those occur at the same corresponding photon energy E.
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Table 4n. In d-InAs systems, and for two types of physical conditions such as: [T=0K and N = N¢p,(rg)] and [T=20K, N =

10 cm™2], the extrema values of & (E) and &,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: tori, suggesting that those extrema occur at the same E.
Einev 17 1.8 1.9 2 2.2 27 33 3.6 4.1 4.5 4.7 100 10%
In the P- InAs system, at T=0K and N = Nepn(rp) = 1.2228 x10%7 cm™3, Egi(rp) = 0.4299 eV
() 13.91 14.48 15.71 1647 1 1742 1 1122 | 540 1 6351t 89 I —15 1 —926 1 2.36 2.6244
2() 399 1 574 1 343 t 458 7.82 1t 1587 1 11.8 109 t 149 246 | 16.63 1.06 0
In the As- InAs system, at T=0K and N = Ncpa(ras) = 1.3 x10Y7 cm™3, Egyi(ras) = 043 eV
() 13.79 14.35 15.58 1633 1t 17.28 | 11.09 530 1t 625t 877 | —-16 | —933 1 2.31 2.5714
20) 399 t+ 574 1 343 1 458 7.82 1t 1587 1 118 109 + 149 246 | 16.63 1.06 0
In the Te- InAs system, at T=0K and N = N¢p,(rre) = 1.5709x10% cm™3, Egyi(rre) = 0.4302 eV
() 13.41 13.96 15.19 1592 1t 16.85 1 10.70 500 t 5951t 841 =197 | —954 1 2.16 2.4142
20) 392 1t 564 L 337 t 451 7.69 1t 15,60 1 11.55 10.71 1+ 14.68 1t 24.15 | 16.13 1.01 0
In the Sb- InAs system, at T=0K and N = N¢p,(rsp) = 1.7651 x10% cm™2, Egyi(rsy) = 0.4304 eV
() 13.19 13.74 14.95 15.68 1t 16.60 | 1047 | 482 t 577t 820 —217 | —967 1 2.07 2.3222
20) 388 1t 559 I 334 1t 447 7.63 1 1548 1 1143 10.60 t 1456 t 2393 | 1591 0.99 0
In the Sn- InAs system, at T=0K and N = N¢p,(sp) = 2.0248x10% cm™2, Egyi(rsn) = 0.4306 eV
() 12.94 13.48 14.68 1541 1t 1631 1 1021 462 t 557t 796 —239 | —981 1 1.97 2.2183
2() 385 1t 554 1 331 t 443 7.57 t 1533 1+ 11.29 10.47 1+ 14.41 T 23.68 | 15.65 0.97 0
EineV 17 1.8 1.9 2 22 27 33 3.6 4.1 45 4.7 100 107
In the P- InAs system, at T=20K and N = 10° cm™3, Eg; (rp) = 1.051922 eV
() 14.19 15.01 15.88 16.74 1 18.11 | 14.19 | 7.76 t 8.18 1t 11.12 + 483 | —265 1 2.37 2.6244
2() 0.64 1 .12 1 1.14 1t 1.67 329 t+ 837 I 724 7.07 1 1032t 17.68 | 12.14 1.04 0
In the As- InAs system, at T=20K and N = 10%° cm~3, Egn1(ras) = 1.05057 eV
() 14.06 14.88 15.75 16.61 1t 17.97 | 14.05 | 7.66 1t 8.08 1 11.00 + 470 | =273 1 2.31 2.5714
() 0.65 1 .12 1 1.14 1t 1.67 328 t 835 1721 7.04 1 1028 1t 17.61 | 12.06 1.03 0
In the Te- InAs system, at T=20K and N = 10%° cm™3, Egna(rre) = 1.315395eV
1) 13.69 14.49 1535 1620 1t 17.54 | 13.66 | 735 v 7971 10.63 433 | =298 1t 2.16 2.4142
2() 0.65 1 1.12 1 1.14 1t 1.66 327 t+ 828 1 712 6.95 1 10.17 t+ 17.40 | 11.81 1.00 0
In the Sb- InAs system, at T=20K and N = 10'° cm~3, Egy (rg) = 1.043185eV
() 13.47 14.26 15.12 1596 1 1729 | 1342 | 717 v 759 1t 10.41 411 | =313 1 2.07 2.3222
20) 065 t+ 1.12 1 1.13 1t 1.66 326 t+ 825 1 7.07 6.90 1 10.10 t+ 1727 1 11.67 0.98 0
In the Sn- InAs system, at T=20K and N = 10%° cm™3, Egn1(rsn) = 1.039486 eV
() 13.21 14.00 14.85 15.68 1t 17.00 | 13.14 696 1t 7371 10.15 + 386 + —331 1 1.97 2.2183
2() 0.66 1 1.13 1 1.13 1t 1.66 326 1 821 1 7.01 6.84 1 10.03 t+ 17.13 1 11.50 0.96 0
EineV 1.7 1.8 1.9 2 2.2 2.7 3.3 3.6 4.1 4.5 4.7 100 10%
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Table 4p. In a-InAs systems, and for two types of physical conditions such as: (T=0K and N = Ncpp(ra)) and (T=20K, N =

10%° cm™3), the extrema values of €;(E) and &,(E), calculated using Equations (24, 28, 29),

by the arrows: 1 or | , suggesting that their extrema occur at the same E.

vary with increasing E, represented

EineV 17 1.8 1.9 2 22 2.7 33 3.6 4.1 4.5 4.7 100 10
In the Ge- InAs system, at T=0K and N = Ngpy(fge) = 0.9391 X107 em™3, Egyi(rge) = 0.4249 eV
() 14.51 15.08 1636 17.13 1 18.11 1 11.79 1| 582 1 6791t 941 1 -—108 | —9.00 2.60 2.865787
2() 415 1t 597 1+ 352 t 470 8.01 1t 1626 | 12.1 112t 153 252 1 172 1.11 0
In the Ga- InAs system, at T=0K and N = Npp(rga) = 1.0509 X107 em™2, Egpi(rsa) = 0.4265 eV
() 14.25 14.82 16.09 1685 1t 17.81 | 11.54 | 563 1t 6601t 918 | -—128 | —9.12 2.49 2.760344
2() 410 1t 588 1 348 t 4.65 793 1t 16.10 | 12.0 11.1 t 152 250 1 17.0 1.08 0
In the Mg- InAs system, at T=0K and = NCDp(ng) = 1.2867 x10% cm™3, Egpi(ng) =0.4298
() 13.81 14.37 15.61 1636 1t 17.30 | 11.11 | 531t 627 1 8.79 -162 | —932 1 232 2.58023
2() 398 1 572 L 341 t 457 7.79 1t 15.82 1 11.76 10.89 1 14.9 245 1 165 1.05 0
In the In- InAS system, at T=0K and N = Nepy(rin) = 1.3 x10% cm™, Egyi(r)) = 0.43 eV
() 13.79 14.35 1558 1633 1t 17.28 1 11.09 | 530 1t 6251 8.77 —-164 | —933 1 231 2.571379
2() 398 1 572 1 341 t 456 7.78 1t 15.81 1 11.74 10.88 1t 14.89 245 | 1651 1.046 0
EineV L7 1.8 1.9 2 2.2 2.7 33 3.6 4.1 45 47 100 10%
In the Ge- InAs system, at T=20K and N = 10'° cm™3, Eg; (rge) = 1.066055 eV
() 14.80 15.64 16.53 17.41 1 18.82 | 14.84 | 825 1t 8671 11.71 + 545 | =221 1 2.60 2.865787
2() 0.63 1t 1.09 | 112 t 1.65 327 + 839 1 733 7.16 1 1043 1t 179 | 124 1.09 0
In the Ga- InAs system, at T=20K and N = 10° cm™2, Egy; (rg,) = 1.06602 eV
() 1454 1537 1626 17.13 11852 1 1458 | 805 1 848 1 1147 1 523 1 —235 1 250  2.760344
2() 0.62 1 1.08 | 1.11 1t 1.64 324 1 832 | 725 7.09 1 1034 t 17.8 | 123 1.07 0
In the Mg- InAs system, at T=20K and N = 10%*° cm~3, Egpl(ng) = 1.066044 eV
() 1409 1490 1578 1663 11800 L 1412 1 772 1 8131 1106 | 484 | 250 1 232 258023
2() 0.61 1 1.06 1 1.10 t 1.62 320 1t 820 | 7.2 6.96 1 10.18 t 175 1 1197 1.03 0
In the In- InAs system, at T=20K and N = 10%° cm™3, Eg,,(},) = 1.066047 eV
() 14.06 14.88 15.75 16.61 1t 1798 | 14.10 | 770 1 8121 11.04 |+ 482 | —2.60 2.31 2.571379
20) 061 t 1.06 ¢ 1.10 t+ 1.61 319 + 819 1 712 6.95 1 10.18 t 174 | 11.96 1.03 0
Einev 17 I8 9 2 22 27 33 36 41 45 47 100 107

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-InAs systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, at E=3.3 eV, for example, and for some (P, Te, Sn)-InAs systems and for some (Ga, In)-

InAs ones, being indicated by the arrows: and , as tabulated in following Tables 5n and 5p, in which the

physical condition N > Ncphnpp) (or N > 0) must be respected, and their variations thus depend on the

ones of the optical band gap, Egnl(gpl)(N , rd(a)).
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Table 5n. In (P, Te, Sn)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of N, and
calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows, ( and ), since those of the

optical gap Egn1 (N , I'g) increase with increasing N, at T=20 K.

N (108 cm™3) 4 8.5 15 50
Egna(N ,Ip) ineV 0.753034 0.984565 1.256105 2326306
n (rp)=3.031723
() 1.5339 1.2677 0.9878 0.2242
1C . 1p) 6.8385 7.5843 8.2156 9.1411
20 1p) 9.301 7.690 5.989 1.359
(.,rp) in 102 Q71 1 3.285 2.715 2.115 0.480
(.rp) in 105 1 5.130 4.239 3.303 0.750
R( ,rp) 0.348 0.321 0.296 0.256
Egna(N ,I'1e) in eV 0.747945 0.97894 1.24981 2317624
N (rre)=2.965452
(re) 1.5400 1.2739 0.9939 0.2282
1C,rre) 6.4222 7.1712 7.8061 8.7418
20 rre) 9.134 7.555 5.895 1.353
( ,rr) in 102 Q71 1 3.226 2.668 2.082 0.478
( .fre) in 105 1 5.150 4.260 3.324 0.763
R( ,rre) 0.344 0.316 0.290 0.248
Egni(N ,rgp) ineV 0.74196 0.97246 1.242655 2.307967
n (rg,)=2.901054
( .\ rsn) 1.5473 1.2810 1.0008 0.2327
1C . Trsn) 6.0221 6.7752 7.4144 8.3620
20 Ten) 8.977 7.432 5.807 1.350
( ,rg,) in 102 Q* 1 3.171 2.625 2.051 0.477
( ,fg) in 108 1 5.174 4.284 3.347 0.778
R( ,rs) 0.341 0.312 0.284 0.240
N (108 cm™3) 4 8.5 15 50

Table Sp. In (Ga, In)- InAs systems, the numerical results of the following optical coefficients, expressed as functions of N, and
calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows, ( or ), since those of the

optical gap Egp1 (N, I'y) increase with increasing N.

N (10%8 cm™3) 15 26 60

Egor(N ,Fga) in eV 1.2720 1.6585 2.6024

n( )=3.073494

. ) 0.972 0.637 0.115
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1) 8.501 9.040 9.433
20, ) 5.978 3.916 0.707
(, ) in 202Q%t 2.111 1.383 0.250
(, ) in 120° 3.252 2.131 0.385
R(, ) 0.299 0.277 0.260
Egpl(N ,In) in eV 1.2718 1.6577 2.6004
n( )=3.015268
(., ) 0.973 0.638 0.116
() 8.146 8.685 9.078
20, ) 5.866 3.846 0.700
(, ) in 102 Q' 1 2.072 1.358 0.246
(, )in 100 3.253 2.133 0.387
R(, ) 0.293 0.270 0.252
N( ) 15 26 60

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- InAs systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at N =

1.5 x 10%cm™3, respectively, as functions of T, at E=3.3 eV, for example, and for some (P, Te, Sn)- InAs

systems and for some (Ga, In)- InAs ones, being indicated by the arrows:

and , as given in following

Tables 6n and 6p, in which their variations thus depend on the ones of the optical band gap,

Egnigony(N  Faca))-

Table 6n. In (P, Te, Sn)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and

calculated using Bquations (31-36, 24), for E=3.3 ¢V and N = 1.5 x 10'® cm™3, increase with increasing T, since the optical band

gap Egn1 (T, rg) decreases with increasing T

TinK 20 30 50 100 200 300
Egnl(T, I'p) in eV 1.256105 1.255748 1.2545 1.248111 1.223017 1.187299
n (e, ) 3.0317 3.0317 3.0319 3.0325 3.0349 3.0381
() 0.988 0.9881 0.9893 0.9955 1.0200 1.0554
1(fe ) 82156 82151 82135 8.2051 8.1705 8.1163
2(Te ) 5.989 5.992 5.999 6.038 6.191 6.413
(rp, ) in 102 Q71 -1 2.115 2.116 2.119 2.133 2.187 2.265
(rp, ) in 105 1 3.303 3.304 3.308 3.329 3.411 3.529
R(fp, ) 0.296 0.2962 0.2963 0.2969 0.2991 0.3024
Egn1(T, re) in eV 12498  1.2494 1.2482 1.2418 1.2167 1.1810
n(rre ) 2.9654 2.9655 2.9656 2.9663 2.9687 2.9719
(fre. ) 0.994 0.9942 0.9954 1.0016 1.0262 1.0617
(e, ) 7.8061 7.8056 7.8039 7.7954 7.7599 7.7048
2(Frer ) 5.895 5.897 5.904 5.942 6.093 6.310



(fre, ) in 102 Q71 1 2.082 2.083 2.085 2.099 2.152 2.229

(rre, ) in  10° 71 3.324 3.325 3.329 3.349 3.432 3.550
R(rre, ) 0.290 0.2903 0.2904 0.2909 0.2933 0.2967
Egnl(T, I'sy) ineV 1.2426 1.2423 1.2410 1.2347 1.2096 1.1738
n(rsn, ) 2.9010 2.9011 2.9012 2.9018 2.9043 2.9074
(fsn ) 1.0008 1.0012 1.0024 1.0086 1.0333 1.0689
1(Fsn ) 7.4144 7.4139 7.4122 7.4035 7.3672 7.3009
2(fsny ) 5.807 5.809 5.816 5.854 6.002 6.216

(rsn, ) in 102 97t 1 2.051 2.052 2.054 2.068 2.120 2.195

(rsn, ) in 105 ¢ 3.347 3.348 3.352 3.373 3.455 3.575
R(rsn, ) 0.2846 0.2846 0.2847 0.2853 0.2878 0.2913
TinK 20 30 50 100 200 300

Table 6p. In (Ga, In)- InAs systems, our numerical results of the following optical coefficients, expressed as functions of T, and
calculated using Equations (31-36, 24), for E=3.3 eV and N = 1.5 x 10'° cm™3, increase with increasing T, since the optical band

gap gp1(T,Ta) decreases with increasing T.

TinK 20 30 50 100 200 300
Egna(T, Fga) in eV 12720 1.2717 1.2704 1.2640 1.2389 1.2032
N (fea ) 3.0734 3.0735 3.0736 3.0743 3.0767 3.0798
(fea ) 0.972 0.9728 0.9740 0.9801 1.0044 1.0396
1(rear ) 8.5007 8.5002 8.4987 8.4906 8.4571 8.4047
2(Tea ) 5.978 5.980 5.987 6.026 6.181 6.403
(fea ) in 102 Q71 -1 2111 2112 2115 2.129 2.183 2262
(fea ) in 105 1 3252 3253 3257 3278 3359 3.476
R(fea ) 0.299 0.29908 0.29918 0.2997 0.3018 0.3050
Egna(T,Fn) in eV 12718 12714 1.2702 1.2638 1.2387 1.2030
n(fn ) 3.0153 3.01531 3.0154 3.0161 3.0185 3.0217
(fin ) 0.9727 0.9730 0.9742 0.9804 1.0047 1.0398
(D) 8.1457 8.1452 8.1437 8.1355 8.1019 8.0493
2T ) 5.866 5.868 5.875 5914 6.065 6.284
(" ) in 102 @7t -1 2.072 2.073 2.075 2.089 2.142 2219
(fn ) in 10° 1 3.253 3.254 3258 3278 3.360 3477
R(f, ) 0.293 0.2934 0.2935 0.2941 0.2963 0.2995
TinK 20 30 50 100 200 300

6. Concluding remarks

In the n(p)-type heavily doped InAs -crystal, by using the same physical model, as that given in Eq. (7),

and same mathematical methods, as those proposed Refs. [1-3], and further, by taking into account the
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corrected values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the
refraction index N and extinction coefficient K, as the photon energy E( - o), all the numerical results,
obtained in [3], are now revised and performed.

Then, by basing on our following basic expressions, such as:

()the effective static dielectric constant, €(rq(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),

(i) the critical donor(acceptor)-density, Ncpnnpp)(Fda)) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N = N —
Ncon(copy(Fd(a)) » Which gives a physical condition, needed to define the MIT at T=0K, as: N =N —
Nepn(cop) =0 or N = Ncpncpp) » noting that Nepncppy can also be explained as the density of electrons
(holes) localized in the exponential conduction(valence)-band tails (EBT), NEBI(CDF,), as that determined in
Eq. (21), with a precision of the order of 11.6%, as observed in Table 1,

(iii) the Fermi energy, Egnepy(N , T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables
2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical
results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@) Erno(rpey(N =0, T =0) =0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )23,

(b) as discussed in Eq. (5), in the MIT, in which Egnl(gpl)(N =0,rg@, T = 0) = Egni(gpi)(rd(a)),

where Egn1gp1) and Egnicrgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(I’d(a)) = Egni(gpi)(rd(a)) or the effective photon energy E =E —
Egni(gpi)(rd(a)) =0, one has: K(E =0, rg) =0, &(E =0,rg4m)) =0,00(E =0,rg@) =0anda(E =
0, rgca)) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in [3], are now revised and performed in the present work.
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Appendix
Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InAs-crystals, the Fermi energy pn(rp) = ( Fp = [ v— fp]), c(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10~# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — Nepncop)(Fdca)) > Neon(cop) (Fdea)) being
the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in
Table 1, meaning that N = O at this transition.

First, we define the reduced electron density by:
3

__ N =N—Nconcop)(Fda)) My <kaT\ 2 _
UN | T) = O, N (T) = 2 % gy % (M255)° (em ™), (A1)

where Ng(y)(T) is the conduction (valence)-band density of states, the values of ey = 1(1), and My,) /Mg,

defined in Section 2, can be equal to : Myy/M, = 0.026 (0.41), and to m/m, = T = 0,02445. In

mp+mp
particular, here, as used in Section 3 for determining the optical band gap in degenerate InAs-crystals,

Mppy/ Mo= M;/mM, = 0.02445 was chosen.

Then, the reduced Fermi energy in the n(p)-type InAs crystals is determined by :

Ern(rp) (W) _ G(W)+AWBF(u) _ = V(W
= A = (W) = Wy A = 00005372 and B = 4.82842262, (A2)

2 4 8\ 3
where F(N , T) = aus (1 +bu s+ cu_§) 3, obtained foru 1, according to the degenerate cas,

3
= [(3VT/4)]¥/3, ( ) =% ?179?;%855( ) and then G(u) Ln(u)+22xuxe % foru
1, according to the non — degenerate case, with: d = 23/2 [ﬁ 2 >o.
So, in the degenerate case (U 1), one has:
2
_4 8\ 3
Ernrp)(N » T) = Erno(rpoy (U) % (1 +bu 3+cu 3) . (A3)

Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

2
2 xkenep) (N )
2xmy

Ernorpoy(N ) = ) (A4)

being proportional to (N )2/3

, and equal to 0, Eppo(rpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.
Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type InAs-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

_ (3ow\? 1 _ 8 5 ()3 o Map)/Mo.
rS”(SF’)(N ’rd(a)) - (4T[N ) x agn(ep)(ra@) 1.1723 > 107 x ( N ) * e(rd(a) (B)
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In particular, in the following, Mp;/M, = M/m, = 0.02445, is taken to culculate the band gap narrowing

(BGN), as used in Section 3. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)), is

found to be given by [1]:
087553 (2[1-In(2)] _
B 087553 R H( = )xIn (rn(spy)—0.093288
ce(Mnp)) = ce(N o) = 00908+ ron(epy 1+0.03847728x 1157378676 ' (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

1
= 5/4
1/3 m
) €0 3 — €0 P
D gn(N T) 8y % XN+ 2y = forx NF x (2508 % [— celfyn) X 1)+ x [25] " x [T2x
3 1
1/4 g 1/2 % |2 5 — N =N=Ncpn(ra)
Nr +ag % s(r(:j) x Nr x2+ as x [ﬁ] x Nr’ NI’ ~ 9999x1017 -3 (B3)
and
A N r x o x NY3 44, x to_ xN%x(2503>< - ( )x )+ x | o 5/4>< M
gp( ) a) a (ra) r az &(ra) r : [ celI'sp r'sp] as &(ra) m,
3 1
1/4 € 1/2 [ € ]E s _ (N =N—Ncpp(ra) )
+ x x 4+ ac % x = (——22
Ny 28y &(ra) Ny as (ra) Nr, Nr 9.999x1017 cm~3/° (B4)

Here, €, = 14.55, a; = 3.80 x 1073(eV), a, = 6.5 x 107%(eV), ag = 2.85 x 1073(eV), a, = 5.597 x
1073(eV) and a5 = 8.1 x 10~*(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Fy@), A gn@p)(N =0, r4@)) =0,

according to the metal-insulator transition (MIT).
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