SCIREA Journal of Physics

ISSN: 2706-8862

http://www.scirea.org/journal/Physics

July 18, 2023

Volume 8, Issue 4, August 2023

R I_':- A https://doi.org/10.54647/physics 140562

Accurate expressions for optical coefficients, given in n(p)-
type degenerate GaSb-crystals, due to the impurity-size effect,
and obtained from an improved Forouhi-Bloomer

parameterization model (FB-PM)

H. Van Cong, K. C. Ho-Huynh Thi", P. Blaise

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA
4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Email: van-cong.huynh@univ-perp.fr (H. Van Cong); huynhvc@outlook.fr (K. C. Ho-Huynh Thi)
* Groupe de Physique Théorique, 20 Rue du Col de LLi, F-66100 Perpignan, France.

Abstract

As given in Eq. (2) and Table 1, our analytical expression for the static dielectric constant, s(rd(a)), given in
the n(p)-type GaSb crystal, expressed as a function of the donor (acceptor) radius, (), and determined from
an effective Bohr model, decreases with increasing Fy,) . It strongly affects the critical d(a)-density in the
metal-insulator transition (MIT) at the temperature T (=0K), Ncpn(cpp)(Fdca)), determined in Eq. (3), and all

the expressions for optical coefficients, determined from Equations (24, 25, 28, 29) for the n(p)-type
degenerate GaSb semiconductors.

In particular, in the P-GaSb system at T=0K, Table 3c shows that our obtained results for those optical
coefficients are found to be more accurate than the corresponding ones, obtained from the FB-PM [11],
suggesting that the present model, used here to study the optical properties of the n(p)-type degenerate GaSb
-crystal, could be a good improved FB-PM.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical coefficients; critical photon energy
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1. Introduction

Our new expression for the extrinsic static dielectric constant, s(rd(a)), Fdca) being the donor (acceptor) d(a)-
radius, was determined by using an effective Bohr model, suggesting that, with an increasing ryc,), due thus
to such the impurity size effect, 8(rd(a)) decreases, affecting strongly: the critical impurity density in the
metal-insulator transition [1], and also optical properties, defined in heavily doped semiconductors [2, 3].

In the following Sections 2-5 [4, 11], in the n(p)-type degenerate GaSb-crystals, our numerical results of the
optical coefficients, due to such the impurity-size effect, and obtained from an improved Forouhi-Bloomer
parameterization model (IFB-PM), are presented, and also compared with the corresponding experimental-
and-theoretical ones [9, 11], suggesting that our present model is found to be a good IFB-PM, as that

observed in Table 3c. Finally, some concluding remarks are discussed and reported in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given
in the n(p)-type GaSbs -crystal, such as: (i) if denoting the free electron mass by m,, the effective electron

(hole) mass, mpy/My , which is respectively equal to the relative effective mass,
Mppy/ My = 0.047 (0.3) [5], as used in this Sections 2 and 4 to determine the critical impurity density in the

metal-insulator transition (MIT), and (ii) to the reduced effective mas, m,/m, = =2 = 0,040634, as used

Mn-+Mp
in Sections 3 and 5 to determine the optical band gap and the optical coefficients given in the n(p)-type
heavily doped InAs-crystals. Further, Ego= Eggash= Egsh= Egea = 0.81 €V [2, 5] is the unperturbed intrinsic
band gap, €gash= €ca = Esp = & = 15.69 is the relative static intrinsic dielectric constant of the GaSb-
crystal, and finally, the effective averaged numbers of equivalent conduction (valence)-band edge, gevy =
1(2).
Table 1. For increasing ryc), while €(rqe)) decreases, the functions: gni(gpi)(rd(a)), Neon(nop) (Fagay) and N(E;BE(CDP)(rd(a))
increase. The maximal relative deviations between the numerical results of Ncpnnop) (acay) @nd NEpncop (Facay): in absolute
values, calculated using Equations (3, 21), are found to be equal to: 7.8% (5.9)%, respectively, suggesting that Ncpnwop) (Fd(a))
can be explained by NG (ry), being localized in the EBT. So, in the n(p)-type GaSb- crystal, in which (M) /m,) = 0.047
(0.3) [5], all the numerical results for the energy-band-structure parameters and Nepn(cop) (Fd(a)), being expressed as

functions of ry(s)-radius, are obtained, by using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Te Sb Sn

rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(ry) 18.7494 16.9954 15.7505 15.69 15.6284
Eq(rg) in meV 1.8183 22130 2.5766 2.5965 2.6170
Egni(ra) in eV 0.8092 0.8096 0.80998 0.81 0.81002
Ncpn(rg) in 1017 cm™3 4.6883 6.2949 7.9085 8 8.0954
NEB! (ry) in 1017 cm™3 5.0549 6.2463 7.3636 7.4250 7.4890
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|RD| 7.8% 0.77% 6.9% 7.2% 7.5%

Ren < 1, from Eq. (7), 0.0134 0.0123 0.0115 0.0114 0.0114
Acceptor Ge Ga(Al, Mn) Mg In

ry (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 15.7605 15.69 14.8422 14.3386
E.(ry) in meV 16.48 16.57 18.52 19.84
Egpi(ra) ineV 0.8098 0.81 0.8119 0.8133
Nepp(ra) in 1017 cm™3 7.8931 8 9.4507 10.4818
NEpp(ra) in 1017 cm™3 8.3576 8.4232 9.2832 9.8655
IRD| 5.9% 5.35% 1.8% 5.88%

Rsp < 1, from Eq. (7), 0.4581 0.4575 0.4490 0.4436

We now determine our expression for extrinsic static dielectric constant, s(rd(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a))’ characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)-GaSb]-systems, since Fq(a), given in tetrahedral covalent bonds, is usually either larger or
smaller than rgp(ga) = 0.136 (0.126 ), a local mechanical strain (or deformation potential energy) is
induced, according to a compression (dilation) for: Iqcay > rasny (Faca) < Fasqn)), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc)-effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'q(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicgni) (Fa@) ~ Ego = Ea@) (o) — Edo(ac) = Ediogao) * [(8(:;&))) - 1], (1)
where Ego(aoy = —oXMV*(Me/ M) _ 5 5965 mev (16,57 meV), and

€

€

1+ ( fd) )3—1 xln( fd(a) )3
'sh(Ga) 'Sh(Ga)

<g,, for ld(a) = I'sh(Ga)>

e(rae)= J

3 3
8(rd(a))= J — fo =€, [( 'd(a) ) — l] x In(ﬂ> <1, for ld(a) = I'sh(Ga)- 2)

3 Tsb(G r
i < rd(a) ) _1 ><In< rd(a) )3 (Ga) Sb(Ga)
TSh(Ga) 'sb(Ga)

2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate GaSb-crystals, the critical donor(acceptor)-density, Ncpnnop)(Faca)) » 1S

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonvop) (Tdca)) 73 * @sneep) (Mdcay) = Y5 (3)
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and the effective Bohr radius agn(gp)(Fdca)) is given by:

e(fa@)> 2 _ < 10-8 £(rd(a))
—@-__ =0, 1 m x ——2°
M ) X012 053>107¢ (Mppy/Mo)’ 4)

asnp) (Fd(a)) =
where —q is the electron charge, €(rya)) is determined in Eq. (2), in which My /My = Mppy/mg =
0.047 (0.3) . Here, we have chosen, in this work, y=1.6425 (0.25732) so that we obtain:
Nconnop) (Fsb(ca)) = 8 10Y  ~3[5]. Then, from Eq. (3), the numerical results of Nconnop) (Faca)) are
obtained and given in the above Table 1, in which we also report those of the densities of electrons (holes),
being localized in exponential conduction (valance)-band (EBT) tails, NEB-;(CDp)(rd(a))a obtained using the
next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations (RD), in absolute
values, between Nepnnpp)(Tda)) and Ngpneop(Td@) are found to be equal to: 7.8% (5.9%),
respectively. Thus, the numerical results of Ncpnnpp)(Fam)) are obtained, using Eqg. (3), can be
explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)
tails, Nepn(cop) (Td(ay). being determined from Eq. (21).

In summary, Table 1 also indicates that, for an increasing r'ycy, €(Fy(a)) decreases, while Egni(gpi)(rd(a)),
Nconop) (Facay) and NEBE(CDP)(rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, M, /My is chosen as: myp,)/mMy = my/m, =0.040634 , and then, if denoting N =N —
Nconnop) (Fda)) > the optical band gap (OBG) is found to be given by:
Egni(gpn) (N Faa): T) = Egnagpa)(N @), T) + Ernepy (N, ), ()
where the Fermi energy Erpnrpy(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

Egna(gp2) (N Taca) T) = Egneicgpei) (Fa@» T) — LEqgnegp) (N Faca))-

Here, the effective intrinsic band gap gnei(gpei) 18 determined by:

1
_ 2 220172201
Egneicgpei (Td@ T) = Egnicpi) (Td@) — 020251 [1 + (—440,0613 ) ]
and the band gap narrowing, AEgn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, in the n(p)-type Sb(Ga)-GaSb crystals,
one gets: Egnei(gpei)(er(Ga)n T =300 K)= 0.68 eV [5].

Then, as noted in the Appendix A and B, at T=0K, as N =0, one has: Epyrp)(N , T) = Epno(rpoy(N ) =

0,asgivenin Eq. (A4), and AEgn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
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Therefore, Egnl(gpl) = Egn2(gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

4. Physical model and mathematical methods

4.1. Physical model
1/3

b

In the n(p)-type degenerate GaSb, if denoting the Fermi wave number by: Kgnep)(N) = (3 2N/ gc(v))

the effective reduced Wigner-Seitz radius I'sy(spy, characteristic of the interactions, is defined by

_ Kengep)
X Tonp) (N s oy M) = =< 1, (©)
being proportional to N "3, Here, = (4/9 )3, kEnl(Fp) means the averaged distance between ionized

donors (acceptors), and agngp)(I'd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

-1
Ksn(sp) __ an(Fp) _ -r
kF— = ax RanS(spWS) + [b x Rs.nTF(spTF) —ax RanS(spWS)] nep) <1, (7)
n(Fp) sn(sp)

Rangsp) (N Taay) =
where the empirical parameters: = 0.068 (0.7615) and b= 0 (0), respectively, were chosen so that the
relative deviations between Nepn(npp) and NEBI(CDP), in absolute values, are minimized, as observed in Table
1. Here, these ratios, Rsntr(sptry @Nd Rsnws(spws)» can be determined as follows.

First, for Nconnop) (Fdqa)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

__ KsnTF(spTF) _ kl?nl(Fp) _ |4 Tsnesp)
RsnTF(spTF)(N lrd(a)) = - 1, (8)

Ken(rp) KenTF(spTF)

being proportional to N~1/6.

Secondly, for < Ncpnnpp)(Faca)) > according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

Ksn(s d gn sp) > N rgca
Rsnspyws(N  Fagay) = % = (21_ [ 2k S:(Es S) ¢ >)])’ o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
I(l?riL(Fp) Nn(p) 1 I(l?riL(Fp) Fno(Fpo)
< = <——==R <1l A =— 10
anEp) | Fofpo) A Kepy P ") T g (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) 1s defined in Eq. (7).
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Then, in degenerate d(a)- GaSb systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the GaSb -crystal, is defined by

O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)- GaSb system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total GaSb -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined as [3] :

(r '
2 |Vn(p)| (d(a)) Fno(Fpo)

=2 — *Ransp)(N @) _ VZiN —172 _ -
Wao) (Vngey: N Taa)) = Ny > exp <L> NN Fa@) = 27— X 8Kgnienyr Yn(p) = —— (12)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

0.1 (0.1), respectively, will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally v,y = ,
Fno(Fpo)

where s the total electron energy and Eppo(rpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z, fora=1,

2xk

2
K = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
)

2% (
two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In degenerate d(a)- GaSb systems, the effective Gaussian distribution probability is defined by

1 —V?2
P(V) = ——— x ex [ ]
V) V2 Wn(p) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) a3 = Z_f is defined by

(C =V D= S dm= _o( =V ExPV)AV, for a=1.
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*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /Wy = Ayp) X n(p) X eXP| ——= |,
4x [[vne)|

and using an identity:
(o) _1 2
0 sf2xexp (—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp (—x2/4)xW exp (—x2/4)xn.. 2 x -
( )KIM p(- \/2_; h(®) xT(a+xD_ 1(x) _ = "0 5 exp [ — Ranepy*(2a—1) | Fa+
8% | Vnp)|
9 *D_1(0). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

3 Vo
_a_l(X -—o)  (a)xexp <(\/5 + ) x—X sza) -0, @@= AR
1622 2 4 Tl

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:
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2xk2

N =
I

a—

(D s k= o (14)
i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D_,_1(X - =) B(a) xexp|—(vVa +25) x— = W -0, B(@ = % noting that
2 16a2 27 1@+
B = and B(5/2) = 23/2
24X (5/4)
Then, putting f(a) = n(p) x I'(a+3) % B(a), Eq. (13) yields
(x 2)kim R x(2a-1)
Ho)( n) =+ 0 Tagey @) = —5— = exp | = ——B—— — (\/5 +%) Gk e ig| - O (15)
8 ||Vn(p)| 16a2.
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X ¥42x "7 . 0. Therefore, Eq. (13) yields
a3
{ k xm 1 Fay )2 L
—_— n n —a—=
Kn)( n) =+ . 4@, a) = & @ xexp (——2=) X (Aay X )~ 2- 0. (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:
Fr)( n@ey: Tacay @) = Ko ( nep): Tay @) + [Hae)( ney: Fa@ @) = Koy ( ngpy: Tacay, )] > exp [
(Ao )] (17
such that: Fnpy( n(p): Fd(a) @) ~ Hne)( np)y Fa@@) for 0= <16 , and Fnp)( nep) Fdea) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- GaSb systems at T=0 K, in which m;,/mMy = My(p)/m, = 0.047 (0.3), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

( CWkm = gc(v)( mn(p)) x( k)KIM = gzc(vz) (2mn(p))E i <\724—)an x F(%) x D_g(X) = (), (18)

Nl w

xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP —=nh)

4 [[va)|
Here, Eppo is determined in Eq. (A4) of the Appendix A, with mp;y/mM, = Mpy/mg and  =0.1(0.1),

respectively, being chosen such that the following determination of NEBE(CDP)(N, l'd(a)) Would be accurate.
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Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:
3
{ kM 3/2
_ (=0 _ _ _ 9ewy*(Mn(p)*mo) ™ "< /“n(p) _ N
f(a=1) - —0_ Fn(p)( n(p) rd(a)l a= 1)? o~ 223 x (a - 1)a (a - 1) = zgxr(5/4).
(19)
Therefore, NEBE(CDP)(N, ld) can be defined by
0
NEBrcop (N Ta@) = —, ( <0)d |
where (= 0) is determined in Eq. (19). Then, by a variable change: () = m, one obtains:
3/2
_ 9ew)*(Mn)) ™/ n@) > Fno(Fpo) 16 _ _
NGBneom (N Faa) = e 2x{ 5" @=1)%Fog( e Fa@a=1)d npy + I}
(20)
where
2
o w0 ~(An@* n) -3/2
he = 16 @=D*Kip(a@la@a=Ddae = 16 2 (Ao @) d ne)-
Here, (a=1)=— A

28T (5/4)
2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

—1 A— — 0 ynp))
In(o) = =7m— X ttletdt = @7
n(p) ZZLTW TS 25y

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 2o *(M@) ™ 2@ * Frotepo) 6, _ _
Ncon(eop) [N = Neonop) (Fa@y)] = 523 x { o (@=1)xFap)( npy Fa@ya=
rd, ne)
Dd ppy + m}, (21)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBE(CDP)[N = Nconnop) (Fdqa))] = NEBE(CDF,)( ld@) > for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 1, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 7.8% (5.9%), respectively. In other words, this

critical d(a)-density Ncpnnpp) (Fdcay)) can thus be explained by the density of electrons(holes) localized in

the EBT, N&phcop) ( Fd@ay)-
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So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the

degenerate d(a)- GaSb systems, can thus be expressed by:
N =N—Neonop N = Neonccop)- (22)

2xkEn(epy(N )

, the value
2XMn(p)

Then, if N = Ncpn(npp), according to the Fermi energy, rnocrpoy(N = Neonnop)) =

of the density of electrons(holes), NEBI(CDIO), localized in the EBT for < 0, is almost equal to Ncpn(Npp)»

given in this parabolic conduction (valence) band, for = 0. This can thus be expressed as:

N(EZBE(CDp) Nconnopys @ N = Nepnnop)- (23)

5. Optical coefficients
Here, Mp;)/ Mo is chosen as: Mpy/M, = my/m, = 0.040634, as that used in Section 3, for determining

the optical band gap in degenerate GaSb-crystals.

The optical properties of any medium can be described by the complex refraction index  and the complex
dielectric function €, =n—ik and € =&, —ig,, where i =—1 and €= 2. Therefore, the real and
imaginary parts of € denoted by €; and €, can thus be expressed in terms of the refraction index n and the
extinction coefficient K as: & = n? — K? and £, = 2nK. One notes that the optical absorption coefficient a is

related to €, n, K, and the optical conductivity Og by [3]

N(E) %&free space XCE

a(E) = xJE )= Exep(E) — 2ExK(E) — _  4mop(E) €, =n?—K2and &, = 2K, (24)

cn(E) ¢ cn(E)>Efree space

where the effective photon energy: E = E — Egp(gp) is the reduced photon energy, the band gap Egn(gpy can
be equal to the optical band gap Egny(gp1), the effective intrinsic band gap Egnej(gpeiy, or to the intrinsic band
gap Egni(gpi)» determined in Eq. (5). Here, E= , -q, , [V(E)|, W, Efreespace» C and J(E ) respectively
represent: the photon energy, electron charge, Dirac’s constant, matrix elements of the velocity operator
between valence (conduction)-and-conduction (valence) bands in n(p)-type GaSb -semiconductors, photon
frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if
the three functions such as: [V(E)|2, J(E ) and n(E) are known, then the other optical dispersion functions
given in Eq. (24) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be

expressed in terms of K(E) and n(E) as:

[n(E)—1]2+K(E)?

RE) = nerrme?

(25)
From Equations (24, 25), if the two optical functions, €; and €5, (or n and K), are both known, the other ones

defined above can thus be determined.

Then, using a transformation for the joint density of states, J(E ), given in allowed direct InAs -transitions,

one obtains: at low values of E, Egnjgpiy = E<1.6€V, and for = (% + 10_21),

3/2 1 1021 _
(=) el €™ 00

1 amn\32 _ __ ey 1
Iy () = 575 (555) " > Bty  (E = Egnegey)* /2 = 55 anicapi)

U

341



and, at large values of E, E = 1.6 eV and for a=5/2,

3/2 _ a—(1/2) 3/2 _ 2

1 2my (E—Egn(gp)) _ 1 2m, (E—Egn(gn))

In(E ) =5 () e O =L ()7 e el 27)
gni(gpi) Egni(gpi)

Further, one notes that, as E - oo, Forouhi and Bloomer (FB) [11] claimed that K(E - o) - a constant,
while the K(E) -expressions, proposed by Jellison and Modine [12] and by Van Cong [3] quickly go to 0 as
E~3, and consequently, their numerical results of the optical functions such as: 0o (E) and a(E), given in Eq.
(24), both go 0 as E™2.

Now, taking into account Equations (26, 27) and also those remarks, an improved Forouhi-Bloomer
parameterization model (IFB-PM), used to determine the accurate expressions of the optical coefficients,
obtained in the degenerate n(p) type GaSb -crystals, is proposed as follows.

If, defining the band gap Egn(gpy, Which can be equal to the optical band gap Egnq(gp1), the effective intrinsic
band gap Egneicgpeiy, OF to the intrinsic band gap Egpj(gpiy, determined in Equations (1, 5), and defining the

4 Aj

function: f(E)= i=13(E)—B,E+Cy

where g(E)=E? x (1 + 1074 x g), we propose:

_ (2-1072) _ 1072
KE) =f(E) X Eggoiy ~ < (E = E—Egnigpn)) » for Egnicgpi) SE<16eV,

=f(E) x (E = E— Egngp))’» for E=16eV, (28)

being equal to 0 for E = 0 (or for E = Egy1(gp1)), and also going to 0 as E~1 asE - oo. Further,

_ 4 BgoiE+Coi
NE) = Noo(la@) + =1z gricy (29)

: — — wr — 13 o—1
going to a constant, as E - 0, N(E - 0, ry)) = Ne(Fdea)) = /E(Fd@) > o wr =43x10"s [5]

and w_ = 1.00819 x 104 s, obtained from the Lyddane-Sachs-Teller relation [5], from which T(L)
represents the transverse (longitudinal) optical phonon mode, so that, in the P-GaSb system, in which

Egni(rp) = 0.8092 eV, we obtain: Ny, (rp) = 1.846799. One also notes that in the FB-PM [11],
Neo(rB—pM) = 1.914 and the band gap Eyry—pmy = 0.65 €V < Eyyi(rp) = 0.8092 eV, as observed in Table

A B2 A
1. Here, Boi(Egnei(gpei)) = a: x [_ ?I + Egnei(gpei)Bi - ESnei(gpei) +Gil, Coi(Egnei(gpei)) = a: x

4ci—B?

By (Egnei(gpei) *Ci . :
B Caneitgoen*©i) _ 2Egnei(gpei)Ci], Qi =~—— where, for i=(1, 2, 3, and 4), the numerical values of the

2
parameters for the GaSh-crystal, are chosen as: Aj = Aj(rg), Bj = Bj(rg), and C; = Cj(rg). Here, the values of
AirB): Bi(rs), and Cj(rp) are given in Ref. [11].

The important numerical results of the above optical functions, at T=0K, N = N¢pp(cpp), and for E = Egpj(gi»
are reported in following Tables 2a, 2b and 2c, and Tables 3a, 3b and 3c, in which they are also compared
with the corresponding ones, calculated using from FB-PM [11], and also the relative deviations (RDs) of
those numerical results, calculated using the corresponding data, given by Aspnes and Studna [9], suggesting
that our obtained numerical results of these optical coefficients are found to be more accurate than the

corresponding ones, obtained from the FB-PM, as observed in Table 3c.
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Table 2a. At the MIT, T=0K, N=N¢pn(p)(F'dca)), and the critical photon energy Ecpg = E = Egni(gpi)(rd(a)), Kmi(Egnicgpiy: Fdca)) = 0,
82(MIT)(Egni(gpi)x rd(a)) =0, OO(MIT)(Egni(gpi)x rd(a)) =0 and MIT(Er rd(a)) = 0, and the other functions such

as : N (Egnicgpi): Fdcay) > €10mimy (Egnicgpiys Fa())> and Rmit (Egnicgpiy: Fda)) decrease, with increasing rqcay and Egni(ragay)-

Donor P As Te Sb Sn

At the MIT, T=0K, N=N¢p,(ry), and the critical photon energy Ecpg = E = Egpi(ra), one has :

Egni(rd) ineV 0.8092 0.8096 0.80998 0.81 0.81002
Mt Egnis o) 3.2051 3.1164 3.0505 3.0472 3.0439
Kt Egnis Fa) 0 0 0 0 0
€1 omimy (Egnis Fa) 10.272828 9.711691 9.305541 9.285606 9.265294
ety (Egnis a) 0 0 0 0 0
OomiT) (Egnis Fd) 0 0 0 0 0
miT(Egni, d) 0 0 0 0 0
Ryt (Egni» Fa) 0.2750 0.2643 0.2563 0.2559 0.2554
Acceptor Ge Ga(Al, Mn) Mg In
At the MIT, T=0K, N=N¢p,(ra), and the critical photon energy Ecpg = E = Egpi(ra), one has :
Egpi(ra) ineV 0.8098 0.81 0.8119 0.8133
Nt (Egpis Ta) 3.0512 3.0472 2.9997 2.9707
kmiT (Egpis 2) 0 0 0 0
&1 uimy Egpis ) 9.3095 9.2856 8.9979 8.8248
€y (Egpir ) 0 0 0 0
Oomity (Egpir 2) 0 0 0 0
miT(Egpis Fa) 0 0 0 0
RMIT(Egpiv ra) 0.2563 0.2559 0.2499 0.2463

Table 2b. In d(a)-GaSb systems, the values of the following optical coefficients at the total carrier energy < 0, as that given in

Section 4, being expressed as functions of ryc), and calculated using Equations (31-36, 24), for E = Egni(gpi)(rd(a)), present the

exponential tail-states for KEEC—T | g5IMD=T OEOC_T , OEOC_T , EOACTT and RNR=T "and their variations with increasing lde) are

represented by the arrows:  and , suggesting that the obtained results of NFRI=T | gEREDT "apq RNIR=T are almost equal to the
corresponding ones given in the above Table 2a.
d- GaSb systems P As Te Sb Sn
nERI=T(ry) 3.2051 3.1164 3.0505 3.0472 3.0439
KEEC=T(ry) in 1073 0.0848 0.0849 0.0850 0.08504 0.08505
eEReD=T (1)) 10.2656 9.7045 9.2983 9.2784 9.2581
o () 0.5436 0.5293 0.5188 0.5183 0.5177
0% T(ry) in Q'cm™t 4.7086 4.5868 4.4976 4.4932 4.4888
BOAC=T(ry) in 10% cm™ 6.9548 6.9678 6.9798 6.9805 6.9811
RNR=T(ry) 0.2753 0.2646 0.2566 0.2562 0.2558
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a- GaSb systems Ge Ga(Al, Mn) Mg In

n=R=T(r,) 3.0511 3.0472 2.9997 2.9707
KFEC=T(r,) in 1073 0.0850 0.08504 0.0856 0.0860
€T (ry) 9.3023 9.2784 8.9906 8.8174
€5mD-T(r,) 0.5186 0.5183 0.5137 0.5111
05 T(ry) in Q7lem™! 4.4947 4.4932 4.4641 4.4487

EOACT(r,) in 10%cm™ 6.9738 6.9804 7.0451 7.0894
RNIR=T(r,) 0.2566 0.2562 0.2503 0.2467

Table 2¢. Here, the choice of the real refraction index: N(E - o0, Fyy) = Noo(Fa)) = m X Z—I, wr =43 x1018%s7?

[5] and w, =1.00819 x 10'* s obtained from the Lyddane-Sachs-Teller relation [5], from which T(L) represents the
transverse (longitudinal) optical phonon mode, giving rise to Ny, (rp) = 1.8468, and further, that of the asymptotic behavior, given
for the extinction coefficient: Ko(E - 00,ryz)) - 0, as E™L, so that og(E - oo, rya)) and a(E - o0,ry) both go to their

appropriate limiting constants, are found to be very important, affecting strongly the numerical results of the other optical

coefficients.
Donor P As Te Sb Sn
g(rq) 18.7494 16.9954 15.7505 15.69 15.6284
Noo(rg) 1.8468 1.7583 1.6927 1.6894 1.6861
Koo (rg) 0 0 0 0 0
£1.00(Fa) = Noo(Fa)? 3.410668 3.091599 2.865151 2.854139 2.84293
€2,0(rd) 0 0 0 0 0
5

O0e(fg) ino 10.8204 10.3019 9.9174 9.8983 9.8789

w(Fg) in (10°xcm™) 2.7737 2.7737 2.7737 2.7737 2.7737
Reo(rg) 0.08848 0.07558 0.06617 0.06571 0.06524
Acceptor Ge Ga(Al, Mn) Mg In
e(ry) 15.7605 15.69 14.8422 14.3386
N (ra) 1.6932 1.6894 1.6431 1.6150
Keo(Fa) 0 0 0 0
€1.00(ra) 2.8670 2.8541 2.6999 2.6083
€2,00(ra) 0 0 0 0

5

O0es(Fa) i 9.9205 9.8983 9.6272 9.4625

o(ra) in (10° x cm) 27737 2.7737 27737 2.7737
R (ra) 0.0662 0.0657 0.0592 0.0553
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Table 3a. In the P-GaSb system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Eg,i(rp)[ = 0.8092 eV], and the corresponding ones, obtained from the FB-
model [11], are reported in this Table 3a, in which the relative deviations (RDs) of those are also given and calculated, using the
Aspnes-and-Studna (AS)-data [9]. Here, as repoted in above Table 2¢, we obtain here: Ko, (E — ©0,rp) - 0and g,00(E - o0,1p) - 0,

while, in this Table 3a, Keo(rg)(E ~ ©0,1p) = 045617 and €3 rg)(E ~ 0, 1p) = 1.746219.

EineV n(RD%) K(RD%) & (RD%) €, (RD%) Neg (RD%) Keg (RD%) &8y (RD%) €28 (RD%)
Egn(rp)  3.2051 0 10.272828 0 3.491711 0.0032833 12.192034 0.022929
15 3.863 (11.9) 0.195 (43.4) 14.888 (22.2)  1.5039(50.2)  4.245(3.3) 0.215(37.6)  17.971 (6.1) 1.823 (39.7)
1.6 4.000 (11.2) 0.224 (46.2) 15.954(20.8)  1.791(52.3)  4.399 (2.4) 0.308 (25.8)  19.25 (4.4) 2.714 (27.6)
1.7 4.150 (10.6) 0.314 (35.3) 17.122(19.7)  2.604 (42.1)  4.566 (1.6) 0.436 (10.1)  20.657 (3.1) 3.982 (11.6)
1.8 4312 (10.5) 0.454 (25.7) 18386 (19.4)  3.916(33.5)  4.746 (L.5) 0.612 (0.1) 22.154 (2.9) 5.809 (1.3)
1.9 4.489 (11.1) 0.665 (19.8) 19.708 (20.6)  5.970 (28.7)  4.943 (2.2) 0.874 (5.4) 23.668 (4.7) 8.638 (3.2)
2 4.624 (11.7) 1.055 (23.4) 20267 (20.7)  9.756 (32.4)  5.082 (3.0) 1.360 (1.3) 23.974 (6.1) 13.822 (4.3)
2.1 4316 (8.3) 1.411(21.7) 16.634(11.9) 12.182(28.1)  4.661 (0.9)  1.789 (0.7) 18.522 (1.9) 16.681 (1.7)
2.2 4216 (6.7) 1.404(19.6) 15.801 (9.1)  11.842 (25) 4516 (0.1)  1.746 (0.03)  17.341(0.2) 15.772 (0.1)
23 4204 (6.4) 1.536(14.1) 15311(9.8) 12918 (19.6)  4.484(02)  1.883(5.3) 16.564 (2.4) 16.890 (5.1)
2.4 4131 (8.5) 1.697(13.5) 14.186(14.1)  14.024 (20.8)  4.382(29)  2.055 (4.7) 14.982 (9.3) 18.012 (1.7)
25 4.014 (6.9) 1.829 (19.9) 12.764 (4.5) 14.686 (25.5)  4.230(18.9)  2.191 (4.1) 13.097 (2.0) 18.539 (5.9)
2.6 3.880 (2.6) 1.915(15.9) 11.388 (6.7) 14.864 (18.2)  4.063 (2.0)  2.272(0.3) 11.349 (6.3) 18.465 (1.6)
27 3.755(2.1) 1.957 (11.5) 10.269 (4.5) 14.699 (13.4)  3.910(1.9) 2302 (4.1) 9.988 (1.6) 18.000 (6.1)
2.8 3.654 (2.8) 1.967 (8.8)  9.486 (0.02) 14376 (11.3)  3.788(0.3)  2.295 (6.4) 9.081 (4.2) 17.388 (7.2)
2.9 3.586(3.8) 1.959 (7.6)  9.024 (3.9) 14.052 (11.1)  3.706 (0.6)  2.270 (7.0) 8.581 (8.7) 16.823 (6.4)
3 3.552(4.8) 1.948 (7.6) 8.825(6.9) 13.839 (12) 3.664 (1.8)  2.242(6.3) 8.398 (11.4) 16.432 (4.4)
3.1 3.550(5.7) 1.945(8.8) 8.817 (8.4) 13.811 (14) 3.659 (2.8)  2.226 (4.3) 8.435 (12.4) 16.291 (1.4)
3.2 3.574(5.9) 1.961 (112) 8.928 (6.6) 14.022 (165)  3.685(3.0)  2.232(1.0) 8.597 (10) 16.454 (2.0)
33 3.619 (4.9) 2.006 (13.5) 9.078 (0.5) 14519 (17.8)  3.735(1.9)  2.271 (2.0) 8.788 (3.6) 16.965 (3.9)
34 3.677 (3.1) 2.086 (14.1) 9.168 (7.9) 15344 (16.8)  3.798(0.1)  2.352(3.2) 8.890 (4.7) 17.864 (3.1)
35 3.736(1.3) 2.212(13.1) 9.062(15.4)  16.526(14.2)  3.861(2.0)  2.483 (2.4) 8.744 (11.3) 19.175 (0.5)
36 3778 (0.1) 2.388(11.2) 8.570(22.2)  18.049(11.1)  3.907(3.5)  2.671(0.7) 8.129 (15.9) 20.870 (2.8)
3.7 3.782(0.9) 2.617 (8.5) 7.454(27.4)  19.796 (7.7) 3909 (43)  2.916 (1.9) 6.774 (15.7) 22.798 (6.3)
3.8 3.718 (0.5) 2.887(5.9) 5.488(28.2)  21.470(5.5) 3.836(3.6)  3.207 (4.5) 4.429 (3.5) 24.604 (8.3)
3.9 3.560 (1.7) 3.170 (4.6) 2.621 (27.3)  22.573 (6.2) 3.659 (1.1) 3.511 (5.7) 1.061 (48.4) 25.697 (6.8)
4 3.297 (4.4) 3.420 (6.1) —0.826 (39.9)  22.546 (10.3)  3.368 (2.3) 3.777(3.7)  —2.920 (112.5) 25.441 (1.2)
4.1 2.949 (4.9) 3.582(9.9) —4.136 (33.3)  21.129 (14.3) 2.986 (3.7) 3.946 (0.7)  —6.655 (7.3) 23.566 (4.4)
42 2.568 (1.8) 3.626 (12.2) —6.553 (38.7)  18.628 (10.6) 2.570 (1.9) 3.984(3.5)  —9.268 (13.4) 20.476 (1.7)
43 2214 (11.3) 3.555(9.4) —7.738 (32.3)  15.478 (0.9) 2.185 (9.8) 3.896(0.7)  —10.406 (9.0) 17.024 (9.1)
44 1929 (11.8) 3.404 (6.2) —7.867 (22.8)  13.133 (5.1) 1.876 (8.9) 3721(2.5) —10323(1.2) 13.961 (11.7)
45 1.725 (8.8) 3.214(5.2) —7.357 (18.1)  11.093 (3.1) 1.658 (4.5) 3.505(3.3)  —9.534 (6.1) 11.622 (8.0)
4.6 1.597 (6.2) 3.022(5.8) —6.581 (18.0)  9.649 (0.08) 1.522 (1.3) 3.287(24)  —8.485 (5.6) 10.005 (3.8)
47 1.526 (5.7) 2.847(6.8) —5.778 (20.3)  8.691 (1.5) 1.450 (0.4) 3.090(1.1)  —7.446 (2.7) 8.959 (1.5)
4.8 1.496 (6.2) 27702 (7.7) —5.065 (23.2)  8.086 (1.9) 1.421 (0.9) 2.927(0.05) —6.546 (0.7) 8.318 (0.9)
4.9 1.490 (7.4) 2.591 (8.4) —4.493 (26.1)  7.722 (1.6) 1.418 (2.3) 2.800(1.0)  —5831(4.0) 7.945 (1.3)
5 1.495 (9.2) 2.513 (8.6) —4.080 (283)  7.513 (0.2) 1427 (4.2) 2711(14)  —5313(6.7) 7.739 (2.8)
5.1 1.500 (10.4) 2.465 (8.2) —3.826 (28.6)  7.389 (1.3) 1.435 (5.7) 2.655(1.1)  —4.990 (7.0) 7.619 (4.5)
5.2 1.492 (10) 2.442(7.7) —3.736 (27.5)  7.286 (1.6) 1.431 (5.5) 2,626 (0.7)  —4.848(6.0) 7.515 (4.8)
53 1.467 (9.0) 2.435 (7.7) —3.778(26.6)  7.144 (0.6) 1.407 (4.6) 2.615(0.8)  —4.860 (5.6) 7.360 (3.7)
54 1419 (9.2) 2.435(8.2) —3.915(26.9)  6.910 (0.3) 1.359 (4.6) 2612(1.5)  —4975(7.1) 7.097 (3.0)
55 1349(11.3) 2.429(8.2) —4.081 (26.2) 6552 (2.2) 1.286 (6.1) 2.602(1.6)  —5117 (7.4) 6.693 (4.4)
56 1261 (11.8) 2.407(7.5) —4.204 (23.5)  6.074 (3.5) 1.195 (6.0) 2576 (1.0)  —5207 (5.3) 6.158 (5.0)
57 1.167(9.9) 2.364(6.7) —4.226(20.2)  5.518 (2.5) 1.097 (3.3) 2526(03)  —5179(2.2) 5.542 (2.9)
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58  1.076(5.3) 2.298(7.3) —4.121(19.2)  4.945 (2.4) 1.002 (1.9) 2452(1.1)  —5010(1.8) 4.916 (3.0)

5.9 0.997 (1.2) 2.213 (9.4) —3.903 (21.9) 4.414 (8.3) 0.921 (6.5) 2359 (3.5)  —4718(5.7) 4.344 (9.8)
6 0.935 (0.05) 2.117 (12.4) —3.606 (27.3)  3.961 (12.4) 0.857 (8.2) 2254 (6.7)  —4.344 (12.4) 3.865 (14.5)
102 1.8468 0 184682 =3.410668 0 1.914 0.45617 3.455305 1.746219
;630 1.8468 0  1.84682=3.410668 0 1.914 0.45617 3.455305 1.746219
EineV n(RD%) K(RD%) £ (RD%) & (RD%) Nes (RD%) Keg (RD%) €1r8) (RD%) €ars) (RD%)

Table 3b. In the P-GaSb system, at T=0K, our numerical results of the following optical coefficients, expressed as functions of E,
and calculated using Equations (24, 25, 28, 29), for Eg,(rp) = Egpi(rp)[ = 0.8092 €V], and the corresponding ones, obtained from the
FB-model [11], are reported in this Table 3b, in which the relative deviations (RDs) of those are also given and calculated, using the
AS-data [9]. Here, as reported in above Table 2¢, we obtain here: o (E — o0,rp) = 27737 x 10°cm™, 000 (E - 00,rp) = 1.082043 x

1 — . . —
108 (m) and (E - oo,rp) = 008848, while, in the FB-model, ¢ - ©, 0ogsy -~ @0 and  (E - o0,1p) = 0.119948.

EineV  (10%xcm™); RD% R; RD% 0o (ﬁ) Ooe) (ﬁ) 5(108 x cm™1): RD%  Reg:; RD%
0.8092 0 0.274985 0 0.198592 0.269249 0.307732
15 29.586; 43.5 0.348; 12.6 24.145 29.270 32.644; 37.7 0.384; 3.6
1.6 36.296; 46.2 0.361; 11.6 30.672 46.486 50.026; 25.9 0.398; 2.6
17 54.064; 35.3 0.376; 10.6 47.391 72.459 75.127; 10.1 0.414; 1.6
18 82.837;25.7 0.393; 10.0 75.451 111.91 111.62; 0.08 0.431;12.6
1.9 128.04; 19.8 0.413;9.9 12141 175.67 168.25; 5.4 0.452; 1.3
2 213.83; 23.5 0.435; 10.6 208.85 295.89 275.65; 1.3 0.477; 2.1
2.1 300.36; 2.2 0.429; 9.4 273.82 374.93 380.81; 0.8 0.471; 0.6
22 313.12; 8.4 0.422; 8.4 278.85 371.40 389.36; 0.05 0.460; 0.1
23 358.12; 14.1 0.429; 7.0 318.02 415.79 438.93; 5.3 0.466; 1.2
2.4 412.81; 13.5 0.434; 8.2 360.24 462.69 499.81; 4.7 0.472; 0.2
25 463.47;19.9 0.436; 9.8 392.96 496.08 555.12; 4.1 0.474; 2.1
2.6 504.66; 16 0.435;7.4 413.64 513.86 598.66; 0.4 0.472; 0.5
2.7 535.54; 11.5 0.432; 5.5 424.79 520.17 629.83; 4.1 0.468; 2.4
2.8 558.11; 8.8 0.427; 4.8 430.84 521.11 651.25; 6.4 0.462; 3.0
2.9 575.75; 7.6 0.423; 4.9 436.18 522.19 667.07; 7.0 0.457; 2.7
3 592.19; 9.4 0.420; 5.3 44437 527.63 681.68; 25.9 0.453; 2.0
3.1 611.11; 8.8 0.420; 6.2 458.24 540.25 699.31; 4.3 0.451; 0.7
32 636.09; 11.1 0.423;7.3 480.26 563.57 723.95; 1.1 0.453; 0.7
33 670.75; 13.5 0.429;7.7 512.83 599.23 759.59; 2.1 0.458; 1.4
3.4 718.90; 14.1 0.439; 7.5 558.41 650.11 810.40; 3.2 0.468; 1.4
35 784.56; 13.1 0.453; 6.6 619.10 718.34 880.70; 2.4 0.482; 0.7
3.6 871.39; 11.2 0.470; 5.3 695.47 804.15 974.41; 0.7 0.499; 0.5
3.7 981.29; 8.6 0.491; 4.1 783.95 902.85 1093.5;1.9 0.520; 1.6
3.8 1111.8; 5.9 0.514;3.0 873.24 1000.7 1235.0; 4.5 0.544; 2.7
3.9 1253.0; 4.6 0.538;2.6 94225 1072.7 1387.7; 5.6 0.570; 3.1
4 1386.2; 6.2 0.562; 3.5 965.28 1089.2 1530.9; 3.6 0.596; 2.2
4.1 1488.4; 9.9 0.585; 5.6 927.22 1034.1 1639.5; 0.8 0.620; 0.05
42 1543.4; 12.2 0.603; 8.3 837.39 920.46 1695.7; 3.6 0.641;2.6
43 1549.4; 9.4 0.614; 8.7 724.77 783.54 1697.8; 0.7 0.655;2.7
4.4 1517.9; 6.2 0.617;7.1 618.47 657.49 1659.0; 2.5 0.661; 0.6
45 1465.9; 5.2 0.611; 6.1 534.28 559.80 1598.2; 3.3 0.657; 0.9
4.6 1408.6; 5.8 0.598; 6.1 475.09 492.62 1532.1; 2.4 0.645; 1.3
47 1356.2; 6.8 0.579; 7.1 437.23 450.71 1471.7; 1.1 0.627; 0.6
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4.8 1314.6; 7.7 0.558; 8.2 415.45 427.33 1423.6; 0.08 0.606; 0.3

49 1286.6; 8.4 0.538;9.5 405.02 416.68 1390.6; 1.0 0.586; 1.6
5 1273.3; 8.7 0.523; 10.6 402.09 414.16 1373.7; 1.4 0.569; 2.7
5.1 1274.0; 8.2 0.513; 10.7 403.34 415.91 1372.2; 1.1 0.558; 3.0
52 1286.7; 7.6 0.510; 10.3 405.53 418.27 1383.8; 0.7 0.553;2.6
53 1307.9; 7.7 0.512;9.9 405.28 41751 1404.7; 0.9 0.554; 2.4
5.4 1332.4; 8.2 0.518; 10.3 399.40 410.17 1429.2; 1.6 0.561;2.9
5.5 1353.9; 8.1 0.527; 10.9 385.73 394.03 1450.4; 1.6 0.571;3.5
5.6 1366.2; 7.5 0.537; 10.6 364.09 369.13 1461.9; 1.0 0.582; 3.1
5.7 1365.5; 6.8 0.546; 9.3 336.65 338.12 1459.2; 0.4 0.593; 1.5
5.8 1350.5; 7.3 0.551; 8.3 307.01 305.17 1441.4; 1.1 0.600; 0.2
5.9 1323.2; 9.5 0.551; 8.6 278.77 274.32 1410.5; 3.5 0.602; 0.1
6 1287.2; 12.4 0.545; 10.6 25435 248.18 1370.3; 6.7 0.598; 2.0
10% 2.7737x 108 0.08848 1.082043x 108 1.869027 x 102 4.622779 x 10% 0.119948

10%° 2.7737% 108 0.08848 1.082043x 108 1.869027 x 103! 4.622779 x 10%* 0.119948

EineV  (103xcm™);RD%  R;RD% o (=) oo () (103 x cm™); RD%  Reg; RD%

Table 3c. Here, our highest relative deviation (HRD)-values and those of (HRD)gg, calculated using the (AS)-data [9], are reported,

suggesting that our obtained numerical results of these optical coefficients are found be more accurate than the corresponding ones,

obtained from the FB-PM.

HRD n K €1 € R

E (eV)

1.5 11.9% 12.6%

1.6 46.2% 52.3% 46.2%

4 39.9%

(HRD)rg Nep Krg €1(FB) €2(FB) FB Res

E (eV)

1.5 37.6% 39.7% 37.7%

1.8 12.6%

2.5 18.9%

4 112.5%

Some important cases, given in various physical conditions, are considered as follows.
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5.1. Metal-insulator transition (MIT)-case
As discussed in Equations (21-23) and Eq. (A4) of the Appendix A, the physical conditions used for the MIT
are: T=0K, N =0 or N = Ncpnccop) NEB}E(CDp) , vanishing the Fermi energy:

2xkEnpy(N )

Fro(rpo)(N ) = =0. Further, from the discussions given Eq. (5) for the optical band gap:

2XMn(p)
Egnl(gpl)(N =0, Fd@) T= O) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)), according also to the MIT.

Then, in such the MIT-case, replacing both  gnei(gpeiy and Egn1(gp1)> by  gni(gpi)> given in Equations (28, 29),
and consequently from Eq. (24), one gets, for the effective photon energy E = E — Egpj¢gpiy = 0:

K(E , ra)) = 0, &(E , rge)) = 0, 0o(E , r4(ay)) = 0 and a(E , rye)) = 0, corresponding also to the MIT.

ECPE(rd(a)) = Egni(gpi)(rd(a)). Therefore, Equations (28, 29), obtained in the MIT-case, become:

2—1072 1072
K(E =0) =f(E) x Eg(;ni(gpi) ) X (E =E- Egnl(gpl) = 0) ,forE= ECPE(rd(a)) = Egni(gpi)a (30)

where Ecpg is the critical photon energy, and

_ _ 4 BoiE+Coi . . _
n(E = Egni(gpi)) = r'loo(rd(a)) + i:]_#ilzflcia in which Egnei(gpei) = Egni(gpi)- (31)

Furthermore, going back to the remark given in Eq. (23), we can determine the values of some optical
coefficients for < 0, representing the exponential tail-states, from Eq. (30), by putting: E = Egpj(gpiy, as:

KT (Egnicap) = T(Egnicap) * Egricgpi- (32)
Now, replacing Equations (31, 32) into Equations (24, 25), one obtains for < O the expressions, given for

the following exponential tail-states of €5, 0g(E), 0, and R as:

€50 T (Enicapy) = 2 X KEECT (Egnicapy) X NER'"T(E = Egnigpiy): (33)
L EImD=T[ . .
O'(E)OC_T(Egni(gpi)) — Efree space gnl(gpz:sz (EQHI(QP'))’ (34
. 2XEgni(apiy *KEEC™T (Egni(gpi
OEOACT (g1 o) = Z2Eoniond _ (Eg (gp)), and (35)

_ 2

RNR=T (Egicap) = [n(Egni(gpiy) ~ 112 +K=ECT (Eqgni(gpiy )
ni 1 - _ 2

gnitop [n(Egnicgpiy) + 11 +K=ECT (Eqgni(gpiy)

(36)

The numerical results of those optical functions, determined by Equations (31-36, 24), were discussed and
reported in the above Table 2b.

5.2. Extrema values of () as functions of photon energy E

From Equations (24, 28, 29), we can determine the extrema values of typical optical functions €;(2y(E, rq(a))
in following physical conditions by: T=0K and N = Ncpnnpp) » and by: T=20K and N = 10%m=3
respectively, as given in following Tables 4n and 4p, in which the arrows ( 1 | ) indicates the maximum, and

(¢ 1) the minimum, and the extrema-values of those occur at the same corresponding photon energy E.
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Table 4n. In d-GaSb systems, and for two types of physical conditions such as: [T=0K and N = N¢pn(rg)] and [T=20K, N =

10 cm™2], the extrema values of & (E) and &,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 Or | , suggesting that their extrema occur at the same E.

EineV 1.5 2 2.1 2.2 2.3 2.6 3.1 3.4 3.9 4.4 5.2 10 102
In the P- GaSb system, at T=0K and N = N¢pn(rp) = 4.6883 x10%7 cm™2, Eyyi(rp) = 0.8092 eV
() 14.89 t 20.27 | 16.63 15.80 15.31 11.39 882 1t 9171 262 | =787t =374 1.21 3.410668
() 1.50 9.7 112,18 | 11.84 t 1292 t+ 1486 | 13.8 t 1534 1 2257 | 13.1 7.29 219 1 0
In the As- GaSb system, at T=0K and N = Nepn(ras) = 6.2949 X107 cm™3, Egy(ras) = 0.8096 eV
() 1420 t 1945 | 15.87 15.06 14.57 10.71 820 1t 8531 200 I —-819 1t -—399 0.97  3.091599
2() 1.47 956 111.92 | 11.58 1t 12.64 t 14.52 1135 v 1497 t 2200 | 125 6.85 205 1 0
In the Te- GaSb system, at T=0K and N = Nepn(rre) = 7.9085x10 cm™3, Egpy (rre) = 0.80998 eV
() 13.71 t 18.85 1 15.32 14.52 14.03 10.22 775 1 8.06 L 156 | —843 1t —4.16 0.81 2.865151
2() 1.45 941 1t 11.73 1 11.39 t 1243 1t 14.26 1132 1t 1469 t 21.58 | 12.08 6.53 195 1 0
In the Sb- GaSb system, at T=0K and N = N¢pn(rsp) = 8 X10Y7 cm™3, Egi(rsp) = 0.81 eV
() 13.68 t 18.82 | 15.29 14.49 14.00 10.19 773 1 8.04 1 153 | —844 1+ —417 0.80  2.854139
2() 1.44 941 t 11.72 | 11.38 t 1242 1t 1425 | 13.19 1t 14.68 t 21.56 | 12.06 6.52 194 1 0
In the Sn- GaSb system, at T=0K and N = N¢pn(rs,) = 8.0954x10%7 ecm™2, Egyi(rs,) = 0.81002 eV
() 13.66 t 18.79 | 1527 1447 13.98 10.17 770 1 801 ¢ 151 | —845 1 —418 0.80  2.84293
2() 1.44 940 t 11.71 | 11.37 1t 1241 1t 14.23 11317 1 14.66 t 21.54 | 12.04 6.50 194 1 0
EineV 1.5 2 2.1 2.2 2.3 2.6 3.1 3.4 3.9 4.4 5.2 10 104
In the P- GaSb system, at T=20K and N = 109 cm~3, Egny (rp) = 1.16185eV
() 14.89 1 21.12 | 18.08 17.17 16.87 13.53 1066 t 11.09 | 648 | =394t —204 1.3 3.410668
() 1.50 4.83 6.44 6.60 7.53 9.59 9.89 1145 1+ 17.72 | 10.68 6.16 203 1 0
In the As- GaSb system, at T=20K and N = 10° cm™3, Egy; (ras) = 1.154209 eV
() 1421 t 2029 | 17.30 16.40 16.11 12.82 10.01 t 1042 ¢ 579 | —435 1 =233 1.07  3.091599
2() 1.47 4.82 6.41 6.55 7.47 9.47 9.71 11.25 + 17.37 | 10.24 5.82 190 1 0
In the Te- GaSb system, at T=20K and N = 10%9 cm™3, Egq1 (rre) = 1.147162 eV
() 13.72 1t 19.68 | 16.72 15.85 15.55 12.29 9.53 1+ 9921 527 | —465 1 -—254 0.90 2.865151
() 1.44 4.84 6.40 6.54 7.44 9.34 9.60 11.11 + 1713 | 9.92 5.57 1.81 1+ 0
In the Sb- GaSb system, at T=20K and N = 10"° cm™3, Egpny (rsp) = 1.146776 eV
() 13.69 1t 19.65 | 16.69 15.82 15.52 12.27 9.51 1t 990 I 525 + —467 1 =255 0.89  2.854139
() 1.44 4.84 6.40 6.54 7.44 9.39 9.59 1111 + 17.12 | 9.90 5.55 1.80 1+ 0
In the Sn- GaSb system, at T=20K and N = 10 cm™3, Egny (rsp) = 1.146377 eV
() 13.66 1t 19.62 | 16.67 15.79 15.50 12.24 948 1t 9.87 | 522 1+ —4681 —256 0.89  2.84293
2() 1.44 4.84 6.40 6.54 7.44 9.39 9.59 11.10 + 17.11 | 9.88 5.54 1.80 1+ O
EineV L5 2 2.1 22 23 2.6 3.1 34 39 4.4 52 10 10%
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Table 4p. In a-GaSb systems, and for two types of physical conditions such as: (T=0K and N = Ngp,(ra)) and (T=20K, N =

10%° cm™3), the extrema values of €;(E) and £,(E), calculated using Equations (24, 28, 29), vary with increasing E, represented

by the arrows: 1 or | , suggesting that their extrema occur at the same E.

EineV 1.5 2 2.1 2.2 2.3 2.6 3.1 34 3.9 4.4 52 10 10%*

In the Ge- GaSb system, at T=0K and N = Nep,(rge) = 7.8931 x10Y7 cm™3, Egyi(rge) = 0.8098 eV
1) 13.72 't 1886 | 1533 14.52 14.04 10.22 775 1 8.06 L 156 | —843 1 —417 0.81  2.866963
2() 1.44 94 1t 11.73 | 1140 t 1243 t+ 1426 | 132 1t 147 1t 2159 1+ 121 6.54 195 1 0

In the Ga- GaSb system, at T=0K and N = N¢p,(rga) = 8 x10% cm™3, Egi(r,) = 0.81 eV
1) 13.68 1 18.82 | 1529 1449 14.01 10.19 773 1+ 8.04 L 153 | —844 1+ —417 0.80  2.854139
2() 1.44 94 ¢t 11.72 1 1138 t 1242 1t 14.25 1132 v 147 t 21.56 1 12.06 6.52 194 1 0

In the Mg- GaSb system, at T=0K and = Ngpp(rg) = 9.4507 x10%7 cm™2, Eqgpi((ryg) = 0.8119
1) 1332 ¢t 1838 | 14.89 14.11 13.63 9.85 742 1 7720 124 | —857 1 —4.28 0.70  2.699917
2() 1.43 93 ¢t 11.54 1 11.21 t 1224 1t 1400 ¢ 1298 t 145 t 21.24 | 11.74 6.29 187 1 0

In the In- GaSb system, at T=0K and N = Ngp,(rin) = 1.0482 x10%8 cm™3, Egp(ry,) = 0.8133 eV
() 13.09 t 18.11 | 14.65 13.88 13.40 9.65 724 1t 753 1 1.07 | =864 1+ —434 0.63  2.608312
2() 1.42 9.2 t 1144 ¢ 11.11 + 1212 t+ 139 | 1286 1t 143 1t 21.04 | 1155 6.16 1.82 1 0

EineV L5 2 2.1 2.2 23 2.6 3.1 3.4 39 4.4 52 10 10%

In the Ge- GaSb s system, at T=20K and N = 10%° cm™3, Egn(ree) = 1.1551 eV
1) 13.72 't 1970 ¢ 16.75 15.87 15.58 12.33 957 1 9961 535 | —457 1t —250 0.90  2.866963
2() 1.44 4.7 6.29 6.44 7.34 9.29 9.52 11.04 + 17.03 | 9.87 5.55 .80 1 0

In the Ga- GaSb system, at T=20K and N = 10" cm™, gy (rga) = 1.1549 eV
() 13.69 t 19.66 | 16.71 15.84 15.55 12.30 9.54 1 993 + 532 | —459 1+ -—-251 090  2.854139
2() 1.44 4.7 6.29 6.44 7.33 9.28 9.51 11.03 t 17.02 | 9.85 5.53 1.80 1 0

In the Mg- GaSb system, at T=20K and N = 10%° cm™3, Egpy(ry,) = 1.1511 eV
1) 1332 1t 1920 ¢ 1630 15.43 15.14 11.93 921 1 9591 497 | —478 + —265 0.79  2.699917
2() 1.43 4.7 6.27 6.40 7.29 9.21 9.42 1092 t 1683 | 9.62 5.36 1.73 1 0

In the In- GaSb system, at T=20K and N = 109 cm™2, Egp; (1)) = 1.1485 eV
() 13.10 t 1892 | 16.04 15.19 14.90 11.71 9.01 T 938 1 476 | —490 v+ —273 0.72  2.608312
2() 1.42 4.7 6.25 6.39 7.27 9.17 9.36 1085 t 1672 | 9.49 5.25 1.69 1 0

EineV 1.5 2 2.1 2.2 2.3 2.6 3.1 34 3.9 4.4 5.2 10 10%

5.3. Variations of various optical coefficients as functions of N, typically for some d(a)-GaAs systems

Also, from Equations (24, 28, 29), we can determine the variations of various optical coefficients at 20K, as

functions of N, at E=3.3 eV, for example, and for some (P, Te, Sn)-GaSb systems and for some (Ga, In)-
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GaSb ones, being indicated by the arrows: and , as tabulated in following Tables 5n and 5p, in which the
physical condition N > Ncphnpp) (or N > 0) must be respected, and their variations thus depend on the
ones of the optical band gap, Egnl(gpl)(N , rd(a)).

Table Sn. In (P, Te, Sn)- degenerate GaSb systems (W 1), our numerical results of the following optical coefficients,
B

expressed as functions of N, and calculated using Equations (31-36, 24), for E=3.3 eV and T=20K, present the variations by arrows,

( and ), since those of the optical gap Egn1(N , Ig) increase with increasing N, at T=20 K. EFHI((FTPT)(U)
N (108 cm™3) 4 8.5 15 50
% 1 131 217 316 706
Egni(N ,Ip) in eV 0.983398 1.121791 1.283068 1.917333
n (rp)=3.619629
( ,rp) 1.7350 1.5339 1.3152 0.6181
1C ,rp) 10.0914 10.7488 11.3720 12.7197
o 1p) 12.560 11.104 9.521 4.474
( ,rp) in 102 Q71 1 4.436 3.922 3.363 1.580
( ,rp) in 105 1 5.802 5.130 4398 2.067
R( ,rp) 0.405 0.389 0.372 0.333
Enorre) 5 131 217 316 706
KeT
Egni(N ,Ire) in eV 0.967738 1.107065 1.26824 1.899986
n (I1e)=3.465253
( o) 1.7586 1.5547 1.3346 0.6337
1C ) 8.9155 9.5908 10.2269 11.6064
2( ,re) 12.188 10.775 9.249 4.392
( ,rp) in 102 Q71 1 4.305 3.806 3.267 1.551
( ,rr) in 105 1 5.881 5.199 4.463 2.119
R( ,rr) 0.398 0.380 0.362 0.318
EenlN fo) 4 131 217 316 706
kgT
Egni(N ,Fsp) ineV 0.966871 1.106273 1.26746 1.899107
n (rsy)=3.458663
( ,rsn) 1.7599 1.5558 1.3356 0.6345
1C . ren) 8.8652 9.5417 10.1785 11.5598
2( 1 Tsn) 12.173 10.762 9.239 4.389
( ,rg,) in 102 Q7* 1 4.300 3.801 3.263 1.550
(.,rg) in 105 1 5.885 5.203 4.466 2.122
R( ,rsy) 0.398 0.380 0.361 0.318
N (108 cm™3) 4 8.5 15 50
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Epp(N 1ra)
kT

Table Sp. In (Ga, In)- degenerate GaSb systems ( 1), the numerical results of the following optical coefficients,

expressed as functions of N, and calculated using Equations (31-36, 24), for E=3.3 ¢V and T=20K, present the variations by arrows,

( or ), since those of the optical gap Eqp (N, F) increase with increasing N.

N (108 cm™3) 15 26 60

ErpN fod) 9 305 447 791
ksT

Egp1(N ,Tca) in eV 1.2769 1.5050 2.0612

n( )=3.46199

(., ) 1.323 1.042 0.496
10, ) 10.234 10.900 11.739
20, ) 9.162 7212 3.435
(, ) in 102 Q% 1 3.236 2.547 1.213
(, ) in 105 1 4.425 3.483 1.659

R(, ) 0.361 0.340 0313

Erp( fin) 301 444 788
ke T

Egpl(N ,In) in eV 1.2708 1.4989 2.0542

n( )=3.386507

(., ) 1.331 1.049 0.502
1C,) 9.696 10.368 11.217
20, ) 9.016 7.103 3.398
(, )in 10201 ! 3.184 2.509 1.200
(, )in 105 I 4.452 3.507 1.678

R(, ) 0.355 0.334 0.305

N (10% cm™3) 15 26 60

5.4. Variations of various optical coefficients as functions of T, typically for some d(a)- GaSb systems

Here, from Equations (24, 28, 29), we can determine the variations of various optical coefficients for N =
1.5 x 10¥%cm™3, respectively, as functions of T, at E=3.3 eV, for example, and for some (P, Te, Sn)- GaSb
systems and for some (Ga, In)- GaSb ones, being indicated by the arrows: and , as given in following
Tables 6n and 6p, in which their variations thus depend on the ones of the optical band gap,

Egnigony(N  Faca))-

Ern(N .rq)

Table 6n. In (P, Te, Sn)- degenerate GaSb systems ( T
B

1, our numerical results of the following optical coefficients,

expressed as functions of T, and calculated using Equations (31-36, 24), for E=3.3 ¢V and N = 1.5 x 10%° cm™3, increase with

increasing T, since the optical band gap Egnq (T, ) decreases with increasing T.

TinK 20 30 50 100 200 300
w 1 309 206 124 62 31 21
B
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Egna(T,Tp) in eV 128307 1.28240  1.2801 1.2682 12215 11551

n(rp, ) 3.6196 3.6198 3.6206 3.6246 3.6395 3.6593
re, ) 1.315 1.316 1.319 1.335 1.3966 1.4874
1(re, ) 11.3720 11.3714 11.3690 11.3563 11.2956 11.1786
o(rp, ) 9.521 9.528 9.552 9.675 10.160 10.886

(rp, ) in 10201t 1 3.363 3.365 3.374 3.417 3.591 3.845
(fp ) in 105 1 4398 4.401 4411 4.463 4.671 4.974

R(rp, ) 0.372 0.3725 0.3728 0.3742 0.3799 0.3881

% 1 305 203 122 61 30 20

Egnt (T, I1e) in eV 126824 12676 12652 12534 12067  1.1403

n(fre ) 3.4652 3.4655 3.4662 3.4702 3.4852 3.5050
(e, ) 1.334 1.335 1.338 1.354 1.417 1.508

1 (e, ) 10.2269 10.2261 10.2233 10.2085 10.140 10.011

2(Fres ) 9.249 9.256 9.279 9.399 9.874 10.571
(rre, ) in 102 0t 1 3.267 3.269 3.277 3.320 3.488 3.734
(rre, ) in 10° -1 4.460 4.466 4.476 4.529 4.737 5.043

R(rre, ) 0.3618 0.3619 0.3622 0.3637 0.3699 0.3788
W 1 305 203 122 61 30 20
Egna (T, Fsp) in eV 12674 12668 12645 12526 12059  1.1395
n sy, ) 3.4587 3.4589 3.4597 3.4636 3.4786 3.4984

(rsny ) 1.336 1.3365 1.339 1.355 1.418 1.509

1(rgn, ) 10.1785 10.1777 10.1749 10.1600 10.091 9.962

2(Fsn, ) 9.239 9.245 9.269 9.388 9.863 10.559

(s ) in 102 Q71 -1 3.263 3.265 3274 3316 3.484 3.729

(f ) in 105 1 4.466 4.469 4.479 4532 4741 5.047
R(rsn, ) 0.3614 0.3615 0.3618 0.3633 0.3695 0.3784
TinK 20 30 50 100 200 300

Table 6p. In (Ga, In)- degenerate GaSb systems (w 1), our numerical results of the following optical coefficients,
B

expressed as functions of T, and calculated using Equations (31-36, 24), for E=3.3 ¢V and N = 1.5 x 10%° cm™3, increase with

increasing T, since the optical band gap 4,1 (T, I'5) decreases with increasing T.

TinK 20 30 50 100
Epllfe) g 305 203 122 61
kT

Egna (T, Tca) in €V 1.2769 1.2763 1.2739 1.2621

n(fga ) 3.4620 3.4622 3.4630 3.4669
(rgar ) 1.3232 1.3240 1.3271 1.3427
1(rear ) 10.2346 10.2338 10.2312 10.2169
2(Fgar ) 9.162 9.168 9.191 9.310
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(fga ) in 102 Q71 1 3.236 3.238 3.246 3.288

(fga ) in 105 1 4.425 4.428 4.438 4.490
R(fga ) 0.3606 0.3607 0.3610 0.3626
Erp(N ,

Eoin) g 301 201 121 60

B
Egnl(T, ) ineV 1.2708 1.2701 1.2678 1.2559
n(fn ) 3.3865 3.3867 3.3875 3.3915

T ) 1.3312 1.3320 1.3351 1.3507
1(rn, ) 9.6963 9.6955 9.6927 9.6776
2(fny ) 9.016 9.022 9.045 9.162

(fn ) in 102 Q1 1 3.184 3.186 3.194 3.236

(fin, ) in 10° 7t 4.452 4.454 4.464 4517
R(fin, ) 0.3554 0.35545 0.3557 0.3574
TinK 20 30 50 100

6. Concluding remarks

In the n(p)-type degenerate GaSb -crystal, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed Refs. [1-3], and further, by taking into account the corrected
values of energy-band-structure parameters, and mainly the correct asymptotic behaviors of the refraction
index n and extinction coefficient K, as the photon energy E( - ©0), all the numerical results, obtained in [3],
are now revised and performed.
Then, by basing on our following basic expressions, such as:
()the effective static dielectric constant, €(rq(a)), due to the impurity size effect, determined by an effective
Bohr model [1], and given in Eq. (2),
(ii) the critical donor(acceptor)-density, Nepnnop)(Fd(ay) » determined from the generalized effective Mott
criterion in the MIT, and as given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Ncon(copy(Fd(a)) » Which gives a physical condition, needed to define the MIT at T=0K, as: N =N —
Nepn(cop) =0 or N = Ncpncpp) » noting that Nepncppy can also be explained as the density of electrons
(holes) localized in the exponential conduction(valence)-band tails (EBT), NEBE(CDF,), as that determined in

Eq. (21), with a precision of the order of 7.8%, as observed in Table 1,
(iii) the Fermi energy, Egnpy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 x 107 [3], and finally,

(iv) the refraction index n and the extinction coefficient K, determined in Equations (28, 29), verifying their
correct asymptotic behaviors,

we have investigated the optical coefficients, determined from Equations (24, 25, 28, 29), and their
numerical results, given in different physical conditions, have been obtained and discussed in above Tables

2a, 2b, 2c, 3a, 3b, 3c, 4n(4p), Sn(5p), and finally 6n(6p). In particular, in Tables 3a, 3b and 3¢, our numerical

354



results for those optical coefficients are found to be more accurate than the corresponding ones, calculated
from the FB-PM [11].

Finally, one notes that the MIT occurs in the degenerate case, in which:

(@) Ernorp)(N =0, T =0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to
(N )2/3,

(b) as discussed in Eq. (5), in the MIT, in which Egn1gp1y(N = 0, rgca), T = 0) = Egnicgpi)(Fdca))-

where Egn1(gp1) and Egnicrgpiy are the optical band gap and intrinsic band gap, respectively, and

¢) as discussed in Section 5.1, as E = ECPE(rd(a)) = Egni(gpi)(rd(a)) or the effective photon energy E =E —
Egni(gpi)(rd(a)) =0, one has: K(E =0, ryu) =0,&(E =0,r4@) =0,00(E =0,r4@) =0anda(E =
0, r4a)) = 0, according also to the MIT-case, being new results.

In summary, all the numerical results, given in [3], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type GaSb -crystals, the Fermi energy Ernerpy = [Em — Ec](Erp = [Ev — Egp]), Ec(v) being
the conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated
in our previous paper, with a precision of the order of 2.11 x 10~# [3], is now summarized in the following.
In this work, N is replaced by the effective density N , N = N — N¢pncop)(Fdca)) > Neon(cop) (Fdea)) being
the critical density, being characteristic of the MIT-phenomenon, and their numerical results are given in
Table 1, meaning that N = O at this transition.

First, we define the reduced electron density by:
3

_ N =N—Nconcop)(Fda)) My <kaT\2 _
UN | T) = oo, N (T) = 2 % gy % (2557 (em ™), (A1)

where Ng(y)(T) is the conduction (valence)-band density of states, the values of ey = 1(1), and My ,) /Mg,

defined in Section 2, can be equal to : Myy/M, = 0.047 (0.3), and to m,/m, = I = 0.040634. In

m+m

particular, here, as used in Sections 3 and 5 for determining the optical band gap in degenerate GaSb-crystals,

Mppy/ Mo= M;/mM, was chosen.

Then, the reduced Fermi energy in the n(p)-type GaSb crystals is determined by :

Ernep) (W) _ GW+APFW) _ o L(u) = W
kT 1+AuB W(uy’

A =0.0005372 and B = 4.82842262, (A2)

2
4 8\ 3

2
where F(N , T) = auz (1 +bu s+ cu_i) 3, obtained foru 1, according to the degenerate cas,
_ 2/3 _1m?2 . _ 623739855 _3 —du
= [(BvyT/4)]“°, b= 5 (a) , 1920 ( ) and then G(u) Ln(u)+22xuxe % foru

1, according to the non — degenerate case, with: d = 23/2 > 0.

[ﬁ 16
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So, in the degenerate case (U 1), one has:

2
_4 _&8\73

Ernrp)(N » T) = Erno(rpoy (U) % (1 +bu 3 +cu 3) . (A3)
Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

2
2Xan(Fp) (N)
2xmy

EFno(Fpo)(N ) = P (A4)

being proportional to (N )2/3

, and equal to 0, Eppo(rpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.
Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type GaSb-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),
characteristic of the interactions, by:

=1.1723 x 108 x (%) X% .

3000 173
gc(v)) x 1 (B 1 )

s (N  Taw) = (G P,
In particular, in the following, My,y/My = M./my, is taken to culculate the band gap narrowing (BGN), as

used in Sections 3 and 5. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)) T

found to be given by [1]:
0.87553 2[1—In (2)]
B _ _os7553 0'0908+rsn(sp)+( = )xln (Fsn(sp))—0.093288
Ece(Fsnesp)) = Ece(N 1 To@) = 0.0908+Fon(ep) + 1+0.03847728x1L573/ %570 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

e(rg) e(rg)

% 1/3 eo 3 5/4 mp
AEgn(N ,Tg) a3 % 2% N.'° +ap x 22 x N2 x (2503 x [ — Ece(rgn) X rgn]) + a3 % [ x [

1/4 o 1/2 — N =N—Ncpn(ra)
+ x — —— “bnidl
N 4> |xe N e(rq ) Ny = 9.999x107cm=3’ (B3)

X2+ ag x[

and

5/4
A go(N,1g) apx Joox N3 + a, x 5 % N3 x (2503 x [ — Ecg(rsp) x rspl) +ag [— x [T

e(ra) £(ra) my
1/4
+
Ny + 23, x \/ ) (a)]

Here, £, = 15.69, a; =3.80 x 1073(eV), a, = 6.5 % 107%(eV), ag = 2.85 x 1073(eV), a, = 5.597 x
1073(eV) and a5 = 8.1 x 107 *(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any rga), A gngpy(N =0,rg@) =0

< N1/2 . X [ NG N, = (N =N—Ncpp(ra) ) (B4)

9.999x1017 cm=3)/°

according to the metal-insulator transition (MIT).
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