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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, S(Vd(a)) , Tda) being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqa,), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate GaSb-crystal, defined for the
reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks as follows.
(1) The critical donor (acceptor)-density, Ncpnnop) (Fdca)), determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBn(cop) (Ta@): Given in Eq. (21).

(2) In Tables 9-10, with a given d(a)-density N [= 1.1 (2) X Ncpnpp)(Fdca)) ], one notes here that with
increasing temperature T(K): (i) for reduced Fermi energy &,p)( = 1.814), while the numerical results of

the Seebeck coefficient S present a same minimum (=— 1563 x 1074 %), those of the figure of merit ZT
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show a same maximum ZT(= ), (ii) for , = 1, those of S and ZT present same results: Sb(=- 1.322 x
10~ %) and 0.715, respectively, (iii) for &y = 1.814 and &,y = 1, those of the well-known Mott figure

2

W( 1 and 3.29), respectively, and finally, (iv) we show here that in the
*Sn(p)

of merit give same (ZT)pyott =

degenerate GaSb-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as I and I1.

In I, our new expression for the extrinsic static dielectric constant, s(rd(a)), ldca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing Iy ,
s(rd(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type
degenerate InP-crystal, defined for the accurate reduced Fermi energy [3], ( )( ). Therefore, all the
numerical results of those obtained and given in II are now revised and performed, in comparison with those
obtained in [3-11].

In Section 2, the numerical results of energy-band-structure parameters [4] are presented in Tables 1 and 2.
In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and mathematical
methods, needed to determine and evaluate the critical densities of the majority carriers localized in the
exponential conduction (valence) band tails, are presented, confirming thus the corresponding numerical
results, obtained using Eq. (3) for the generalized effective Mott criterion in the metal-insulator transition
(MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution function method, our
accurate expression for the electrical conductivity, 0, is determined, being a fundamental one, since it is
related to all other electrical-and-thermoelectric coefficients, and then all the numerical results of those

coefficients are reported in Tables 4-10. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in
the n(p)-type GaSb -crystals, such as: (i) if denoting the free electron mass by m,, the effective electron

(hole) mass, M, /M, , which is respectively equal to the relative effective mass,

Mppy/ My = 0.047 (0.3) [5], as used in this Sections 2 and 4 to determine the critical impurity density in the

metal-insulator transition (MIT), and (ii) to the reduced effective mas, m,/m, = =0 = 0,040634, as used

mn+mp

in Sections 3 and 5 to determine the optical band gap and the optical coefficients given in the n(p)-type
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heavily doped InAs-crystals. Further, Ego= Eggash= Egsh= Eqea = 0.81 €V [4] is the unperturbed intrinsic
band gap, €gasp= €ca = Esp = &, = 15.69 is the relative static intrinsic dielectric constant of the GaSb-
crystal, and finally, the effective averaged numbers of equivalent conduction (valence)-band edge, gcv) =
1(2).

Table 1. Here, the effective electron (hole) mass, Mnp)» is equal respectively to: myp, as used in Sections 2 and 4, to

m, in Section 3, and Mcp(cpy in Section 5, and the values of other important parameters are also reported.

mn(p)/mo [4] rnr/mo an(Cp)/mo gc(v) Ego [4] 80 [4]
0.047 (0.3) 0.0406 0.06 (0.4) 1(1) 0.81 eV 15.69

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)-GaSb]-systems, since rqc,), given in tetrahedral covalent bonds, is usually either larger or
smaller than rgp(ga) = 0.136 (0.126 ), a local mechanical strain (or deformation potential energy) is
induced, according to a compression (dilation) for: gy > rasany (Fa) < Fasqn)), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc)-effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(Iq(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicpiy (Td@)) — Ego = Eda)(Nd(a)) — Edocao) = Edo(ao) ¥ [(ﬁ) - 1]3 (D
13600 meVx (Mp(p)/
where Egogagy = —o ™ :%(m ©)/M) _ 5 5965 meV (16,57 meV), and
e(ra))= :0 ~ <&, for I'ye) = I'sp(ca):
[l )
Sb(Ga) Sb(Ga)

3 3
€ ]
S(l’d(a))z 3 =&, [(rsrsgl)) - 1] x In(%) < 1, for ld(a) = I'sh(Ga)- 2)
\/l—[( d(a) ) —l] | ( "d(a) )3 Sh(Ga)
TSb(Ga) *In\r
Sh(Ga) Sb(Ga)
2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate GaSb-crystals, the critical donor(acceptor)-density, Ncpnnop)(Fda)) » 1S

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonop) (Fdgay) 73 * @aneep) (Fdca)) = Vs 3)

and the effective Bohr radius agn(gp)(raca)) is given by:

360



e(ra@)> 2 _ -8 €(rd(a))
—————=053%x10"°cm X ————— 4
m”(P)xq2 (mn(p)/mo)l ( )

agneep) (Mdqa)) =
where —q is the electron charge, €(ry(a)) is determined in Eq. (2), in which My /my = mMpy/mg =
0.047 (0.3) . Here, we have chosen, in this work, y=1.6425 (0.25732) so that we obtain:
Nconiop) (Fsb(ca)) = 8 X 10 cm™3[4]. Then, from Eq. (3), the numerical results of Nconop) (Fdca)) are
obtained and given in the following Table 2, in which we also report those of the densities of electrons
(holes), being localized in exponential conduction (valance)-band (EBT) tails, NEEI(CDp)(rd(a))’ obtained
using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations (RD), in
absolute values, between Nepnpp) (Fagay) and Nepncepp) (Fagay) are found to be equal to: 7.8% (5.9%),
respectively. Thus, the numerical results of Ncpnnnpp)(Fdm)) are obtained, using Eg. (3), can be
explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)
tails, NGphcop) (Fa@)), being determined from Eq. (21).

Table 2. For increasing Iy, while €(rq(s)) decreases, the functions:  gnicgpiy (Faa) ) Neoniuop) (Facay) and Nepcop) (Facay)
increase. The maximal relative deviations between the numerical results of Nepnnpp) (Fagay) and NEEE(CDP)(rd(a)), in absolute

values, calculated using Equations (3, 21), are found to be equal to: 7.8% (5.9)%, respectively, suggesting that Ncpnwop) (Faca))
can be explained by NGof(ry), being localized in the EBT. So, in the n(p)-type GaSb- crystal, in which (M) /m,) = 0.047
(0.3) [4], all the numerical results for the energy-band-structure parameters and N¢pn(cppy (Fdca)), Which are expressed

as functions of Iy(,y-radius, are obtained, using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Te Sb Sn

rg (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 18.7494 16.9954 15.7505 15.69 15.6284
Eq(rg) in meV 1.8183 2.2130 2.5766 2.5965 2.6170
Egni(ra) in eV 0.8092 0.8096 0.80998 0.81 0.81002
Ncpn(rg) in 107 em™3 4.6883 6.2949 7.9085 8 8.0954
NEBT(r,) in 1017 cm™3 5.0549 6.2463 7.3636 7.4250 7.4890
|RD| 7.8% 0.77% 6.9% 7.2% 7.5%
Ren < 1, from Eq. (7), 0.0134 0.0123 0.0115 0.0114 0.0114
Acceptor Ge Ga(Al, Mn) Mg In

r, (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 15.7605 15.69 14.8422 14.3386
Ea(ra) in meV 16.48 16.57 18.52 19.84
Egpi(ra) ineV 0.8098 0.81 0.8119 0.8133
Nepp(ra) in 1017 ¢cm™3 7.8931 8 9.4507 10.4818
NEpp(ra) in 10% cm™3 8.3576 8.4232 9.2832 9.8655
IRD| 5.9% 5.35% 1.8% 5.88%

Rsp < 1, from Eq. (7), 0.4581 0.4575 0.4490 0.4436
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In summary, Table 2 also indicates that, for an increasing Iqca), €(Fya)) decreases, while Egni(gpi)(rd(a)),
Neonvop) () and Nepheop) (faa)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, M,,)/M, is chosen as: My, /Mg = my/m, = 0.040634 , and then, if denoting N =N —
Nconnop) (Fda)) > the optical band gap (OBG) is found to be given by:
Egni(gp) (N + Fa@): T) = Egnagoz) (N Fa@), T) + Ernepy (N, ), (5)
where the Fermi energy Epnepy(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:
Egna(gp2)(N » Yacay: T) = Egneicgpen (Fdta) T) = AEgn(gny (N Fa(a)-

Here, the effective intrinsic band gap  gnei(gpei) 1 determined by:

_ 2 2201 Tlm
Egneicgpei (Td@: T) = Egnicgpi) (Td@) — 020251 [1 + (zz50sr) ]
and the band gap narrowing, AEgn(gp)(N , rd(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, in the n(p)-type Sb(Ga)-GaSb crystals,
one gets: Egnei(gpei)(er(Ga), T =300 K)= 0.68 eV [4].

Further, as noted in the Appendix A and B, at T=0K, as N = 0, one has: Ernep)(N , T) = Epno(rpo)(N ) =
0,as givenin Eq. (A4), and AEgn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, Egn1(gp1) = Egn2gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

Then, in degenerate d(a)- GaSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),
are reported in the following Table 3, suggesting that, for a given ry(,), the OBG increases with increasing N.

Table 3. In degenerate d(a)- GaSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given I'y(,), the OBG increases with increasing N.

N (10%8 cm™3) 4 8.5 15 50 80
gni(N ,rp) ineV 0.983 1.122 1.283 1.917 2.343
gni(N  Tag) ineV 0.975 1.114 1.275 1.908 2.333
gi(N  I1e) ineV 0.968 1.107 1.268 1.900 2.324
gni(N ,Fsp) ineV 0.967 1.107 1.268 1.899 2323
gi(N  rgp) ineV 0.966 1.106 1.267 1.899 2.323

N (10%8 cm™3) 6.5 11 15 26 60
a1 (N ', TGagan) in eV 1.056 1.181 1277 1.505 2.061

362



aoa (N Tyg) in eV 1.052 1.177 1273 1.501 2.057
ao1(N ,Tp) in eV 1.049 1.174 1.271 1.499 2.054

4. Physical model and mathematical methods

4.1. Physical model

/
In the n(p)-type degenerate GaSb, if denoting the Fermi wave number by: Kenrpy(N ) = (3 2N /gc(\,))1 3,

the effective reduced Wigner-Seitz radius I'sy(sp), characteristic of the interactions, is defined by:

k—l
* Fon(sp) (N (@) Mnp)) = % <L ©
being proportional to N 3 Here, = (4/9 )3, k,?nl(,:p) means the averaged distance between ionized

donors (acceptors), and agn(sp)(Fd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

Ksnsp) _ Ken(ep) _

Renespy (N Faga)) = a x Rynwscspws) * [0 % Renrcsptry — @ X Renwsspwsy] "6 < 1, @)

ken(ep)  Kon(op)
where the empirical parameters: = 0.068 (0.7615) and b= 0 (0), respectively, were chosen so that the
relative deviations between Nepnnpp) and NEBE(CDP), in absolute values, are minimized, as observed in Table
1. Here, these ratios, Rsntr(sptry @Nd Rsnws(spws), can be determined as follows.

First, for N Ncpnvop)(Fda)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

KsnTF(spTF) kl?nl(Fp) 4 Tsn(sp)
R N,r =N = — = 1 8
snTF(spTF)( d(a)) Kencep) ksan FEPTE) > (3

being proportional to N=/6,

Secondly, for < Ncpnnpp)(Fde)) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

_ ksnsppws _ (3 d[ 2% ce(N )]
Rsn(SP)WS(N ' rd(a)) = Tk (2— — s (sp)d = )l o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
Kenep) Nn(p) 1 Kengep) EFno(Fpo)
< = <P = <1, A = 10
%n@p)  Fo(po) A Kancsp) sn(sp) n(P) Nn(p) (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,
Rsn(sp) 1s defined in Eq. (7). Here, the energy parameter, Nnp), being characteristic of the exponential

conduction (valence)-band tails is determined in next Eq. (12).
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Then, in degenerate d(a)- GaSb systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the GaSb -crystal, is defined by

O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)- GaSb system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total GaSb -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined as [3] :

— 2 — XRansp)(N Fa@) _ V2N 2, —1/2 _ -
Wi (Vo) N Ta@) = Mgy < exp o ey (N Ta@) = 50 5 0 Ksngspy Vo) = o (12)
2 [[vn| (@ Fno(Fpo)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

0.1 (0.1), respectively, will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally v,y = ,
Fno(Fpo)

where s the total electron energy and Eppo(rpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z, fora=1,

2xk

2
K = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
)

2% (
two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In degenerate d(a)- GaSb systems, the effective Gaussian distribution probability is defined by

1 —V?2
P(V) = ——— x ex [ ]
V) V2 Wn(p) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) a3 = Z_f is defined by

(C =V D= S dm= _o( =V ExPV)AV, for a=1.
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*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /Wy = Ayp) X n(p) X eXP| ——= |,
4x [[vne)|

and using an identity:
(o) _1 2
0 sf2xexp (—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp (—x2/4)xW exp (—x2/4)xn.. 2 x -
( )KIM p(- \/2_; h(®) xT(a+xD_ 1(x) _ = "0 5 exp [ — Ranepy*(2a—1) | Fa+
8% | Vnp)|
9 *D_1(0). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

3 Vo
_a_l(X -—o)  (a)xexp <(\/5 + ) x—X sza) -0, @@= AR
1622 2 4 Tl

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:
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2xk2

N =
I

a—

(D s k= o (14)
i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D_,_1(X - =) B(a) xexp|—(vVa +25) x— = W -0, B(@ = % noting that
2 16a2 27 1@+
B = and B(5/2) = 23/2
24X (5/4)
Then, putting f(a) = n(p) x I'(a+3) % B(a), Eq. (13) yields
(x 2)kim R x(2a-1)
Ho)( n) =+ 0 Tagey @) = —5— = exp | = ——B—— — (\/5 +%) Gk e ig| - O (15)
8 ||Vn(p)| 16a2.
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X ¥42x "7 . 0. Therefore, Eq. (13) yields
a3
{ k xm 1 Fay )2 L
—_— n n —a—=
Kn)( n) =+ . 4@, a) = & @ xexp (——2=) X (Aay X )~ 2- 0. (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:
Fr)( n@ey: Tacay @) = Ko ( nep): Tay @) + [Hae)( ney: Fa@ @) = Koy ( ngpy: Tacay, )] > exp [
(Ao )] (17
such that: Fnpy( n(p): Fd(a) @) ~ Hne)( np)y Fa@@) for 0= <16 , and Fnp)( nep) Fdea) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- GaSb systems at T=0 K, in which m;,/mMy = My(p)/m, = 0.047 (0.3), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

( CWkm = gc(v)( mn(p)) x( k)KIM = gzc(vz) (2mn(p))E i <\724—)an x F(%) x D_g(X) = (), (18)

Nl w

xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP —=nh)

4 [[va)|
Here, Eppo is determined in Eq. (A4) of the Appendix A, with mp;y/mM, = Mpy/mg and  =0.1(0.1),

respectively, being chosen such that the following determination of NEBE(CDP)(N, l'd(a)) Would be accurate.
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Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:
3
{ kM 3/2
_ (=0 _ _ _ 9ewy*(Mn(p)*mo) ™ "< /“n(p) _ N
f(a=1) - —0_ Fn(p)( n(p) rd(a)l a= 1)? o~ 223 x (a - 1)a (a - 1) = zgxr(5/4).
(19)
Therefore, NEBE(CDP)(N, ld) can be defined by
0
NEBrcop (N Ta@) = —, ( <0)d |
where (= 0) is determined in Eq. (19). Then, by a variable change: () = m, one obtains:
3/2
_ 9ew)*(Mn)) ™/ n@) > Fno(Fpo) 16 _ _
NGBneom (N Faa) = e 2x{ 5" @=1)%Fog( e Fa@a=1)d npy + I}
(20)
where
2
o w0 ~(An@* n) -3/2
he = 16 @=D*Kip(a@la@a=Ddae = 16 2 (Ao @) d ne)-
Here, (a=1)=— A

28T (5/4)
2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

—1 A— — 0 ynp))
In(o) = =7m— X ttletdt = @7
n(p) ZZLTW TS 25y

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 2o *(M@) ™ 2@ * Frotepo) 6, _ _
Ncon(eop) [N = Neonop) (Fa@y)] = 523 x { o (@=1)xFap)( npy Fa@ya=
rd, nep)
Dd oy + ) (212)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBE(CDP)[N = Nconnop) (Fdqa))] = NEBE(CDF,)( ld@) > for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 7.8% (5.9%), respectively. In other words, this

critical d(a)-density Ncpnnpp) (Fdcay)) can thus be explained by the density of electrons(holes) localized in

the EBT, N&phcop) ( Fd@ay)-
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So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- GaSb systems, can thus be expressed by:
N =N —Neonnop) N = NeBnceop)- (21b)

2%k py (Ncon(NDp))
2XMn(p)

Then, as N = Ncpnnpp) » according to the Fermi energy, Epno(rpo)(N = Ncpn(nop)) =

given in this parabolic conduction (valence) band (i.e. = 0), the value of the density of electrons(holes),
NEBE(CDF,) , localized in the EBT (=< 0), is almost equal to Ncpn(Npp), as noted above. This can thus be

expressed as:

N(EJBE(CDp) Nconnopys @ N = Nepnnop)- (21¢)

5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=@+eN™ y=( — eEp)/(keT),
where  pn(rp)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in I, can be defined as:

— p _ of of _ 1 ev
( Proor =Gp( ) > = o px(—a—)d ST Tt X e (22)
of . .
Further, one notes that, at 0 K, -5 = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  Fno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( Fno) = 1.
Then, at low T, by a variable change Y = ( — rnrp))/(KsT), Eq. (22) yields:

(<) ey

_ - P -
Gp( Fngrp)) =1+ Fr?(Fp) X oo T (keTY + Fnrpy) dy =1+ E=1,2,... CE x (kgT)P x FrE(Fp) xlg,

where Cg =p(p—21)..(p —B+1)/B! and the integral Iy is given by:

@ yBer _ yB C . —
lg = o rer2dY = _mmdy, vanishing for old values of 3. Then, for even values of B = 2n,
with n=1, 2, ..., one obtains:

— 5 ©yxel
lan =2 ¢ ez dY - (23)

Now, using an identity (1 +e¥)™2 = ‘;1 (—1)s*1s x /G~ | 3 variable change: sy =—t, the Gamma
function: 000 t?"e"tdt =T (2n+ 1) = (2n)!, and also the definition of the Riemann’s zeta function:
{(2n) = 22"12"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: lp, = (22" — 2) x 112" x
|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:

kg T

p —1)...(p—2n+1 — I
Go( frpy) = =1+ P_ PO o (920 _ 2 x |B,, | x y2" = Gpzy (y), Y = —— = (24)

Fn(Fp) n=1 @yt () Ermep)
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Then, some usual results of Gp>1(y) are given in Table 4.

Table 4. Expressions for Gp=1(y = L), as given in II, due to the Fermi-Dirac distribution function FDDF, noting
)

that Gp—1(y = % = %) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
n(Fp
Ga/2(y) Ga(y) Gs/2(Y) Gs(y) Gz72(Y) Ga(y) Gos2(y)

= () (= ) (=) (+ 3 (——)

These functions G,(y) will be applied to determine the majority-carrier transport coefficients given in the
n(p)-type degenerate GaSb, as follows.
5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, Myp)/M, is chosen as: My ) /My = Mcpcpy/Mo = 0.06(0.4) , as given in Table 1, and all the
majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpn(nop) (Fd(ay) » where the values of critical d(a)-densities Ncpnnop) (Fdca)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rya), T),

expressed in ohm™ x cm™, the thermal conductivity by K(N , Fdcay, 1) » expressed in %, and Lorenz

Ks

2 2 5
number by L= % X (F) = 24429637 (W ohm

K2

), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

k(N ,I’d(a),T) —
o(N rg@T) L>T. (25a)

K(N ,rd(a),T=3K)

] ] in order to show that, for given N

Then, it is interesting to define a constant C, (N , rge))[ =
and ry(a), Kapp.(N , gy, T) is found to be proportional to T, as:

_ Kapp.(N raca),T)

(N a9 ) O Ta@) % T R | = 2 <N T D

. (25b)

where |RDKvKApp.|T is the relative deviations in absolute values between K(N , rge), T) and Kapp (N, rga), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

2

First, it is expressed in terms of the kinetic energy of the electron (hole), x =

= ——— or the wave number
2>Mcn(cp)

k, as:

2
— 9%k Kk
(0] k = ——X
) =" Ksn(sp)

1/2
—k
x [kx g ()] * (—=) - 26)

which is thus proportional to k2‘ Further, Ksn(spy, @Bn(@p)> and Ny are defined and determined in Equations

(7, 4, 12), respectively.
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Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)gppe = Go(y =

HkBT

— ,%n(,:p) , where  pygpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

N T = quan(Fp)>< Ken(Fp) = [k x < Fo(Fpo)(N . T=0) 172 % [G-(N T) x
(N Ty T) = [— o () [Kenep) * @en(ep) (Facay) ] oM [Go(N | T)

1/3

2
FnFp) (N \T) _
( Fno(Fpop)(N ,T:O)) ]’ an(Fp)(N ) = (3 ’N /gC(V)) > (27)

which also determine the resistivity as: P(N ,rgea), T) = 1/0(N ,rg@), T) , noting that
N = N — Ncpn(nop) (Fd(a)) - Further, the Fermi energies Ernrpy and Epng(rpoy are determined respectively in
Equations (A3, A4) of the Appendix A.
In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), o(N , rye), T = OK) is proportional to ,%no(Fpo),
or to (N )*3. Thus, o(N =0, Fda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.
A. Electrical properties

The relaxation time is related to 0 by:

Mcn(Cp)

T(N g, T) = 0(N , rye), T) PN Therefore, the mobility Y is given by:

axt(N rg@),T) _ (N r4ca).T)
Mcn(Cp) gxN  °

(N rye@), T) = (28)

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3 since o(N Taq), T = 0K) is
proportional to (N )*3. Thus, y(N =0, gy T =0K)=0 at N =0, at which the metal-insulator
transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

— (Proor _ _Ga)
WD =057 = e

IJH(N urd(a)uT) = H(N urd(a),T) x rH(N ,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, 14, T=0K) = u(N =0,rye@), T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Further, as discussed in Eq. (21c) and at T = OK, we can also determine the values of these electrical-and-
thermoelectric coefficients, localized in the EBT for <0, by replacing: N = N¢pnnpp) NEBE(CDP) into
Equations (27, 28, 29), and Eq. (A7) of the Appendix A, for =0, to obtain: oFBT(N = NconNDp): Fd(a))s
HEBT(N = NconNpp): Fd(a)) » HEBT(N = Ncon(Npp): F'd(a)) and DEBT(rd(a)). Those numerical results are

reported in following Table 5.
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Table 5. Here, the values of the electrical-and-thermoelectric coefficients, obtained in the exponential tails (i.e. <0), as:
GEBT(I‘d(a)), UEBT(rd(a)), UEBT(rd(a)) and DEBT(rd(a)) are reported, and their variations with increasing rqc,) are represented by the

arrows: and

d- GaSb systems P As Te Sb Sn
rg (nm) [4] 0.110 0.118 0.132 0.136 0.140
087 (ry) in 3.774 4152 4475 4.492 4.509
ohmxcm
5 2
MEET(rg) in 220 5.024 4117 3.531 3.504 3477
5 2
PEBT(rg) in mvngm 5.024 4.117 3.531 3.504 3.477
4 2
DEET(r,) in = :Cm 1.228 1.225 1.2232 12231 1.2230
a- GaSb systems Ga(Al, Mn) Mg In
ry (nm) [4] 0.126 0.140 0.144
oT(r)  in —2 1234 1272 1.300
a ohmxcm . : :
1 3 2
HEET(r,) in 2o 9.627 8.399 7.741
Vxs
EBT . 103xcm?
HEFT(ry) in— — 9.627 8.399 7.741
2
DEBT(r,) in@ 5.041 4915 4.853

Furthermore, in the degenerate d(a)-GaSb systems, at T=4.2 K and T=77 K, the numerical results of 0, U, Uy,
and the diffusion coefficient D, evaluated respectively by using Equations (27, 28, 29, A8 of the Appendix
A), are reported in following Table 6.

Table 6. Here, one notes that: (i) for given N and T, the functions: 0(ry)), H(Fy)), MH(Fae)) and D(rye)), calculated

using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing ry), and (ii) for given rgs)

and T, the functions: (N ), D(N ), y(N ) and py(N ) increase, with increasing N.

Donor P As Te Sb Sn

rg (nm) [4] 0.110 0.118 0.132 0.136 0.140

10° 105x cm2  10%xcm? 109xcm?
Vxs s

In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (Ohmxcm VR

N(108 cm™3)

3 2.23,5.50,5.50,0.41 1.68,4.41,4.42,0.32 1.32,3.72,3.72,0.25 1.30,3.69, 3.69, 0.25 1.28, 3.66, 3.66, 0.25
10 9.20,6.03,6.03,1.10  7.27,4.84,4.84,0.87 6.03,4.09,4.09,0.73 5.97,4.05,4.05,0.72 5.91,4.02,4.02,0.71
40 42.5,6.71,6.71,3.16  34.0,5.39,5.39,2.53 28.6,4.55,4.55,2.13 28.3,4.51,4.51,2.10 28.1,4.47,4.47,2.09
70 78.2,7.02,7.02,4.81 62.6,5.63,5.63,3.85 52.7,4.75,4.75,3.24 52.2,4.71,4.71,3.22 51.8,4.67,4.67,3.19
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In the following, our numerical results of (0, Y, gy, D) at K, expressed respectively in (

N(10* cm™3)

3 2.25,5.56,5.81,0.42
10 9.22,6.04, 6.08, 1.10
40 42.5,6.72,6.72,3.16

1.70,4.47, 4.69, 0.32
7.28,4.85,4.89, 0.87
34.0,5.39,5.40,2.53
62.6,5.63, 5.64,3.85

1.33,3.77,3.97,0.26
6.04,4.09,4.13,0.73
28.6,4.55,4.55,2.13
52.7,4.75,4.76, 3.25

1.32,3.74,3.94,0.26
5.98, 4.06, 4.09, 0.72
28.3,4.51,4.51,2.11
52.2,4.71,4.71,3.22

ohmxcm'  Vxs

105 10%xcm? 109xcm? 10%xcm?
Vxs ' s

1.30,3.71,3.91,0.25
5.92,4.02,4.06, 0.72
28.1,4.47,4.47,2.09
51.8,4.67,4.67,3.19

70  78.2,7.02,7.03,4.81

Acceptor Ga(Al, Mn)

Mg

In

ry (nm) [4] 0.126

0.140

0.144

In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (

N(10% cm™3)

3 0.29, 8.19, 8.25,0.84
10 1.11,7.51,7.52,2.00
40 4.67,7.44,7.44,5.21
70 8.34,7.52,7.52,7.70

0.24,7.45,7.51,0.73
0.98, 6.76,6.77, 1.78
4.15, 6.64, 6.64, 4.64
7.41,6.70, 6.70, 6.85

ohmxcm'  Vxs

10 103xcm? 103x cm? 102><cm2)
Vxs S

0.22,7.04, 7.09, 0.67

0.91, 6.33, 6.34, 1.66

3.86, 6.19, 6.19, 4.32

6.89, 6.24, 6.24, 6.37

In the following, our numerical results of (0, Y, Uy, D) at

N(10% cm™3)

K . .
, expressed respectively in Py e VR

104 103xcm? 103xcm? 10Zxcm?
Vxs s

3 0.53,15.2,40.7, 1.56 0.49,14.8,41.5, 1.44 0.46, 14.8,43.0, 1.37
10 1.20, 8.14, 10.6, 2.31 1.06, 7.34, 9.63, 2.06 0.98, 6.88,9.06, 1.92
40 4.73,7.53,7.92,5.32 4.20,6.73,7.07,4.74 3.91,6.27, 6.60, 4.42
70 8.39,7.56,7.75,7.78 7.46,6.74,6.91, 6.92 6.93, 6.28, 6.43, 6.44
Acceptor Ga(Al) Mg In

In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (

N(10%° cm™3)

3 0.29, 8.19, 8.25,0.84
10 1.11,7.51,7.52,2.00
40 4.67,7.44,7.44,5.21
70 8.34,7.52,7.52,7.70

0.24,7.45,7.51,0.73
0.98,6.76,6.77,1.78
4.15, 6.64, 6.64, 4.64
7.41,6.70, 6.70, 6.85

104 103xcm2 103x cm? 102><cm2)

ohmxcm'  Vxs Vxs s

0.22,7.04,7.09, 0.67
0.91, 6.33, 6.34, 1.66
3.86,6.19, 6.19,4.32
6.89, 6.24, 6.24, 6.37

In the following, our numerical results of (0, Y, Uy, D) at

N(10% cm™3)

3 0.53,15.2,40.7,1.56
10 1.20, 8.14, 10.6, 2.31
40 4.73,7.53,7.92,5.32
70 8.39,7.56,7.75,7.78

0.49,14.8,41.5,1.44
1.06, 7.34, 9.63, 2.06
4.20,6.73,7.07,4.74
7.46,6.74,6.91, 6.92

K, expressed respectively in (ohmxcm, Vs

104 103xcm? 103x cm? 102><cm2)
Vxs S

0.46, 14.8, 43.0, 1.37

0.98, 6.88, 9.06, 1.92

3.91, 6.27, 6.60, 4.42

6.93, 6.28, 6.43, 6.44
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B. Thermoelectric properties
First off all, from Eq. (27), obtained for o(N ,rya), T) , the well-known Mott definition for the
thermoelectric

power or for the Seebeck coefficient, S, is given in the n(p)-type degenerate GaSb crystals, as:

2
SIN | T) = ()5 x 2 x kgT x 222 .
= Fn(Fp)
Then, using Eq. (27), for &y, = EF”%(TNT) 1, one gets:
2 kB _ y2
S(N T) - ( )—X q X x FSb(N IT)I FS(N !T) = - 3xG ( _ kg T ) ’ (30)
En(p) Y (N D

noting that the effective donor (acceptor) density, N = N — Ncpn(npp) (Fd(a))- is a function of rgy¢,).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) = Tx =D 31)

and then, the Peltier coefficient, Pt, is defined as:
Pt(N, T) =T xS(N ,T). (32)
Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

_nr
3xEr )

[S(N ,T)]2xa(N vrd(a)vT)xT [S(N | T)]?

ZT(N ’T) = K(N ,rd(a),T) L

= (ZDwote X [2xFs(N , T)1?, ZDwort = (33)

2 2 y
where (ZTyo is a well-known Mott result, L = (%) = 24429637 x 1078 (= K‘;“m) is the Lorenz

EFn(Fp) (N T)

kT 1], this value of L is exact, and

number, noting that, in the n(p)-type degenerate GaSb [En(p

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

€np) = E”’%(TNT) 1,as: Lxin(IS]) = 1.5 +exp [— %], [S] being independent of T or N (?).

Then, being inspired from this Lgjm(|S|) -expression, we also propose another one, given in the n(p)-type

degenerate GaSb, as:

IS(N_T)|

Lic(IS(N ) =144296 + e~ 107 ; |RDL | = [1 - =200 (34)

L

where |RDL,ch| is the relative deviations in absolute values between L and L.
Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)-GaSb, defined by physical conditions : N = 10°°cm™2 and T (=3K and

EFn(Fp)( )

kT , calculated by using Eq. (A3) of the Appendix A, and then

300K), the numerical results of &, =
other ones of: G(N ,rya), T) by Eq. (27), K(N , rge@), T) by Eq. (25a); Cx(N , rg4ca)), Kapp. (N, Tgca), T) and
|RDKvKApp,|T by Eq. (25b), S(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.
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Table 7. Here, one notes that (i) for a given T, with increasing Iy, due to the impurity size effect, Ngps(rg), increases,
. _3\ - . .. . (N, T=300K)
since N(=102° cm™2) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %,

0, K, Cy, and Kapp, (ii) the numerical result: |RD . = 0.129% ( confirms the Kapp-law, as given in Eq. (25b),

tKhpp. |300
and finally, (iii) |RDL,ch| =1.534x 107% thus confirms in the degenerate GaSb -case the well-known Wiedemann-
Frank, given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-GaSb systems for N=10%° cm™3 and at T=3K and T=300K, noting that N = N — Nepn(rq)
Epn(N . T=300K)

= 1 50.50 50.40 50.39 50.38 50.38
B

o7 1.1524 0.9232 0.7772 0.7705 0.7636
0(T:3K) (ohmxcm) . . . . .
O(r=3006) () 1.1540 0.9243 0.7782 0.7715 0.7646
Kar=a) (—) 0.8446 0.6766 0.5696 0.5647 0.5597
Ker=s00K) (—) 84.567  67.745 57.040 56.542 56.040
Ck (—) 02815 02255 0.1899 0.1882 0.1865
Kapp.(300K) (—) 84458  67.657 56.963 56.469 55.968
|RD |SOOK in % 0.129 0.129 0.129 0.129 0.129

10~7xV
S(r=ak) (). -1.123 ~1.124 ~1.126 ~1.126 ~1.126

105xv
S(r=300k) () —-1121 —1122 —1.124 ~1.124 ~1.124
1077xV
Tsr=ak) () -1.123 —1.124 ~1.126 -1.126 -1.126
10-5xv

Ts(r=300) ) —-1.117  —1.118 ~1.120 ~1.120 ~1.120
Ptr=gi) (1077 x V ) 3370  —3374 —3.377 —3.377 —3.378
Pt(r=sook) (1073 x V) 3364  —3368 —3.371 -3.371 —-3372
ZT (r=ak) (< 1077) 5.165 5.177 5.188 5.188 5.189
ZT (r=z001(X 1072) 5.147 5.158 5.169 5.170 5.171
|RD|,.|in107® at3 K 1.534 1.534 1.534 1.534 1.534
|[RD]| in 107¢ at 300K 1.535 1.535 1.5345 1.535 1.535

Table 8. Here, one notes that (i) for a given T, with increasing r,, due to the impurity size effect, Ncpp(ra), increases,
. 3y . - . Erp(N ,T=300K
since N(=10%° cm™2) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %, ,

K, Cy, and Kppp, (ii) the numerical result: |RD 5.24% confirms the Kapp-law, as given in Eq. (25b), and

KKapp. |3OOK
finally, (iii) |RDL,ch| 1.535% 1078 thus confirms in the degenerate GaSb-case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Acceptor Ga (Al) Mg In

Highly degenerate a- GaSb systems for N=102° cm ™3 and T=3K and T=300K

Fp(N T=300K)

kT 1 7.72 7.71 7.71

5

10
0r=3K) (Gmer) 121 1.07 1.00
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O(r=a00) () 1.27 1.13 1.05

ohmxcm,

Kr=sk) (——) 8.8514 7.8674 73129
K (r=300K) (—) 0.9339 0.8302 0.7717

Ck (—=)at T=3K 2.9505 2.6225 24376

Kapp. (300K) (—-) 0.8851 0.7867 0.7313

|RDK'KAPP‘|300K in % 5.23 5.23 5.24

Sb(T:3K)(1O_K7XV ) ~7.506 -7.513 ~7.518

Sbir=300K) (10_:”’) —6.958 —6.963 —6.968

Ts(r=3k) (@) —7.505 -7.513 —7.518

TS (r=300K) (10_:“’ ) —5.953 —5.956 —5.958

Ptr=ak) (1076 x V) —2.252 —2.254 —2.255

Pt(r=300k) (1072 % V) —2.087 —2.089 —2.090

ZT (r=axy (% 1075) 2.306 2.310 2314

ZT (r=300K) 0.198 0.198 0.199

|RD ;.| in 1078 at3 K 1.534 1.534 1.534

|RD, || in 1078 at 300 K 1.537 1.537 1.537

Secondly, in the degenerate d(a)-GaSb, for a given N , the values of &y = ey .T) , calculated by using

kgT
Eq. (A3) of the Appendix A, and other ones of: S(N ,T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N ,T) by Eq.
(33), and finally, TsS(N ,T) and Pt(N ,T) by Equations (31, 32), respectively, are obtained and reported in
following Tables 9-10.

Table 9. Here, for a given N and for a given degenerate d-GaSb system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for

&, = 1.814, while the numerical results of S present a same minimum (S) pmin, (=— 1563 x 107 %), those of ZT show a same

maximum ZT ey (= ), (ii) for & = 1, S and ZT present same results: —1.322 % 10_4% and 0.715, respectively, (iii) for &, =

2
1814 and &, =1, (ZDpmott = 3i_§ﬁ present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,LVC|
is approximated to 1.541 x 1078, suggesting that in the degenerate GaSb -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate P- GaSb system, N = N — Nepn(rp) = Nepn(rp); N = 1.1 x Ngp,(rp) = 5.157 x 1017 3

T(K) 5 10 41.32 45 56.228547 56.5
g 18.40 9.305 1.814 1.557 1 0.989
S (10-4%) —0.305 —0.587 -1.563 —1.546 -1322 -1314
|RD ;| in107  1.536 1.537 1.541 1.541 1.540 1.540
7T 0.038 0.141 1 0.979 0.715 0.706
2
ZDwort = 3:? 0.010 0.038 0.9999 1.340 3.290 3.365
T, (1043) —0.297 —0.527 —1.44x 1074 0399 1.657 1.686
Pt (1073V) -0.152 —0.587 —6.458 —6.959 —7.432 —7.422

In the degenerate As- GaSb system, N = N — Ncpn(Fas) = Nepn(Fas); N = 1.1 X Nepn(Fas) = 6.924 x 1017 3

T(K) 5 10 50.29 55 68.433628 68.5
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&n 22.37 11.27 1.814 1.555 1 0.998

s (10*%) —0.252 —0.490 ~1.563 —1.545 1322 —1320

|RD_ ;| in107%  1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.026 0.098 1 0.977 0.715 0.713
2

() =5z 0006 0.026 0.9999 1361 3.290 3305

Ts (10*%) —0.025 —0.456 —5.77% 1075 0.420 1.657 1.663

Pt (10-3V) -0.126 —0.490 —7.860 —8.495 —9.045 —9.043

In the degenerate Te- GaSb system, N = N — Nepn(rre) = Nepn(rre); N = 1.1 X Nepp (o) = 8.699 x 1017 3

T(K) 5 10 58.55 65 79.6784292 80

3 26.03 13.09 1.814 1.514 1 0.990
s (10*%) —0.217 —0.425 ~1.563 ~1.538 1322 —1315
|RDy,|in 1078 1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.019 0.074 1 0.968 0.715 0.708

2

() =5z 0005 0.019 0.9997 1.435 3.290 3353
Ts (10*4 E) —0.214 —0.403 —3.17% 1074 0.496 1.657 1.682
Pt (10-3V) -0.108 —0.425 -9.151 —9.996 -10.531 ~10.520

In the degenerate Sb- GaSb system, N = N — N¢pn (Fsp) = Nepn(Fsp); N = 1.1 % Ngpn(rgy) = 8.8 x 1017 3

T(K) 5 10 59 65 80.29159 80.5
g, 2623 13.18 1.814 1.535 1 0.994
S (10—%) —-0215 —0.422 —1.563 —1.541 -1322 —-1317
|RD_y,.|in1078  1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.019 0.073 1 0.973 0.715 0.710
2
() = 3:? 0.005 0.019 0.9997 1.396 3.290 3.330
Ts (10-4 ‘—K’) 0212 —0.400 —3.59x 1074 0.457 1.657 1.673
Pt (1073V) —0.107 —0.422 —9.222 —-10.019 -10.612 —10.605

In the degenerate Sn- GaSb system, N = N — N¢pn(Fsn) = Nepn(Fsn); N = 1.1 % Nepn (Fgn) = 8.905 x 1017 —3

T(K) 5 10 59.47 65 80.92887 81

3 26.43 13.29 1.814 1.557 1 0.998
s (10*%) 0213 —0.419 ~1.563 —1.545 1322 —1.320
|RD.,,.|in1078  1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.019 0.072 1 0.978 0.715 0.713

2

() =5z 0005 0.019 0.9998 1.357 3.290 3303
Ts (10*4 E) 0211 —0.398 —234x 1074 0417 1.657 1.663
Pt (10-3V) -0.107 —0.419 —9.295 —10.042 ~10.696 —10.694

Table 10. Here, for a given N and for a given degenerate a- GaSb system, with increasing T, the reduced Fermi-energy &,
decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with
increasing T: (i) for &, = 1.814, S and ZT present same results: —1.322 X 10_4% and 0.715, respectively, (ii) for & = 1, Sb and

2
ZT present same results: —1.322 x 10_‘% and 0.715, respectively, (iii) for & = 1.814 and &, = 1, (ZT)por = 31_62 present same
P

results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 1075, suggesting
that in the degenerate GaSb -case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate Ga- GaSb system, N = N — Nepn(rga) = Nepn(Fea); N = 2 X Nepn(fga) = 1.6 x 1018 3

TK) 5 10 41.078 45 55.902081 56
& 18.29 9.25 1.814 1.550 1 0.996
s (10*4%) —0.307 —0.590 ~1.563 —1.544 1322 —1319

376



|RDy,|in 1078 1.536 1.537 1.541 1.541 1.540 1.540

7T 0.038 0.142 1 0.976 0.715 0.712
2

() =3z 0010 0.038 0.9997 1368 3.290 3317

Ts (10*%) —-0.299 —0.530 —3.66% 1074 0.428 1.657 1.668

Pt (1073V) —0.153 —0.590 —6.420 —6.948 ~7.388 —7.385

In the degenerate Mg- GaSb system, N = N — N¢pn(rvg) = Nepn(fwg);s N = 2 % Nepp (fyg) = 1.89 X 101 3

T(K) 5 10 4591 50 62.47071 62.5
& 20.4 10.3 1.814 1.566 1 0.999
s (10—%) —0.275 —0.533 ~1.563 —1.546 —1322 1321
[RD..,.|in107¢ 1535 1.537 1.541 1.541 1.540 1.540
ZT 0.031 0.116 1 0.979 0.715 0.714

2

() = 3;‘? 0.008 0.031 1.0001 1.341 3.290 3.297
Ts (10—%) —0.269 —0.489 1.30% 1074 0.399 1.657 1.660
Pt (1073V) —~0.138 —0.533 ~7.176 —-7.732 —8.257 —8.256

In the degenerate In- GaSb system, N = N — Nepn (Fin) = Nepn(fin); N = 2 % Nepn(Fin) = 2.096 x 1018 3

T(K) 5 10 49.184 50 66.935987 67
& 21.9 11.03 1.814 1.765 1 0.998
s (10*%) —0.257 —0.501 ~1.563 ~1.562 1322 —1320
|RDy,.|in 1078 1.535 1.537 1.541 1.541 1.540 1.540
ZT 0.027 0.102 1 0.9992 0.715 0.713
2
() =317 0.007 0.027 0.9996 1.056 3.290 3.305
Ts (10*%) —0.252 —0.464 —537x 1074 0.072 1.657 1.663
Pt (1073V) —-0.129 —0.501 —7.687 —-7.812 —8.847 —8.845
—_ Eenepy(N . T) . )
In summary, from above Tables, for &, ;) =—>—— 1, the maximal value of |RDL,ch| is found to be

kgT
equal to : 1.541x 107°, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given

2 2 x
in Eq. (25a) is found to be exact, with the Lorenz number L = % X (%) = 24429637 (WK—ozhm) , even at

the limiting degenerate case, &,y 1. In other word, our above LVC(N T, rd(a))—expression, given in Eq.

(25b), is not useful in the present n(p)-type degenerate GaSb crystals.

6. Concluding remarks

In the n(p)-type degenerate GaSb-crystals, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:

(i)the effective extrinsic static dielectric constant, €(I'q¢a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),

(i) the critical donor (acceptor)-density, Nepnnop) (Fd(a)) » determined from the generalized effective Mott

criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
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Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cpp) (Fa(a))=0 or N = Nepn(copy (Facay)-
(iii) the Fermi energy, pnrp)(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,
(iv) the electrical conductivity, G(N ,Fgca), T) , the thermal conductivity, K(N , g, T), and the Seebeck
coefficient, Sb(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0, at which some new
consequences are given as follows.
(@) Epno(rpo)(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) As discussed in Eq. (5), suggesting that, in the MIT,
Egnigpry(N = 0, Fua), T = 0) = Egnagpz) (N = 0, T, T = 0) = Egricepi (Fuca)):
where Egn1(gp1)> Egn2(gp2) and Egnicrgpiy are the optical band gap (OBG), reduced band gap and intrinsic band
gap, respectively.
(¢) As given in Eq. (27), the electrical conductivity, G(N , ryca), T), is proportional to Eno(Fpo) orto (N )#3,
giving rise to: O(N = 0,ryn), T =0) =0, and therefore, as discussed in Equations (27, 28, 29), and Eq.
(A7) of the Appendix A: U(N =0,rye), T=0K)=0, yy(N =0,r4e, T=0K)=0, and D(N =
0,rdga), T = OK) = 0, being new results.
(d) In Table 5, the values of these electrical-and-thermoelectric coefficients, localized in the EBT for =<0,
determined by replacing: N = Ncpn(npp) NEBI(CDF,) into Equations (27, 28, 29), and Eq. (A7) of the
Appendix A, for = 0, are reported.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.
(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonvop) (agay) and N&pneop) (Faay) are found to be equal to: 7.8% (5.9%), respectively. In other word,
the critical donor(acceptor)-density, Nepnnop) (Fdca)) » determined in Eq. (3), can be used to explain the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBnccop) (Fd(a))-
(2) In Table 6, we remark that: (i) for given N and T, the functions: 0(rg(a)), H(Fd(a)), HH(Fda)) and D(ryc)),
calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rgy(a), and
(ii) for given ry(a) and T, the functions: d(N ), D(N ), (N ) and py(N ) increase, with increasing N.
(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing gy, due to the impurity size effect,

Ncon(copy (Fd(ay) » increases, since N(= 10°cm™3) is very high, N therefore decreases very slowly,

Ern(rp) (N, T=300K)

explaining the slow decrease ( ) in = ,

0, K, Cg, and Kapp , (ii) the numerical results:
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|RDKVKApp.|3OOK 0.13% (5.24 %) , respectively, confirm the Kapp -law, as that given in Eq. (25b), and

finally, (iii) |RDL,LVC| 1.54 x 107% thus confirms that in the degenerate GaSb-case the well-known
Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

(4) In Tables 9-10, for a given N = 1.1 (2) % Ncpn(npp)(Fdca)) » and for a given degenerate d(a)-GaSb
system, with increasing T, the reduced Fermi-energy &,(p) decreases, and other thermoelectric coefficients

are in variations, as indicated by the arrows: ( , ). One notes here that with increasing T: (i) for &n(p) =
1.814, while the values of S present a same minimum (S)min, (=— 1563 x 1074 %), those of ZT show a

same maximum ZT (= ), (ii) for &, =1, those of S and those of ZT present same results: S( =—

1.322 % 10_4¥ ) and ZT (=0.715), respectively, (iii) for &,py = 1.814 and &, = 1, those of (ZT)mort =

2

=2, present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is

equal approximately to 1.541 x 1078, confirming that in the degenerate GaSb-case the Wiedemann-Frank

kg\2

2 X
law, given in Eq. (25a), is exact, with the Lorenz number L = % x (;) Wxohm

= 24429637 (T)  even at

the limiting degenerate case, &,y 1. Therefore, our above LVC(N T, rd(a))—expression, given in Eq. (25b),
is found to be not useful here.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type GaSb-crystals, the Fermi energy Egnrp) = [E — EC](EFp = [EV - Efp]), Ec(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10™% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(a))» Neon(copy (Fda)) being the
critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N =0 at
this transition.

First of all, we define the reduced electron density by:

3

N Mn(oy k8 T\2 _
U(N P T) = U L T) = e oy (T) = 2% oy % (F255)° (em™), (A1)

v),
where Ny (T) is the conduction (valence)-band density of states, and the values of ggqy and M) are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type GaSb is determined by :

Fn(Fp)(u) _ G(U)+AUBF(U) —_ = w
or = oA = e =g

A =0.0005372 and B = 4.82842262, (A2)

(-AJIII\)

2 4 8
where F(N , rqc), T) = aus (1 +bu s+ cu“S) , Obtained foru 1, according to the degenerate cas,
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1/m\2 62.3739855 /4 -2 _
a=[@V/AHI3, b=2(5)", c=" () ,and then G(U) Ln(w+27Zxuxe ™ foru

1, according to the non — degenerate case, with: d = 23/2 [% - %] > 0.

So, in the present degenerate case (U 1), one has:
2

-3 8\ 3
(N Ta@: T) = Enepy(N . T) = Enogrpoy (U) < (1 +bu 3+cu 3) : (A3)
Then, at T=0K, since u™* = 0, Eq. (A.3) is reduced to:

2xkEn(epy(N )
2XMn(p)

Fno(Fpo)(N ) = (A4)

being proportional to (N )2/3, and equal to 0, Fno(Fpo)(N = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:

D(N ra@ 1) _ N, d enEp) _ kexT (u den(p)) (A.5)
U(N yl’d(a)vT) q dN q du ’ .

where D(N Tdca): T) is the diffusion coefficient, 8,(u) is defined in (A2), and the mobility U(N Tdca): T) is

determined in Eq. (28). Then, by differentiating this function 6,(u) with respect to u, one thus obtains %.

Therefore,

D(N rgca).T) _kexT V' (W) xW(U)=V(u)xW (u)
H(N Fryca)T) q W2(u) ’

(A.6) where
8

. : ] Se20i3
W) =ABuE™? and V'(u) =u™l+272e7%(1 —du) +2AuBTIF(U) (1 + L) + A 22U T One

1+bu” 3+cu 3

Dhy(U)  kgxT

remarks that: (i) as U — O, one has: W2 1 and u[V'x W —V x W' 1, and therefore: p

and (ii) as U - o, one has: W? = A2u?® and u[V xW —V x W] =§au2/3A2u25, and therefore, in this
highly degenerate case and at T=0K,

e 2 = 2oy (N )/ (A7)

One notes that, for N = 0, Erporpoy(N ) = 0O, as remarked in above Eq. (A4), (N =0,r4@), T=0K) =0,
as remarked in above Eq. (28), and therefore, for any ryc,), D(N =0,r4@) T = OK) = 0, according to the
MIT. Now, replacing Eppo(rpo) given in Eq. (A.7) by Epnerp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

(A)III\)

D(N rgca) T=0) 2

4 8
p(N ,rd(a),Tzo) 3 X Fno(Fpo)(U) X (1 +bu 3+cu 3) . (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type GaSb-crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:
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— (39w 13 1 _ 8 %)\ /3 _ Mngy/Mo
rsn(Sp)(N : rd(a)) - (4nN ) x asn@p) (@) 11723 > 107 x (N_) x Ce(ra@) (BI)

In particular, in the following, My)/My = M./My, is taken to culculate the band gap narrowing (BGN), as

used in Sections 3 and 5. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)) , 18

found to be given by [1]:
0.87553 2[1-In (2)]
_ 087553 0.0908+rsn(sp)+( 2 )x'n (Fsn(sp))—0.093288
ECE(rsn(sp)) = ECE(N ' I’d(a)) - 0.0908+ 51 (sp) + 140 03847728xr§n%3)78876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

£ 13 s 3 o 1774, [me
AEgn(N Ta) a1 e(rg) x Ni™™ +ap % ) x Ny x (2.503 x [ = Ecg(rsn) * rep]) +az % [i(fd) x ™ x

3

1/4 1/2 e |2 6 = N =N—Ncpn(ra)
N +a, f XN'" > 2+as % [ B d)] Nr, Nr = 5 ssoxi0t7em -3 (B3)
and

s o NL/3 . 3 54 [mn
Bogp(N 1o)  ayx oy x NP ag x gy N2 x (2503 x [ — Ece(rsp) % Fpl) + a3 % 22 m
3

1/4 vz 2 6 — (N =N=Ncpp(ra)

Np' +2a, > w/ ) N 8 > o )] *Np, Nr = (9.999x1017 cm_3)’ (B4)

Here, £, = 15.69, a; = 3.80 x 1073(eV), a, = 6.5 % 107%(eV), az = 2.85 x 1073(eV), a4 = 5.597 x
1073(eV) and a5 = 8.1 x 107*(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Iq), A gnp)(N =0, rg)) =0

according to the metal-insulator transition (MIT).

References

[1] H. Van Cong, “New dielectric constant, due to the impurity size effect, and determined by an effective
Bohr model, affecting strongly the Mott criterion in the metal-insulator transition and the optical band
gap in degenerate (Si, GaAs, InP)-semiconductors, “SCIREA J. Phys., vol.7, pp. 221-234 (2022); H.
Van Cong et al., “Size effect on different impurity levels in semiconductors,” Solid State
Communications, vol. 49, pp. 697-699(1984).

[2] H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and thermoelectric
properties of various degenerate donor-silicon systems at low temperatures,” American Journal of
Modern Physics, vol. 7, pp. 136-165 (2018).

[3] H. Van Cong et al., “A simple accurate expression of the reduced Fermi energy for any reduced carrier
density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993; H. Van Cong and B. Doan Khanh, “Simple
accurate general expression of the Fermi-Dirac integral Fj(a) and for j> -1,” Solid-State Electron., vol.
35, pp. 949-951(1992); H. Van Cong, “New series representation of Fermi-Dirac integral Fj( — oo <
a < oo) for arbitrary j> -1, and its effect on Fj(a = 0.) for integer j= 0,” Solid-State Electron., vol. 34,

pp. 489-492 (1991).

381



[4]

C. Kittel, “Introduction to Solid State Physics, pp. 84-100. Wiley, New York (1976); J.J. Mares et al.,
“Electrical properties of Mn-doped GaSb,” Materials Science and Engineering, vol. 28, pp. 134-137
(1994).

S. Adachi, “Physical Properties of III-V Semiconductor Compounds,” John Wiley & Sons, Inc., New
York, 1992.

H. Van Cong et al., “Optical bandgap in various impurity-Si systems from the metal-insulator transition
study,” Physica B, vol. 436, pp. 130-139, 2014; H. Stupp et al., Phys. Rev. Lett., vol. 71, p. 2634 (1993);
P. Dai et al., Phys. Rev. B, vol. 45, p. 3984 (1992).

H. Van Cong, K. C. Ho-Huynh Thi, et al., “28.68% (29.87%)- Limiting Highest Efficiencies obtained in
n*(p*) — p(n) Crystalline Silicon Junction Solar Cells at 300K, Due to the Effects of Heavy (Low)
Doping and Impurity Size, “SCIREA J. Phys., vol.7, pp. 160-179, 2022; H. Van Cong, K. C. Ho-Huynh
Thi, et al., “30.76% (42.73%)-Limiting Highest Efficiencies obtained in n*(p*) —p(n) Crystalline
GaAs Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size,
“SCIREA J. Phys., vo.7, pp. 180-199 (2022).

J. Wagner and J. A. del Alamo, J. Appl. Phys., vol. 63, 425-429 (1988).

P. W. Chapman, O. N. Tufte, J. D. Zook, and D. Long, Phys. Rev. 34, 3291-3295 (1963).

M. Finetti and A. M. Mazzone, J. Appl. Phys. 48, 4597-4600 (1977).

Hyun-Sik Kim et al.,”Characterization of Lorenz number with Seebeck coefficient measurement”, APL

Materials 3, 041506 (2015).

382



