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Same maximum figure of merit ZT(=1), due to the effect of impurity size,

obtained in the n(p)-type degenerate InSb-crystal (��(�)( ≧ �)), at same reduced

Fermi energy ��(�)( = �. ���) , same minimum Seebeck coefficient � =−

�. ��� × ��−� �
�
, and same �� ����( = ��

�×��(�)
� ≃ �)
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Abstract
In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static

dielectric constant, ε rd a , rd a being the donor (acceptor) d(a)-radius, was determined by using an

effective Bohr model, suggesting that, for an increasing rd a , ε rd a , due to such the impurity size effect,

decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also

various majority carrier transport coefficients given in the n(p)-type degenerate InSb-crystal, defined for the

reduced Fermi energy ��(�)( ≧ �) . Then, using the same physical model and same mathematical methods

and taking into account the corrected values of energy-band-structure parameters, all the numerical results,

obtained in II, are now revised and performed, giving rise to some important concluding remarks as follows.

(1) The critical donor (acceptor)-density, NCDn NDp (rd(a)), determined in Eq. (3), can be explained by the

densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)), given in Eq. (21).

(2) In Tables 9-10, with a given d(a)-density N [= 2 × NCDn NDp (rd(a))], one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy ξn(p)( = 1.813), while the numerical results of the Seebeck

coefficient S present a same minimum =− 1.563 × 10−4 V
K
, those of the figure of merit ZT show a same
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maximum ZT = � , (ii) for ξn(p) = 1, those of S and ZT present same results: Sb =− 1.322 × 10−4 V
K

and

0.715, respectively, (iii) for ξn(p) = 1.813 and ξn(p) = 1, the same values of the well-known Mott figure of

merit, ZT Mott = π2

3×ξn(p)
2 ( ≃ 1 and 3.29), are respectively investigated, and finally, (iv) we show here that in

the degenerate InSb-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential
fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction
In our two previous papers [1, 2], referred here to as I and II.

In I, our new expression for the extrinsic static dielectric constant, ε rd a , rd a being the donor (acceptor)

d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing rd a ,

ε rd a , due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in

the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type InSb

-crystal, defined for the accurate reduced Fermi energy [3], ��(�)( ≧ �). Therefore, all the numerical results

of those obtained and given in II are now revised and performed, in comparison with those obtained in [3-

11].

In Section 2, the numerical results of energy-band-structure parameters [4] are presented in Tables 1 and 2.

In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and mathematical

methods, needed to determine and evaluate the critical densities of the majority carriers localized in the

exponential conduction (valence) band tails, are presented, confirming thus the corresponding numerical

results, obtained using Eq. (3) for the generalized effective Mott criterion in the metal-insulator transition

(MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution function method, our

accurate expression for the electrical conductivity, σ , is determined, being a fundamental one, since it is

related to all other electrical-and-thermoelectric coefficients, and then all the numerical results of those

coefficients are reported in Tables 4-10. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters
First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in

the n(p)-type InSb -crystals, such as: (i) if denoting the free electron mass by mo, the effective electron (hole)

mass, mn(p)
∗ /mo, which is respectively equal to the relative effective mass, mn(p)/mo = 0.015 (0.39) [4], as

used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

(MIT), (ii) to the reduced effective mas, mr/mo = mn×mp
mn+mp

mn×mp
mn+mp

mn×mp
mn+mp

= 0.0144 , as used in Section 3 to determine the

optical band gap, and (iii) to the conductivity effective mass
���(��)

��
= 0.1 (0.4), as used in Section 5. Further,
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Ego= EgInSb= EgSb= EgIn = 0.23 eV [4] is the unperturbed intrinsic band gap, εInSb= εIn = εSb = εo = 16.8

is the relative static intrinsic dielectric constant of the InSb -crystal [4], and finally, the effective averaged

numbers of equivalent conduction (valence)-band edge, gc(v) = 1(1).

Table 1. Here, the effective electron (hole) mass, mn(p)
∗ , is equal respectively to: mn(p) , as used in Sections 2 and 4, to

mr in Section 3, and mCn(Cp) in Section 5, and the values of other important parameters are also reported.

__________________________________________________________________________ ____________________________________________

mn(p)/mo [4] mr/mo mCn(Cp)/mo gc(v) Ego [4] εo [4]

0.015 (0.39) 0.0144 0.1 (0.4) 1(1) 0.23 eV 16.8
__________________________________________________________________________ ____________________________________________

We now determine our expression for extrinsic static dielectric constant, ε rd a , due to the impurity size

effect, and the expression for critical density, NCDn(CDp) rd a , characteristic of the metal-insulator transition

(MIT), as follows.

2.1. Expression for � �� �

In the [d(a)- InSb]-systems, since rd(a), given in tetrahedral covalent bonds, is usually either larger or smaller

than rSb(In) = 0.136 �� (0.144 ��), a local mechanical strain (or deformation potential energy) is induced,

according to a compression (dilation) for: rd(a) > rSb(In) (rd(a) < rAs(In)), due to the d(a)-size effect,

respectively [1, 2]. Then, we have shown that this rd(a) -effect affects the changes in all the energy-band-

structure parameters, expressed in terms of the static dielectric constant, ε(rd(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive

(attractive) force increases (decreases) the intrinsic energy gap �gni(gpi) rd(a) and the effective

donor(acceptor)-ionization energy �d(a) rd(a) in absolute values, obtained in an effective Bohr model, as:

Egni(gpi) rd(a) − Ego = Ed(a) rd(a) − Edo(ao) = Edo(ao) × εo
ε(rd(a))

2
− 1 , (1)

where Edo(ao) ≡ 13600 meV× mn(p)/mo

εo
2 = 0.723 meV (18.793 meV), and

ε(rd(a))=
εo

1+
rd(a)

rSb(In)

3
−1 ×ln

rd(a)
rSb(In)

3
≤ εo, for rd(a) ≥ rSb(In),

ε rd a = εo

1−
rd(a)

rSb(In)

3
−1 ×ln

rd(a)
rSb(In)

3
≥ εo,

rd(a)
rSb(In)

3
− 1 × ln rd(a)

rSb(In)

3
< 1, for rd(a) ≤ rSb(In). (2)

2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InSb-crystals, the critical donor(acceptor)-density, NCDn NDp (rd(a)) , is

determined from the generalized effective Mott criterion in the MIT, as:

NCDn NDp (rd(a))
1

3 × aBn(Bp)(rd(a)) = y, (3)

and the effective Bohr radius aBn(Bp)(rd(a)) is given by:

aBn(Bp)(rd(a)) ≡ ε(rd(a))×ℏ2

mn(p)
∗ ×q2 = 0.53 × 10−8 cm × ε(rd(a))

(mn(p)
∗ /mo)

, (4)
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where −q is the electron charge, ε(rd(a)) is determined in Eq. (2), in which mn(p)
∗ /mo = mn(p)/mo =

0.015 (0.39) . Here, we have chosen, in this work, y=3.4714 (0.133515) so that we obtain:

NCDn NDp (rSb(In)) = 2 × 1017 cm−3 [4]. Then, from Eq. (3), the numerical results of NCDn NDp (rd(a)) are

obtained and given in the following Table 2, in which we also report those of the densities of electrons

(holes), being localized in exponential conduction (valance)-band (EBT) tails, NCDn CDp
EBT (rd(a)) , obtained

using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations (RD), in

absolute values, between NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) are found to be equal to: 7.8% (11%),

respectively. Thus, the numerical results of NCDn NDp (rd(a)) are obtained, using Eq. (3), can be

explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)

tails, NCDn CDp
EBT (rd(a)), being determined from Eq. (21).

Table 2. For increasing rd(a), while ε(rd(a)) decreases, the functions: �gni(gpi) rd(a) , NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a))

increase. The maximal relative deviations between the numerical results of NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)), in absolute

values, calculated using Equations (3, 21), are found to be equal to: 7.8% (5.9)%, respectively, suggesting that NCDn NDp (rd(a))

can be explained by NCDn
EBT(rd), being localized in the EBT. So, in the n(p)-type InSb - crystal, in which (mn(p)/mo) = 0.015

(0.39) [4], all the numerical results for the energy-band-structure parameters and NCDn(CDp)(rd(a)), which are expressed

as functions of rd(a)-radius, are obtained, using Equations (3, 9, 10, 11, 12, 13, 21).

__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

ε(rd) ↘ 20.076 18.198 16.865 16.8 16.734

Ed(rd) in meV ↗ 0.506 0.616 0.717 0.723 0.728

Egni(rd) in eV ↗ 0.2298 0.2299 0.229994 0.23 0.230006

NCDn(rd) in 1017 cm−3 ↗ 1.172 1.5737 1.977038 2 2.023761

NCDn
EBT(rd) in 1017 cm−3 ↗ 1.2631659 1.5703305 1.859051 1.8750136 1.8914837

RD 7.8% 0.2% 5.9% 6.2% 6.5%
__________________________________________________________________________ ____________________________________________

Acceptor Ge Ga(Al, Mn) Mg In

ra (nm) [4] ↗ 0.122 0.126 0.140 0.144

ε(ra) ↘ 18.723 18.034 16.858 16.8

Ea(ra) in meV ↗ 15.13 16.308 18.664 18.793

Egpi(ra) in eV ↗ 0.226337 0.227515 0.229871 0.23

NCDp(ra) in 1017 cm−3 ↗ 1.444768 1.616741 1.979495 2

NCDp
EBT(ra) in 1017 cm−3 ↗ 1.6037286 1.6975683 1.8821582 1.8921462

RD 11% 5% 4.9% 5.4%
__________________________________________________________________________ ____________________________________________

In summary, Table 2 also indicates that, for an increasing rd(a) , ε(rd(a)) decreases, while Egni(gpi) rd(a) ,

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5 .
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3. Optical band gap
Here, mn(p)

∗ /mo is chosen as: mn(p)
∗ /mo = mr/mo = 0.0144 , and then, if denoting N∗≡ N −

NCDn NDp (rd(a)) , the optical band gap (OBG) is found to be given by:

Egn1 gp1 N∗, rd a , T ≡ Egn2 gp2 N∗, rd a , T + EFn Fp N∗, T , (5)

where the Fermi energy EFn Fp N∗, T is determined in Eq. (A3) of the Appendix A and the reduced band

gap is defined by:

Egn2 gp2 N∗, rd a , T ≡ Egnei gpei rd a , T − ΔEgn gp N∗, rd a .

Here, the effective intrinsic band gap �gnei gpei is determined by:

Egnei gpei rd a , T ≡ Egni gpi rd a − 0.0935 �� × 1 + 2�
440.0613 �

2.201
1

2.201
− 1 ,

and the band gap narrowing, ΔEgn gp N∗, rd a , are determined in Equations (B3, B4) of the Appendix B

and the values of Egni gpi rd a are given in Table 1. In particular, in the n-type P- InSb crystal, one gets:

Egnei(gpei) rP, T = 300 K = 0.169779 eV [1, 4].

Further, as noted in the Appendix A and B, at T=0K, as N∗ = 0, one has: EFn Fp N∗, T = EFno(Fpo)(N∗) =

0, as given in Eq. (A4), and ΔEgn gp N∗, rd a = 0 , according to the MIT, as noted in Appendix A and B.

Therefore, Egn1 gp1 = Egn2 gp2 = �gnei(gpei) rd(a) = �gni(gpi) rd(a) at T=0K and N∗ = 0 , according also

to the MIT.

Then, in degenerate d(a)- InSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

are reported in the following Table 3, suggesting that, for a given rd(a), the OBG increases with increasing N.

Table 3. In degenerate d(a)- InSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given rd(a), the OBG increases with increasing N.

_________________________________________________________________________ ____________________________________________

N (1018 cm−3) ↗ 4 8.5 15 50

�gn1(N∗, rP) in eV ↗ 0.810 1.214 1.685 3.533

�gn1(N∗, rAs) in eV ↗ 0.803 1.206 1.676 3.522

�gn1(N∗, rTe) in eV ↗ 0.795 1.198 1.669 3.513

�gn1(N∗, rSb) in eV ↗ 0.7949 1.198 1.6681 3.512

�gn1(N∗, rSn) in eV ↗ 0.7945 1.1977 1.668 3.5117

__________________________________________________________________________ ____________________________________________

N (1018 cm−3) ↗ 6.5 11 15 26 50

�gp1(N∗, rGa(Al)) in eV ↗ 1.0527 1.4140 1.6946 2.3605 3.5476

�gp1(N∗, rMg) in eV ↗ 1.050 1.4114 1.6919 2.3576 3.5540

�gp1(N∗, rIn) in eV ↗ 1.0498 1.4112 1.6918 2.3574 3.5438

__________________________________________________________________________ ____________________________________________
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4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate InSb crystal, if denoting the Fermi wave number by: kFn(Fp)(N∗) ≡ 3�2N∗/

gc(v)
1/3

, the effective reduced Wigner-Seitz radius rsn(sp), characteristic of the interactions, is defined by:

� × rsn(sp) N∗, rd a , mn(p)
∗ ≡

kFn(Fp)
−1

�Bn(Bp)
< 1, (6)

being proportional to N∗−1/3 . Here, � = 4/9� 1/3 , kFn(Fp)
−1 means the averaged distance between ionized

donors (acceptors), and aBn(Bp)(rd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 0 K is

defined by

Rsn(sp) N∗, rd(a) ≡
ksn(sp)

kFn(Fp)
=

kFn(Fp)
−1

ksn(sp)
−1 = a × RsnWS(spWS) + b × RsnTF(spTF) − a × RsnWS(spWS) �−rsn(sp) < 1, (7)

where the empirical parameters: � = 0.03 (1.04) and b= 0 (0), respectively, were chosen so that the relative

deviations between NCDn NDp and NCDn CDp
EBT , in absolute values, are minimized, as observed in Table 1. Here,

these ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows.

First, for N ≫ NCDn NDp (rd(a)) , according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(spTF) N∗, rd(a) is reduced to

RsnTF(spTF) N∗, rd(a) ≡ ksnTF(spTF)

kFn(Fp)
=

kFn(Fp)
−1

ksnTF(spTF)
−1 = 4�rsn(sp)

�
≪ 1, (8)

being proportional to N∗−1/6.

Secondly, for � < NCDn NDp (rd(a)) , according to the Wigner-Seitz (WS)-approximation, the ratio

RsnWS(snWS) is respectively reduced to

Rsn(sp)WS N∗, rd(a) ≡ ksn(sp)WS

kFn
= 3

2�
3

2� − �d �sn(sp)
2 ×�CE N∗,rd(a)

d�sn(sp)
, (9)

where �CE N∗, rd(a) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.

Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
kFn(Fp)

−1

aBn(Bp)
< ηn(p)

�Fno(Fpo)
≡ 1

An(p)
<

kFn(Fp)
−1

ksn(sp)
−1 ≡ Rsn(sp) < 1, An(p) ≡ EFno(Fpo)

ηn(p)
, (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) is defined in Eq. (7). Here, the energy parameter, ηn(p) , being characteristic of the exponential

conduction (valence)-band tails is determined in next Eq. (12).

Then, in degenerate d(a)- InSb systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, −q +q , at position r�� , and an ionized donor (ionized

acceptor) charge: +q −q at position Rj��� , randomly distributed throughout the InSb -crystal, is defined by
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V(r) ≡ j=1
ℕ vj r + Vo� , (11)

where ℕ is the total number of ionized donors(acceptors), Vo is a constant potential energy, and vj r is a

screened Coulomb potential energy for each d(a)- InSb system, defined as

vj r ≡− q2×exp (−ksn(sp)× r�� −Rj��� )
ε(rd(a))× r�� −Rj��� ,

where ksn(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector k�� -espace is given by

vj k�� =− q2

ε(rd(a))
× 4π

Ω
× 1

k2+ksn
2 ,

where Ω is the total InSb -crystal volume.

Then, the effective auto-correlation function for potential fluctuations, Wn(p) νn(p), N∗, rd ≡ V r V(r') , was

determined as [3] :

Wn(p) νn(p), N∗, rd(a) ≡ ηn(p)
2 × exp −ℋ×Rsn(sp) N∗,rd(a)

2 νn(p)

, ηn(p)(N∗, rd(a)) ≡ 2πN∗

ε(rd(a))
× q2ksn(sp)

−1/2 , νn(p) ≡ −�
EFno(Fpo)

. (12)

Here, ε(rd(a)) is determined in Eq. (2), Rsn(sp) N∗, rd(a) in Eq. (7), the empirical Heisenberg parameter ℋ =

� (�. � ), respectively, will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally νn(p) ≡ −�
�Fno(Fpo)

,

where � is the total electron energy and EFno(Fpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: � − V a−1
2 ≡ �k

a−1
2 , for a ≥ 1 ,

�k ≡ ℏ2×k2

2×��(�)
∗ being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on Wn(p) νn(p), N∗, rd(a) .

4.2. Mathematical methods and their application (Critical impurity density)

A. Kane integration method (KIM)

In degenerate d(a)- InSb systems, the effective Gaussian distribution probability is defined by

P V ≡ 1
2�Wn(p)

× exp −V2

2Wn(p)
.

So, in the Kane integration method, the Gaussian average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 KIM ≡ �k

a−1
2

KIM = −∞
� � − V a−1

2� × P V dV, for a ≥ 1.

Then, by variable changes: s = � − V / Wn(p) and x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

,

and using an identity:

0
∞ sa−1

2� × exp ( − xs − s2

2
s2

2 )ds ≡ Γ(� + 1
2
1
2) × exp (x2/4) × D−a−1

2
(x),
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where D−a−1
2
(x) is the parabolic cylinder function and Γ(a + 1

2
1
2) is the Gamma function, one thus has:

�k
a−1

2
KIM =

exp (−x2/4)×Wn(p)

2a−1
4

2π
× Γ(a + 1

2
1
2) × D−a−1

2
(x) =

exp (−x2/4)×ηn(p)
a−1

2

2π
× exp − ℋ×Rsn(sp)× 2a−1

8× νn(p)

× Γ(a +

1
2) × D−a−1

2
(x). (13)

B. Feynman path-integral method (FPIM)

Here, the ensemble average of � − V a−1
2 ≡ �k

a−1
2 is defined by

� − V a−1
2 FPIM ≡ �k

a−1
2

FPIM ≡ ℏa−1
2

23/2× 2�
×

Γ(a+1
2)

Γ(3
2)

× −∞
∞ �t −a−1

2� × exp ��t
ℏ

−
t Wn(p)

2

2ℏ2 dt, i2 =− 1,

noting that as a=1, it −3
2 × exp −

t Wp
2

2ℏ2 is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

Then, by variable changes: t = ℏ

Wn(p)

ℏ

Wn(p)
and x =− �/ Wn(p), and then using an identity:

−∞
∞ �s −a−1

2� × exp �xs − s2

2
ds ≡ 23/2 × Γ(3/2) × exp ( − x2/4) × D−a−1

2
(x),

one finally obtains: �k
a−1

2
FPIM ≡ �k

a−1
2

KIM, �k
a−1

2
KIM being determined in Eq. (13).

In the following, with use of asymptotic forms for D−a−1
2
(x) , those given for � − V a−1

2 KIM will be

obtained in the two cases: � ≥ 0 and � ≤ 0.

(i) � ≥ �-case

As � →+ ∞, one has: �n →− ∞ and x →− ∞. In this case, one gets:

D−a−1
2
(x →− ∞) ≈ 2�

Γ(a+1
2)

× �
x2
4 × ( − x)a−1

2.

Therefore, Eq. (13) becomes: �k
a−1

2
KIM ≈ �a−1

2 . Further, as � →+ 0, one has: �n(p) →− 0 and x →− ∞. So,

one gets :

D−a−1
2

x →− ∞ ≃ � a × exp ( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2
16a
x2
16a + x3

24 a
x3

24 a → 0, � a = �

2
2�+1

4 Γ(a
2+3

4)]
.

Thus, as � →+ 0, from Eq. (13), one gets: �k
a−1

2
KIM → 0.

In summary, for � ≥ 0, the expression of �k
a−1

2
KIM can be approximated by:

�k
a−1

2
KIM ≅ �a−1

2, �k ≡ ℏ2×k2

2×m∗ . (14)

(ii) � ≤ � − ����.

As � →− 0, from Eq. (13), one has: �n(p) →+ 0 and x →+ ∞. Thus, one first obtains, for any a ≥ 1,

D−a−1
2
(x → ∞) ≃ β a × exp −( a + 1

16a
3
2

1

16a
3
2
) x − x2

16a
x2

16a
x2

16a − x3

24 a
x3

24 a → 0, β a = π

2
2a+1

4 Γ(a
2+3

4)]
, noting that
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β 1 = π

2
3
4×Γ(5/4)

and β 5/2 = π
23/2.

Then, putting f(a) ≡
ηn(p)

a−1
2

2π
× Γ(a + 1

2
1
2) × β a , Eq. (13) yields

Hn(p) �n(p) →+ 0 , rd(a), a =
�k

a−1
2 KIM

f(a)
= exp −

ℋ×Rsn(sp)× 2a−1

8× νn(p)

− a + 1

16a
3
2

1

16a
3
2

x− 1
4+ 1

16a x2− x3

24 a → 0. (15)

Further, as � →− ∞, one has: �n(p) →+ ∞ and x → ∞. Thus, one gets:

D−a−1
2
(x → ∞ ) ≈ x−a−1

2× �−x2
4 → 0. Therefore, Eq. (13) yields

Kn(p)(�n(p) →+ ∞ , rd(a), a) ≡
�k

a−1
2

KIM

f(a)
≃ 1

� a
× exp ( − (An(p)×�n(p))2

2
) × (An(p) × �n(p))−a−1

2 → 0. (16)

It should be noted that, as � ≤ 0, the ratios (15) and (16) can be taken in an approximate form as:

Fn(p)(�n(p), rd(a), a) = Kn(p)(�n(p), rd(a), a) + Hn(p)(�n(p), rd(a), a) − Kn(p)(�n(p), rd(a), a) × exp  − c1 ×
An(p)�n(p)

c2 , (17)

such that: Fn(p)(�n(p), rd(a), a) → Hn(p)(�n(p), rd(a), a) for 0 ≤ �n ≤ 16 , and Fn(p)(�n(p), rd(a), a) →

Kn(p)(�n(p), rd(a), a) for �n(p) ≥ 16. Here, the constants c1 and c2 may be respectively chosen as: c1 = 10−40

and c2 = 80, as a = 1 , being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NCDn CDp
EBT (N, rd(a)), in the following.

C. Critical impurity density in the MIT

In degenerate d(a)- InSb systems at T=0 K, in which mn(p)
∗ /mo = mn(p)/mo = 0.015 (0.39), as given in

Section 2, using Eq. (13), for a=1, the density of states �(�) is defined by:

�(�k) KIM ≡
gc(v)

2�2
2mn(p)

ℏ2

3
2 × �k

1
2

KIM =
gc(v)

2�2
2mn(p)

ℏ2

3
2 ×

exp −x2
4 ×Wn

1
4

2�
× Γ 3

2 × D−3
2

x = �(�), (18)

where x is defined in Eq. (13), as: x =− �/ Wn(p) ≡ An(p) × �n(p) × exp ℋ×Rsn(sp)

4× νn(p)

.

Here, EFno is determined in Eq. (A4) of the Appendix A, with mn(p)
∗ /mo = mn(p)/mo and ℋ = � (�. � ) ,

respectively, being chosen such that the following determination of NCDn CDp
EBT (N, rd(a)) would be accurate.

Going back to the functions: Hn , Kn and Fn , given respectively in Equations (15-17), in which the factor

�k

1
2

KIM

f(a=1) is now replaced by:

�k

1
2

KIM

f(a=1)
= �(�≤0)

�o
= Fn(p) �n(p), rd(a), a = 1 , �o =

gc(v)× mn(p)×mo
3/2× �n(p)

2�2ℏ3 × � a = 1 , � a = 1 = �

2
3
4×Γ(5/4)

.

(19)

Therefore, NCDn CDp
EBT (N, rd(a)) can be defined by
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NCDn CDp
EBT (N, rd(a)) = −∞

0 �(� ≤ 0)� d�,

where �(� ≤ 0) is determined in Eq. (19). Then, by a variable change: �n(p) ≡ −�
EFno(Fpo)

, one obtains:

NCDn CDp
EBT (N, rd(a)) =

gc(v)× mn(p)
3/2 �n(p)×EFno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a = 1� d�n(p) + In(p) ,

(20)

where

In(p) ≡ 16
∞

�(a = 1) × Kn(p) �n(p), rd(a), a = 1� d�n(p) = 16
∞ �

− An(p)×�n
2

2 × An(p)�n(p)
−3/2

� d�n(p).

Here, �(a = 1) = �

2
3
4×Γ(5/4)

.

Then, by another variable change: t = An(p)�n(p)/ 2
2
, the integral In(p) yields:

In(p) = 1
25/4An(p)

1
25/4An(p)

1
25/4An(p)

× yn(p)

∞ tb−1� e−tdt ≡ Γ(b, yn(p))

25/4×An(p)

Γ(b, yn(p))

25/4×An(p)
,

where b =− 1/4, yn(p) = 16An(p)/ 2
2
, and Γ(b, yn(p)) is the incomplete Gamma function, defined by:

Γ(b, yn(p)) ⋍ yn(p)
b−1× �−yn(p) 1 + j=1

16 b−1 b−2 …(b−j)
yn(p)

j� .

Finally, Eq. (20) now yields:

NCDn CDp
EBT [N = NCDn NDp (rd(a))] =

gc(v)× mn(p)
3/2 �n(p)×�Fno(Fpo)

2�2ℏ3 × 0
16 �(a = 1) × Fn(p) �n(p), rd(a), a =�

1 d�n(p) + Γ(b, �n(p))
25/4×An(p)

, (21a)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),

respectively.

The numerical results of NCDn CDp
EBT [N = NCDn NDp (rd(a))] ≡ NCDn CDp

EBT ( rd(a)) , for a simplicity of

presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of NCDn NDp (rd(a)) ,

calculated using Eq. (3), with a precision of the order of 7.8% (11%), respectively. In other words, this

critical d(a)-density NCDn NDp (rd(a))) can thus be explained by the density of electrons(holes) localized in

the EBT, NCDn CDp
EBT ( rd(a)).

So, the effective density of free electrons (holes), N∗, given in the parabolic conduction (valence) band of the

degenerate d(a)- InSb systems, can thus be expressed by:

N∗≡ N − NCDn NDp ≅ N − NCDn CDp
EBT . (21b)

Then, as N∗= NCDn NDp , according to the Fermi energy, EFno(Fpo)(N∗= NCDn NDp ) ≡
ℏ2×kFn(Fp)

2 (NCDn NDp )

2×mn(p)
∗ ,

given in this parabolic conduction (valence) band (i.e. � ≥ 0), the value of the density of electrons(holes),

NCDn CDp
EBT , localized in the EBT ( � ≤ 0), is almost equal to NCDn NDp , as noted above. This can thus be

expressed as:

NCDn CDp
EBT ≅ NCDn NDp , as N∗≡ NCDn NDp . (21c)
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5. Fermi-Dirac distribution function at low temperatures, and its applications
5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by

f(�) ≡ 1 + eγ −1, γ ≡ (� − �Fn(Fp))/(kBT),

where �Fn(Fp)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of �p, calculated using the FDDF-method, as developed in II, can be defined as:

�p
FDDF ≡ Gp(�Fn) × �Fn

p ≡ −∞
∞ �p × − ∂f

∂�
d�� , − ∂f

∂�
= 1

kBT
× eγ

1+eγ 2. (22)

Further, one notes that, at 0 K, − ∂f
∂�

= δ � − �Fno(Fpo) , δ � − �Fno(Fpo) being the Dirac delta (δ) -

function and �Fno(Fpo) is the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp �Fno = 1.

Then, at low T, by a variable change γ ≡ (� − �Fn(Fp))/(kBT), Eq. (22) yields:

Gp �Fn(Fp) ≡ 1 + �Fn(Fp)
−p × −∞

∞ eγ

1+eγ 2 × kBTγ + �Fn(Fp)
pdγ� = 1 + μ=1,2,…

p Cp
β� × kBT β × �Fn(Fp)

−β × Iβ ,

where Cp
β ≡ p p − 1 …(p − β + 1)/β! and the integral Iβ is given by:

Iβ = −∞
∞ γβ×eγ

1+eγ 2 dγ� = −∞
∞ γβ

eγ/2+e−γ/2 2 dγ� , vanishing for old values of β . Then, for even values of β = 2n ,

with n=1, 2, …, one obtains:

I2n = 2 0
∞ γ2n×eγ

1+eγ 2 dγ� . (23)

Now, using an identity 1 + eγ −2 ≡ s=1
∞ −1 s+1s × eγ(s−1)� , a variable change: sγ =− t , the Gamma

function: 0
∞ t2ne−t� dt ≡ Γ 2n + 1 = (2n)! , and also the definition of the Riemann’s zeta function:

ζ(2n) ≡ 22n−1π2n B2n /(2n)!, B2n being the Bernoulli numbers, one finally gets: I2n = 22n − 2 × π2n ×

B2n . So, from Eq. (22), we get in the degenerate case the following ratio:

Gp �Fn(Fp) ≡ �p FDDF
�Fn(Fp)

p = 1 + n=1
p p p−1 …(p−2n+1)

(2n)!
� × 22n − 2 × B2n × y2n ≡ Gp≥1 y , y ≡ π

��(�)
= πkBT

EFn(Fp)
. (24)

Then, some usual results of Gp≥1(y) are given in Table 4.

Table 4. Expressions for Gp≥1(y ≡ π
��(�)

) , due to the Fermi-Dirac distribution function FDDF, noting that Gp=1(y ≡

πkBT
�Fn(Fp)

= π
��(�)

) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5

__________________________________________________________________________ ____________________________________________

G3/2(y) G2(y) G5/2(y) G3(y) G7/2(y) G4(y) G9/2(y)

� + ��

�
+ ���

���
� + ��

�
� + ���

�
− ���

���
� + �� � + ����

��
+ ����

���
� + ��� + ���

��
� + ����

�
+ �����

���

_________________________________________________________________________ ______________________________________________

These functions Gp y will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate InSb, as follows.
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5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, mn(p)
∗ /mo is chosen as: mn(p)

∗ /mo = mCn(Cp)/mo = 0.1 (0.4) , as given in Table 1, and all the

majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:

N∗≡ N − NCDn NDp (rd(a)), where the values of critical d(a)-densities NCDn NDp (rd(a)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by σ(N∗, rd(a), T) ,

expressed in ohm−1 × cm−1 , the thermal conductivity by κ(N∗, rd(a), T) , expressed in W
cm×K

, and Lorenz

number by L = π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , then the well-known Wiedemann-Frank law states that

the ratio, κ
σ
, is proportional to the temperature T(K), as:

κ(N∗,rd(a),T)
σ(N∗,rd(a),T)

= L × T. (25a)

Then, it is interesting to define a constant Cκ(N∗, rd(a))[ ≡ κ(N∗,rd(a),T=3K)
L

] in order to show that, for given N∗

and rd(a), κApp.(N∗, rd(a), T) is found to be proportional to T, as:

κApp.(N∗, rd(a), T) ≃ Cκ(N∗, rd(a)) × T , RDκ,κApp. T
≡ 1 − κApp.(N∗,rd(a),T)

κ(N∗,rd(a),T) , (25b)

where RDκ,κApp. T
is the relative deviations in absolute values between κ(N∗, rd(a), T) and κApp.(N∗, rd(a), T),

as a function of T.

Thus, if σ is known, κ and other majority-carrier transport coefficients are also determined, since those are

related to σ. We now determine the general form of σ in the following.

First, it is expressed in terms of the kinetic energy of the electron (hole), �k ≡ ℏ2×k2

2×mCn(Cp)
, or the wave number

k, as:

σ(k) ≡ q2×k
π×ℏ

× k
ksn(sp)

× k × aBn(Bp)(rd(a)) × �k
ηn(p)(N,rd(a))

1/2
, (26)

which is thus proportional to �k
2. Further, ksn(sp), aBn(Bp), and ηn(p) are defined and determined in Equations

(7, 4, 12), respectively.

Then, from Eq. (14), for � ≥ 0 , we get: �k
2

KIM ≅ �2 , and from Eq. (22) we obtain: �2
FDDF ≡ G2(y =

πkBT

�Fn(Fp)
) × �Fn(Fp)

2 , where �Fn(Fp) is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

G2(y)= 1 + y2

3
≡ G2(N∗, T) is given in Table 4. Therefore, Eq. (26) becomes as:

σ(N∗, rd(a), T) ≡ q2×kFn(Fp)(N∗)
π×ℏ

×
kFn(Fp)(N∗)
ksn(sp)(N∗)

× kFn(Fp)(N∗) × aBn(Bp)(rd(a)) × EFno(Fpo)(N∗,T=0)
ηn(p)(N∗,rd(a))

1/2
×

G2(N∗, T) × EFn(Fp)(N∗,T)
EFno(Fpo)(N∗,T=0)

2
, kFn(Fp)(N∗) ≡ 3�2N∗/gc(v)

1/3
, (27)

which also determine the resistivity as: ρ(N∗, rd(a), T) ≡ 1/σ(N∗, rd(a), T) , noting that

N∗≡ N − NCDn NDp (rd(a)). Further, the Fermi energies EFn(Fp) and EFno(Fpo) are determined respectively in

Equations (A3, A4) of the Appendix A.
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In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), σ(N∗, rd(a), T = 0K) is proportional to EFno(Fpo)
2 ,

or to N∗ 4/3. Thus, σ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator transition (MIT)

occurs.

A. Electrical properties

The relaxation time � is related to σ by:

τ(N∗, rd(a), T) ≡ σ(N∗, rd(a), T) × mCn(Cp)

q2×N∗ . Therefore, the mobility μ is given by:

μ(N∗, rd(a), T) ≡ q×τ(N∗,rd(a),T)
mCn(Cp)

= σ(N∗,rd(a),T)
q×N∗ . (28)

In Eq. (28), at T= 0K, μ(N∗, rd(a), T = 0K) is thus proportional to N∗ 1/3, since σ(N∗, rd(a), T = 0K) is

proportional to N∗ 4/3 . Thus , μ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0 , at which the metal-insulator

transition (MIT) occurs.

Then, since τ and σ are both proportional to �2, as given above, the Hall factor can thus be determined by:

rH(N∗, T) ≡ τ2
FDDF

� ����
2 = G4(y)

G2(y) 2, and therefore, the Hall mobility yields:

μH(N∗, rd(a), T) ≡ μ(N∗, rd(a), T) × rH(N∗, T), (29)

noting that, at T=0K, since rH(N∗, T = 0K) = 1, one gets:

μH(N∗ = 0, rd(a), T = 0K) ≡ μ(N∗ = 0, rd(a), T = 0K)=0 at N∗ = 0 , at which the metal-insulator transition

(MIT) occurs.

Further, as discussed in Eq. (21c) and at T = 0K , we can also determine the values of these electrical-and-

thermoelectric coefficients, localized in the EBT for � ≤ 0 , by replacing: N∗= NCDn NDp ≅ NCDn CDp
EBT into

Equations (27, 28, 29), and Eq. (A7) of the Appendix A, for � ≥ 0, to obtain: σEBT(N∗ = NCDn NDp , rd(a)),

μEBT(N∗ = NCDn NDp , rd(a)) , μH
EBT(N∗ = NCDn NDp , rd(a)) and DEBT(rd(a)) . Those numerical results are

reported in following Table 5.
Table 5. Here, the values of the electrical-and-thermoelectric coefficients, obtained in the exponential tails (i.e. � ≤ 0 ), as:

σEBT(rd(a)), μEBT(rd(a)), μH
EBT(rd(a)) and DEBT(rd(a)) are reported, and their variations with increasing rd(a) are represented by the

arrows: ↗ and ↘.
_______________________________________________________________________________________________________________________

d- InSb systems P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

σEBT(rd) in 103

ohm×cm
↗ 7.575 7.966 8.381 8.404 8.429

μEBT(rd) in 105× cm2

V×s ↘ 4.034 3.159 2.646 2.623 2.599

μH
EBT(rd) in 105× cm2

V×s ↘ 4.034 3.159 2.646 2.623 2.599

DEBT(rd) in 103×cm2

s
↘ 2.348 2.238 2.182 2.180 2.178

________________________________________________________________________________________________________________________

a- InSb systems Ga(Al, Mn) Mg In
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ra (nm) [4] ↗ 0.126 0.140 0.144

σEBT(ra) in 102

ohm×cm
↗ 2.294 3.843 3.927

μEBT(ra) in 103× cm2

V×s ↗ 8.858 12.12 12.26

μEBT(ra) in
103× cm2

V×s
↗ 8.858 12.12 12.26

DEBT(ra) in
10×cm2

s
↗ 1.597 2.501 2.547

________________________________________________________________________________________________________________________

Furthermore, in the degenerate d(a)-InSb systems, at T=4.2 K and T=77 K, the numerical results of σ, μ, μH,

and the diffusion coefficient D, evaluated respectively by using Equations (27, 28, 29, A8 of the Appendix

A), are reported in following Table 6.
Table 6. Here, one notes that: (i) for given N and T, the functions: σ(rd(a)), μ(rd(a)), μH(rd(a)) and D(rd(a)), calculated

using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rd(a), and (ii) for given rd(a)

and T, the functions: σ(N∗), D(N∗), μ(N∗) and μH(N∗) increase, with increasing N.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

rd (nm) [4] ↗ 0.110 0.118 0.132 0.136 0.140

----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 105

ohm×cm
, 105× cm2

V×s
, 105× cm2

V×s
, 105×cm2

s

N(1018 cm−3)

3 1.80, 3.91, 3.91, 0.19 1.44, 3.16, 3.16, 0.15 1.20, 2.68, 2.68, 0.13 1.19, 2.66, 2.66, 0.13 1.18, 2.64, 2.64, 0.13

10 6.65, 4.20, 4.20, 0.47 5.34, 3.39, 3.39, 0.38 4.50, 2.87, 2.87, 0.32 4.46, 2.84, 2.84, 0.32 4.42, 2.82, 2.82, 0.31

40 29.6, 4.63, 4.63, 1.31 23.8, 3.72, 3.72, 1.05 20.1, 3.14, 3.14, 0.89 19.9, 3.12, 3.12, 0.88 19.7, 3.09, 3.09, 0.87

70 54.1, 4.83, 4.83, 1.99 43.4, 3.88, 3.88, 1.60 36.6, 3.28, 3.28, 1.35 36.3, 3.25, 3.25, 1.34 36.0, 3.22, 3.22, 1.33

----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 105

ohm×cm
, 105× cm2

V×s
, 105× cm2

V×s
, 105×cm2

s

N(1018 cm−3)

3 1.85, 4.01, 4.41, 0.20 1.48, 3.24, 3.58, 0.16 1.24, 2.75, 3.04, 0.13 1.22, 2.73, 3.02, 0.13 1.21, 2.71, 2.99, 0.13

10 6.68, 4.22, 4.31, 0.47 5.37, 3.40, 3.47, 0.38 4.52, 2.88, 2.94, 0.32 4.49, 2.86, 2.92, 0.32 4.45, 2.83, 2.89, 0.32

40 29.6, 4.63, 4.65, 1.31 23.8, 3.73, 3.74, 1.06 20.1, 3.15, 3.16, 0.89 19.9, 3.12, 3.13, 0.88 19.7, 3.09, 3.10, 0.88

70 54.1, 4.83, 4.84, 1.99 43.4, 3.88, 3.89, 1.60 36.6, 3.28, 3.29, 1.35 36.3, 3.25, 3.25, 1.34 36.0, 3.22, 3.23, 1.33
__________________________________________________________________________ ____________________________________________

Acceptor Ga(Al, Mn) Mg In

ra (nm) [4] ↗ 0.126 0.140 0.144

---------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at 4.2K, expressed respectively in 103

ohm×cm
, 104× cm2

V×s
, 104× cm2

V×s
, 102×cm2

s

N(1018 cm−3)

3 8.76, 1.93, 1.94, 2.35 7.62, 1.70, 1.71, 2.05 7.57, 1.69, 1.70, 2.04

10 28.7, 1.82, 1.82, 5.08 25.0, 1.59, 1.59, 4.44 24.8, 1.58, 1.58, 4.41

40 117, 1.83, 1.83, 13.0 101, 1.59, 1.59, 11.3 100, 1.58, 1.58, 11.2

70 208, 1.86, 1.86, 19.1 180, 1.61, 1.61, 16.6 179, 1.60, 1.60, 16.5
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----------------------------------------------------------------------------------------------------------------------------------------------------------------

In the following, our numerical results of (σ, μ, μH, D) at ��K, expressed respectively in 103

ohm×cm
, 104× cm2

V×s
, 104× cm2

V×s
, 102×cm2

s

N(1018 cm−3)

3 13.1, 2.89, 6.50, 3.73 11.5, 2.57, 5.83, 3.28 11.4, 2.55, 5.80, 3.26

10 30.9, 1.96, 2.52, 5.77 27.0, 1.72, 2.21, 5.05 26.8, 1.71, 2.19, 5.01

40 118, 1.85, 1.94, 13.2 103, 1.61, 1.69, 11.5 102, 1.60, 1.68, 11.4

70 209, 1.87, 1.91, 19.3 181, 1.62, 1.66, 16.8 180, 1.61, 1.65, 16.7
__________________________________________________________________________ ____________________________________________

B. Thermoelectric properties

First off all, from Eq. (27), obtained for σ(N∗, rd(a), T), the well-known Mott definition for the thermoelectric

power or for the Seebeck coefficient, S, is given in the n(p)-type degenerate InSb crystals, as:

S(N∗, T) ≡ ∓ π2

3
× kB

q
× kBT × ∂lnσ �

∂� �=�Fn Fp
.

Then, using Eq. (27), for ξn(p) ≡
EFn(Fp)(N∗,T)

kBT
≳ 1, one gets:

S(N∗, T) ≡ ∓ π2

3
× kB

q
× 2

π2

3 ξn(p)

× FSb(N∗, T), FS(N∗, T) ≡ 1 − y2

3×G2(y=
πkBT

�Fn(Fp)(N∗,T))
, (30)

noting that the effective donor (acceptor) density, N∗≡ N − NCDn NDp (rd(a)), is a function of rd(a).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N∗, T) ≡ T × dS(N∗,T)
dT

, (31)

and then, the Peltier coefficient, Pt, is defined as:

Pt(N∗, T) ≡ T × S(N∗, T). (32)

Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

ZT(N∗, T) ≡
S(N∗,T) 2×σ(N∗,rd(a),T)×T

κ(N∗,rd(a),T)
= S(N∗,T) 2

L
= ZT Mott × 2 × FS(N∗, T) 2 , ZT Mott = π2

3×ξn(p)
2 , (33)

where ZT Mott is a well-known Mott result, L = π2

3
× kB

q

2
= 2.4429637 × 10−8 W×ohm

K2 is the Lorenz

number, noting that, in the n(p)-type degenerate InSb ξn(p) ≡
EFn(Fp)(N∗,T)

kBT
≧ 1 , this value of L is exact, and

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

ξn(p) ≡ EFn(Fp)(N∗,T)
kBT

≃ 1, as: LKim( S ) = 1.5 + exp − S
116

, S being independent of T or N (?).

Then, being inspired from this LKim( S ) -expression, we also propose another one, given in the n(p)-type

degenerate InSb, as:

LVC S(N∗, T) = 1.44296 + e− S(N∗,T)
104 ; RDL,LVC ≡ 1 − LVC S(N∗,T)

L
, (34)

where RDL,LVC is the relative deviations in absolute values between L and LVC.

Finally, the numerical results of above expressions are obtained and discussed in the following.
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First, in the highly degenerate d(a)-InSb, defined by physical conditions : N = 1020cm−3 and T (=3K and

300K), the numerical results of ξn(p) ≡
EFn(Fp)(N∗,T)

kBT
, calculated by using Eq. (A3) of the Appendix A, and then

other ones of: σ(N∗, rd(a), T) by Eq. (27), κ(N∗, rd(a), T) by Eq. (25a); Cκ(N∗, rd(a)) , κApp.(N∗, rd(a), T) and

RDκ,κApp. T
by Eq. (25b), S(N∗, T) , Ts(N∗, T) , Pt(N∗, T) and ZT(N∗, T) by Equations (30, 31, 32, 33)

respectively, and finally, RDL,LVC by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing rd(a), due to the impurity size effect, NCDn(rd), increases,
since N(=1020 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in �Fn N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
= 3.55 × 10−3 confirms the κApp.-law, as given in Eq. (25b),

and finally, (iii) RDL,LVC ≃ 1.535× 10−6 thus confirms in this degenerate InSb -case the well-known Wiedemann-
Frank, given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Donor P As Te Sb Sn

Highly degenerate d-InSb systems for N=1020 cm−3 and at T=3K and T=300K, noting that N∗≡ N − NCDn(rd)
EFn N∗,T=300K

kBT
≫ 1 30.40 30.39 30.38 30.38 30.38

σ(T=3K)
106

ohm×cm
↘ 7.943 6.377 5.380 5.335 5.288

σ(T=300K)
106

ohm×cm
↘ 7.971 6.400 5.400 5.354 5.307

κ(T=3K) ( �
��×� ) ↘ 0.582 0.467 0.394 0.391 0.387

κ(T=300K) ( �
��×� ) ↘ 58.416 46.904 39.576 39.237 38.894

Cκ ( �
��×�� ) ↘ 0.1940 0.1558 0.1314 0.1303 0.1292

κApp.(300K) ( �
��×�) ↘ 58.209 46.737 39.436 39.098 38.756

RDκ,κApp. 300K
in 10−3 3.55 3.55 3.55 3.55 3.55

S(T=3K) (
10−7×V

K
). −1.868 −1.868 −1.869 −1.869 −1.869

S(T=300K) (
10−5×V

K
) −1.859 −1.859 −1.860 −1.860 −1.860

Ts(T=3K) (
10−7×V

K ) −1.868 −1.868 −1.868 −1.869 −1.869

Ts(T=300K) (10−5×V
K

) −1.840 −1.841 −1.841 −1.841 −1.841

Pt(T=3K) (10−7 × V ) −5.603 −5.605 −5.606 −5.607 −5.607

Pt(T=300K) (10−3 × V ) −5.576 −5.578 −5.579 −5.579 −5.579

ZT(T=3K) × 10−6 1.428 1.429 1.430 1.430 1.430

ZT(T=300K)(× 10−2 ) 1.414 1.414 1.416 1.416 1.416

----------------------------------------------------------------------------------------------------------------------------------------------------------------

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534 1.534 1.534

RD in 10−6 at 300K 1.535 1.535 1.5345 1.535 1.535

__________________________________________________________________________ ____________________________________________
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Table 8. Here, one notes that (i) for a given T, with increasing ra, due to the impurity size effect, NCDp(ra), increases,
since N(=1020 cm−3) is very high, N∗ therefore decreases slowly, explaining the slow decrease (↘) in EFp N∗,T=300K

kBT
, σ,

κ, Cκ, and κApp., (ii) the numerical result: RDκ,κApp. 300K
≃ 5.19% confirms the κApp.-law, as given in Eq. (25b), and

finally, (iii) RDL,LVC ≃ 1.537× 10−6 thus confirms in the degenerate InSb -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.
__________________________________________________________________________ ____________________________________________

Acceptor Ga (Al) Mg In

Highly degenerate a- InSb systems for N=1020 cm−3 and T=3K and T=300K
�Fp N∗,T=300K

kBT
≫ 1 ↘ 7.75 7.75 7.75

σ(T=3K)
105

ohm×cm
↘ 3.013 2.611 2.592

σ(T=300K)
105

ohm×cm
↘ 3.178 2.754 2.734

κ(T=3K) (��−�×�
��×� ) ↘ 2.208 1.914 1.900

κ(T=300K) ( �
��×� ) ↘ 2.329 2.018 2.004

Cκ (��−�×�
��×�� ) at T=3K ↘ 7.3611 6.3794 6.3331

κApp.(300K) ( �
��×�) ↘ 2.208 1.914 1.900

RDκ,κApp. 300K
in % 5.19 5.19 5.19

Sb(T=3K)(
10−7×V

K
) −7.473 −7.475 −7.475

Sb(T=300K) (
10−5×V

K ) −6.932 −6.934 −6.934

Ts(T=3K) (
10−7×V

K
) −7.473 −7.475 −7.475

Ts(T=300K) (10−5×V
K

) −5.9639 −5.939 −5.939

Pt(T=3K) (10−6 × V ) −2.242 −2.243 −2.243

Pt(T=300K) (10−2 × V ) −2.080 −2.080 −2.080

ZT(T=3K) × 10−5 2.286 2.287 2.287

ZT(T=300K) 0.197 0.197 0.197

RDL,LVC in 10−6 at 3 K 1.534 1.534 1.534

RDL,LVC in 10−6 at 300 K 1.537 1.537 1.537

__________________________________________________________________________ ____________________________________________

Secondly, in the degenerate d(a)-InSb, for a given N∗ , the values of ξn(p) ≡ EFn(Fp)(N∗,T)
kBT

, calculated by using

Eq. (A3) of the Appendix A, and other ones of: S(N∗, T) by Eq. (30), RDL,LVC by Eq. (34), ZT(N∗, T) by Eq.

(33), and finally, Ts(N∗, T) and Pt(N∗, T) by Equations (31, 32), respectively, are obtained and reported in

following Tables 9-10.
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Table 9. Here, for a given N∗ and for a given degenerate d- InSb system, with increasing T, the reduced Fermi-energy ξn decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξn = 1.813, while the numerical results of S present a same minimum S min. =− 1.563 × 10−4 V

K
, those of ZT show a same

maximum ZTmax. = � , (ii) for ξn = 1, S and ZT present same results: −1.322 × 10−4 V
K
and 0.715, respectively, (iii) for ξn =

1.813 and ξn = 1, ZT Mott = π2

3×ξn
2 present same results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of RDL,LVC

is approximated to 1.541 × 10−6, suggesting that in this degenerate InSb -case the Wiedemann-Frank, given in Eq. (25a), is exact.

_____________________________________________________________________________________________________________________

In the degenerate P- InSb system, N∗ ≡ N − NCDn(rP) ≡ NCDn(rP); N = 2 × NCDn(rP) = 2.344 × 1017 ��−3

T(K) ↗ 5 10 45.67 50 62.141212 62.3
ξn ↘ 20.32 10.25 1.813 1.552 1 0.994
S 10−4 V

K
−0.277 ↘ −0.536 ↘ −1.563 ↗ −1.544 ↗ − 1.322 ↗ − 1.317

RDL,LVC in 10−6 1.535 1.537 1.541 1.541 1.540 1.540

ZT 0.031 ↗ 0.118 ↗ 1 ↘ 0.976 ↘ 0.715 ↘ 0.710
ZT Mott = π2

3×ξn
2 ↗ 0.008 0.031 1.0002 1.366 3.290 3.330

Ts 10−4 V
K

−0.271 ↘ −0.491 ↗ 3.35 × 10−4 ↗ 0.426 ↗ 1.657 ↗ 1.673
Pt 10−3V − 0.138 ↘ −0.536 ↘ −7.138 ↘ −7.721 ↘ −8.213 ↗ −8.208

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate As- InSb system, N∗ ≡ N − NCDn rAs ≡ NCDn rAs ; N = 2 × NCDn rAs = 3.1474 × 1017��−3

T(K) ↗ 5 10 55.58 60 75.632641 76
ξn ↘ 24.71 12.43 1.813 1.591 1 0.989
S 10−4 V

K
−0.228 ↘ −0.446 ↘ −1.563 ↗ −1.550 ↗ − 1.322 ↗ − 1.314

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.021 ↗ 0.082 ↗ 1 ↘ 0.983 ↘ 0.715 ↘ 0.706
ZT Mott = π2

3×ξn
2 ↗ 0.0085 0.021 0.99993 1.299 3.290 3.366

Ts 10−4 V
K

−0.225 ↘ −0.421 ↗ −8.58 × 10−5 ↗ 0.355 ↗ 1.657 ↗ 1.686
Pt 10−3V − 0.114 ↘ −0.446 ↘ −8.687 ↘ −9.298 ↘ −9.996 ↗ −9.983

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Te- InSb system, N∗ ≡ N − NCDn(rTe) ≡ NCDn(rTe); N = 2 × NCDn rTe = 3.954 × 1017��−3

T(K) ↗ 5 10 64.72 70 88.058507 88.1
ξn ↘ 28.75 14.44 1.813 1.585 1 0.999
S 10−4 V

K
−0.196 ↘ −0.386 ↘ −1.563 ↗ −1.549 ↗ − 1.322 ↗ − 1.321

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.016 ↗ 0.061 ↗ 1 ↘ 0.982 ↘ 0.715 ↘ 0.714
ZT Mott = π2

3×ξn
2 ↗ 0.004 0.016 1.0004 1.309 3.290 3.297

Ts 10−4 V
K

−0.194 ↘ −0.370 ↗ 4.94 × 10−4 ↗ 0.365 ↗ 1.657 ↗ 1.660
Pt 10−3V − 0.098 ↘ −0.386 ↘ −10.116 ↘ −10.843 ↘ −11.639 ↗ −11.637

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sb- InSb system, N∗ ≡ N − NCDn rSb ≡ NCDn rSb ; N = 2 × NCDn rSb = 4 × 1017��−3

T(K) ↗ 5 10 65.21 70 88.739022 88.8
ξn ↘ 28.98 14.55 1.813 1.585 1 0.998
S 10−4 V

K
−0.195 ↘ −0.384 ↘ −1.563 ↗ −1.549 ↗ − 1.322 ↗ − 1.320

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.015 ↗ 0.060 ↗ 1 ↘ 0.982 ↘ 0.715 ↘ 0.714
ZT Mott = π2

3×ξn
2 ↗ 0.004 0.015 0.9998 1.309 3.290 3.300

Ts 10−4 V
K

−0.193 ↘ −0.367 ↗ −1.83 × 10−4 ↗ 0.365 ↗ 1.657 ↗ 1.661
Pt 10−3V − 0.097 ↘ −0.384 ↘ −10.192 ↘ −10.843 ↘ −11.729 ↗ −11.726

----------------------------------------- -----------------------------------------------------------------------------------------------------------------------------------
In the degenerate Sn- InSb system, N∗ ≡ N − NCDn rSn ≡ NCDn rSn ; N = 2 × NCDn rSn = 4.0475 × 1017��−3

T(K) ↗ 5 10 65.73 70 89.44048 89.5
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ξn ↘ 28.20 14.66 1.813 1.629 1 0.998
S 10−4 V

K
−0.193 ↘ −0.381 ↘ −1.563 ↗ −1.554 ↗ − 1.322 ↗ − 1.320

RDL,LVC in 10−6 1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.015 ↗ 0.059 ↗ 1 ↘ 0.988 ↘ 0.715 ↘ 0.714
ZT Mott = π2

3×ξn
2 ↗ 0.004 0.015 1.00009 1.239 3.290 3.300

Ts 10−4 V
K

−0.191 ↘ −0.365 ↗ 1.17 × 10−4 ↗ 0.289 ↗ 1.657 ↗ 1.661
Pt 10−3V − 0.097 ↘ −0.381 ↘ −10.273 ↘ −10.878 ↘ −11.821 ↗ −11.819

Table 10. Here, for a given N∗ and for a given degenerate a- InSb system, with increasing T, the reduced Fermi-energy ξp decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( ↗, ↘). One notes that with increasing T: (i) for
ξp = 1.813, S and ZT present same results: −1.322 × 10−4 V

K
and 0.715, respectively, (ii) for ξp = 1, S and ZT present same results:

−1.322 × 10−4 V
K and 0.715, respectively, (iii) for ξp = 1.813 and ξp = 1, ZT Mott = π2

3×ξp
2 present same results: ≃ 1 and 3.290,

respectively, and finally, (iv) the maximal value of RDL,LVC is approximated to 1.541 × 10−6, suggesting that in the degenerate InSb
-case the Wiedemann-Frank, given in Eq. (25a), is exact.
__________________________________________________________________________ ____________________________________________
In the degenerate Ga- InSb system, N∗ ≡ N − NCDn(rGa) ≡ NCDn(rGa); N = 2 × NCDn(rGa) = 3.23 × 1017 ��−3

T(K) ↗ 5 10 14.15123 17 19.251369 19.3
ξp ↘ 6.48 3.11 1.813 1.304 1 0.994
S 10−4 V

K
−0.811 ↘ −1.361 ↘ −1.563 ↗ −1.482 ↗ − 1.322 ↗ − 1.317

RDL,LVC in 10−6 1.538 1.540 1.541 1.540 1.540 1.540

ZT 0.269 ↗ 0.758 ↗ 1 ↘ 0.899 ↘ 0.715 ↘ 0.710
ZT Mott = π2

3×ξn
2 ↗ 0.078 0.340 1.0009 1.933 3.290 3.329

Ts 10−4 V
K

−0.651 ↘ −0.956 ↗ 1.15 × 10−3 ↗ 0.925 ↗ 1.657 ↗ 1.672
Pt 10−3V − 0.406 ↘ −1.361 ↘ −2.212 ↘ −2.519 ↘ −2.544 ↗ −2.543

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate Mg- InSb system, N∗ ≡ N − NCDn(rMg) ≡ NCDn(rMg); N = 2 × NCDn(rMg) = 3.96 × 1017 ��−3

T(K) ↗ 5 10 16.19 17 22.032863 22.1
ξp ↘ 7.36 3.72 1.813 1.670 1 0.993
S 10−4 V

K
−0.726 ↘ −1.231 ↘ −1.563 ↗ −1.558 ↗ − 1.322 ↗ − 1.317

RDL,LVC in 10−6 1.537 1.539 1.541 1.541 1.540 1.540

ZT 0.216 ↗ 0.620 ↗ 1 ↘ 0.993 ↘ 0.715 ↘ 0.709
ZT Mott = π2

3×ξn
2 ↗ 0.061 0.237 0.9996 1.179 3.290 3.337

Ts 10−4 V
K

−0.611 ↘ −0.932 ↗ −4.20 × 10−4 ↗ 0.221 ↗ 1.657 ↗ 1.676
Pt 10−3V − 0.363 ↘ −1.231 ↘ −2.530 ↘ −2.648 ↘ −2.912 ↗ −2.909

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In the degenerate In- InSb system, N∗ ≡ N − NCDn(rIn) ≡ NCDn(rIn); N = 2 × NCDn(rIn) = 4 × 1017 ��−3

T(K) ↗ 5 10 16.305 17 22.184756 22.2
ξp ↘ 7.41 3.75 1.813 1.690 1 0.998
S 10−4 V

K
−0.722 ↘ −1.225 ↘ −1.563 ↗ −1.559 ↗ − 1.322 ↗ − 1.320

RDL,LVC in 10−6 1.537 1.539 1.541 1.541 1.540 1.540

ZT 0.213 ↗ 0.614 ↗ 1 ↘ 0.995 ↘ 0.715 ↘ 0.714
ZT Mott = π2

3×ξn
2 ↗ 0.060 0.233 1.0004 1.152 3.290 3.300

Ts 10−4 V
K

−0.609 ↘ −0.927 ↗ 4.84 × 10−4 ↗ 0.189 ↗ 1.657 ↗ 1.661
Pt 10−3V − 0.361 ↘ −1.225 ↘ −2.548 ↘ −2.650 ↘ −2.932 ↗ −2.9316

__________________________________________________________________________ ____________________________________________
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In summary, from above Tables, for ξn(p) ≡ EFn(Fp)(N∗,T)
kBT

≳ 1, the maximal value of RDL,LVC is found to be

equal to : 1.541× 10−6 , suggesting that the above Wiedemann-Frank thermoelectric conversion law, given

in Eq. (25a) is found to be exact, with the Lorenz number L ≡ π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , even at

the limiting degenerate case, ξn(p) ≃ 1 . In other word, our above LVC N∗, T, rd(a) -expression, given in Eq.

(25b), is not useful in the present n(p)-type degenerate InSb crystals.

6. Concluding remarks
In the n(p)-type degenerate InSb -crystals, by using the same physical model, as that given in Eq. (7), and

same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the

corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now

revised and performed. So, by basing on our following basic expressions, as:

(i)the effective extrinsic static dielectric constant, ε(rd(a)), due to the impurity size effect, determined by an

effective Bohr model [1], and given in Eq. (2),

(ii) the critical donor (acceptor)-density, NCDn NDp (rd(a)) , determined from the generalized effective Mott

criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N∗ ≡ N −

NCDn(CDp)(rd(a)), which gives a physical condition, needed to define the metal-insulator transition (MIT) at

T=0K, as: N∗ ≡ N − NCDn(CDp)(rd(a))=0 or N = NCDn(CDp)(rd(a)),

(iii) the Fermi energy, EFn(Fp)(N∗, T) , determined in Eq. (A3) of the Appendix A, with a precision of the

order of 2.11 × 10−4 [3], and finally,

(iv) the electrical conductivity, σ(N∗, rd(a), T) , the thermal conductivity, κ(N∗, rd(a), T) , and the Seebeck

coefficient, S(N∗, T), determined respectively in Equations (27, 25a, 30),

we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks

are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N∗ = 0, at which some new

consequences are given as follows.

(a) EFno(Fpo)(N∗ = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to N∗ 2/3.

(b) As discussed in Eq. (5), suggesting that, in the MIT,

Egn1 gp1 N∗ = 0, rd a , T = 0 = Egn2 gp2 N∗ = 0, rd a , T = 0 = Egni Fgpi rd a ,

where Egn1 gp1 , Egn2 gp2 and Egni Fgpi are the optical band gap (OBG), reduced band gap and intrinsic band

gap, respectively.

(c) As given in Eq. (27), the electrical conductivity, σ(N∗, rd(a), T), is proportional to EFno(Fpo)
2 or to N∗ 4/3,

giving rise to: σ(N∗ = 0, rd(a), T = 0) = 0 , and therefore, as discussed in Equations (27, 28, 29), and Eq.

(A7) of the Appendix A: μ(N∗ = 0, rd(a), T = 0K) = 0, μH(N∗ = 0, rd(a), T = 0K) = 0 , and D(N∗ =

0, rd(a), T = 0K) = 0, being new results.
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(d) In Table 5, the values of these electrical-and-thermoelectric coefficients, localized in the EBT for � ≤ 0,

determined by replacing: N∗= NCDn NDp ≅ NCDn CDp
EBT into Equations (27, 28, 29), and Eq. (A7) of the

Appendix A, for � ≥ 0, are reported.

Furthermore, for high N∗ (or high N) and at low T, some concluding remarks are given as follows.

(1) In Table 2, we remark that the maximal relative deviations, in absolute values, RD , between

NCDn NDp (rd(a)) and NCDn CDp
EBT (rd(a)) are found to be equal to: 7.8% (11%), respectively. In other word,

the critical donor(acceptor)-density, NCDn NDp (rd(a)) , determined in Eq. (3), can be used to explain the

densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

NCDn CDp
EBT (rd(a)).

(2) In Table 6, we remark that: (i) for given N and T, the functions: σ(rd(a)), μ(rd(a)), μH(rd(a)) and D(rd(a)),

calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rd(a), and

(ii) for given rd(a) and T, the functions: σ(N∗), D(N∗), μ(N∗) and μH(N∗) increase, with increasing N.

(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rd(a) , due to the impurity size effect,

NCDn(CDp)(rd(a)) , increases, since N(= 1020 cm−3) is very high, N∗ therefore decreases very slowly,

explaining the slow decrease ( ↘ ) in
EFn(Fp) N∗,T=300K

kBT
, σ , κ , Cκ , and κApp. , (ii) the numerical results:

RDκ,κApp. 300K
≃ 0.355 % (5.19 %) , respectively, confirm the κApp. -law, as that given in Eq. (25b), and

finally, (iii) RDL,LVC ≃ 1.537 × 10−6 thus confirms that in the degenerate InSb -case the well-known

Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

(4) In Tables 9-10, for a given N = 2 × NCDn NDp (rd(a)), and for a given degenerate d(a)- InSb system, with

increasing T, the reduced Fermi-energy ξn(p) decreases, and other thermoelectric coefficients are in

variations, as indicated by the arrows: ( ↗, ↘). One notes here that with increasing T: (i) for ξn(p) = 1.813,

while the values of S present a same minimum S min. =− 1.563 × 10−4 V
K
, those of ZT show a same

maximum ZTmax. = � , (ii) for ξn(p) = 1, those of S and those of ZT present same results: S( =− 1.322 ×

10−4 V
K
) and ZT (=0.715), respectively, (iii) for ξn(p) = 1.813 and ξn(p) = 1 , those of ZT Mott = π2

3×ξn(p)
2

present same results: ≃ 1 and 3.290, respectively, and finally, (iv) the maximal value of RDL,LVC is equal

approximately to 1.541 × 10−6 , confirming that in the degenerate InSb-case the Wiedemann-Frank law,

given in Eq. (25a), is exact, with the Lorenz number L ≡ π2

3
× kB

q

2
= 2.4429637 W×ohm

K2 , even at the

limiting degenerate case, ξn(p) ≃ 1. Therefore, our above LVC N∗, T, rd(a) -expression, given in Eq. (25b), is

found to be not useful here.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.
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Appendix
Appendix A. Fermi Energy and generalized Einstein relation

A1. In the n(p)-type InSb-crystals, the Fermi energy EFn(Fp) ≡ E − Ec EFp ≡ Ev − Efp , Ec(v) being the

conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in

our previous paper, with a precision of the order of 2.11 × 10−4 [3], is now summarized in the following. In

this work, N is replaced by the effective density N∗ , N∗ ≡ N − NCDn(CDp)(rd(a)), NCDn(CDp)(rd(a)) being the

critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N∗ = 0 at

this transition.

First of all, we define the reduced electron density by:

u N∗, rd a , T ≡ u N∗, T ≡ N∗

Nc(v)
, Nc(v)(T) = 2 × gc(v) × mn(p)

∗ ×kBT

2πℏ2

3
2 (cm−3), (A1)

where Nc(v)(T) is the conduction (valence)-band density of states, and the values of gc(v) and mn(p)
∗ are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type InSb is determined by :
�Fn(Fp)(u)

kBT
= G u +AuBF(u)

1+AuB = ξn(p)(u) ≡ V(u)
W(u)

, A = 0.0005372 and B = 4.82842262, (A2)

where F N∗, rd a , T = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, obtained for u ≫ 1, according to the degenerate cas,

a = (3 π/4) 2/3 , b = 1
8

π
a

2
, c = 62.3739855

1920
π
a

4
, and then G u ≃ Ln u + 2−3

2 × u × e−du for u ≪

1, according to the non − degenerate case, with: d = 23/2 1
27
1
27

− 3
16
3
16 > 0.

So, in the present degenerate case (u ≫ 1), one has:

�Fn(Fp) N∗, rd a , T ≡ �Fn(Fp)(N∗, T) = �Fno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A3)

Then, at T=0K, since u−1 = 0, Eq. (A.3) is reduced to:

�Fno(Fpo)(N∗) ≡
ℏ2×kFn(Fp)

2 (N∗)

2×mn(p)
∗ , (A4)

being proportional to N∗ 2/3, and equal to 0, �Fno(Fpo)(N∗ = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:

D N∗,rd a ,T
μ N∗,rd a ,T

≡ N
q

× d�Fn(Fp)

dN
≡ kB×T

q
× u dξn(p)(u)

du
, (A.5)

where D N∗, rd a , T is the diffusion coefficient, ξn(p)(u) is defined in (A2), and the mobility μ N∗, rd a , T

is determined in Eq. (28). Then, by differentiating this function θn(u) with respect to u, one thus obtains
dξn(p)(u)

du
. Therefore,

D N∗,rd a ,T
μ N∗,rd a ,T

= kB×T
q

× u V' u ×W u −V u ×W' u
W2 u

, (A.6)
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where W' u = ABuB−1 and V' u = u−1 + 2−3
2e−du 1 − du + 2

3
2
3AuB−1F u 1 + 3B

2
3B
2 + 4

3
4
3× bu−4

3+2cu−8
3

1+bu−4
3+cu−8

3
. One

remarks that: (i) as u → 0 , one has: W2 ≃ 1 and u[V' × W − V × W'] ≃ 1 , and therefore: Dn(p)(u)
μ

≃ kB×T
q

,

and (ii) as u → ∞ , one has: W2 ≈ A2u2B and u[V' × W − V × W'] ≈ 2
3
2
3au2/3A2u2B , and therefore, in this

highly degenerate case and at T=0K,
D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≈ 2
3

EFno(Fpo)(N∗)/q). (A.7)

One notes that, for N∗ = 0, EFno(Fpo)(N∗) = 0, as remarked in above Eq. (A4), μ N∗ = 0, rd a , T = 0K = 0,

as remarked in above Eq. (28), and therefore, for any rd a , D N∗ = 0, rd a , T = 0K = 0, according to the

MIT. Now, replacing EFno(Fpo) given in Eq. (A.7) by EFn(Fp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

D N∗,rd a ,T=0
μ N∗,rd a ,T=0

≃ 2
3

× EFno(Fpo)(u) × 1 + bu−4
3 + cu−8

3
−2

3
. (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type InSb-crystals, we define the effective reduced Wigner-Seitz radius rsn(sp),

characteristic of the interactions, by:

rsn(sp) N∗, rd(a) ≡ 3gc(v)

4πN∗

1/3
× 1

aBn(Bp)(rd(a))
= 1.1723 × 108 × gc(v)

N∗

1/3
×

mn(p)
∗ /mo

ε(rd(a))
. (B1)

In particular, in the following, mn(p)
∗ /mo = mr/mo, is taken to culculate the band gap narrowing (BGN), as

used in Sections 3 and 5. Therefore, the correlation energy of an effective electron gas, �CE rsn(sp) , is

found to be given by [1]:

ECE rsn(sp) ≡ ECE N∗, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

ΔEgn(N∗, rd) ≃ a1 × εo
ε(rd)

εo
ε(rd) × Nr

1/3 + a2 × εo
ε(rd)

εo
ε(rd)

εo
ε(rd) × Nr

1
3 × 2.503 × [ − ECE rsn × rsn] + a3 × εo

ε(rd)

5/4
× mp

mr
×

Nr
1/4 + a4 × εo

ε(rd) × Nr
1/2 × 2 + a5 × εo

ε(rd)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDn(rd)

9.999×1017cm−3, (B3)

and

Δ�gp(N∗, ra) ≃ a1 × εo
ε(ra)

εo
ε(ra) × Nr

1/3 + a2 × εo
ε(ra)

εo
ε(ra)

εo
ε(ra) × Nr

1
3 × 2.503 × [ − ECE rsp × rsp] + a3 × εo

ε(ra)

5/4
× mn

mr
×

Nr
1/4 + 2a4 × εo

ε(ra)
× Nr

1/2 + a5 × εo
ε(ra)

3
2 × Nr

1
6, Nr ≡ N∗=N−NCDp(ra)

9.999×1017 cm−3 , (B4)

Here, εo = 16.8, a1 = 3.80 × 10−3(eV) , a2 = 6.5 × 10−4(eV) , a3 = 2.85 × 10−3(eV) , a4 = 5.597 ×

10−3(eV) and a5 = 8.1 × 10−4(eV).

Therefore, in Equations (B3, B4), at T=0 K and N∗ = 0 , and for any rd(a) , Δ�gn(gp)(N∗ = 0, rd(a)) = 0 ,

according to the metal-insulator transition (MIT).



406

References
[1] H. Van Cong, “New dielectric constant, due to the impurity size effect, and determined by an effective

Bohr model, affecting strongly the Mott criterion in the metal-insulator transition and the optical band

gap in degenerate (Si, GaAs, InP)-semiconductors, “SCIREA J. Phys., vol.7, pp. 221-234 (2022); H.

Van Cong et al., “Size effect on different impurity levels in semiconductors,” Solid State

Communications, vol. 49, pp. 697-699(1984); H. Van Cong, “Accurate expressions for optical

coefficients, given in n(p)-type heavily doped InSb-crystals, due to the impurity-size effect, and

obtained from an improved Forouhi-Bloomer parameterization model,” SCIREA J. Phys., vol.8, pp.

280-305 (2023).

[2] H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and thermoelectric

properties of various degenerate donor-silicon systems at low temperatures,” American Journal of

Modern Physics, vol. 7, pp. 136-165 (2018);

[3] H. Van Cong et al., “A simple accurate expression of the reduced Fermi energy for any reduced carrier

density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993; H. Van Cong and B. Doan Khanh, “Simple

accurate general expression of the Fermi-Dirac integral Fj a and for j> -1,” Solid-State Electron., vol.

35, pp. 949-951(1992); H. Van Cong, “New series representation of Fermi-Dirac integral Fj( − ∞ <

a < ∞) for arbitrary j> -1, and its effect on Fj(a ≥ 0+) for integer j≥ 0,” Solid-State Electron., vol. 34,

pp. 489-492 (1991).

[4] C. Kittel, “Introduction to Solid State Physics, pp. 84-100. Wiley, New York (1976).

[5] S. Adachi, “Physical Properties of III-V Semiconductor Compounds,” John Wiley & Sons, Inc., New

York, 1992.

[6] H. Van Cong et al., “Optical bandgap in various impurity-Si systems from the metal-insulator transition

study,” Physica B, vol. 436, pp. 130-139, 2014; H. Stupp et al., Phys. Rev. Lett., vol. 71, p. 2634 (1993);

P. Dai et al., Phys. Rev. B, vol. 45, p. 3984 (1992).

[7] H. Van Cong, K. C. Ho-Huynh Thi, et al., “28.68% (29.87%)- Limiting Highest Efficiencies obtained in

n+(p+) − p(n) Crystalline Silicon Junction Solar Cells at 300K, Due to the Effects of Heavy (Low)

Doping and Impurity Size, “SCIREA J. Phys., vol.7, pp. 160-179, 2022; H. Van Cong, K. C. Ho-Huynh

Thi, et al., “30.76% (42.73%)-Limiting Highest Efficiencies obtained in n+(p+) − p(n) Crystalline

GaAs Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size,

“SCIREA J. Phys., vo.7, pp. 180-199 (2022).

[8] J. Wagner and J. A. del Alamo, J. Appl. Phys., vol. 63, 425-429 (1988).

[9] P. W. Chapman, O. N. Tufte, J. D. Zook, and D. Long, Phys. Rev. 34, 3291-3295 (1963).

[10] M. Finetti and A. M. Mazzone, J. Appl. Phys. 48, 4597-4600 (1977).

[11] Hyun-Sik Kim et al.,”Characterization of Lorenz number with Seebeck coefficient measurement”, APL

Materials 3, 041506 (2015).


