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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, 8(rd(a)) , Td@ being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqc), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate InSb-crystal, defined for the

reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks as follows.
(1) The critical donor (acceptor)-density, Ncpnnpp) (Fd(a)), determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBE(CDp)(rd(a)), given in Eq. (21).

(2) In Tables 9-10, with a given d(a)-density N [= 2 % Nepnnpp) (Fd(a)) ], one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy &n(p)( = 1.813), while the numerical results of the Seebeck

coefficient S present a same minimum (=— 1563 x 1074 %), those of the figure of merit ZT show a same
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maximum ZT(= ), (ii) for &,p) = 1, those of S and ZT present same results: Sb (:— 1.322x 1074 %) and

0.715, respectively, (iii) for &,(py = 1.813 and &,(py = 1, the same values of the well-known Mott figure of

n2

it, (ZT =—
merit, (ZT)mott 2 (

1 and 3.29), are respectively investigated, and finally, (iv) we show here that in

the degenerate InSb-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as [ and I1.

In I, our new expression for the extrinsic static dielectric constant, 8(rd(a)), Fdca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing rq) ,
s(l’d(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type InSb
-crystal, defined for the accurate reduced Fermi energy [3], ( )( ). Therefore, all the numerical results
of those obtained and given in II are now revised and performed, in comparison with those obtained in [3-
11].

In Section 2, the numerical results of energy-band-structure parameters [4] are presented in Tables 1 and 2.
In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and mathematical
methods, needed to determine and evaluate the critical densities of the majority carriers localized in the
exponential conduction (valence) band tails, are presented, confirming thus the corresponding numerical
results, obtained using Eq. (3) for the generalized effective Mott criterion in the metal-insulator transition
(MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution function method, our
accurate expression for the electrical conductivity, 0, is determined, being a fundamental one, since it is
related to all other electrical-and-thermoelectric coefficients, and then all the numerical results of those

coefficients are reported in Tables 4-10. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in
the n(p)-type InSb -crystals, such as: (i) if denoting the free electron mass by m,, the effective electron (hole)

mass, My )/ Mo, Which is respectively equal to the relative effective mass, My(p)/m, = 0.015 (0.39) [4], as

used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

Mp>xmp _
mn+mp

(MIT), (ii) to the reduced effective mas, m./m, = 0.0144, as used in Section 3 to determine the

optical band gap, and (iii) to the conductivity effective mass (=01 (0.4), as used in Section 5. Further,
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Ego= Eginsb= Egsb= Egin = 0.23 €V [4] is the unperturbed intrinsic band gap, €n5p= €jn = €sp = €, = 16.8
is the relative static intrinsic dielectric constant of the InSb -crystal [4], and finally, the effective averaged
numbers of equivalent conduction (valence)-band edge, gcvy = 1(1).

Table 1. Here, the effective electron (hole) mass, Mnp)» is equal respectively to: myp, as used in Sections 2 and 4, to

M, in Section 3, and Mcn(cpy in Section 5, and the values of other important parameters are also reported.

mn(p)/mo [4] r'nr/mo an(Cp)/mo gc(v) Ego [4] 80 [4]
0.015 (0.39) 0.0144 0.1 (0.4) 1(1) 0.23 eV 16.8

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)- InSb]-systems, since ry(a), given in tetrahedral covalent bonds, is usually either larger or smaller
than rgpn) = 0.136 (0.144 ), alocal mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: rye)y > rspny (Faa) < Fasgn)), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc,) -effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(Iq(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap gni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy d(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicpiy (Td@)) — Ego = Edca)(Nd(a)) — Edocao) = Edo(ao) ¥ [(déﬁ) - 1]3 (D
3600 o/
where Egoagy = ! mev;(m ®/Mo) _ 723 mev (18.793 meV), and
0

)

T [ACORENNEORY
'Sh(In) 'Sb(in)

<g,, for ld(a) = sb(in)»

e(ra))= \/

0 3 r 3
e(row)= = () -1 <) <iorrg st O
\/ _ < I’d(a) ) _ :| ( rd(a) ) Sb(m)
1-{{—=) —1|xIn

rSh(in) "Sb(In)
2.2. Our expressions for the critical density in the MIT
In the n(p)-type degenerate InSb-crystals, the critical donor(acceptor)-density, Ncpnnpp)(Fde)) > is
determined from the generalized effective Mott criterion in the MIT, as:

1
Ncon(NDp) (rd(a)) /3 x apn(Bp) (rd(a)) =Y, (3)

and the effective Bohr radius agn(gp)(rdca)) is given by:

x 2
He@ ~ — 0,53 x 1078 cm x — @) (4)

a r = '
aneep) (Fd(a)) r——— (Mney/Mo)
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where —q is the electron charge, €(rya)) is determined in Eq. (2), in which My /My = Mppy/mg =
0.015(0.39) . Here, we have chosen, in this work, y=3.4714 (0.133515) so that we obtain:
Nconiop) (Fsb(ny) = 2 % 10 cm™3[4]. Then, from Eq. (3), the numerical results of Nconop) (Fdca)) are
obtained and given in the following Table 2, in which we also report those of the densities of electrons
(holes), being localized in exponential conduction (valance)-band (EBT) tails, NEBI(CDp)(rd(a))a obtained
using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations (RD), in
absolute values, between Nepnnog) (Faca)) and Nephcop) (Fag) are found to be equal to: 7.8% (11%),
respectively. Thus, the numerical results of Ncpnnnpp)(Faa)) are obtained, using Eg. (3), can be
explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)
tails, NGph(cop) (Faa)), being determined from Eq. (21).

Table 2. For increasing Iy, while €(rq(a)) decreases, the functions:  gnicgpiy (Faa) ) Neonuop) (Facay) and Nep cop) (Facay)

increase. The maximal relative deviations between the numerical results of Ncpnnop) (Facy) and NEEE(CDP)(rd(a)), in absolute

values, calculated using Equations (3, 21), are found to be equal to: 7.8% (5.9)%, respectively, suggesting that Ncpnwop) (Faca))
can be explained by NG5f (ry), being localized in the EBT. So, in the n(p)-type InSb - crystal, in which (Mppy/mMg) = 0.015
(0.39) [4], all the numerical results for the energy-band-structure parameters and Ncpncpp) (F(ay), Which are expressed

as functions of Iy(,y-radius, are obtained, using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Te Sb Sn

rq (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 20.076 18.198 16.865 16.8 16.734
Eq(rg) in meV 0.506 0.616 0.717 0.723 0.728
Egni(rg) in eV 0.2298 0.2299 0.229994 0.23 0.230006
Neon(rg) in 107 cm™3 1.172 1.5737 1.977038 2 2.023761
NEB! (ry) in 1017 cm™3 1.2631659 1.5703305 1.859051 1.8750136 1.8914837
IRD| 7.8% 0.2% 5.9% 6.2% 6.5%
Acceptor Ge Ga(Al, Mn) Mg In

ra (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 18.723 18.034 16.858 16.8
Ea(ra) in mev 15.13 16.308 18.664 18.793
Egpi(ra) ineV 0.226337 0.227515 0.229871 0.23
Nepp(ra) in 1017 cm™3 1.444768 1.616741 1.979495 2
NEpp(ra) in 1017 cm™3 1.6037286 1.6975683 1.8821582 1.8921462
IRD| 11% 5% 4.9% 5.4%

In summary, Table 2 also indicates that, for an increasing Iqca), €(Fqa)) decreases, while Egni(gpi)(rd(a)),

Neonvop () and Npneop) (facay) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.
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3. Optical band gap

Here, mp)/Mo, is chosen as: myy/my =m./m, =0.0144 , and then, if denoting N =N-—
Nconiop) (Fda)) > the optical band gap (OBG) is found to be given by:

Egnigon)(N  Faca), T) = Egnaggo2) (N Fd@@, T) + Erney (N, T, )
where the Fermi energy Egnrp)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

Egna(gp2)(N + Yo T) = Egneicgpen (Fa@): T) ~ BEgn(gy (N Fa(a)-

Here, the effective intrinsic band gap  gnei(gpei) 1 determined by:

5 220172251
Egneicgpei) (Td@) T) = Egnicgpi (Td@)) —0.0935 < [1 + (250e) ]
and the band gap narrowing, AEgn(gp)(N , rd(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, in the n-type P- InSb crystal, one gets:
Egneigpeiy ('p, T = 300 K)=0.169779 eV [1, 4].

Further, as noted in the Appendix A and B, at T=0K, as N = 0, one has: Egnepy(N , T) = Epno(rpo)(N ) =
0,as givenin Eq. (A4), and AEgn(gp)(N : rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, Egn1(gp1) = Egn2gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

Then, in degenerate d(a)- InSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),
are reported in the following Table 3, suggesting that, for a given ry(,), the OBG increases with increasing N.

Table 3. In degenerate d(a)- InSb systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given Iy(g), the OBG increases with increasing N.
£g g g d(a) g

N (108 cm™3) 4 8.5 15 50
gni(N ,Tp) ineV 0.810 1214 1.685 3.533
gni(N ,Tag) ineV 0.803 1.206 1.676 3.522
gn1(N , I1e) in eV 0.795 1.198 1.669 3.513
gni(N  rsp) ineV 0.7949 1.198 1.6681 3.512
gni(N  Fgp) ineV 0.7945 1.1977 1.668 3.5117

N (10 cm™3) 6.5 11 15 26 50
a1 (N, TGacan) in eV 1.0527 1.4140 1.6946 2.3605 3.5476
ap1(N ,Tyg) in eV 1.050 1.4114 1.6919 2.3576 3.5540
a1 (N . Fip) ineV 1.0498 1.4112 1.6918 2.3574 3.5438
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4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate InSb crystal, if denoting the Fermi wave number by: Krnrpy(N ) = (3 2N/

1/3 . . . . .. . . .
gc(v)) , the effective reduced Wigner-Seitz radius rsp(sp), characteristic of the interactions, is defined by:

k—l
= (Fp)
*Tansp) (N Faa) M) =1 2 <1, ©)

-3 Here, = (4/9 )13, kEnl(Fp) means the averaged distance between ionized

being proportional to N
donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).
Then, the ratio of the inverse effective screening length Kgn(spy to Fermi wave number Kenpy at 0 K is

defined by

K K _
Rsn(sp) (N ! rd(a)) = I;L(s:p)) = kF_nTEFp)) =ax RanS(spWS) + [b x RsnTF(spTF) —ax RanS(spWS)] fsnsp) < 1, @)
n sn(sp
where the empirical parameters: = 0.03 (1.04) and b= 0 (0), respectively, were chosen so that the relative

deviations between Ncpnnpp) and NEBI(CDF,), in absolute values, are minimized, as observed in Table 1. Here,
these ratios, Rgnre(sprr) @Nd Rsnws(spws)» can be determined as follows.
First, for N Ncpnvop)(Fdea)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

KsnTF(spTF) Kenep) 2 Tontsp)
R N ,r = == = 1 8
snTF(SPTF)( d(a)) Ken(Fp) KanTe(spTF) ’ "

1/6

being proportional to N

Secondly, for < Ncpnnpp)(Fde) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

— ksnepws _ d[ Zspy* ce (N Taca)]
Renpws(N + Fa) == = (Zi - Lo =0 o)) o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
I(I?riL(Fp) Nn(p) 1 kEriL(Fp) Erno(Fpo)
< = <——==R <1, A =—-" 10
%n@p)  Fo(po)  Anp)  Kan(sp) sn(sp) n(e) Nn(p) (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) 1s defined in Eq. (7). Here, the energy parameter, Nnp), being characteristic of the exponential

conduction (valence)-band tails is determined in next Eq. (12).
Then, in degenerate d(a)- InSb systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+q), at position r, and an ionized donor (ionized

acceptor) charge: +q(—q) at position R; , randomly distributed throughout the InSb -crystal, is defined by
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OERREA'A (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)- InSb system, defined as

g2xexp (—Ksn(sp) < |r—Rj])
&(rd(a))*|r—Rj|

vi(r) == ,

where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2
_ q 4n 1
Vvi(k —_ X — X ——
J( ) (@) Q  Ko+kdy’

where Q is the total InSb -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wy (vn(p), N ,rd) = (V(NV(r)), was

determined as [3] :

- XRenespy (N Faca)) VanN® -1/2 -
Wiy (Vngey: N+ Taay) = Ny ¥ exp | —— et fia) N =" x g%k =——.
n(p)( np) N d(a)) Nhp) > € p( 2 [l ann(p)( 'rd(a)) (o) A"Ksn(sp)» Vn(p) Efno(Fpo) (12)

Here, €(rg(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

( . ), respectively, will be chosen such that the determination of the density of electrons localized in the

conduction(valence)-band tails, determined in Section 5 would be accurate, and finally V) = .
Fno(Fpo,

where is the total electron energy and Epnorpoy is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2><k2
k™ 2x O

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on W) (Vagpy, N Facay)-
4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)

In degenerate d(a)- InSb systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) =——=xex [ ]
M V2 W) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2z = Z % is defined by

(C =V D= S m = _o( —V)ExPV)AV, for a=1.

*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /W) = Agp) X np) X eXp| —/—= |,
4x [[vne)|

and using an identity:

DOa_

1 P\
o ST 2xexp(—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),
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where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—1 1
1 2 4 2 a3
a—3 _exp (—X%/A)xW, o y 1 __exp (=xE/4)xn, xRgn(sp)*(2a—1)
= 70 +1)y % =—— 1)y — MR ) +
(  Dxam = Ma+3) D_a_%(x) = exp o [ M(a
n(p

1
HxD_100. (13)

B. Feynman path-integral method (FPIM)

-1
Here, the ensemble average of ( — V)a_% = Z 2 is defined by

1 2
—\)a _, a3 _ Yz T@t) e gl t_ (t/Wn@p) 2 __
(( V) 2)FPIM = ( k >FPIM T 232x\ 2 x F(%) x —oo( t) 2Xxexp 2 2 dta I~ = 1,

2
noting that as a=1, (it)_g X exp {— (t‘/zwzp) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

“( s)_a_% x exp{ XS — %} ds = 232 x [(3/2) x exp (— x2/4) x D_,_1(x),
2

Then, by variable changes: t = and X == /,/Wp(p), and then using an identity:

_1 -1 _1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_a_%(x) , those given for (( —V)a_%)K”\A will be

obtained in the two cases: =0and <O0.
(i) _= -case

As o+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

(X = 0) = 2

<2 al
X 4X(— 2
s ok (-

D,

_1 1
Therefore, Eq. (13) becomes: ( z “dam = %72, Further,as -+ 0, one has: ) »— 0 and X ~— o0, So,

one gets :

X2 X —
D_a_%(x L —0) (a)xexp((\/a +—15)X_E+T35) -0, @ —%

1622 27 13+

-1
Thus,as -+ 0, from Eq. (13), one gets: ( Z “Yam - 0.

1
In summary, for __= 0, the expression of ( z 2)kim can be approximated by:

1
a—s _1 _ 2xk?
( & kam 2, = o (14)

i) = -

As  -—0, from Eq. (13), one has: ) -»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,

D_, i(x ~ ) B@ xexp|—(Va +2)x—2— 22| . 0, B@) = -, noting that
2 1662 PR E)
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B(D) = " —and B(5/2) = 295
24xr(5/4)

1
a7

Then, putting f(a) = n”—\/é_‘: x I'(a+3) % B(a), Eq. (13) yields

- 2)kim xR ep) < (22-1) . , A

Hug) ( ny =+ 0 Fa) @) = —5—=exp [~ ———— (V& + =5 | x-(+) 5| - O (15)
8% |[vn(p) 16a2
Further,as - — oo, one has: ) -+ © and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X 42x 7 . 0. Therefore, Eq. (13) yields
(%
Y

_ 1 (Anpy* np))? a1

Ko@) n) =+ @ To@ @) = 5= X e (- =EFE) X (A X ) 2= 0 (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fr)( n@ey Tacay @) = Koy ( ngp): Ty @) + [Hae)( n: Fa@ @) = Koy ( ngp): Tagay, )] > exp [=
(Ao )] (17)
such that: Fnep)( nepy Tdcay @) — Hny( n(py Mday @) for 0< <16 , and Fnpy( ney Fa@y @) -
Knp)( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- InSb systems at T=0 K, in which m,y/my = mMp;y/m, = 0.015 (0.39), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

1

3 3 X T
c(v) (2Mn(p)\2 o) (22 _ &P (=7 )*Wa
O =29 (0P s ( 2y, = 20 (2T <¢;‘—) XM =D = (). (18)
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP Rone)
4 [[va)]
Here, Eppo is determined in Eq. (A4) of the Appendix A, with m, ) /Mg = Mpy/mg and = (. ),

respectively, being chosen such that the following determination of NEBE(CDP)(N, l'd(a)) Would be accurate.

Going back to the functions: H,, K, and F,,, given respectively in Equations (15-17), in which the factor

1

( ;)KIM
=) is now replaced by:
1
( 2m
_(=0)_ _ gc(v)x(mn(p)xmo) D) _ Ay —
fa=1) ~ o Fa@( ey fa@a=1). o 223 x @=D. @=1= JAxI(5/4)
(19)

Therefore, NEBI(CDP)(N, Fda)) can be defined by
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0
NEBE(CDp)(Nlrd(a)): Y (=0)d ,

where (=< 0) is determined in Eq. (19). Then, by a variable change: n¢) = E_—(), one obtains:
Fno(Fpo
3/2
9e)*(Mn)) ™/ n(p) <Erno(Fpo) 16
NEBncop) (N Fd@) = PO [P (a = 1) % Fogy( ey Ta@r 2= 1) d oy + I -
(20)
where
o o —(An@* ”)2 —-3/2

he) = 16 @=D*Key(n@la@@=Ddaey = 16~ 2 *(Pa) @) d -
Here, (a=1)= 3#

24T (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

1 — — T ynepy)
Ineo) = =em— X t" e ldt = 0@
n(p) 000 Yn(p) 5 A

2
where b =— 174, ynqy = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 9o *(M@) ™ T * Frotepo) 6, _ _
Ncon(eop) [N = Neonop) (Fa@y)] = 523 x { o (@=1)*Fypy( ney Td@ya=
rd, nep)
1d ne) +—25,4x:\nip)}, (21a)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBE(CDP)[N = Neconnop) (Faqa))] = NEBE(CDF,)( ld@) > for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 7.8% (11%), respectively. In other words, this
critical d(a)-density Ncpnnpp) (Fdcay)) can thus be explained by the density of electrons(holes) localized in
the EBT, N&phcop) ( Fd@ay)-

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- InSb systems, can thus be expressed by:

N =N—Neonvopy N — NEBaccop)- (21b)

2%k py (Ncon(NDp))
2XMn(p)

Then, as N = Ncpnnpp) » according to the Fermi energy, Epno(rpo)(N = Ncpn(nop)) =

given in this parabolic conduction (valence) band (i.e. = 0), the value of the density of electrons(holes),
NEBE(CDF,) , localized in the EBT (=< 0), is almost equal to Ncpnnpp)» as noted above. This can thus be

expressed as:

N(EZBE(CDp) Ncon(npp)s @8 N = Nepnnop)- (21c)

392



5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=Q+eN™ y=( = eneEp)/(ksT),
where  pyep)(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in I, can be defined as:

_ p _ of of _ 1 ev
( p)FDDF = Gp( Fn) X Fn = —oo P x (_ 6_) d, B kB_T x Tren? (22)
Further, one notes that, at 0 K, —:—f = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  pno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( Fno) = 1.
Then, at low T, by a variable change Y = ( — n(rp))/(KsT), Eq. (22) yields:
— —p o e¥ P _ B -B
Gp( Fngepy) =1+ F(Fp) * —co (Txev)2 | (keTy + Fn(rp)) dy =1+ E=1,2,... Cp > (kgT)P x Fncep > 18>
where Cg =p(P—1..(p —B+1)/B! and the integral Ig is given by:

_ yBer _ ® yB

b= —wrenzdY = —wmdy, vanishing for old values of B. Then, for even values of B = 2n,

with n=1, 2, ..., one obtains:

o) y2n><€,y

loh=2 ez Y- (23)

Now, using an identity (1 +eY)™2 = ;’11 (—1)5*1s x @G~ | a variable change: sy =—t, the Gamma

function: Ooo t?"etdt =T (2n+ 1) = (2n)!, and also the definition of the Riemann’s zeta function:

{(2n) = 2°"1n2"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: 1oy = (22" — 2) x 2" x

|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:
{ P)eoDF

G — —14 P POD-C=20%D) oo oy 1B, | x v2N = G y=—- = :
p( Fn(Fp)) En(Fp) n=1 (2n)! ( ) | 2n| y pzl(y) y O EFn(Fp)

T[kBT

(24

Then, some usual results of Gp>1(y) are given in Table 4.
Table 4. Expressions for Gpz1(y = %), due to the Fermi-Dirac distribution function FDDF, noting that Gy—;(y =

ke T . . . . . .
e =T ) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
Fn(Fp) (@)

Gaz2(Y) Ga(Y) Gs/2(Y) Gs(Y) G7/2(Y) Ga(y) Gos2(Y)

=) () (= ) (=) (+ ) (——)

These functions G,(y) will be applied to determine the majority-carrier transport coefficients given in the

n(p)-type degenerate InSb, as follows.
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5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, M,y/My is chosen as: M) /My = Men(cp)/Mo = 0.1 (0.4) , as given in Table 1, and all the
majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpn(nop) (Fd(ay) » where the values of critical d(a)-densities Ncpnnop) (Fdca)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rga) T),

. - — .. W
expressed in ohm™ x cm™ | the thermal conductivity by K(N , Fda): 1), expressed in pessond and Lorenz

ks

2 2 5
number by L= T[? X (?) = 24429637 (W ohm

K2

), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

(KI((E:—ZE;B =LxT. (25a)
K(N r) T=3K)

) ] in order to show that, for given N

Then, it is interesting to define a constant C, (N , rge))[ =
and I'qca), Kapp.(N , I'qca), T) is found to be proportional to T, as:

_ Kapp.(N racay,T)

Kapp. (N Ta@) ) Ce(N  Ta@) > T, |RDKvKApp-|T = |1 KN ra@T) |’

(25b)

where |RDK1KApp.|T is the relative deviations in absolute values between K(N , rye), T) and Kapp (N, Fga), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

2

First, it is expressed in terms of the kinetic energy of the electron (hole), , = , or the wave number

" 2xmen(ep)

k, as:

(K " .\
0(K) = L2 L [kox agngapy (a@)] * (=) 26)

T Ksn(sp)
which is thus proportional to . Further, Ksn(sp)> @Bn(Bp)> and Na(p) are defined and determined in Equations
(7, 4, 12), respectively.
Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)gppe = Go(y =

T[kBT

En(Fp) , where  pygpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

Fn(Fp)

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

172
_ |9®*kenEoy(N ) _ Kenepy(N ) Efno(Fpo)(N ,T=0)
o(N Ty, T) = roa ksn(sS)(N y > [Kengrpy (N ) < @gn(ap) (Faga))] < (—nn(:m P ) ] x
2
Ernrp) (N, T) _ 2 1/3
[Gz(N ,T) X (m) ], kenep)(N ) = (3 2N /gey) (27

which also determine the resistivity as: P(N ,rga), T) = 1/0(N ,rg), T) , noting that
N = N — Ncpn(nop) (Fd(a)) - Further, the Fermi energies Ernrpy and Epng(rpoy are determined respectively in

Equations (A3, A4) of the Appendix A.
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In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), 0(N ,rgca), T = OK) is proportional to Eéno(Fpo),
or to (N )*3. Thus, o(N =0, lda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.

A. Electrical properties

The relaxation time is related to 0 by:

T(N ,rga), T) = o(N , rye), T) %. Therefore, the mobility Y is given by:

axt(N rg@),T) _ (N r4ea).T)
Mcn(Cp) gxN )

M(N gy, T) = (28)

In Eq. (28), at T= 0K, U(N , ryca), T = OK) is thus proportional to (N )3 since o(N 4@y, T = OK) is
proportional to (N )*3. Thus, y(N =0, gy, T =0K) =0 at N =0, at which the metal-insulator
transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

_ (Proor _ _Ga)
WD) =15 T Ear

MH(N , Tggay, T) = BN rgay, T) X ry(N -, T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, rg@), T =0K) = u(N =0,rqe), T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Further, as discussed in Eq. (21c) and at T = OK, we can also determine the values of these electrical-and-
thermoelectric coefficients, localized in the EBT for <0, by replacing: N = N¢pnnpp) NEBE(CDP) into
Equations (27, 28, 29), and Eq. (A7) of the Appendix A, for = 0, to obtain: ¢®BT(N = Nconnop): Fda))
HEBT(N = NconNop): Fd(a)) » uEBT(N = Ncon(Npp): Fd(a)) and DEBT(rd(a)). Those numerical results are
reported in following Table 5.

Table 5. Here, the values of the electrical-and-thermoelectric coefficients, obtained in the exponential tails (i.e. <0), as:

GEBT(rd(a)), uEBT(rd(a)), UEBT(rd(a)) and DEBT(rd(a)) are reported, and their variations with increasing ry(;) are represented by the

arrows: and .

d- InSb systems P As Te Sb Sn
rg (nm) [4] 0.110 0.118 0.132 0.136 0.140
3
0BT (ry) in ———— 7.575 7.966 8.381 8.404 8.429
EBT . 105% cm?

HEBT(rg) in — o 4.034 3.159 2.646 2.623 2.599
5 2

EBT(r,) in 1ov>;§m 4.034 3.159 2.646 2.623 2.599
3 2

DEET(ry) inlo% 2.348 2.238 2.182 2.180 2.178

a- InSb systems Ga(Al, Mn) Mg In
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ra (nm) [4] 0.126 0.140 0.144

EBT . 10?

0FT(r)  in = 2294 3.843 3.927
3 2

WEET(r,) in 2000 8.858 12.12 12.26
1 3 2

VEBT(r.) in vaxzm 8.858 12.12 12.26
2

DEBT(r,) in 2™ 1597 2.501 2.547

S

Furthermore, in the degenerate d(a)-InSb systems, at T=4.2 K and T=77 K, the numerical results of 0, U, Py,
and the diffusion coefficient D, evaluated respectively by using Equations (27, 28, 29, A8 of the Appendix
A), are reported in following Table 6.

Table 6. Here, one notes that: (i) for given N and T, the functions: 0(ryy), H(Fae)), HH(Faca)) and D(ryc), calculated
using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy, and (ii) for given rg(,)
and T, the functions: (N ), D(N ), y(N ) and py(N ) increase, with increasing N.

Donor P As Te Sb Sn

rg (nm) [4] 0.110 0.118 0.132 0.136 0.140

105 109xcm2 10%xcm? 109xcm?
Vxs S

In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (ohmxcm vt
N(10%* cm™3)

3 1.80,3.91,3.91,0.19
10 6.65,4.20,4.20, 0.47
40  29.6,4.63,4.63,1.31

70 54.1,4.83,4.83,1.99

1.44,3.16,3.16,0.15 1.20,2.68,2.68,0.13  1.19,2.66,2.66,0.13 1.18,2.64,2.64,0.13
5.34,3.39,3.39,0.38  4.50,2.87,2.87,0.32 4.46,2.84,2.84,0.32 4.42,2.82,2.82,0.31
23.8,3.72,3.72,1.05 20.1,3.14,3.14,0.89  19.9,3.12,3.12,0.88 19.7,3.09, 3.09, 0.87
43.4,3.88,3.88,1.60 36.6,3.28,3.28,1.35 36.3,3.25,3.25,1.34 36.0,3.22,3.22,1.33

. . . . 10°  105xcem? 109xcm? 109xcm?
In the following, our numerical results of (0, U, Uy, D) at K, expressed respectively in ( kil Vi:m zcm )

ohmxem’ — Vxs
N(10%8 cm3)

3 1.85,4.01,4.41,0.20
10 6.68,4.22,4.31,0.47
40 29.6,4.63,4.65,1.31
70 54.1,4.83,4.84,1.99

1.48,3.24,3.58,0.16 1.24,2.75,3.04,0.13  1.22,2.73,3.02,0.13 1.21,2.71,2.99,0.13

5.37,3.40,3.47,0.38 4.52,2.88,2.94,0.32 4.49,2.86,2.92,0.32 4.45,2.83,2.89,0.32
23.8,3.73,3.74,1.06 20.1,3.15,3.16,0.89  19.9,3.12,3.13,0.88 19.7,3.09, 3.10, 0.88
43.4,3.88,3.89,1.60 36.6,3.28,3.29,1.35 36.3,3.25,3.25,1.34 36.0,3.22,3.23,1.33

Acceptor Ga(Al, Mn) Mg In

Ia (nm) [4] 0.126 0.140 0.144

. . . . 103 10%xcm? 10%xcm? 10%xcm?
In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in ( sl V::m :Cm )

ohmxcm'  Vxs '
N(10%* cm™3)
3 8.76,1.93,1.94, 2.35

7.62,1.70,1.71,2.05 7.57,1.69,1.70, 2.04

10 28.7,1.82,1.82,5.08 25.0,1.59, 1.59, 4.44 24.8,1.58,1.58,4.41
40 117,1.83,1.83,13.0 101, 1.59,1.59,11.3 100, 1.58, 1.58,11.2
70 208, 1.86,1.86, 19.1 180, 1.61, 1.61, 16.6 179, 1.60, 1.60, 16.5
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103 10%xcm? 10%x cm? lOzxcmz)

In the following, our numerical results of (0, Y, gy, D) at K, expressed respectively in (Ohmxcm, s ' v s

N(10%* cm™3)

3 13.1,2.89, 6.50, 3.73 11.5,2.57,5.83,3.28 11.4,2.55,5.80,3.26
10 30.9,1.96, 2.52,5.77 27.0,1.72,2.21,5.05 26.8,1.71,2.19, 5.01
40 118,1.85,1.94,13.2 103, 1.61,1.69, 11.5 102, 1.60, 1.68,11.4
70 209,1.87,1.91,19.3 181, 1.62, 1.66, 16.8 180, 1.61, 1.65, 16.7

B. Thermoelectric properties
First off all, from Eq. (27), obtained for 6(N , rgca, T), the well-known Mott definition for the thermoelectric

power or for the Seebeck coefficient, S, is given in the n(p)-type degenerate InSb crystals, as:

2
SN T = ()5 xSxkeTx250]
d = Fcep)
Then, using Eq. (27), for &) = EF”%(TNT) 1, one gets:
— m kg 2 — y?
SN T) = ( )X 2xz—xFep(N T), Fo(N ) = |1 = o1 | (30)
S () 2= FncFp)(N - T)

noting that the effective donor (acceptor) density, N = N — Ncpnnpp) (Fd(a))» is a function of rqq).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) = Tx =D (31)

and then, the Peltier coefficient, Pt, is defined as:

Pt(N ,T) =T xS(N ,T). (32)
Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:
[S(N T2%0(N rga DT [S(N T2 >
ZT(N 1) = = i D = BEDE = (2T yar x [2 % Fs(N I, (ZDwott = 570 (33)
Td(a) T) L 3%&n(p)

2 2 x
where (ZT)pyore 1S a well-known Mott result, L = % X (%) = 2.4429637 x 1078 (W K(;hm) is the Lorenz

. . Ernerp)(N T . .
number, noting that, in the n(p)-type degenerate InSb [En(p) = %(T) 1], this value of L is exact, and
B

confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

€nip) = EF"%(TNT) 1, as: Lgim(IS]) =15+ exp [— llille], |S] being independent of T or N (?).

Then, being inspired from this Lkjm(|S|) -expression, we also propose another one, given in the n(p)-type

degenerate InSb, as:

IS(N_T)|

Lc(IS(N T)I) =1.44296 + e w0 ; [RD, | = |1 — 2B (34)

where |RDL,LVC| is the relative deviations in absolute values between L and L.

Finally, the numerical results of above expressions are obtained and discussed in the following.
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First, in the highly degenerate d(a)-InSb, defined by physical conditions : N = 102°cm™2 and T (=3K and

. Ern N, T . .
300K), the numerical results of &y, = %(T), calculated by using Eq. (A3) of the Appendix A, and then
B

other ones of: (N ,rd(a),T) by Eq. (27), K(N ,rd(a),T) by Eq. (25a); C«(N ,rd(a)), KApp.(N ,rd(a),T) and
|RDK,K,W|T by Eq. (25b), S(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing ry,), due to the impurity size effect, Ncpn(rg), increases,
Fn(N , T=300K)

since N(=10%° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in T , 0,
K, Cy, and Kppp,, (ii) the numerical result: |RDK’KAPP‘|300K = 3.55 x 1073 confirms the Kapp.-law, as given in Eq. (25b),

and finally, (iii) |RDL,Lv<:| 1.535% 107® thus confirms in this degenerate InSb -case the well-known Wiedemann-
Frank, given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-InSb systems for N=10%° cm™2 and at T=3K and T=300K, noting that N = N — N¢pn(rq)
Ern(N ,T=300K)

- 1 30.40 30.39 30.38 30.38 30.38
106

0r=3K) (Gmr) 7.943 6.377 5.380 5.335 5.288

10° 7.971 6.400 5.400 5.354 5.307
O(T=300K) (m) . . . . .
Kr=ak) (—) 0.582 0.467 0.394 0.391 0.387
K(r=sook) (—) 58.416 46.904 39.576 39.237 38.894
Ck (—) 0.1940 0.1558 0.1314 0.1303 0.1292
Kapp.(300K) (—-) 58.209 46.737 39.436 39.098 38.756
[RDyyyp |, in 107 355 3.55 3.55 3.55 3.55

APP-1300K
1077xV

Ser=3k) () —1.868 —1.868 —1.869 —1.869 —1.869

-y
S(r=300K) (") —1.859  —1859 —1.860 ~1.860 ~1.860

1077xV

Ts(r=ak) ) —1.868 —1.868 —1.868 —1.869 —1.869

10-5xv
TS (r=300k) (——) —1.840 —1.841 —1.841 —1.841 —1.841
Pter=aiy (1077 %V ) —5.603 —5.605 —5.606 —5.607 —5.607
Pt(r=300K) (1073 x V) —-5.576  —5.578 —5.579 —5.579 —5.579
ZT (7=ak) (x 1076) 1.428 1.429 1.430 1.430 1.430
ZT (r=300K)(% 1072) 1.414 1.414 1.416 1.416 1.416
|RD_|,.|in 1078 at3K 1.534 1.534 1.534 1.534 1.534
[RD| in 107 at 300K 1.535 1.535 1.5345 1.535 1.535
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Table 8. Here, one notes that (i) for a given T, with increasing I, due to the impurity size effect, Ncp,(ra), increases,
. _ay . - . Egp(N . T=300K
since N(=102° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %, ,
B

K, Cy, and Kapp , (ii) the numerical result: |RDK’KAPP‘|300K 5.19% confirms the Kapp-law, as given in Eq. (25b), and

finally, (iii) |RDL,ch| 1.537% 107° thus confirms in the degenerate InSb -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Acceptor Ga (Al) Mg In

Highly degenerate a- InSb systems for N=10%° cm™2 and T=3K and T=300K
Fp(N  T=300K)

- 1 7.75 7.75 7.75
O(r=3) () 3.013 2611 2.592
O(r=3006) () 3.178 2.754 2734
Ker=ak) (—) 2.208 1.914 1.900
K(r=300K) () 2.329 2.018 2.004
Ci (—=)at T=3K 73611 6.3794 63331
Kapp. (300K) (—-) 2.208 1.914 1.900
n 9
|RDK,KAPP|300K in % 5.19 5.19 5.19
—

Sber=aiy =) ~7.473 ~7.475 —7.475

s
Sber=ao0k) ) —6.932 —6.934 —6.934

-

Ts(r=a) C=0) ~7.473 ~7.475 —7.475

-
Ts(r=so0k) C—>) ~5.9639 —5.939 —5.939
Ptcr=aky (1078 x V) 2242 —2.243 —2.243
Pter=300Ky (1072 x V) —2.080 —2.080 —2.080
ZT 1=k (x 1075) 2.286 2.287 2.287
ZT (=300k) 0.197 0.197 0.197
|RD|,.|in 1078 at3 K 1.534 1.534 1.534
|RD, ;| in 1078 at 300 K 1.537 1.537 1.537

. . _ Epn(pp)(N ,T) .
Secondly, in the degenerate d(a)-InSb, for a given N , the values of &,y =———, calculated by using

kgT
Eq. (A3) of the Appendix A, and other ones of: S(N , T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N ,T) by Eq.
(33), and finally, TsS(N ,T) and Pt(N , T) by Equations (31, 32), respectively, are obtained and reported in
following Tables 9-10.
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Table 9. Here, for a given N and for a given degenerate d- InSb system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for

&, = 1.813, while the numerical results of S present a same minimum (S) min. (=— 1563 x 1074 %), those of ZT show a same

maximum ZT ey (= ), (ii) for & = 1, S and ZT present same results: —1.322 % 10_4% and 0.715, respectively, (iii) for &, =
2

1813 and &, = 1, Dot = 31_52

is approximated to 1.541 x 1078, suggesting that in this degenerate InSb -case the Wiedemann-Frank, given in Eq. (25a), is exact.

present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch|

In the degenerate P- InSb system, N = N — Nepn(rp) = Nepn(rp); N = 2 x Nepn(rp) = 2.344 x 1017 3

T(K) 5 10 45.67 50 62.141212 62.3
n 20.32 10.25 1.813 1.552 1 0.994
S (10-4%) —-0.277 —0.536 -1.563 —1.544 —1.322 -1317
|RD | in107%  1.535 1.537 1.541 1.541 1.540 1.540
ZT 0.031 0.118 1 0.976 0.715 0.710
2
@D ot = 3:? 0.008 0.031 1.0002 1.366 3.290 3.330
T.(1043) —0.271 —0.491 335% 1074 0.426 1.657 1.673
Pt (1073V) —-0.138 —0.536 —7.138 -7.721 —-8.213 —8.208

In the degenerate As- InSb system, N = N — Nepn(Fas) = Nepn(Fas); N = 2 X Nepn(ras) = 3.1474 x 1017 3

T(K) 5 10 55.58 60 75.632641 76

n 2471 12.43 1.813 1.591 1 0.989
S (10-4%) —0.228 —0.446 -1.563 —1.550 —-1.322 - 1314
|RD | in107%  1.535 1.536 1.541 1.541 1.540 1.540
zT 0.021 0.082 1 0.983 0.715 0.706

2

@Mwon =57 0.0085 0.021 0.99993 1.299 3.290 3.366
T, (10-4%) —0.225 —0.421 -858x107° 0355 1.657 1.686
Pt (107%V) —0.114 —0.446 —8.687 —9.298 —9.996 —9.983

In the degenerate Te- InSb system, N = N — Nepn(rre) = Nepn(rre); N = 2 X Nepp (o) = 3.954 x 1017 3

T(K) 5 10 64.72 70 88.058507 88.1
g, 28.75 14.44 1.813 1.585 1 0.999
s(107) —0.196 —0.386 -1.563 —1.549 -1322 - 1321
|RD.y,.[in107%  1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.016 0.061 1 0.982 0.715 0.714
2

ZDwore = 327 0.004 0.016 1.0004 1.309 3.290 3.297
T, (10*4%) —0.194 —0.370 494 %1074 0.365 1.657 1.660
Pt (1073V) —0.098 —0.386 —10.116 —10.843 ~11.639 —11.637

In the degenerate Sb- InSb system, N = N — Ngpn(Fsp) = Nepn(Fsp); N = 2 X Nepn(rgy) = 4 x 1017 3

T(K) 5 10 65.21 70 88.739022 88.8
g, 28.98 14.55 1.813 1.585 1 0.998
s(1075) —0.195 —0384 -1.563 —1.549 -1322 - 1320
|RD | in107%  1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.015 0.060 1 0.982 0.715 0.714
2

@D ot = 3:7 0.004 0.015 0.9998 1.309 3.290 3.300
T.(1043) —0.193 —0.367 183 % 1074 0365 1.657 1.661
Pt (1073V) - 0.097 —0.384 —10.192 —10.843 —-11.729 —-11.726

In the degenerate Sn- InSb system, N = N — N¢pn(Fsn) = Nepn(Fsn); N = 2 x Nepp (rgn) = 4.0475 x 1017 3

T(K) 5 10 65.73 70 89.44048 89.5
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&n 28.20 14.66 1.813 1.629 1 0.998

s(107) —0.193 —0.381 -1.563 —1.554 -1.322 —1.320

|RD.,,.|in1078  1.535 1.536 1.541 1.541 1.540 1.540

ZT 0.015 0.059 1 0.988 0.715 0.714
2

@Dvou =5z~ 0.004 0.015 1.00009 1.239 3.290 3300

T, (10-4%) —0.191 —0.365 117 % 1074 0.289 1.657 1.661

Pt (1073V) —0.097 —0.381 —10.273 —10.878 —11.821 —11.819

Table 10. Here, for a given N and for a given degenerate a- InSb system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& = 1.813, S and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (ii) for § = 1, S and ZT present same results:
2
-1.322 % 10_4¥ and 0.715, respectively, (iii) for & = 1.813 and &, = 1, (ZTmor = 31—22 present same results: 1 and 3.290,
P

respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 107%, suggesting that in the degenerate InSb
-case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate Ga- InSb system, N = N — Nepn (ga) = Nepn(Fea); N = 2 X Nepn(fga) = 3.23 x 1017 3

T(K) 5 10 14.15123 17 19.251369 19.3

& 6.48 3.11 1.813 1304 1 0.994
s(107) —0.811 —1.361 -1.563 —1.482 -1322 - 1317
[RD,,.|in107¢  1.538 1.540 1.541 1.540 1.540 1.540
ZT 0.269 0.758 1 0.899 0.715 0.710

2

@D =5z 0078 0.340 1.0009 1.933 3.290 3329
T, (10*4%) —0.651 —0.956 1.15% 1073 0.925 1.657 1.672
Pt (1073V) —0.406 —1.361 2212 —2.519 —2.544 —2.543

In the degenerate Mg- InSb system, N = N — N¢pn(fmg) = Nepn(fwg)s N = 2 % Nepp(fyg) = 3.96 % 107 3

T(K) 5 10 16.19 17 22.032863 22.1

& 7.36 3.72 1.813 1.670 1 0.993
S (10-4%) —0.726 -1231 -1.563 —1.558 —1.322 -1317
|RD ;| in1078 1537 1.539 1.541 1.541 1.540 1.540
ZT 0.216 0.620 1 0.993 0.715 0.709

2

@D ot = 3:? 0.061 0.237 0.9996 1.179 3.290 3.337
T.(1043) —0.611 —0.932 420 %1074 0.221 1.657 1.676
Pt (1073V) —0.363 -1231 —2.530 —2.648 —2.912 —2.909

In the degenerate In- InSb system, N = N — N¢pn(fin) = Nepn(fin); N = 2 X Nepn(rip) = 4 x 1027 3

T(K) 5 10 16.305 17 22.184756 222
& 7.41 3.75 1.813 1.690 1 0.998
s(107) —0.722 —1.225 ~1.563 —1.559 -1.322 —1.320
|RD_;,|in107®  1.537 1.539 1.541 1.541 1.540 1.540
ZT 0213 0.614 1 0.995 0.715 0.714
@ Nwott = 32—52 0.060 0.233 1.0004 1.152 3.290 3.300
T, (10-%) —0.609 -0.927 484 x 104 0.189 1.657 1.661
Pt (1073V) - 0361 —1.225 —2.548 —2.650 —-2.932 —-2.9316
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In summary, from above Tables, for &) = E”’%(TNT) 1, the maximal value of |RDL,ch| is found to be
B

equal to : 1.541x 107°, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given

2 2 x
in Eq. (25a) is found to be exact, with the Lorenz number L = % b (%) = 24429637 (WK—ozhm) , even at

the limiting degenerate case, &,y 1. In other word, our above LVC(N T, rd(a))—expression, given in Eq.

(25b), is not useful in the present n(p)-type degenerate InSb crystals.

6. Concluding remarks
In the n(p)-type degenerate InSb -crystals, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
(i)the effective extrinsic static dielectric constant, €(I'q¢a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor (acceptor)-density, Nepnnop) (Fd(a)) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Ncon(cop) (Fd(ay)» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cpp) (Fa(a))=0 or N = Nepn(copy (Facay)-
(iii) the Fermi energy, Egnpy(N , T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,
(iv) the electrical conductivity, 0(N ,Fgca), T) , the thermal conductivity, K(N , Iy, T), and the Seebeck
coefficient, S(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0O, at which some new
consequences are given as follows.
(@) Epnorpoy(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) As discussed in Eq. (5), suggesting that, in the MIT,
Egnigpy(N' = 0,Ta@a) T = 0) = Egna(gpz)(N = 0, Faga), T = 0) = Egniceapi (Faca))-
where Egn1(gp1), Egn2(gp2) and Egnicrgpiy are the optical band gap (OBG), reduced band gap and intrinsic band
gap, respectively.
(¢) As given in Eq. (27), the electrical conductivity, G(N , Fgca), T), is proportional to Eéno(Fpo) or to (N )3,
giving rise to: (N = 0,rye), T =0) =0, and therefore, as discussed in Equations (27, 28, 29), and Eq.
(A7) of the Appendix A: U(N =0,rge), T=0K)=0, yy(N =0,r4@, T=0K)=0, and D(N =

0, rda), T = OK) = 0O, being new results.
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(d) In Table 5, the values of these electrical-and-thermoelectric coefficients, localized in the EBT for <0,
determined by replacing: N = Ncpn(npp) NEBI(CDF,) into Equations (27, 28, 29), and Eq. (A7) of the
Appendix A, for = 0, are reported.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.

(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonvop) (agay) and Nepneop) (Facy) are found to be equal to: 7.8% (11%), respectively. In other word,
the critical donor(acceptor)-density, Ncpnnpp)y (Fdga)) - determined in Eq. (3), can be used to explain the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBnccop) (Fd(a))-

(2) In Table 6, we remark that: (i) for given N and T, the functions: 0(rgca)), H(Faca)), MH(Fda)) and D(rgca)),
calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rgy(a), and
(ii) for given ryca) and T, the functions: d(N ), D(N ), (N ) and py(N ) increase, with increasing N.

(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rq(g), due to the impurity size effect,

Nconccopy(Fdqa)) » increases, since N(= 10°cm™3) is very high, N therefore decreases very slowly,

Ern(rp) (N, T=300K)

explaining the slow decrease () in T ,

0, K, C, and Kapp , (ii) the numerical results:

|RDK,KW|SOOK 0.355 % (5.19 %), respectively, confirm the Kapp -law, as that given in Eq. (25b), and

finally, (iii) |RDL,LVC| 1.537 x 1078 thus confirms that in the degenerate InSb -case the well-known
Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

(4) In Tables 9-10, for a given N = 2 X Ncpn(npp) (Fd(a)), and for a given degenerate d(a)- InSb system, with
increasing T, the reduced Fermi-energy En(p) decreases, and other thermoelectric coefficients are in

variations, as indicated by the arrows: ( , ). One notes here that with increasing T: (i) for &,y = 1.813,
while the values of S present a same minimum (S)min. (=— 1563 x 1074 %) , those of ZT show a same

maximum ZT . (= ), (i) for &q¢py = 1, those of S and those of ZT present same results: S( =— 1.322 x

2
10_4% ) and ZT (=0.715), respectively, (iii) for &) = 1.813 and &,py = 1, those of (ZT)mor = #
*Sn(p)
present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is equal

approximately to 1.541 x 1078, confirming that in the degenerate InSb-case the Wiedemann-Frank law,

2 2 x
given in Eq. (25a), is exact, with the Lorenz number L = % X (%) = 2.4429637 (WK—Ozhm) , even at the

limiting degenerate case, &,y 1. Therefore, our above LVC(N T, rd(a))—expression, given in Eq. (25b), is
found to be not useful here.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.
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Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InSb-crystals, the Fermi energy Epnep) = [E — Ec] (EFp [E Efp]), Ec(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10™% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(ay)» Neon(cop) (Fd(a)) being the
critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N = O at
this transition.

First of all, we define the reduced electron density by:

3
xkgT
U(N o T) = U T) = 5 Nogy (T) = 2% Gy (P57 (om2), (A1)
where N¢()(T) is the conduction (valence)-band density of states, and the values of gy and M) are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type InSb is determined by :

Fncrpy (W) _ G(u)+AuBF(u) _ V(u)
k;r i En(p)(u) = Wy A = 0.0005372 and B = 4.82842262, (A2)

2 4 8\ 3
where F(N , rgc, T) = aud (1 +bu 3+ cu“s) °, obtained foru 1, according to the degenerate cas,

2 _3
= [(3VT/A)]¥3, b= %(2) ,C= =% 3739855( ) and then G(u) Ln(u)+272xuxe % foru

1920
. _ . 4 — 93/2
1, according to the non — degenerate case, with: d =2 [ﬁ (> 0.
So, in the present degenerate case (U 1), one has:
4 8 _E
_z -2 3
Fn(Fp)(N ’rd(a):T) = Fn(Fp)(N ’T) = Fno(Fpo)(u) x (1 +bu 3+cu 3) : (A3)

Then, at T=0K, since U™ = 0, Eq. (A.3) is reduced to:

— 2Xkl%n(Fp) (N)

Fno(Fpo)(N ) = 2xMp ) (A4)

being proportional to (N )%3, and equal to 0, Fro(Fpo)(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:

DN ra@T) _ N, d mep _ kexT (u dingn(“))’
u

H(N rg@T) ~ g dN q

where D(N , ryc), T) is the diffusion coefficient, &y, () is defined in (A2), and the mobility H(N , rgcay, T)

(A.5)

is determined in Eq. (28). Then, by differentiating this function 8,(u) with respect to u, one thus obtains

dEny(U)
du

D(N ra@T) _ kexT .V (U)XW(U)=V(W)xW ()

H(N rgca).T) q W2(u) ’

. Therefore,

(A.6)
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4 8

where W' (u) = ABuB™! and V/(u) =u1+2 ze‘d“(l du) +2AuB7IF(W) |(1+ %) +4 w2y 32w 3 | Ope

1+bu 3+cu 3

remarks that: (i) as U - 0, one has: W2 1 and u[V' xW —V xWT7] 1, and therefore: D”(pT)(u) kBq—xT,

and (ii) as U —» oo, one has: W? = A%2u%8 and u[V xW -V xW]= %auy 3A%2u?B | and therefore, in this

highly degenerate case and at T=0K,

D(N vrd(a)szo) _ g
H(N rgca), T=0) ~3 EFno(Fpo) (N )/q). (A7)

One notes that, for N = 0, Erpo(rpo)(N ) = O, as remarked in above Eq. (A4), U(N =0,rga, T= OK) =0,
as remarked in above Eq. (28), and therefore, for any ryc,), D(N =0,r4@), T = OK) = 0, according to the
MIT. Now, replacing Epporpo) given in Eq. (A.7) by Epnrp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

2
O rawT=0) 2 U
(N raT=0) 3 < EFno(rpo)(W) > (1+bus+eus) A8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type InSb-crystals, we define the effective reduced Wigner-Seitz radius Isn(sp),

characteristic of the interactions, by:

1/3 1

agn(ep) (rd(a))

30c(v
Fsngsp) (N Faa)) = (4?1;))

In particular, in the following, Myy/My = M/My, is taken to culculate the band gap narrowing (BGN), as

1/3 /mo
= 1.1723 x 10° x (X2) x%. (BI)

used in Sections 3 and 5. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)) , 18

found to be given by [1]:
0.87553 2[1-In (2)]
_ _—o87sss 0000yt 2 )N (o) ~0003288
Ece(Fsn(sp)) = Ece(N Taw) = 0.0908 +ren(epy 1+0.03847728xr5133876 ' (B2)

Then, the band gap narrowing (BGN) can be determined by [1]:

BEg(N ,Tg) agx 2 x N/ +ap x 2o x NE ¢ (2:503 % [ — Ece(rn) X Fl) + 25 % [ \/f;:r:x
N ag x e x N2 x 2+ 2 x [ Z‘Zp]g NN, = Nttt (B3)
and

A go(N ,T3) @y x 2o N3+ a, x sy x N% x (2503 % [ — Ecg(rsp) * rspl) + ag x L(Ef;) %?x

Here, €, = 16.8, a; = 3.80 x 10‘3(eV) , 3 =6.5%x107%(eV), ag=285x%x10"3(eV), a, = 5597 x
1073(eV) and a5 = 8.1 x 10~*(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any Iy, A gngp)(N =0, rg@) =0

according to the metal-insulator transition (MIT).
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