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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, 8(rd(a)) , Td@ being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqc), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate InAs -crystal, defined for the

reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks as follows.
(1) The critical donor (acceptor)-density, Ncpnnpp) (Fd(a)), determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBE(CDp)(rd(a)), given in Eq. (21).

(2) In Tables 9-10, with a given d(a)-density N [= 2 % Nepnnpp) (Fd(a)) ], one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy &npy( 1.814), while the numerical results of the Seebeck

coefficient S present a same minimum (=— 1563 x 1074 %), those of the figure of merit ZT show a same
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maximum ZT(= ), (ii) for &,p) = 1, those of S and ZT present same results: Sb (:— 1.322x 1074 %) and

0.715, respectively, (iii) for &y  1.814 and &,p) = 1, the same values of the well-known Mott figure of

n2

it, (ZT =—
merit, (ZT)mott 2 (

1 and 3.29), are respectively investigated, and finally, (iv) we show here that in

the degenerate InAs-semiconductor, the Wiedemann-Frank law, given in Eq. (252), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as I and I1.

In I, our new expression for the extrinsic static dielectric constant, 8(rd(a)), Faca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing Iy ,
s(rd(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type InSb
-crystal, defined for the accurate reduced Fermi energy [3], ( y( ). Therefore, all the numerical results
of those obtained and given in II are now revised and performed, in comparison with those obtained in [3-
11].

In Section 2, the numerical results of energy-band-structure parameters [4] are presented in Tables 1 and 2.
In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and mathematical
methods, needed to determine and evaluate the critical densities of the majority carriers localized in the
exponential conduction (valence) band tails, are presented, confirming thus the corresponding numerical
results, obtained using Eq. (3) for the generalized effective Mott criterion in the metal-insulator transition
(MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution function method, our
accurate expression for the electrical conductivity, 0, is determined, being a fundamental one, since it is
related to all other electrical-and-thermoelectric coefficients, and then all the numerical results of those

coefficients are reported in Tables 4-10. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in
the n(p)-type InAs -crystals, such as: (i) if denoting the free electron mass by my, the effective electron (hole)

mass, My )/ Mo, which is respectively equal to the relative effective mass, My(p)/m, = 0.026 (0.41) [4], as

used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

mnxmp —_

(MIT), (ii) to the reduced effective mas, m./my, = PnTmp 0.02445, as used in Section 3 to determine the
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optical band gap, and (iii) to the conductivity effective mass () =0.09(0.3), as used in Section 5.

Further, Ego= Eginas= Egas= Eqin = 0.43 eV [4] is the unperturbed intrinsic band gap, €n5p= €jn = Esp =
€, = 14.55 is the relative static intrinsic dielectric constant of the InAs -crystal [4], and finally, the effective
averaged numbers of equivalent conduction (valence)-band edge, gy = 1(1).

Table 1. Here, the effective electron (hole) mass, My, is equal respectively to: my(p,, as used in Sections 2 and 4, to

m, in Section 3, and Mcp(cpy in Section 5, and the values of other important parameters are also reported. BON

mn(p)/mo [4] rnr/mo an(Cp)/mo gc(v) Ego [4] 80 [4]
0.026 (0.41) 0.02445 0.09 (0.3) 1(1) 0.43 eV 14.55

We now determine our expression for extrinsic static dielectric constant, s(l’d(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a))a characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)- InAs]-systems, since lqy(a), given in tetrahedral covalent bonds, is usually either larger or smaller
than ragqn) = 0.118 (0.144 ), alocal mechanical strain (or deformation potential energy) is induced,
according to a compression (dilation) for: rye) > rspny (Faa) < Fasgn)), due to the d(a)-size effect,
respectively [1, 2]. Then, we have shown that this rqc,)-effect affects the changes in all the energy-band-
structure parameters, expressed in terms of the static dielectric constant, €(I'q(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap Egni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy Ed(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicgni)(Fa@) ~ Ego = Ea(@) (o) — Edo(ao) = Ediogao) * [(s«:?a))) - 1]’ (1)
13600 meV /
where Egogagy = —oo ™ :%(m“@ Mo) — 1,670 meV (26.34 meV), and
€
e(l4(a))= —— — = =< &, for T'y(a) = Fas(in);
fa@ \°_ 4(a)
\/l+>(rAs(ln)) l]XIn(rAs(ln))

3 3
— & r ld(a)
s(rd(a))— ; > - =€, [(VA(:ETZ)) - 1] x In<_rAs(|n)) < 1, for rd(a) < rAs(m). (2)
jl_ ( d@) ) —1]><In( fd(a) )

rAs(In) "As(In)
2.2. Our expressions for the critical density in the MIT

In the n(p)-type degenerate InAs-crystals, the critical donor(acceptor)-density, Ncpnmpp)(Fdca)) » 1S

determined from the generalized effective Mott criterion in the MIT, as:

1
Neonop) (Fdgay) 73 < @aneep)(Fda)) = Vs 3)

and the effective Bohr radius agn(gp)(raca)) is given by:
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e(rgea)> 2 _ &(r,
(rda)) ~=053x10 8 cm x (rda)) ]
Mn(p)*d (Mn(p)/Mo)

C))

agneep) (Mdqa)) =

where —q is the electron charge, €(ry(a)) is determined in Eq. (2), in which My /my = mMpy/mg =
0.026 (0.41) . Here, we have chosen, in this work, y=1.5025 (0.09528001) so that we obtain:
Nconiop) (Fasany) = 1.3 % 107 cm™3[4]. Then, from Eq. (3), the numerical results of Neonnop) (Fdcay) are
obtained and given in the following Table 2, in which we also report those of the densities of electrons
(holes), being localized in exponential conduction (valance)-band (EBT) tails, NEB-rII—(CDp)(rd(a))’ obtained
using the next Eq. (21), as investigated in Section 4, noting that the maximal relative deviations (RD), in
absolute values, between Nepnpp) (Fagay) and Nepncop) (faca)) are found to be equal to: 7.4% (11.6%),
respectively. Thus, the numerical results of Ncpnnnpp)(Fdm)) are obtained, using Eg. (3), can be
explained by the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT)
tails, NGphcop) (Fa@)), being determined from Eq. (21).

Table 2. For increasing Iy, while £(rgs)) decreases, the functions: Egni(gpiy(Fdca) ) Neonnop) (fdcay) 2nd Nepnceop) (Faca))

increase. The maximal relative deviations between the numerical results of Nepnnpp) (Fagay) and NEEE(CDP)(rd(a)), in absolute

values, calculated using Equations (3, 21), are found to be equal to: 7.4% (11.6)%, respectively, suggesting that Ncpnnop) (Faca))
can be explained by NG5f (ry), being localized in the EBT. So, in the n(p)-type InAs - crystal, in which (My,)/m,) = 0.026
(0.41) [4], all the numerical results for the energy-band-structure parameters and Ncpncop) (F(ay), Which are expressed

as functions of Iy(,y-radius, are obtained, using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Te Sb Sn

rg (nm) [4] 0.110 0.118 0.132 0.136 0.140
e(rg) 14.850 14.55 13.660 13.140 12.552
Eq(rg) in meV 1.603 1.670 1.895 2.048 2.244
Egni(ra) in eV 0.4299 0.43 0.4302 0.4304 0.4306
Ncpn(rg) in 107 em™3 1.22280 13 1.57088 1.76508 2.02481
NEBT (ry) in 1017 cm~3 1.30627 1.36461 1.56247 1.69868 1.87487
IRD| 6.8% 5% 0.5% 3.8% 7.4%
Acceptor Ge Ga(Al, Mn) Mg In

ry (nm) [4] 0.122 0.126 0.140 0.144
e(ra) 16.216 15.619 14.600 14.55
E.(ry) in meV 21.20 22.86 26.16 26.34
Egpi(ra) ineV 0.4249 0.4265 0.4298 0.43
Nepp(ra) in 1017 cm™3 0.93909 1.05088 1.28667 1.3
NEpp(r,) in 1017 cm™3 1.04851 1.08826 1.16180 1.16560
IRD| 11.6% 3.5% 9.7% 10.3%

In summary, Table 2 also indicates that, for an increasing I'yca), €(rqa)) decreases, while Egni(gpi)(rd(a)),
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Neonvop) (dcay) and N&pheop (face)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.

3. Optical band gap

Here, M) /My is chosen as: my,,/mo =my/m, = 0.02445 , and then, if denoting N =N-—
Nconiop) (Fda)) > the optical band gap (OBG) is found to be given by:

Egnigon)(N - @) T) = Egnagpz) (N Fa@). T) + Eengepy (N . T), )
where the Fermi energy Epnpy(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

Egn2(go2)(N - Taa): T) = Egneicgpei (Tacay T) —~ AEqgnigp (N . Faca))-

Here, the effective intrinsic band gap  gnei(gpei) 1 determined by:

1
_ 2 2.20172201
Egneigpei) (Fd(a) T) = Egni(gpi) (Fa@) — 0109 x [1 + (z255555~) ]

and the band gap narrowing, AEgn(gp)(N , I’d(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, one gets here: Egnei(gpei)(rAS(m),T =
300K)=0.36 eV [1,4].

Further, as noted in the Appendix A and B, at T=0K, as N = 0, one has: Egnepy(N , T) = Epno(rpo)(N ) =
0,as givenin Eq. (A4), and AEgn(gp)(N : rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, Egn1(gp1) = Egn2gp2) = gnei(gpei)(rd(a)) = gni(gpi)(rd(a)) at T=0K and N = 0, according also
to the MIT.

Then, in degenerate d(a)- InAs systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

are reported in the following Table 3, suggesting that, for a given ry(,), the OBG increases with increasing N.

Table 3. In degenerate d(a)- InAs systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),

suggesting that, for a given Iy(5), the OBG increases with increasing N.
£g g g d(a) g

N (108 cm™3) 4 8.5 15 50 80
Egna(N ,rp) in eV 0.753 0.984 1.256 2.326 3.044
Egna(N ,Fas) ineV 0.752 0.983 1.255 2.324 3.042
Egni(N , I1e) in eV 0.748 0.979 1.250 2.318 3.034
Egna(N ,Tsp) in eV 0.745 0.976 1.247 2313 3.029
Egna(N ,Fsp) ineV 0.742 0.972 1.243 2.308 3.023

N (10%8 cm™3) 6.5 11 15 26 50
Egp1(N |, FGacany) in eV 0.901 1.109 1.272 1.658 2.349
Egoi(N , Myg) in eV 0.9009 1.109 1.2718 1.6578 2.347
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Egor(N ,Fn) in eV 0.9009 1.109 1.2718 1.6577 2.347

4. Physical model and mathematical methods
4.1. Physical model
In the n(p)-type degenerate InAs crystal, if denoting the Fermi wave number by: Krnrpy(N ) = (3 2N /

1/3 . . . . .. . . .
gc(v)) , the effective reduced Wigner-Seitz radius rsn(spy, characteristic of the interactions, is defined by:

k—l
x rsn(SP)(N ' Td(a) mn(p)) = % <1 (6)

being proportional to N -3

. Here, = (4/9 )3, k,?nl(,:p) means the averaged distance between ionized
donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length Kgp(sp) to Fermi wave number Kenp) at 0 K is
defined by

-1
Ksnsp) _ Ken(p) _ -r
e 1l — &% Ranws(spws) + [b % Renre(sprey — @ % Renwsespwsy] ~6P < 1, (7
n(Fp) sn(sp)

Rangsp) (N Tay) =
where the empirical parameters: = 0.075(1.01) and b= 0 (1.01), respectively, were chosen so that the
relative deviations between Nepnnpp) and NEBE(CDP), in absolute values, are minimized, as observed in Table
1. Here, these ratios, Rsntr(sptr) @Nd Rsnws(spws), can be determined as follows.

First, for N Ncpnvop)(Fd)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

__ KenTF(spTR) __ kl?nl(Fp) _ |4 Tsngsp)
Renr(sptr) (N Ta(y) = = = 1, (8)

Ken(Fp) KsrTE(spTR)

being proportional to N s
Secondly, for < Ncpnmpp)(Fae)) > according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

= Kncows 9] Snespy* ce (N ra@)]
Rsnspyws(N  Faay) = % = (21 — ey ol o)) o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
I(l?riL(Fp) Nn(p) 1 I(l?riL(Fp) Erno(Fpo)
< = <——==R <1l A =—" 10
den@) | FoGpo)  Anp)  Kap) P ") gy (10)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,

Rsn(sp) 1s defined in Eq. (7). Here, the energy parameter, Nnp), being characteristic of the exponential

conduction (valence)-band tails is determined in next Eq. (12).

436



Then, in degenerate d(a)- InAs systems, the total screened Coulomb impurity potential energy due to the

attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the InAs -crystal, is defined by

O ERRIGER (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and Vv;(r) is a

screened Coulomb potential energy for each d(a)- InAs system, defined as

gZxexp (—ksn(sp) > | r—R, |)
&(rd))*|r—Rj|

vi(r) =—
where Kgn(spy is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the Vj-representation in wave vector K-espace is given by

2
q 4m 1

Vvi(k) =— X — X =

J( ) efa@) Q  K2+kgy

where Q is the total InAs -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wiy (Vny, N . ra) = (V(NDV(r)), was

determined as [3] :

— 2 — XRansp)(N Fa@) _ V2N 2, —1/2 _ -
Wi (Vo) N Ta@) = Mgy < exp o ey (N Ta@) = 50 5 0 Ksngspy Vo) = o (12)
2 [[vn| (@ Fno(Fpo)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =

( . ), respectively, will be chosen such that the determination of the density of electrons localized in

the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally V) = ,
Fno(Fpo)

where s the total electron energy and Eppo(rpo) is the Fermi energy at 0 K, determined in Eq. (A4) of the

Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i_z, fora=1,

2xk

2
K = being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the
)

2% (
two following integration methods, as developed in II, which strongly depend on Wy (Vagy, N Facay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In degenerate d(a)- InAs systems, the effective Gaussian distribution probability is defined by

1 —V?2
P(V) = ——— x ex [ ]
V) V2 Wn(p) P 2Wn(p)
So, in the Kane integration method, the Gaussian average of ( — V) a3 = Z_f is defined by

(C =V D= S dm= _o( =V ExPV)AV, for a=1.
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*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /Wy = Ayp) X n(p) X eXP| ——= |,
4x [[vne)|

and using an identity:
(o) _1 2
0 sf2xexp (—xs—3)ds =T( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2

2a—l 1

exp (—x2/4)xW exp (—x2/4)xn.. 2 x -
( )KIM p(- \/2_; h(®) xT(a+xD_ 1(x) _ = "0 5 exp [ — Ranepy*(2a—1) | Fa+
8% | Vnp)|
9 *D_1(0). (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
—_ a—l = a_% = 2 r(a+%) e —a—l _t _ (t\/ Wn(D)) 2 —
(C =) 2 = deriv = a5 < e (D72 X exp{ ——2 (dtiT=—1,

noting that as a=1, (it)_g x exp{ e ‘/_) } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)_a_% x exp{ XS ——} ds = 232 x 1(3/2) x exp (— x2/4) xD_ 1(x),

Then, by variable changes: t =

and X == /,/Wpp), and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_,_1(X), those given for (( —V)a_%)K”\A will be
2

obtained in the two cases: =0and <O0.

(i) _= -case

As -+ oo onehas: ,; -— o0 and X - — oo, In this case, one gets:

X2 1
- = x ax (—x)2
s mm ) =k (=)

-1 1
Therefore, Eq. (13) becomes: ( Z Yxim = #72. Further, as -+ 0, one has: np) - — 0 and X - —o0. So,

one gets :

3 Vo
_a_l(X -—o)  (a)xexp <(\/5 + ) x—X sza) -0, @@= AR
1622 2 4 Tl

-1
Thus,as -+ 0, from Eq. (13), one gets: { Z m - 0.

1
In summary, for __ = 0, the expression of ( z “)xim can be approximated by:

438



2xk2

N =
I

(D T2, = T (14)
i) = -
As  -—0, from Eq. (13), one has: )y —»+ 0 and X -+ co. Thus, one first obtains, forany a = 1,
D_,_1(x » ) P(a) xexp -(Va +)x— = W -0, B(@ = % noting that
2 16a2 27 1@+
B = and B(5/2) = 23/2
24X (5/4)
Then, putting f(a) = n(p) x I'(a+3) % B(a), Eq. (13) yields
(x 2)kim R x(2a-1)
Hu)( ey =+ 0 Faey @) = —5— = exp [ = — =B——— (‘/5 +L§) () Rz - O (15)
8 ||Vn(p)| 16a2
Further,as - — oo, one has: ) -+ % and X - oo. Thus, one gets:
)(2
_ai(X 5 00) = xaIx 7 0. Therefore, Eq. (13) yields
2
al
(& Pk 1 Py n(e))? 1
—_— n n —a—=
Kn)( n) =+ . 4@, a) = & @ xexp (——"5=) X (Pay X ngp)) © 2 0. (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fam)( n(p)s Td(ay @) = Kn)( np): Facay @) + [Ha)( ngpys @y @) = Ky ( npy: Facay @] > exp [—

(Ao )] (17)
such that: Fnoy( nepy: Fdgay: @ - Hnp)( nepy: Ta@ay @) for 0= =16 , and Fnpy( nep) Fd@) @) -
Knpy( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the

exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.

C. Critical impurity density in the MIT
In degenerate d(a)- InAs systems at T=0 K, in which myy/my = Mppy/m, = 0.026 (0.41), as given in

Section 2, using Eq. (13), for a=1, the density of states ( ) is defined by:

1
3 2\ A
5 exp (7)XW

Nlw

— Yc(v mn( ) Je(v) 2mn( ) n _
( (kv = ()( p) x( k)KIM = 2(2)( p) N X F(%) x D_g(x) = (), (18)
xR n
where x is defined in Eq. (13), as: X == /,/Wp) = Anp) X n(p) X EXP )
4 [[va)|
Here, Eppo is determined in Eq. (A4) of the Appendix A, with mpy/My = Mpy/mgand = . (. ),

respectively, being chosen such that the following determination of NEBE(CDP)(N, l'd(a)) Would be accurate.
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Going back to the functions: H,,, K, and F,, given respectively in Equations (15-17), in which the factor

1

( E)KIM )
Ta=) 1S NOW replaced by:
3
{ kM 3/2
_ (=0 _ _ _ 9ewy*(Mn(p)*mo) ™ "< /“n(p) _ N
f(a=1) - —0_ Fn(p)( n(p) rd(a)l a= 1)? o~ 223 x (a - 1)a (a - 1) = zgxr(5/4).
(19)
Therefore, NEBE(CDP)(N, ld) can be defined by
0
Neoncop (N fa@) = o ( =0)d ,
where (= 0) is determined in Eq. (19). Then, by a variable change: () = m, one obtains:
3/2
_ gC(V)X(mn( )) / n(p)>EFno(Fpo) 16 _ _
NGB ccop (N Td) = PO [P (a = 1) % Fogy( ey Ta@r 2= 1) d oy + I -
(20)
where
2
o w0 ~(An@* n) -3/2
he = 16 @=D*Kip(a@la@a=Ddae = 16 2 (Ao @) d ne)-
Here, (a=1)=— A

28T (5/4)
2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral 1) yields:

—1 A— — 0 ynp))
In(o) = =7m— X ttletdt = @7
n(p) ZZLTW TS 25y

2
where b == 1/4, ypp) = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

B 3 b—1)(b—2)...(b—j
F®.Yog) Yo@> @ [1 + 11:61%(:(”]
n(p.

Finally, Eq. (20) now yields:

EBT _ 2o *(M@) ™ 2@ * Frotepo) 6, _ _
Ncon(eop) [N = Neonop) (Fa@y)] = 523 x { o (@=1)xFap)( npy Fa@ya=
rd, nep)
Dd oy + ) (212)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEBE(CDP)[N = Nconnop) (Fdqa))] = NEBE(CDF,)( ld@) > for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 7.4% (11.6%), respectively. In other words, this

critical d(a)-density Ncpnnpp) (Fdcay)) can thus be explained by the density of electrons(holes) localized in

the EBT, N&phcop) ( Fd@ay)-
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So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- InAs systems, can thus be expressed by:

N =N—=Neonopy N — NEBnceop)- (21b)

2%k py (Ncon(NDp))
2XMn(p)

Then, as N = Ncpnnpp) » according to the Fermi energy, Epno(rpo)(N = Ncpn(nop)) =
given in this parabolic conduction (valence) band (i.e. = 0), the value of the density of electrons(holes),
NEBE(CDF,) , localized in the EBT (=< 0), is almost equal to Ncpn(Npp), as noted above. This can thus be
expressed as:

N(EJBE(CDp) Nconnopys @ N = Nepnnop)- (21c¢)

5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=@+eN™ y=( — eEp)/(keT),
where Ernrpy(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in I, can be defined as:

— p _ of of _ 1 ev
( Proor =Gp( ) > = o px(—a—)d ST Tt X e (22)
of . .
Further, one notes that, at 0 K, -5 = 6( - Fno(ppo)) , 6( - Fno(ppo)) being the Dirac delta (d) -

function and  Fno(rpo) 18 the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp( Fno) = 1.
Then, at low T, by a variable change Y = ( — rnrp))/(KsT), Eq. (22) yields:

(<) ey

_ - P -
Gp( Fngrp)) =1+ Fr?(Fp) X oo T (keTY + Fnrpy) dy =1+ E=1,2,... CE x (kgT)P x FrE(Fp) xlg,

where Cg =p(p—21)..(p —B+1)/B! and the integral Iy is given by:

@ yBer _ yB C . —
lg = o rer2dY = _mmdy, vanishing for old values of 3. Then, for even values of B = 2n,
with n=1, 2, ..., one obtains:

— 5 ©yxel
lan =2 ¢ ez dY - (23)

Now, using an identity (1 +e¥)™2 = ‘;1 (—1)s*1s x /G~ | 3 variable change: sy =—t, the Gamma

function: 000 t?"e"tdt =T (2n+ 1) = (2n)!, and also the definition of the Riemann’s zeta function:

{(2n) = 22"12"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: lp, = (22" — 2) x 112" x

|Bonl. So, from Eq. (22), we get in the degenerate case the following ratio:
— { P)roDF _

G =" =1+ P_wx 22n_2xB x anG , E_T[ = 3
Ny - =1 Gy ( ) X |Baq| xy p=1 .Y ===

kg T

(24
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Then, some usual results of Gp>1(y) are given in Table 4.
Table 4. Expressions for Gpz1(y = %), due to the Fermi-Dirac distribution function FDDF, noting that Gy—;(y =

kT . . . . . .
el = L) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5
Fn(Fp) )

Ga/2(Y) Ga(Y) Gs/2(Y) Gs(Y) G7/2(Y) Ga(y) Gor2(Y)

= (3 = ) (—) (= ) (——)

These functions G, (y) will be applied to determine the majority-carrier transport coefficients given in the
n(p)-type degenerate InAs, as follows.

5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, Mpy/Mg is chosen as: My,)/My = Mcpcpy/Mo = 0.09 (0.3) , as given in Table 1, and all the
majority-carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncon(nop) (Fd(a))» Where the values of critical d(a)-densities Nepnnop) (Fd(ay) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rge), T),

and Lorenz

expressed in ohm™ x cm™, the thermal conductivity by K(N , Fdcay, 1), expressed in —K’

Ks

2 2 5
number by L= % X (F) = 24429637 (W ohm

K2

), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

N T
= LT, (25a)
fd(a):
K(N ,rd(a),Tst)

Then, it is interesting to define a constant C, (N , rge))[ = i

] in order to show that, for given N

and ryca), Kapp.(N , gy, T) is found to be proportional to T, as:

_ Kapp.(N raa) T)

Kapp.(N . Taqa), T) - Ce(N Fa) < T, |RDK'KAPP-|T = ‘ KN ra@y ™) |’

(25b)

where |RDK,KApp,|T is the relative deviations in absolute values between K(N , rgc), T) and Kapp (N, Fga), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

2

First, it is expressed in terms of the kinetic energy of the electron (hole), ¢ =

= ——— or the wave number
2>Mcen(cp)

k, as:

— 9%k k
a(k) = x
() e Ksn(sp)

172
k
x [k x agn@p) (Faq@y)] > (—nn@(N,rd(a))) , (26)

which is thus proportional to k2‘ Further, Ksn(spy, @Bn(gp)> and Ny are defined and determined in Equations

(7, 4, 12), respectively.
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Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)gppe = Go(y =

HkBT

— ,%n(,:p) , where  pygpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

9°>Ken(Ep) (N ) « Ken(rp)(N )

1/2
Erno(Foo)(N , T=0
G(N ’rd(a)’T) = [ Fno(Fp )( )) ] %

% [KenEpy(N ) % @pncep) (Faay)] < (

< Ksn(sp) (N ) M (N Fa@)
2
Ern(r )(N T _ 2 1/3
[Gz(N ,T) % (m) ], kenpy(N ) = (3 2N /gey) ™, (27)

which also determines the resistivity as: P(N ,rgey, T) = 1/0(N ,ry@), T) , noting that
N = N — Ncpn(nop) (Fd(a)) - Further, the Fermi energies Ernrpy and Epng(rpoy are determined respectively in
Equations (A3, A4) of the Appendix A.
In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), 0(N ,rgca), T = OK) is proportional to Eéno(Fpo),
or to (N )*3. Thus, o(N =0, Fda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.
A. Electrical properties

The relaxation time is related to 0 by:

Mcn(Cp)

T(N g, T) = 0(N , rye), T) PN Therefore, the mobility Y is given by:

axt(N rg@),T) _ (N r4ca).T)
Mcn(Cp) gxN  °

(N rye@), T) = (28)

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3 since o(N Taq), T = 0K) is
proportional to (N )*3. Thus, y(N =0, gy T =0K)=0 at N =0, at which the metal-insulator
transition (MIT) occurs.

2

Then, since T and 0 are both proportional to <, as given above, the Hall factor can thus be determined by:

— (Proor _ _Ga)
WD =057 = e

IJH(N urd(a)uT) = H(N urd(a),T) x rH(N ,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, 14, T=0K) = u(N =0,rye@), T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Further, as discussed in Eq. (21c) and at T = OK, we can also determine the values of these electrical-and-
thermoelectric coefficients, localized in the EBT for <0, by replacing: N = N¢pnnpp) NEBE(CDP) into
Equations (27, 28, 29), and Eq. (A7) of the Appendix A, for =0, to obtain: oFBT(N = NconNDp): Fd(a))s
HEBT(N = NconNpp): Fd(a)) » HEBT(N = Ncon(Npp): F'd(a)) and DEBT(rd(a)). Those numerical results are

reported in following Table 5.
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Table 5. Here, the values of the electrical-and-thermoelectric coefficients, obtained in the exponential tails (i.e.

<0), as:

GEBT(I‘d(a)), UEBT(rd(a)), UEBT(rd(a)) and DEBT(rd(a)) are reported, and their variations with increasing rqc,) are represented by the

arrows: and
d- InAs systems P As Te Sb Sn
rg (nm) [4] 0.110 0.118 0.132 0.136 0.140
OFBT(ry) in 5.053 5.126 5.381 5557 5783
ohmxcm
5 2
PEBT(ry) in mvngm 2.579 2.461 2.138 1.965 1.783
5 2
MEET (1) in 22oe™ 2.579 2.461 2.138 1.965 1.783
3 2
DEET(r,) in = o 1716 1.706 1.681 1.670 1.660
a- InAs systems Ga(Al, Mn) Mg In
ry (nm) [4] 0.126 0.140 0.144
oT(r)  in —2 1.404 2113 2153
a ohmxcm . : :
3 2
PEBT(r,) in “’V;xim 8.338 10.250 10.335
103 2
HEBT(r,) in——a 8.338 10.250 10.335
Vxs
1 2
DEET(r,) in12XCm" 1.504 2116 2.149

Furthermore, in the degenerate d(a)- InAs systems, at T=4.2 K and T=77 K, the numerical results of g, U, My,

and the diffusion coefficient D, evaluated respectively by using Equations (27, 28, 29, A8 of the Appendix

A), are reported in following Table 6.

Table 6. Here, one notes that: (i) for given N and T, the functions: 0(ry)), M(Fu)), Mu(Fae)) and D(rqe)), calculated

using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy(,, and (ii) for given ry(,)

and T, the functions: (N ), D(N ), y(N ) and py(N ) increase, with increasing N.

Donor P

As

Te

Sb

Sn BON

rq (nm) [4]

0.110

0.118

0.132

0.136

0.140

In the following, our numerical results of (g, Y, uy, D) at 4.2K, expressed respectively in (

N(10%8 cm3)

105  109xcm2 10%xcm2 109xcm?

ohmxcm'

Vxs

Vxs ' s )

3 1.18,2.56,2.56,0.14  1.13,2.45,2.45,0.13 0.98,2.14,2.14,0.12  0.89,1.97,1.97,0.11 0.80,1.79, 1.79, 0.09
10 4.33,2.73,2.73,0.34  4.13,2.61,2.61,0.32 3.59,2.28,2.28,0.28 3.30,2.09,2.09,0.26 2.98, 1.90, 1.90, 0.23
40 19.1, 3.00, 3.00,0.94  18.3,2.86,2.86,0.90 15.9,2.49,2.49,0.78 14.6,2.29,2.29,0.72 13.2,2.07,2.07, 0.65
70 34.9,3.12,3.12,1.43  33.4,2.98,2.98,1.37 29.0,2.59,2.59,1.19 26.6,2.38,2.38,1.09 24.0,2.15,2.15,0.98

In the following, our numerical results of (0, Y, gy, D) at K, expressed respectively in (

N(10%* cm™3)
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3 1.21,2.61,2.83,0.14

1.15,2.50,2.71,0.14

1.00,2.19,2.37,0.12

0.91,2.01, 2.19, 0.11

0.82,1.83,1.99,0.10

10 4.34,2.74,2.79,034 4.15,2.63,2.67,0.33 3.61,2.29,2.33,0.28 3.31,2.10,2.14,0.26  2.99, 1.90, 1.94, 0.24
40 19.2,3.00, 3.00,0.94  18.3,2.87,2.87,0.90 15.9,2.49,2.50,0.78 14.6,2.29,2.29,0.72 13.2,2.07,2.07,0.65
70 349,3.12,3.13,1.43  33.4,2.98,2.99,1.37 29.0,2.59,2.60,1.19 26.6,2.38,2.38,1.09 24.0,2.15,2.15,0.98
Acceptor Ga(Al, Mn) Mg In
ry (nm) [4] 0.126 0.140 0.144

3 45 o2 4y om2 102 2
In the following, our numerical results of (0, Y, Uy, D) at 4.2K, expressed respectively in (Oh;icm ’ 1ovx§m ’ 10Vsz ’ 10 :cm )

N(10%* cm™3)

3 5.80, 1.25,1.25, 2.06 5.06,1.10, 1.10, 1.80 5.02,1.09,1.09,1.79

10 19.2,1.21,1.21,4.53 16.8, 1.06, 1.06, 3.96 16.7, 1.05, 1.05, 3.93
40 79.4,1.24,1.24,11.7 68.9,1.08, 1.08, 10.2 68.4,1.07,1.07, 10.1
70 142,1.27,1.27,17.4 123, 1.10, 1.10, 15.1 122,1.09, 1.09, 15.0
. . . . 103 10%xcm? 10%xcm? 102xcm?
In the following, our numerical results of (0, Y, gy, D) at K, expressed respectively in e Vs ' wes s

N(10* cm™3)

3 7.06, 1.52,1.57,2.80 6.17,1.34,2.28,2.46 6.13,1.33,2.26,2.44

10 20.1,1.27,1.48,4.88 17.5,1.11, 1.30,4.26 17.4,1.10, 1.29, 4.23
40 79.9,1.25,1.28,11.9 69.4,1.08,1.12,10.3 68.8,1.08,1.11, 10.2
70 142,1.27,1.29,17.5 123,1.10,1.12, 15.1 122,1.09,1.11, 15.1

B. Thermoelectric properties

First of all, from Eq. (27), obtained for G(N , I4ca), T), the well-known Mott definition for the thermoelectric

power or for the Seebeck coefficient, S, is given in the n(p)-type degenerate InAs crystals, as:

2 _k al
SN\ T) = ()G < 2xkeT x 250

= Fn(Fp)

Then, using Eq. (27), for &) = By .T) 1, one gets:

keT
SN\ T) = ()T xS Fy (N, T), Fs(N Ty = |1 L] (30)
() sy (g

noting that the effective donor (acceptor) density, N = N — Nepnnpp) (Fd(a)) is a function of Fqg).

Therefore, the Thomson coefficient, Ts, is given by:

Ts(N,T) = Tx =D (31)
and then, the Peltier coefficient, Pt, is defined as:

Pt(N, T) =T xS(N,T). (32)

Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:
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SN TI*>(N Fa@ D>T _ [S(N 1)) n?

_ [ — 2 =
ZT(N T) = SOLDRe 2 = @Dyor x 2% Fs(N DI, @ = 30— 33)
2 2
where (ZT)pyore 1S a well-known Mott result, L = % X (%) = 2.4429637 x 1078 (W?;hm) is the Lorenz
. . _ EFn(Fp)(N ,T) : :
number, noting that, in the n(p)-type degenerate InAs [En(p) i 1], this value of L is exact, and

confirmed in the following.
It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

€np) = E”’%(TNT) 1, as: Lgim(IS]) =15+ exp [— %], |S] being independent of T or N (?).

Then, being inspired from this Lgjm(|S|) -expression, we also propose another one, given in the n(p)-type

degenerate InAs, as:

IS(N_T)|

Lyc(IS(N T)I) =1.44296 + € w0 ; |RD | = |1 —2<EEDD), (34)

where |RDL,ch| is the relative deviations in absolute values between L and L.
Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)- InAs, defined by physical conditions : N = 102°cm™2 and T (=3K and

300K), the numerical results of &, = EH‘%(TN'T), calculated by using Eq. (A3) of the Appendix A, and then
B

other ones of: G(N ,rya), T) by Eq. (27), K(N , rge), T) by Eq. (25a); Cx(N , rgca)), Kapp. (N, Tgca), T) and
|RDK,KAW|T by Eq. (25b), S(N,T), Ts(N,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing ry(,), due to the impurity size effect, Ncpn(rg), increases,
Fn(N ,T=300K)

since N(=10%° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in O

K, Cy, and Kapp , (ii) the numerical result: |RD ‘ = 0.288 % confirms the Kapp -law, as given in Eq. (25b), and

KKApp. |3oo
finally, (iii) |RDL,ch| 1.535% 107° thus confirms in this degenerate InAs -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-InSb systems for N=10%° cm~3 and at T=3K and T=300K, noting that N = N — Nepn(rg)
Ern(N . T=300K)

= 1 33.76 33.76 33.75 33.75 33.74
B
106
o(r=3) (o) 5.129 4.901 4258 3.905 3.527
108

or=300) (o) 5.144 4915 4271 3.917 3.537
Ker=a) (—) 0.376 0.359 0312 0.286 0.258
Ker=so06) (—) 37701 36.024 31.300 28.706 25.926
Ck (—) 01253 0.1197 0.1040 0.0954 0.0862
Kapp. (300K) (—) 37592 35.920 31210 28.623 25.851
|RDKv"App‘|300K in % 0.288 0.288 0.288 0.288 0.288

1077V
S(r=ak (). ~1.681 ~1.681 ~1.681 ~1.682 ~1.682
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1075xv

S(r=300k) () —1.674 —1.674 —1.675 —-1675 - 1675
1077xV
Ts(r=3k) () —1.681 —1.681 —1.681 —1.682 —1.682
1075xV

TS(r=300k) (——) —1.661 —1.661 —1.661 —1.662 —1.662
Ptir=aiy (1077 x V) —5.043 —5.044 —5.044 —5.045 —5.046
Pt(r=s00y (1073 x V) —5.023 —5.024 —5.024 —5.025 —5.026
ZT 1=k (< 107°) 1.157 1.157 1.157 1.158 1.158
ZT (r=300k) (% 1072) 1.148 1.148 1.148 1.148 1.149
|RD. 1| in 1078 at 3K 1.534 1.534 1.534 1.534 1.534
IRD| in 1078 at 300K 1.535 1.535 1.535 1.535 1.535

Table 8. Here, one notes that (i) for a given T, with increasing r,, due to the impurity size effect, Ncpp(ra), increases,
. —3y - . - . Erp(N ,T=300K
since N(=10%° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %, ,

K, Cy, and Kppp, (ii) the numerical result: |RD 3.04 % confirms the Kapp-law, as given in Eq. (25b), and
PP PP g

Khpp. |3OOK
finally, (iii) |RDL,ch| 1.537x 1078 thus confirms in the degenerate InAs -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Acceptor Ga (Al) Mg In

Highly degenerate a- InAs systems for N=10%° cm ™2 and T=3K and T=300K
Fp(N T=300K)

- 1 10.2 10.2 10.2
O(r=3) () 2.060 1.783 1.770
O(r=3006) () 2.125 1.839 1.826
Kr=ay —=) 1.510 1.307 1.297
K(r=300k) (——) 1.557 1.348 1.338
Ck —=)at T=3K 5.0331 4.3565 4.3247
Kapp.(300K) (—-) 1.510 1.307 1.297
[RDcgp | 111 % 3.04 3.04 3.04

—
Sber=aiy =) ~5.603 —5.604 ~5.604
.y
Sb(r=so0k) ) ~5.337 ~5.367 ~5.367
-
Ts(r=a) () ~5.603 —5.604 —5.604
"y
Ts(r=so0k) C—+) ~4915 —4916 —4916
Ptr=ak) (1076 x V) —1.681 —1.681 —1.681
Pt(r=s00) (1072 x V) -1.610 —-1.610 -1.610
ZT =3k (x 107°) 1.285 1.285 1.285
ZT (7=300k) 0.118 0.118 0.118
|RD_ .| in 1076 at3 K 1.534 1.534 1.534
|RD, .| in 1078 at300 K 1.537 1.537 1.537
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Secondly, in the degenerate d(a)- InAs, for a given N , the values of &) = Eenep® T)

, calculated by using

Eq. (A3) of the Appendix A, and other ones of: S(N , T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N ,T) by Eq.

(33), and finally, TS(N , T) and Pt(N , T) by Equations (31, 32), respectively, are obtained and reported in

following Tables 9-10.

Table 9. Here, for a given

decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (

and for a given degenerate d- InAs system, with increasing T, the reduced Fermi-energy &,
). One notes that with

increasing T: (i) for &, 1.814, while the numerical results of S present a same minimum (S) min. (=— 1563 x 1074 %), those of ZT

show a same maximum ZT . (= ), (ii) for &, = 1, S and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (iii)

2
for§, 1.814and&,=1, ZDyort = 31—22 present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of

|RDL,ch| is approximated to 1.541 x 107® suggesting that in this degenerate InAs -case the Wiedemann-Frank, given in Eq. (25a),

is exact. BON

In the degenerate P- InAs system, N = N — Npn(rp) = Nepn(rp); N = 2 % Nepp(rp) = 2.4456 x 107

T(K) 5
g 2321
-4V —
s(107) 0.243
|RD_ ;| in107%  1.535
ZT 0.024
2
@D yont = 327 0.006
4V .

T, (10 E) 0239
Pt (107%V) —0.121

10
11.69

—0.474
1.536

0.092
0.024

—0.443
—0.474

52.20 60
1.814 1.420
—-1.563 —-1517
1.541 1.541
1 0.942
1.0002 1.631
3.05x 1074 0.680
—8.159 —9.104

71.02679
1

—1.322
1.540

0.715
3.290

1.657
—9.388

-3

71.1
0.997

—1.320
1.540

0.713
3.306

1.664
—9.385

In the degenerate As- InAs system, N = N — Ngpn (Fas) = Nepn(Fas); N = 2 % Nepn(Fas) = 2.6 x 1017 3

T(K) 5
& 24.17
-4Y -
s(1075) 0.233
|RDy,.|in 1078 1.535
A 0.022
2
@Duon =5z~ 0006
4V .

T, (10 E) 0.230
Pt (1073V) -0.117

10
12.16

—0.456
1.536

0.085
0.022

—0.428
—0.456

54.385448 60
1.814 1.530
-1.563 —1.541
1.541 1.541

1 0.972
1.0009 1.405
115x% 1073 0.466
—8.500 —9.244

73.986102

1
—1.322
1.540

0.715
3.290

1.657

=9.779

74
0.999

—1.321
1.540

0.7147
3.293

1.658
—9.7783

In the degenerate Te- InAs system, N =

T(K) 5
&n 27.41
-4V —

s (10 K) 0.206
|RD.,.|in1078  1.535
7T 0.017
2
@D yort = 3:7 0.004
-4V _
T.(1043) 0.203
Pt (1073V) -0.103

10
13.77

—0.404
1.536

0.067
0.017

—0.385
—0.404

N — Nepn(rre) = Nepn(rre); N = 2 % Nepn(rre) = 3.14 x 1017 =3

61.699402 70
1.814 1.454
-1.563 -1.526
1.541 1.541

1 0.953
1.0009 1.556
115% 1073 0.611
—9.644 —-10.679

83.936025

1
—1.322
1.540

0.715
3.290

1.657
—11.094

84
0.998

—1.320
1.540

0.714
3.302

1.662
—11.092

In the degenerate Sb- InAs system, N =

T(K) 5

&n 29.62
-4V —

S (10 K) 0.191

|RD.y,.|in107%  1.535
ZT 0.015

10
14.87

—0.376
1.536

0.058

N = Nepn(rsb) = Nepn(sp); N = 2 % Nepn (rsp) = 353 x 1017 3

66.67
1.814

—1.563
1.541

1

70
1.670

—1.558
1.541

0.993
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90.718195

1
—1.322
1.540

0.715

91
0.993

—1.316

1.540
0.709



le

@Dvou =57~ 0.004 0.015 1.0001 1.180 3.290 3338
T, (10*4%) —0.189 —0.360 1.82 x 1074 0221 1.657 1.676
Pt (1073V) —0.095 -0.376 —10.420 —10.904 —11.990 —11.980

In the degenerate Sn- InAs system, N = N — Nepn(rsn) = Nepn(rsn); N = 2 X Nepp(rsp) = 4.0496 x 10Y7 3

T(K) 5 10 73.05 80 99.412715 99.5
n 32.45 16.28 1.814 1.551 1 0.998
s(1073) —0.174 —0.344 ~1.563 —1.544 -1322 —1.320
|RD | in107%  1.535 1.536 1.541 1.541 1.540 1.540
ZT 0.012 0.048 1 0.976 0.715 0.713
2
@D ot = 3:? 0.004 0.012 0.9997 1.367 3.290 3.303
T.(103) —0.173 —0.332 —396 x 104 0.427 1.657 1.663
Pt (1073V) —0.087 —0.344 —11.418 -12.353 —13.139 —13.136

Table 10. Here, for a given N and for a given degenerate a- InAs system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& 1814, S and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (ii) for & = 1, S and ZT present same results:

2
-1.322 % 10_4¥ and 0.715, respectively, (iii) for §, 1.814 and &, = 1, (ZTpore = 31_52 present same results: 1 and 3.290,
P

respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 107%, suggesting that in the degenerate InSb
-case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate Ga- InAs system, N = N — Nepn(fa) = Nepn(fea); N = 2 % Nepn(fg) = 210 x 1017 3

T(K) 5 10 14.155 17 19.260827 19.3

& 6.48 3.11 1.814 1.306 1 0.995
s(107) —0.811 —1.360 -1.563 —1.482 -1322 — 1318
|RD.,,.|in107%  1.538 1.540 1.541 1.540 1.540 1.540
ZT 0.269 0.757 1 0.899 0.715 0.711

2

ZDwore = 32—52 0.078 0.340 1.0001 1.929 3.290 3.321
T, (10*4%) —0.651 —0.957 171 x 104 0.922 1.657 1.670
Pt (1073V) — 0.405 —1.360 —2212 —-2.520 —2.546 —2.544

In the degenerate Mg- InAs system, N = N — N¢pp(vg) = Nepn(fvg); N = 2 % Nepp(vg) = 2.57 % 107 3

T(K) 5 10 16.198 17 22.043683 22.1
& 7.36 3.72 1.814 1.671 1 0.994
S (10-4%) —0.726 —1.230 -1.563 —1.558 -1322 - 1317
|RD.y,c|in1078  1.537 1.539 1.541 1.541 1.540 1.540
ZT 0.216 0.620 1 0.993 0.715 0.710
2
@D ot = 3:? 0.061 0.237 0.9997 1.178 3.290 3.330
T, (10-%) -0.611 -0.932 —4,07 x 1074 0.219 1.657 1.672
Pt (1073V) —0.363 —1.230 —2.532 —2.648 —2913 —2911

In the degenerate In- InAs system, N = N — Nepn(fin) = Nepn(rin); N = 2 % Nepn(fn) = 2.6 x 1017 3

T(K) 5 10 16.31 17 22.195706 22
& 7.41 3.75 1.814 1.691 1 0.999
s(107) —0.721 —1.224 -1.563 —1.559 -1322 - 1321
|RDy,|in1078  1.537 1.539 1.541 1.541 1.540 1.540
ZT 0213 0.613 1 0.995 0.715 0.7147
@M vor = 32—; 0.060 0.233 0.9997 1.150 3.290 3293
T, (10*4%) —0.609 -0927  —-329x1074 0.189 1.657 1.658
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Pt (1073V) —0.361 —1.224 —2.549 —2.651 —2.934 —2.933

In summary, from above Tables, for &) = EF"%(TNT) 1, the maximal value of |RDL,ch| is found to be
B

equal to : 1.541x 107°, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given

Wxohm
K2

2 2
in Eq. (25a) is found to be exact, with the Lorenz number L = % b (%) = 24429637 ( ) , even at

the limiting degenerate case, &,y 1. In other word, our above LVC(N T, rd(a))—expression, given in Eq.

(25b), is not useful in the present n(p)-type degenerate InAs crystals.

6. Concluding remarks
In the n(p)-type degenerate InAs -crystals, by using the same physical model, as that given in Eq. (7), and
same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
()the effective extrinsic static dielectric constant, €(I'q¢a)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor (acceptor)-density, Nepnnop) (Fd(a)) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Nconccopy (Fdca))» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cpp) (Fa(a))=0 or N = Nepn(copy (Facay)-
(iii) the Fermi energy, Egnpy(N , T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 1074 [3], and finally,
(iv) the electrical conductivity, 0(N , Fgca), T) , the thermal conductivity, K(N , Iy, T), and the Seebeck
coefficient, S(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0, at which some new
consequences are given as follows.
(@) Epnorpoy(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) As discussed in Eq. (5), suggesting that, in the MIT,
Egnigony(N = 0, Faga), T = 0) = Egnagpz)(N = 0, Taca), T = 0) = Egnicrgpi) (Fd@)
where Egn1(gp1)> Egn2(gp2) and Egnicrgpiy are the optical band gap (OBG), reduced band gap and intrinsic band

gap, respectively.
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(¢) As given in Eq. (27), the electrical conductivity, G(N , Iqca), T), is proportional to Eéno(Fpo) or to (N )#3,
giving rise to: G(N = 0,ryn), T =0) =0, and therefore, as discussed in Equations (27, 28, 29), and Eq.
(A7) of the Appendix A: U(N =0,rye), T=0K) =0, yy(N =0,r4e), T=0K)=0, and D(N =
0,r4a), T = OK) = 0O, being new results.
(d) In Table 5, the values of these electrical-and-thermoelectric coefficients, localized in the EBT for =<0,
determined by replacing: N = Ncpn(npp) NEBI(CDF,) into Equations (27, 28, 29), and Eq. (A7) of the
Appendix A, for = 0, are reported.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.
(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonvop () and Nepneop) (Fagy) are found to be equal to: 7.4% (11.6%), respectively. In other
word, the critical donor(acceptor)-density, Ncpnnpp) (Fd(a)). determined in Eg. (3), can be used to explain
the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBn(cop) (Fd(a))-
(2) In Table 6, we remark that: (i) for given N and T, the functions: 0(rg(a)), H(Fd(a)), HH(Fda)) and D(ryc)),
calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rg(a), and
(ii) for given ry(a) and T, the functions: d(N ), D(N ), y(N ) and py(N ) increase, with increasing N.
(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing rqy(,), due to the impurity size effect,

Nconccop)(Fdqay) » increases, since N(= 10°°cm™3) is very high, N therefore decreases very slowly,

Ern(rp) (N , T=300K)

explaining the slow decrease () in kT ,

0, K, C, and Kapp , (ii) the numerical results:

|RDK’KApp-|300K 0.288 % (3.04 %), respectively, confirm the Kapp -law, as that given in Eq. (25b), and

finally, (iii) |RDL,LVC| 1.537 x 107® thus confirms that in the degenerate InSb -case the well-known
Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

(4) In Tables 9-10, for a given N = 2 % Nepnnpp) (Fd(a))» and for a given degenerate d(a)- InAs system, with
increasing T, the reduced Fermi-energy En(p) decreases, and other thermoelectric coefficients are in

variations, as indicated by the arrows: ( , ). One notes here that with increasing T: (i) for {,;) 1.814,
while the values of S present a same minimum (S)min. (=— 1563 x 1074 %) , those of ZT show a same

maximum ZT s (= ), (ii) for &q¢py = 1, those of S and those of ZT present same results: S( =— 1.322 x

2
10_4% ) and ZT (=0.715), respectively, (iii) for &,y 1.814 and &,y = 1, those of (ZT)mor = %
*Sn(p)
present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,LVC| is equal

approximately to 1.541 x 107%, confirming that in the degenerate InAs-case the Wiedemann-Frank law,

2 2 x
given in Eq. (25a), is exact, with the Lorenz number L = % X (%) = 2.4429637 (WK—Oth) , even at the
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limiting degenerate case, &y 1. Therefore, our above LVC(N T, rd(a))-expression, given in Eq. (25b), is
found to be not useful here.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type InAs-crystals, the Fermi energy Epyep) = [E — EC](E,:IO = [EV - Efp]), Ec(v) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10™% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(a))» Neon(copy (Fda)) being the
critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N =0 at
this transition.

First of all, we define the reduced electron density by:

3
2

n(p) kBT _
U(N Ty, T) = UN, T) = o, Negy (T) = 2 % geyy % ( o2 ) (cm™3), (A1)

where Ny (T) is the conduction (valence)-band density of states, and the values of gy and M) are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type InAs is determined by :

F(p) (W) _ G(W+AUPF(U) _
kT 1+AuB

Vv
= & (U) = 3 A = 0.0005372 and B = 482842262, (A2)

2
2 4 8\ 3
where F(N Tdca)s T) = aus (1 +bu 3+ cu"S) 3, obtained foru 1, according to the degenerate cas,

— _ 62.3739855 ( )

3
1920 and then G(u) Ln(u)+22xuxe % foru

= [(3VE/4)2, b=:(D)" c=

1, according to the non — degenerate case, with: d = 23/2 [% - 1%] > 0.

So, in the present degenerate case (U 1), one has:

(A)III\)

4 8
EFn(Fp)(N ’rd(a)nT) = EFn(Fp)(N IT) = EFno(Fpo)(u) x (1 +bu 3 +cu 3) . (A3)

Then, at T=0K, since u™1 = 0, Eq. (A.3) is reduced to:

2Xkl%n(Fp) (N)
2%y (p)

EFno(Fpo)(N ) = (A4)

being proportional to (N )?/3, and equal to 0, Ernorpoy(N = 0) = 0, according to the MIT, as discussed in

Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:

D(N ra@T) _ N . 9Eencrp) _ kexT . (u dEn(m(U))
b

=—_x =
(N rg@T) g dN q du

(A.5)
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where D(N , ryca), T) is the diffusion coefficient, &, () is defined in (A2), and the mobility B(N , rgc), T)

is determined in Eq. (28). Then, by differentiating this function 8,(u) with respect to u, one thus obtains

dé,
M. Therefore,
du
D(N ra@.T) _ kgxT V' (U) XW(U)—V(U)xW'(u)
u(N g T) * W2(u) > (A.6)
. . 3 4 8
where W'(u) = ABuB~1 and V'(u) = u™! + 272e79(1 — du) +§AUB_1F(U) (1 _,_%) +%>< bu 3_-;2<:u _38 One
1+bu 3+cu 3
. : : D
remarks that: (i) as U - O, one has: W2 1 and u[V' x W —V x W] 1, and therefore: ”(F;)(“) kB:T’

and (ii) as U » oo, one has: W? = A%2u%8 and u[V xW -V xW]= %auy 3A%2u2B | and therefore, in this
highly degenerate case and at T=0K,

ST 2 oo (N /D) A7)

One notes that, for N = 0, Erpo(rpo)(N ) = O, as remarked in above Eq. (A4), U(N =0,rga, T= OK) =0,
as remarked in above Eq. (28), and therefore, for any ry), D(N =0,r4@), T= OK) = 0, according to the
MIT. Now, replacing Erno(rpoy given in Eq. (A.7) by Epnerp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

4 8 2
D(N ry@)T=0) 2 4 8\ 73
N teeT=0) 3 + +
(N raoT=0) 3 EFno(rpo)(U) x (1+bus+cus) . (A8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type InAs -crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

1/3 /mg
= 1.1723 % 10° x (22) " x —m:((fj(r)'; .

1/3
3gc(v)) x% 1 (B 1)

rsnsp (N Ta@) = (G P
In particular, in the following, Myy/My = M/My, is taken to culculate the band gap narrowing (BGN), as

used in Sections 3 and 5. Therefore, the correlation energy of an effective electron gas, CE(rsn(Sp)) , 18

found to be given by [1]:
087553 2[1-In )] _
Ece(Fsnesp)) = Ece(N  Faqay) = ~oemo8_ 4 0008 gy 2 )" (nepy)—0.093268 (B2)
CENsn(sp)) = =CEUR » 1d(@)) ™ 0.0908+rgnsp) 1+0.03847728xrL8T3T8876 '
Then, the band gap narrowing (BGN) can be determined by [1]:
AEg(N o NI/ o s NE x (2503 % [~ E x o 17 Mo
gn( ' rd) al x e(rq) x r + a2 x W x r x ( ' [ CE(rSﬂ) rsn]) + a3 x e(rg) x m_r x
3 1
1/4 B 1/2 &% |2 5 — N =N=Ncpn(ra)
Ny +ay < s(rZ) XNy x 2+ a5 x [e(ri»] *Nr, Ny = 9.999x1017cm=%’ (B3)
and
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1 5/4
1/3 m
D go(N T ag x 2 x N.™ +ap x forx N2 x (2503 < [ — ECE(rsp) x rsp]) +ag x L(S;) x ’m—’r‘x

&(ra)
3 1

€ 1/2 g 12 5 — (N =N—=Ncpp(ra)
&(ra) XNy +as x [e(ra)] *Np, Nr = (9.999x1017 cm—3)’ (B4)
Here, £, = 14,55, a; =3.80 x 1073(eV), a, = 6.5 % 107%(eV), az = 2.85 x 1073(eV), a4 = 5.597 x
1073(eV) and a5 = 8.1 x 10~*(eV).

Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any rge), AEgngp(N =0, rg@) =0,

Ni/4

+ 23, %

according to the metal-insulator transition (MIT).
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