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Abstract

In our two previous papers [1, 2], referred to as I and II. In I, our new expression for the extrinsic static
dielectric constant, S(Vd(a)) , Tda) being the donor (acceptor) d(a)-radius, was determined by using an
effective Bohr model, suggesting that, for an increasing rqa,), s(rd(a)), due to such the impurity size effect,
decreases, and affecting strongly the critical impurity density in the metal-insulator transition and also
various majority carrier transport coefficients given in the n(p)-type degenerate Ge -crystal, defined for the
reduced Fermi energy  ( y( ). Then, using the same physical model and same mathematical methods
and taking into account the corrected values of energy-band-structure parameters, all the numerical results,
obtained in II, are now revised and performed, giving rise to some important concluding remarks as follows.
(1) The critical donor (acceptor)-density, Ncpnnop) (Fdca)), determined in Eq. (3), can be explained by the
densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,
NEBn(cop) (Ta@): Given in Eq. (21).

(2) In Tables 9-10, with a given d(a)-density N [= 2 X Ncpnnpp) (Fda)) ], one notes here that with increasing

temperature T(K): (i) for reduced Fermi energy &,p)(  1.814), while the numerical results of the Seebeck

coefficient S present a same minimum (=— 1563 x 1074 %), those of the figure of merit ZT show a same
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maximum ZT(= ), (ii) for &,p) = 1, those of S and ZT present same results: Sb (:— 1.322x 1074 %) and

0.715, respectively, (iii) for &y  1.814 and &,p) = 1, the same values of the well-known Mott figure of

n2

it, (ZT =—
merit, (ZT)mott 2 (

1 and 3.29), are respectively investigated, and finally, (iv) we show here that in

the degenerate Ge-semiconductor, the Wiedemann-Frank law, given in Eq. (25a), is found to be exact.

Keywords: Effects of the impurity-size and heavy doping; effective autocorrelation function for potential

fluctuations; optical, electrical, and thermoelectric properties; figure of merit; Wiedemann-Franz law

1. Introduction

In our two previous papers [1, 2], referred here to as I and I1.

In I, our new expression for the extrinsic static dielectric constant, 8(rd(a)), Faca) being the donor (acceptor)
d(a)-radius, was determined by using an effective Bohr model, suggesting that, for an increasing Iy ,
s(rd(a)), due to such the impurity size effect, decreases, and affecting strongly the critical impurity density in
the metal-insulator transition and also various majority carrier-transport coefficients given in n(p)-type Ge -
crystal, defined for the accurate reduced Fermi energy [3], ( )( ). Therefore, all the numerical results of
those obtained and given in II are now revised and performed, in comparison with those obtained in [3-11].
In Section 2, the numerical results of energy-band-structure parameters [4] are presented in Tables 1 and 2.
In Section 3, the values of optical band gap are given in Table 3. In Section 4, the physical and mathematical
methods, needed to determine and evaluate the critical densities of the majority carriers localized in the
exponential conduction (valence) band tails, are presented, confirming thus the corresponding numerical
results, obtained using Eq. (3) for the generalized effective Mott criterion in the metal-insulator transition
(MIT), as observed in Table 2. In Section 5, based on the Fermi-Dirac distribution function method, our
accurate expression for the electrical conductivity, 0, is determined, being a fundamental one, since it is
related to all other electrical-and-thermoelectric coefficients, and then all the numerical results of those

coefficients are reported in Tables 4-10. Finally, some concluding remarks are given in Section 6.

2. Energy-band-structure parameters

First of all, in the following Table 1, we present the values of the energy-band-structure parameters, given in
the n(p)-type Ge -crystals, such as: (i) if denoting the free electron mass by my, the effective electron (hole)

mass, My /Mo, which is respectively equal to the relative effective mass, Mppy/mM, = 0.12 (0.3) [4], as

used in this Sections 2 and 4 to determine the critical impurity density in the metal-insulator transition

mnxmp —

(MIT), (ii) to the reduced effective mas, m,/m, = PnTmp 0.0857, as used in Section 3 to determine the

optical band gap, and (iii) to the conductivity effective mass () =0.15(0.32), as used in Section 5.
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Further, Ego= Egge = 0.6405 €V [4] is the unperturbed intrinsic band gap, €ge = €, = 15.8 is the relative
static intrinsic dielectric constant of the Ge -crystal [4], and finally, the effective averaged numbers of
equivalent conduction (valence)-band edge, gy = 1(1).

Table 1. Here, the effective electron (hole) mass, Mnp)» is equal respectively to: myp, as used in Sections 2 and 4, to

M, in Section 3, and Mcn(cpy in Section 5, and the values of other important parameters are also reported.

mn(p)/mo m./m, an(Cp)/mo Ge(v) Ego & [4] NCDn(CDp)(rP(B))
0.12 (0.3) 0.0857 0.15(0.32) 3(2) 0.6405eV 158 4.038(17.347) x 10 cm™2  4.36698 (10.9385)

We now determine our expression for extrinsic static dielectric constant, 8(rd(a)), due to the impurity size
effect, and the expression for critical density, NCDn(CDp)(rd(a)), characteristic of the metal-insulator transition
(MIT), as follows.

2.1. Expression for ( ( ))

In the [d(a)- Ge]-systems, since rqg(a), given in tetrahedral covalent bonds, is usually either larger or smaller
than rge = 0.122 nm , a local mechanical strain (or deformation potential energy) is induced, according to a
compression (dilation) for: ryey > rge (fgca) < ree), due to the d(a)-size effect, respectively [1, 2]. Then, we
have shown that this rq(s)-effect affects the changes in all the energy-band-structure parameters, expressed in
terms of the static dielectric constant, €(ry(a)), determined as follows.

At T=0K, we have showed [1, 2] that such the compression (dilatation) corresponds to the repulsive
(attractive) force increases (decreases) the intrinsic energy gap Egni(gpi)(rd(a)) and the effective

donor(acceptor)-ionization energy Ed(a)(rd(a)) in absolute values, obtained in an effective Bohr model, as:

2
Egnicgpi) (Tdcay) — Ego = Eday (Fdcay) — Edoao) = Edo(ao) * [(ﬁ) - 1], (D
3600 o/
where Egogao) =~ "‘ev;(m ©)/M) _ & 5374 meV (16.3 meV), and
(0]

€0
(22 o)

€

RN 23
e(ra@)= _— — =¢,, [(%) - 1] x In(%) <1, for ryea) < rge- 2
(e ez

2.2. Our expressions for the critical density in the MIT

<&, for ld@a) = I'ce»

e(rgea))= J

In the n(p)-type degenerate Ge-crystals, the critical donor(acceptor)-density, Nepnnpp) (Fd(a)) is determined
from the generalized effective Mott criterion in the MIT, as:

1
Neonvop) (Fdca)) 73 X @anep) (Mdcay) = 0.25, (3)

and the effective Bohr radius agn(gpy(Fd(a)) is given by:

e(rda))* 2 _ e(r,
(d(a—))zz 053 x 108 cm XM’
Mn(p) >4 (mn(p)/mo)

4

asnp) (Fd(a)) =
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where —q is the electron charge, €(rya)) is determined in Eq. (2), in which My /My = Mppy/mg =
0.12 (0.3). Then, from Eq. (3), the numerical results of Ncpnnpp)(Faca)) are obtained and given in the
following Table 2, in which we also report those of the densities of electrons (holes), being localized in
exponential conduction (valance)-band (EBT) tails, N(EZBI(CDp)(rd(a)) , obtained using the next Eq. (21), as
investigated in Section 4, noting that the maximal relative deviations (RD), in absolute values, between
Neonvop) (dcay) and NEpnceop) (Fa@y) are found to be equal to: 1.1097 (1.967) x 1075, respectively. Thus,
the numerical results of Ncpnnpp) (Faca)) are obtained, using Eq. (3), can be explained by the densities of
electrons (holes) localized in exponential conduction (valance)-band (EBT) tails, NEBE(CDp)(rd(a))l being
determined from Eq. (21).

Table 2. For increasing Iy, while £(rys)) decreases, the functions: Egni(gpiy(Faca) ) Neonvop) (Facay) @nd Nepnceop) (Faca))

increase. The maximal relative deviations between the numerical results of Ncpnnop) (acay) @nd NEpacop) (Facay). in absolute

values, calculated using Equations (3, 21), are found to be equal to: 1.1097 (1.967) x 107°, respectively, suggesting that

Neoncnop) (Tacay) €an be replaced by NEgy (rg), being localized in the EBT. So, in the n(p)-type Ge - crystal, in which (My )/

my) = 0.12 (0.3) [4], all the numerical results for the energy-band-structure parameters and Ncpn(cpp) (Fdca)), Which are

expressed as functions of I'qc;y-radius, are obtained, using Equations (3, 9, 10, 11, 12, 13, 21).

Donor P As Ge Te Sb Sn
rq (nm) [4] 0.110 0.118 0.122 0.132 0.136 0.140
e(rg) 16.499 15.8757 15.8 15.3246 14.8927 14.3575
Eq(rg) in meV 5.99 6.47 6.5374 6.95 7.36 7.92
gni(r) ineV 0.64 0.6404 0.6405 0.6409 0.6413 0.6419
Ncpn(rg) in 1016 cm™3 4.038 4.5328 4.5980 5.0393 5.4906 6.1277
NEBT (ry) in 1016 cm~3 4.037962 4.5324772 4.597949 5.039265  5.4905399 6.1276939
IRD| in 107° 9.411 5.025 11.097 6.949 10.938 1.002
Acceptor B Ge Ga(Al, Mn) Mg In
ry (nm) [4] 0.088 0.122 0.126 0.140 0.144
e(ra) 25.3735 15.8 15.722 14.3575 13.7495
E.(ry) in meV 6.34 163 16.5 19.8 21.6
gpi(ra) ineV 0.6305 0.6405 0.6407 0.6439 0.6457
Nepp(ra) in 101" cm™2 1.7347 7.1844 7.2906 9.5746 10.902
NEpp(ra) in 1017 cm™3 1.7347 7.1844629 7.290673 9.5747884 10.901964
IRD| in 107° 0 0.875 1.001 1.967 0.3291

In summary, Table 2 also indicates that, for an increasing Fqca), €(Fya)) decreases, while Egni(gpi)(rd(a)),
Neonvop () and Nepneop) (fa)) increase, affecting strongly all the physical properties, as those

observed in following Sections 3-5.
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3. Optical band gap

Here, mp)/Mo, is chosen as: myy/my =m./m, =0.0857 , and then, if denoting N =N-—
Nconiop) (Fda)) > the optical band gap (OBG) is found to be given by:

Egnigon)(N  Faca), T) = Egnaggo2) (N Fd@@, T) + Erney (N, T, )
where the Fermi energy Egnrp)(N , T) is determined in Eq. (A3) of the Appendix A and the reduced band
gap is defined by:

Egna(gp2)(N + Yo T) = Egneicgpen (Fa@): T) ~ BEgn(gy (N Fa(a)-

Here, the effective intrinsic band gap Egnei(gpei) is determined by:

1
E greicope (Faan T) = Egiconn (Fo) ~0.209 < | [+ (ﬁ)zm]m
and the band gap narrowing, AEgn(gp)(N , rd(a)), are determined in Equations (B3, B4) of the Appendix B
and the values of Egni(gpi)(rd(a)) are given in Table 1. In particular, one gets here: Egnei(gpei)(rp(B),T =
300K)=0.57 eV (0.56 eV) [1, 4].

Further, as noted in the Appendix A and B, at T=0K, as N = 0, one has: Epnrpy(N , T) = Epno(rpoy(N ) =
0,as givenin Eq. (A4), and AEgn(gp)(N , rd(a)) = 0, according to the MIT, as noted in Appendix A and B.
Therefore, Egn1(gp1) = Egn2gp2) = Egnei(gpei)(rd(a)) = Egni(gpi)(rd(a)) at T=0K and N = 0, according also to
the MIT.

Then, in degenerate d(a)- Ge systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5),
are reported in the following Table 3, suggesting that, for a given ry(,), the OBG increases with increasing N.

Table 3. In degenerate d(a)- Ge systems at T=20K, the numerical results of the OBG, evaluated using Eq. (5), suggesting

that, for a given I'y(,), the OBG increases with increasing N.

N (10%8 cm™3) 4 8.5 15 50 80 100

Egna(N ,Ip) ineV 0.655 0.676 0.701 0.811 0.889 0.936
Egni(N ,Fas) ineV 0.654 0.675 0.700 0.809 0.886 0.933
Egni(N ,I1e) in eV 0.654 0.674 0.699 0.807 0.883 0.930
Egni(N ,Fgp) ineV 0.653 0.673 0.698 0.805 0.881 0.927
Egna(N ,Isp) ineV 0.653 0.672 0.697 0.803 0.878 0.924
N (108 cm™3) 4 8.5 15 50 80 100

Egpr(N ,Ig) ineV 0.672 0.706 0.748 0.916 1.031 1.101
Egp1(N , FGacan) in eV 0.668 0.700 0.738 0.897 1.001 1.072
Egoi(N , ig) in eV 0.667 0.698 0.736 0.893 1.001 1.066
Egoa(N ,Ip) ineV 0.667 0.698 0.735 0.891 0.998 1.063
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4. Physical model and mathematical methods
4.1. Physical model

In the n(p)-type degenerate Ge crystal, if denoting the Fermi wave number by: Kenrpy(N ) = (3 2N/

1/3 . . . . .. . . .
gc(v)) , the effective reduced Wigner-Seitz radius rsp(sp), characteristic of the interactions, is defined by:

k—l
= (Fp)
*Tansp) (N Faa) M) =1 2 <1, (6)

being proportional to N -3

. Here, = (4/9 )13, kEnl(Fp) means the averaged distance between ionized
donors (acceptors), and agngp)(Fd(a)) is determined in Eq. (4).

Then, the ratio of the inverse effective screening length Kgn(spy to Fermi wave number Kenpy at 0 K is
defined by

Ksnsp) __ Ken(rp) _ R

— + R —R “lsnesp) < 1, 7
Ken(Fp) ksnl(sp) sNWS(spWS) [ SnTF(spTF) anS(spWS)] ( )

Renp) (N 1 o)) =
Here, these ratios, Rsntr(spTr) @Nd Rsnws(spws) can be determined as follows.
First, for N Ncpnvop)(Fdca)) » according to the Thomas-Fermi (TF)-approximation, the ratio

RsnTF(SpTF)(N , rd(a)) is reduced to

__ KenTF(spTR) _ kl?nl(Fp) _ |4 Tsngsp)
Rentrsprr(N  Faa)) = = = 1, (8)

Ken(Fp) ks_anF(spTF)

being proportional to N s
Secondly, for N < Ncpnmpp)(Fdea)) » according to the Wigner-Seitz (WS)-approximation, the ratio

Rsnws(snws) 1s respectively reduced to

_ ksnsppws _ (3 d[ 2% ce(N )]
Rsn(sp)WS(N ' rd(a)) = Tk (2— — s (sp)d = )l o

where CE(N ,rd(a)) is the majority-carrier correlation energy (CE), being determined in Eq. (B2) of the

Appendix B.
Furthermore, in the highly degenerate case, the physical conditions are found to be given by :
Kenep) Nn(p) 1 Ken(ep) EFno(Fpo)
< = <P = <1, A = = 10
%n@p)  Fo(po) A Kancsp) sn(sp) n(P) Nn(p) (19)

being needed to determine the expression for optical coefficients, as those investigated in Section 5. Here,
Rsn(sp) 1s defined in Eq. (7). Here, the energy parameter, Nnp), being characteristic of the exponential
conduction (valence)-band tails is determined in next Eq. (12).

Then, in degenerate d(a)- Ge systems, the total screened Coulomb impurity potential energy due to the
attractive interaction between an electron(hole) charge, —q(+Q), at position r, and an ionized donor (ionized
acceptor) charge: +q(—q) at position R; , randomly distributed throughout the Ge -crystal, is defined by
V(r) = i=1 vi(r) +V,, (11)
where  is the total number of ionized donors(acceptors), V,, is a constant potential energy, and v;(r) is a

screened Coulomb potential energy for each d(a)- InAs system, defined as
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_ gZxexp (—Kksn(sp) > | r—R, |)
&(rd@))*|r—Rj|

vi(n) = >

where Kgp(sp) is the inverse screening length determined in Eq. (7).

Further, using a Fourier transform, the vj-representation in wave vector K-espace is given by

2

q 4n 1
vi(K) =— X —X——
i(k) ea@) Q  KHKE’

where Q is the total Ge -crystal volume.
Then, the effective auto-correlation function for potential fluctuations, Wy (Vagy: N . 14) = (V(OV(r)), was

determined as [3] :

— 2 — *Ransp)(N Fa@) _ V2N 2, —1/2 _ -
Wagp) (Vney: N+ Tacay) = Mgy % €Xp | —— =" |. ) (N Ta@)) = 37— X 8Ksngspy- Vnp) = 5—— (12)
2 [[vn (2 Fno(Fpo)

Here, €(I'q(a)) is determined in Eq. (2), Rsn(sp)(N , rd(a))in Eq. (7), the empirical Heisenberg parameter =
« . ), respectively, will be chosen such that the determination of the density of electrons

localized in the conduction(valence)-band tails, determined in Section 5 would be accurate, and finally

Vnp) = E_—, where s the total electron energy and Epng(rpo) is the Fermi energy at 0 K, determined in
Fno(Fpo)

Eq. (A4) of the Appendix A.

In the following, we will calculate the ensemble average of the function: ( — V)a_% = i 2 fora=1,

2><k2
KT,

being the kinetic energy of the electron (hole), and V(r) determined in Eq. (11), by using the

two following integration methods, as developed in II, which strongly depend on W) (Vagpy, N Tacay)-

4.2. Mathematical methods and their application (Critical impurity density)
A. Kane integration method (KIM)
In degenerate d(a)- Ge systems, the effective Gaussian distribution probability is defined by

1 —V2
P(V) = ——=xexX [—]
M V2 W) P 2Wn(p)
1 —_
So, in the Kane integration method, the Gaussian average of ( —V)* 2= Z 2 is defined by

(C =V =( ¢ Dam= _o( —VF2xPWAV, for a=1.

*Rsn(sp)

Then, by variable changes: s = ( —V)/ Wy and X ==/ /W) = Anp) X np) X eXp| —/—= |,
4x v

and using an identity:
Om sa"% xexp (—Xs —%)ds =T1( +§) x exp (x?/4) x D_a_%(x),

where D__ 1 (X) is the parabolic cylinder function and I'(a + %) is the Gamma function, one thus has:
2
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2a—1 1

-1 exp (=x2/4)yxW_4~ exp (—X2/4)><r]a_§ x 2a—
( Z 2y = — e o r(a_'_%) x D_a_i(x) — — ne) o exp| — Rsnep*(2a—D) | r(a+
2 8% |Vnp)|
HxD_100. (13)
B. Feynman path-integral method (FPIM)
1
Here, the ensemble average of ( — V)a_% = z 2 is defined by

1 2
_\pna—2 — a—% _ a—y F(a+%) o a1 t (t/Wnep)) o
(C =V 2ppm=( | Ipm = Sl < 1) x __ () zxexp {— —=z —(dti"=—1,

(t/Wp)°

22

noting that as a=1, (it) = x exp {— } is found to be proportional to the averaged Feynman propagator

given the dense donors(acceptors).

_°°oo( s)"a"% x exp{ XS —%} ds = 2%2 x [(3/2) x exp ( — x2/4) x D_,_1(x),
2

Then, by variable changes: t = and X == /,/Wppy, and then using an identity:

_1 -1 -1
one finally obtains: ( i epim = ( Z “ms ¢ i “)xim being determined in Eq. (13).

In the following, with use of asymptotic forms for D_a_%(x) , those given for (( —V)a_%)K”\A will be

obtained in the two cases: =0and =<0O0.
(i) _= -case
As -+ oo onehas: , -— o0 and X - — oo, In this case, one gets:

V2o

2 a-t
X 4X(— 2
D (—x)2.

D_a_%(x - 00) -

-1
Therefore, Eq. (13) becomes: ( Z v = a_%. Further, as -+ 0, one has: ) »— 0 and X - — 0. So,

one gets :

X2 X j—
D_, 3(X ~=c0) (a)xexp((va +L3)x—m+f;) 20, W=

1622 27 rG+d)

1
Thus,as -+ 0, from Eq. (13), one gets: ( Z m - 0.

-1
In summary, for __= 0, the expression of ( z “Yxim can be approximated by:

a3 a—2 = 2xK?
( KIM 2, k= .
k > 2xm

(14)
i) = -

As -—0, from Eq. (13), one has: )y -+ 0and X -+ oo. Thus, one first obtains, for any a = 1,

X2 x3 _ .
D_, i(x ~ ) B@ xexp|—(/a +2)x—2— 22| . 0, B@) = -, noting that
2 1682 271G+

414



B(D) = " —and B(5/2) = 295
24xr(5/4)

1
a7

Then, putting f(a) = n”—\/é_‘: x I'(a+3) % B(a), Eq. (13) yields

- 2)kim xR ep) < (22-1) . , A

Hug) ( ny =+ 0 Fa) @) = —5—=exp [~ ———— (V& + =5 | x-(+) 5| - O (15)
8% |[vn(p) 16a2
Further,as - — oo, one has: ) -+ © and X - oo. Thus, one gets:
1 x2
_a_%(x - ) =X 42x 7 . 0. Therefore, Eq. (13) yields
(%
Y

_ 1 (Anpy* np))? a1

Ko@) n) =+ @ Ta@y @) = —f5— X @ (= TEFED) X (ny X ) 2= 0 (16)

It should be noted that, as < O, the ratios (15) and (16) can be taken in an approximate form as:

Fr)( n@ey Tacay @) = Koy ( ngp): Ty @) + [Hae)( n: Fa@ @) = Koy ( ngp): Tagay, )] > exp [=
(Ao )] (17)
such that: Fnep)( nepy Tdcay @) — Hny( n(py Mday @) for 0< <16 , and Fnpy( ney Fa@y @) -
Knp)( nepy: Mdea): @) for n(py = 16. Here, the constants ¢, and ¢, may be respectively chosen as: ¢; = 10740
and c, = 80, as a=1, being used to determine the critical density of electrons (holes) localized in the
exponential conduction(valence) band-tails (EBT), NEBE(CDp)(N, Fd(a)) in the following.
C. Critical impurity density in the MIT

In degenerate d(a)- Ge systems at T=0 K, in which m;,,)/My = My(p)/ My, as those given in Section 2,

using Eq. (13), for a=1, the density of states () is defined by:

1

3 3 X2 =
— Ye(v, 2mn( ) 2 9e(v) 2mn( ) 2 &P <*)XW;1 _
C O =22 (0P s ( 2y, = 210 (2T0)? o PP oy D)= (). (18)
where x is defined in Eq. (13), as: X =— / Wn(p) = An(p) X n(p) X €Xp %
>V

Here, Eppo is determined in Eq. (A4) of the Appendix A, with mpy/Mmy =My /m, and =
« . )  respectively, being chosen such that the following determination of
NEBE(CDF,)(N, I'da)) Would be accurate.

Going back to the functions: H,, K, and F,,, given respectively in Equations (15-17), in which the factor

1

( ;)KIM
=D is now replaced by:
1
( ﬁ)KlM ( <0) gc(v)x(mn(p)xmo) >y n(p) —‘/—
=5 — (=9 _ Fn(p)( n(p): Fd(a) @ = 1), 73 x (a=1), @=1= 3 .
- 24x1(5/4)
(19)
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Therefore, NEBE(CDP)(N, ldea) can be defined by

0
NEBE(CDp)(Nlrd(a)): . ( =0)d,

where (= 0) is determined in Eq. (19). Then, by a variable change: () = E_—, one obtains:
Fno(Fpo)
3/2
9ew)*(M@))™ "y n(e) *Erno(Fpo) 16
NEBR copy (N: Ta(ay) =~ p @09 5 £ ™ (2= 1) % Fagy( n(p) Taay 8= 1) d npy + Ingo)J-
(20)
where
2
o w0 —(An@* n) —-3/2

he) = 16 @=D*Key(n@fa@@=Ddaey = 16~ 2 *(Aa) ) d -
Here, (a=1)= 3#

24X (5/4)

2
Then, by another variable change: t = [An(p) n(p)/\/f] , the integral () yields:

1 b1 a—tdt = O Yn(p)
= 77— X = Sl o
n(p) 25/4An(p) Yoo e dt 25/4XAn(p)’

I
2
where b =— 174, yny = [16An(p)/ \/E] , and (b, Yn(p)) is the incomplete Gamma function, defined by:

~ ~ b—1)(b—2)...(b—j
F®.Yog) Yo> @ [1 + 11:61%(:(”]
nep

Finally, Eq. (20) now yields:

EBT _ — gc(v)"(mn(p>)3/2\/ n(p)* Fno(Fpo) 16 _ _
Ncon(eop) [N = Neonop) (Fa@y)] = >3 x { o (@=1)%Foiy( nee) @y a=
r, np)
1d n(p) + 25/4x':nip)}’ (21a)

being the density of electrons(holes) localized in the exponential conduction(valence)-band tails (EBT),
respectively.

The numerical results of NEB:;(CDp) [N = Nconop) (Faga))] = NEB}E(CDp)( i) » for a simplicity of
presentation, evaluated using Eq. (21), are given in Table 2, confirming thus those of Ncpnnpp)(Fd(a)) »
calculated using Eq. (3), with a precision of the order of 1.1097 (1.967) x 10>, respectively. In other
words, this critical d(a)-density Ncpnnop) (Fdca))) can thus be explained by the density of electrons(holes)
localized in the EBT, N&phcop) ( Fdcay)-

So, the effective density of free electrons (holes), N , given in the parabolic conduction (valence) band of the
degenerate d(a)- InAs systems, can thus be expressed by:

N =N —Neonwop) N = NeBnceop)- (21b)

2%k (p) (Ncon(NDp))
2%y (p)

Then, as N = Ncpnnpp) » according to the Fermi energy, Erno(rpo)(N = Nepnnop)) =

given in this parabolic conduction (valence) band (i.e. = 0), the value of the density of electrons(holes),
NEBE(CDF,) , localized in the EBT (=< 0), is almost equal to Ncpn(Npp), as noted above. This can thus be

expressed as:
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NEBI«;Dp) Nconnopy» @ N = Nepnnop)- (21c)

5. Fermi-Dirac distribution function at low temperatures, and its applications

5.1. Fermi-Dirac distribution function (FDDF) at low temperatures
The Fermi-Dirac distribution function (FDDF) is given by
f()=@+eN™, y=( —Emgep)/(ksT),
where Epnrpy(N, T) is the Fermi energy determined in Eq. (A3) of the Appendix A.

So, the average of P, calculated using the FDDF-method, as developed in II, can be defined as:

_ p _ of of _ 1 e
( Proor =Gp( m) X = _, P X (— a_) d,—5= ot X @ (22)
of . .
Further, one notes that, at 0 K, -5 = 5( - E,:no(ppo)) , 5( - Fno(ppo)) being the Dirac delta (d) -

function and Epno(rpoy is the Fermi energy at T=0 K defined in Eq. (A4) of the Appendix A. Therefore,

Gp(Erno) = 1.
Then, at low T, by a variable change y = (' — Epn(rpy)/(KgT), Eq. (22) yields:

= —p o e Puy = B —B
Gp(Ern(rp) =1+ Eenepy X —o o (KeTY +Eenepy) dy =1+ P, , Cpx (KgTP x Egjeyy x g,

where CE =p(P—1..(p —B+1)/B! and the integral Ig is given by:

™ yBxeY . ® yB

lg = o rer2dY = _mmdy, vanishing for old values of . Then, for even values of 3 = 2n,

with n=1, 2, ..., one obtains:

) y2n><ey
0 (1+ey)2 y

lon = (23)
Now, using an identity (1 +¢eY)™? = ‘;1 (—1)s*1s x /G~ | 3 variable change: sy =—t, the Gamma
function: 000 t?"e"tdt =r(2n+1) = (2n)!, and also the definition of the Riemann’s zeta function:
{(2n) = 22"12"|B,,|/(2n)!, B,y being the Bernoulli numbers, one finally gets: 1o, = (22" —2) x 112" x
|Bon|. So, from Eq. (22), we get in the degenerate case the following ratio:

m kgl

— ( PyrpDF _ p  P(—D..(p—2n+1) 2n 2n — =
G =R —q 4 P Tt T x(22"-2)%x|B x =G JZY=E——= :
p( Fn(Fp)) En(Fp) n=1 @n)! ( ) | 2n| y pzl(y) y O Ern(p)

(24)
Then, some usual results of Gp=1(y) are given in Table 4.
Table 4. Expressions for Gy>1(y = %), due to the Fermi-Dirac distribution function FDDF, noting that Gy, (Y =

mkeT _ T
Fn(Fp) (@)

) = 1, used to determine the electrical-and-thermoelectric coefficients in Section 5

Gz/2(y) Ga(y) Gs/2(Y) Gs(y) G7/2(Y) Ga(y) Goz2(y)

=) () (=) () (=) (+ ) (——)
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These functions G, (y) will be applied to determine the majority-carrier transport coefficients given in the
n(p)-type degenerate Ge, as follows.
5. 2. Its applications (Electrical-and-thermoelectric properties)

Here, Mpp)/Mo is chosen as: Mp;y/Mo = Mcp(cpy/Mo, as those given in Table 1, and all the majority-
carrier transport coefficients are expressed as functions of the effective donor (acceptor)-density as:
N = N — Ncpn(nop) (Fd(ay) » where the values of critical d(a)-densities Ncpnnop) (Fdca)) are given in Table 2.

As given in II, if denoting, for majority electrons (holes), the electrical conductivity by o(N ,rya), T),

expressed in ohm™ x cm™, the thermal conductivity by K(N , Fdcay, 1) » expressed in %, and Lorenz

2 2 »
number by L = % x (%) = 24429637 (WK—ozhm), then the well-known Wiedemann-Frank law states that

the ratio, g, is proportional to the temperature T(K), as:

k(N ,I’d(a),T) —
o(N rg@T) L>T. (25a)

K(N ,rd(a),T=3K)

] ] in order to show that, for given N

Then, it is interesting to define a constant C, (N , rge))[ =

and ryca), Kapp.(N , gy, T) is found to be proportional to T, as:

_ Kapp.(N ra@a)T)

K(N .rdga).T) (25b)

Kaop (N T T) Gl Fa@) X T, [RDesy| = 1.

where |RDK,KApp, |T is the relative deviations in absolute values between K(N , rge), T) and Kapp (N, rga), T),

as a function of T.
Thus, if 0 is known, K and other majority-carrier transport coefficients are also determined, since those are

related to 0. We now determine the general form of 0 in the following.

. .. . . . 2xk2
First, it is expressed in terms of the kinetic energy of the electron (hole), Ey = %m;’ or the wave number
Cn(Cp)

k, as:

K
Ksn(sp)

00 = L% o [k x gy (ra@)] ¥ (—2—) 26)

Mn(p) NFa@))

which is thus proportional to Ekz. Further, Ksn(spy, @n(Bp)> and nng, are defined and determined in Equations
(7, 4, 12), respectively.

Then, from Eq. (14), for _ =0, we get: E)K”\A 2 and from Eq. (22) we obtain: { ?)eppe = Go(y =

kg T

Fn(Fp)

l%n(Fp) , where  pyrpy is the Fermi energy, determined in Eq. (A3) of the Appendix A, and

2
Gz(y)=(1 + y?) = G,(N ,T) is given in Table 4. Therefore, Eq. (26) becomes as:

qzxan(Fp)(N ) x Ken(ep) (N )

— 1/2
0-(N :rd(a),T) = [ Efno(Fpo)(N YT—O)) ] <

% [Kengepy (N ) % @gn(ep)(Faga))] > (

LSe} Ksn(sp)(N ) My (N o)
2
Ernrp) (N, T) _ 2 1/3
[Gz(N ,T) % (m) ], kenepy(N ) = (3 2N /gey) ™, (27)
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which also determines the resistivity as: P(N ,rga)T) = 1/0(N ,rg@), T) , noting that
N = N — Ncpn(nop) (Fd(a)) - Further, the Fermi energies Ernrpy and Epng(rpoy are determined respectively in
Equations (A3, A4) of the Appendix A.
In Eq. (27), one notes that at T= 0 K, as noted in Eq. (22), 0(N ,rgca), T = OK) is proportional to Eéno(Fpo),
or to (N )*3.Thus, o(N =0, Fda), T = 0K) =0 at N =0, at which the metal-insulator transition (MIT)
occurs.
A. Electrical properties

The relaxation time is related to 0 by:
T(N ,rga), T) = 0(N , rye), T) x %. Therefore, the mobility [ is given by:

axT(N rg@) ) _ (N rg@)T)
Mcn(cp) gxN )

In Eq. (28), at T= 0K, P(N , rge), T = OK) is thus proportional to (N )3 since o(N Taqa), T = 0K) is

(N, rge), T) = (28)

proportional to (N )*3. Thus, py(N =0, ), T =0K)=0 at N =0, at which the metal-insulator

transition (MIT) occurs.

2

Then, since T and 0 are both proportional to “, as given above, the Hall factor can thus be determined by:

_ (oo _  Ga)
WD =057 = e

IJH(N urd(a)uT) = H(N urd(a),T) x rH(N ,T), (29)
noting that, at T=0K, since ry(N , T = OK) = 1, one gets:

and therefore, the Hall mobility yields:

HH(N =0, 14, T=0K) = u(N =0,ry@), T =0K)=0 at N =0, at which the metal-insulator transition
(MIT) occurs.

Further, as discussed in Eq. (21c) and at T = OK, we can also determine the values of these electrical-and-
thermoelectric coefficients, localized in the EBT for < 0, by replacing: N = Ncpnnpp) NEBE(CDP) into
Equations (27, 28, 29), and Eq. (A7) of the Appendix A, for = 0, to obtain: o®BT(N = NconNDp): Fd(a))s
HEBT(N = Nconenop): @) » i (N = Nepn(npp): Fd(a)) and - DEBT(rg(z)) . Those numerical results are
reported in following Table 5.

Table 5. Here, the values of the electrical-and-thermoelectric coefficients, obtained in the exponential tails (i.e. <0), as:

OEBT(rd(a)), pEBT(rd(a)), UEBT(rd(a)) and DEBT(rd(a)) are reported, and their variations with increasing rq) are represented by the

arrows: and .

d- Ge systems As Te Sb Sn

rq (nm) [4] 0.118 0.132 0.136 0.140
0T (rg) in —— 0.097 0.790 1.835 3.671
HEBT () in S0 1337 97.87 208.6 374.0
MEFT () in -0 1337 97.87 208.6 374.0
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2
DEBT(ry) in% 0.013 0.104 0.235 0.453

a- Ge systems Ga(Al, Mn) Mg In

ry (nm) [4] 0.126 0.140 0.144
oFT(r)  in 98.18 103.7 106.0
MEBT(r,) in \‘;—ri 840.5 675.9 606.9
MEET(r) in\C/Tmz 840.5 675.9 606.9
DE8T(r,) inCTm2 3.258 3.141 3.076

Furthermore, in the degenerate d(a)- Ge systems, at T=4.2 K and T=77 K, the numerical results of g, Y, Uy,
and the diffusion coefficient D, evaluated respectively by using Equations (27, 28, 29, A8 of the Appendix
A), are reported in following Table 6.

Table 6. Here, one notes that: (i) for given N and T, the functions: 0(ry)), H(Fy)), MH(Fa@)) and D(rqe)), calculated
using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing Iy, and (ii) for given ryc,)

and T, the functions: (N ), D(N ), y(N ) and py(N ) increase, with increasing N.

Donor P As Te Sb Sn

2
In the following, our numerical results of (o, Y, uy, D) at 4.2K, expressed respectively in ( 10

103cm2? 103cm2 10lcm?
ohmxcm'  Vxs

Vxs N
N(10'8 cm™3)

3 6.18,1.30, 1.31, 2.1 5.80,1.22,1.23,2.0 5.47,1.16,1.16,1.8 5.22,1.11,1.11,1.77 4.9,1.04,1.05, 1.7
10 17.8,1.12,1.12,4.0 16.7,1.05,1.05,3.8 15.7,0.99,0.99,3.5 15.0,0.94,0.94,3.4 14.1,0.88, 0.88, 3.2
40 62.7,0.98,0.98,8.1 58.6,0.91,0.91,8.3 55.0,0.86,0.86, 7.8 52.4,0.82,0.82,7.4 49.1,0.77,0.77,7.0
70 105,0.94,0.94,12.4  98.1,0.87,0.87,11.6 92.1,0.82,0.82,10.9 87.6,0.78,0.78,10.3 82.1,0.73,0.73,9.7
100 146,0.91,0.91, 15.3 137,0.85,0.85,14.3 128,0.80,0.80, 13.4 122,0.76,0.76,12.8 114,0.71,0.71, 12.0

2 3cm? 103 em? 10lem?
In the following, our numerical results of (0, Y, Uy, D) at 77K, expressed respectively in ( 10 10-cm” 10" cm” 10 cm )

ohmxcm' Vxs '

Vxs S
N(10* cm™3)

3 7.6, 1.60,1.76,2.9 7.1,1.51,2.60,2.7 6.74,1.43,2.46,2.5 6.43,1.36,2.36,2.4 6.06,1.29,2.23,2.3
10 18.6,1.17,1.38,4.3 17.5,1.10,1.29,4.1 16.5,1.03,1.22,3.8 15.7,0.98,1.16, 3.7 14.8,0.93, 1.09, 3.4
40 63.1,0.99,1.02,9.0 59.0,0.92,0.95,84 555,0.87,0.89,7.9  52.8,0.82,0.85,7.5 49.5,0.77,0.80, 7.01
70 105,0.94,0.95,12.5 98.5,0.88,0.89,11.6 92.5,0.82,0.84,10.9 87.9,0.78,0.80,10.4 82.4,0.73,0.75,9.7
100 147,0.92,0.92,15.4 137,0.85,0.86,14.4 128,0.80,0.81,13.5 122,0.76,0.77,12.8 114,0.71,0.72, 12.0

Acceptor Ga(Al) Mg In

2 2em? 102 cm? om?
In the following, our numerical results of (g, Y, Uy, D) at 4.2K, expressed respectively in ( 10 10" cm? 10 cm ﬂ)

ohmxem' Vxs '

Vxs S

N(10%8 cm3)

3 2.30,6.32,6.39,5.2 1.84,5.62,5.69,4.3 1.63,5.33,5.40,3.9
10 7.22,4.86,4.87, 10 6.15,4.24,4.25,8.8 5.68,3.98,3.99,8.2
40 25.0,3.97,3.97, 22 21.4,3.43,3.43,19 19.9, 3.20, 3.20, 17
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70 41.3,3.72,3.72, 30 35.4,3.20, 3.20, 26 32.9,2.98,2.98,24
100 57.0,3.58, 3.58, 37 48.8,3.07,3.07, 31 45.3,2.86, 2.86, 29

102 103cm? 103cm?2 cm?
ohmxecm' Vxs ' Vxs s

In the following, our numerical results of (o, Y, gy, D) at K, expressed respectively in (

N(10'8 cm™3)

3 6.52,1.79,5.84, 13 6.33,1.93, 6.65, 12 6.48,2.12,7.51,12.4
10 8.16, 0.55, 0.80, 12.7 6.97,0.48,0.70, 11 6.46, 0.45, 0.66, 10
40 25.5,0.40, 0.44, 23 21.9,0.35,0.38, 19 20.3,0.33,0.35, 18
70 41.7,0.37,0.39, 30 35.7,0.32,0.33,26 33.2,0.30,0.31,24
100 57.3,0.36,0.37, 37 49.0,0.31, 0.32, 32 45.6,0.29,0.29, 29

B. Thermoelectric properties
First of all, from Eq. (27), obtained for o(N ,rye), T) , the well-known Mott definition for the
thermoelectric

power or for the Seebeck coefficient, S, is given in the n(p)-type degenerate Ge crystals, as:

2 _k al
SN\ T) = ()G < 2xkeT x 250

= Fn(Fp)

— EFn(Fp) (N »T)

Then, using Eq. (27), for &) = T 1, one gets:
_ m _ kg 2 _ y?
SN, Ty =( )5 x> *Feo(N . 1) Fs(N T) = 11 = ——mr |- (30)
?ZN(P) 20 Fn(Fp)(N 1)

noting that the effective donor (acceptor) density, N = N — Ncpnnpp) (Fd(a)) is a function of Fqg).

Therefore, the Thomson coefficient, Ts, is given by:
dS(N |T)
x

TS(N ,T) =T —ar (31)
and then, the Peltier coefficient, Pt, is defined as:
Pt(N ,T) =T xS(N ,T). (32)
Finally, from Equations (25a, 30), one can define the figure of merit, ZT, by:

[S(N T)12x0(N o T)XT _ [S(N T)J? 2
ZT(N,T) = T D = BEDE = (2T yo % [2 % Fs(N D), @Dt = 57— » (33)

K(N raa).T) L 3%€h(p)
2 2

where (ZT)yor: is a well-known Mot result, L == x (%) = 2.4429637 x 1078 (W’:(Z“m) is the Lorenz

. . — EFn(Fp)(N 1) : :
number, noting that, in the n(p)-type degenerate Ge-crystals, [En(p) =— T 1] , this value of L is

B

exact, and confirmed in the following.

It should be noted that Kim et al. [11] recently proposed an expression for L at the limiting degenerate case,

&n(p) = EH’%(TNT) 1, as: Lgim(IS]) =15+ exp [— llilltil’ |S] being independent of T or N (?).

Then, being inspired from this Lkjn(|S|) -expression, we also propose another one, given in the n(p)-type

degenerate Ge, as:
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IS(N_D)|

Lic(IS(N ) =1.44296 + e~ 10 ; [RD, | = |1 —2<BERDD) (34)

where |RDL,ch| is the relative deviations in absolute values between L and L.
Finally, the numerical results of above expressions are obtained and discussed in the following.

First, in the highly degenerate d(a)- Ge-crystals, defined by physical conditions : N = 102°cm™ and T (=3K

and 300K), the numerical results of &) = EFn%(TN'T), calculated by using Eq. (A3) of the Appendix A, and
B

then other ones of: G(N , gy, T) by Eq. (27), K(N , rgca), T) by Eq. (252); C(N , Fgcay), Kapp. (N, Fcay, T)
and |RDK1KApp.|T by Eq. (25b), S(N ,T), Ts(N ,T), Pt(N ,T) and ZT(N ,T) by Equations (30, 31, 32, 33)

respectively, and finally, |RDL,ch| by Eq. (34), are obtained and reported in the following Tables 7 and 8.

Table 7. Here, one notes that (i) for a given T, with increasing ry,), due to the impurity size effect, Ncpn(ry), increases,
since N(=102° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %:300}0, a,
K, Cy, and Kapp , (ii) the numerical result: |RDK’KA””‘|300K = 3.27 % confirms the Kapp -law, as given in Eq. (25b), and

finally, (iii) |RDL,ch| 1.537x 1078 thus confirms in this degenerate Ge -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Donor P As Te Sb Sn

Highly degenerate d-Ge systems for N=102° cm™2 and at T=3K and T=300K, noting that N = N — Ngp,(rg)

! 9.86 9.86 9.86 9.86 9.86
B
O(r=3) () 1.464 1367 1283 1.219 1.142
104
or=300) (o) 1.514 1.413 1.326 1.260 1.180
K=ak) (—) 1.073 1.001 0.940 0.893 0.837
K(r=300) (—) 0.1109 0.1035 0.0972 0.0923 0.0865
Ck (—=) 3.5776 3.3386 3.1338 2.9776 2.7894
Kapp.(300K) (—) 0.1073 0.1001 0.0940 0.0893 0.0837
|RD |SOOK in % 327 327 3.27 327 327
10~7xV
S(r=ak) ) —5.825 —5.825 —5.825 —5.825 ~5.826
105xv
S(r=300k) (——) —5.560 —5.560 —5.561 -5.561 ~5.561
1077xV
TS(r=ak) () —-5825  —5.825 —5.825 —5.825 —5.826
1075xv
TS(r=a00K) (——) -5.057  —5.057 -5.057 —5.057 —5.058
Ptreaky (107 x V) —-1.747  —1.747 —1.747 —1.748 —1.748
Ptr=soo) (1072 % V) -1.668  —1.668 —1.668 —1.668 —1.668
ZT (=3 (x 1079) 1.389 1.389 1.389 1.389 1.389
ZT (r=300K) 0.126 0.126 0.126 0.126 0.126
|RD. 1| in 1078 at 3K 1.534 1.534 1.534 1.534 1.534
|[RD| in 107 at 300K 1.537 1.537 1.537 1.537 1.537
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Table 8. Here, one notes that (i) for a given T, with increasing I, due to the impurity size effect, Ncp,(ra), increases,
. 3y - . - . Egp(N . T=300K
since N(=102° cm™3) is very high, N therefore decreases slowly, explaining the slow decrease ( ) in %, ,
B
K, Cy, and Kapp , (ii) the numerical result: |RDK’KAPP‘|300K 8% confirms the Kapp -law, as given in Eq. (25b), and

finally, (iii) |RDL,ch| 1.538% 107° thus confirms in the degenerate Ge -case the well-known Wiedemann-Frank,
given in Eq. (25a), is found to be exact.

Acceptor Ga (Al) Mg In

Highly degenerate a-Ge systems for N=10%° cm™2 and T=3K and T=300K
Fp(N  T=300K)

- 1 6.16 6.16 6.16
O(r=ak) () 5.697 4.876 4.529
O(r=3006) () 6.190 5.299 4.923
Kereaky (22 ) 4.175 3.574 3.320
K(r=300K) (—) 0.0454 0.0388 0.0361
Ck (—=)at T=3K 1.3917 1.1912 1.1065
Kapp.(300K) (—) 0.0417 0.0357 0.0332
|RDKYKAPP‘|300K in % 7.96 7.98 7.99
S(TzaK)(ﬁ) -9.527 —9.541 —9.550
S(r=300K) (1"_:"V ) —8.464 —8.474 —8.480
Tsqrogi (220 —9.527 —9.541 —9.550
TS(r=300K) (m_—:"v) —6.646 —6.650 —6.652
Pter=ak) (1078 x V) —2.858 —2.862 —2.865
Pt(r=s00ky (1072 x V) —2.539 —2.542 —2.544
ZT (7=ak) (x 1079) 3.715 3.727 3.733
ZT (7=300K) 0.293 0.294 0.294
|RD | in 1076 at3K 1.534 1.534 1534
|RD, | in 1075 at 300 K 1.538 1.538 1.535
Secondly, in the degenerate d(a)- Ge, for a given N , the values of &) = EF”%(TNT) , calculated by using Eq.

(A3) of the Appendix A, and other ones of: S(N , T) by Eq. (30), |RDL,ch| by Eq. (34), ZT(N , T) by Eq. (33),
and finally, TS(N ,T) and Pt(N ,T) by Equations (31, 32), respectively, are obtained and reported in
following Tables 9-10.

Table 9. Here, for a given N and for a given degenerate d- Ge system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for

&, 1.814, while the numerical results of S present a same minimum (S) i, (Z— 1563 x 1074 %), those of ZT show a same
maximum ZT sy (= ), (ii) for §, = 1, S and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (iii) for &,

1814 and &, = 1, (ZDmott =

is approximately equal to 1.541 x 1078, suggesting that in this degenerate Ge -case the Wiedemann-Frank, given in Eq. (25a), is
exact.

2
31—22 present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch|
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In the degenerate P- Ge system, N = N Ncon (rp) = Nch(rp) N = 2Ncpn(rp) = 8.076 x 106 cm™3
8

T(K) 9.788138 9.8
£ 4.198 2.425 1.8134 1.509 1 0.997
s(107) —1.138 —1.499 -1.563 —1.537 -1322 —1.320
[RD,,,.|in107¢  1.539 1.540 1.541 1.541 1.540 1.540
ZT 0.530 0.920 1 0.967 0.715 0.713
2

@D =55 0187 0.559 1.0004 1.445 3.290 3309
T.(10787)  —8379x10°  —6.568% 10° 5261 5.058% 103 1.657% 1.665% 104
Pt (1073V) —0.455 —0.899 —1.124 —1.229 —1.294 ~1.293
In the degenerate As-Ge system, N =N — N¢pn(ras) = Nepn(Fas); N 2Ncpn(Fas) = 9.065 x 1016 cm™3
T(K) 4 6 7.768 10.5717711 10.6

4.546 2.728 1.8142 1.726 1 0.994
5(10-4%) —1.076 —1.441 -1.563 ~1.561 -1322 - 1317
|RD ;| in107% 1539 1.540 1.541 1.541 1.540 1.540
ZT 0.474 0.850 1 0.997 0.715 0.710
ZTvore = MZ 0.159 0.442 0.9996 1.104 3.290 3331
T.(108) -7.778x10°  —8.411% 10° —5.647 1.308% 103 1.657% 1.673% 104
Pt (1073V) —0.430 —0.865 —1214 —1.249 ~1.397 —1.396

In the degenerate Te-Ge system, N = N — N¢pn(rre) =

T(K) 4 6

n 4.870 3.029

-4V — _
s (10 9) 1.022 1.378
|RD_y,c|in 1078 1.539 1.540
7T 0.428 0.777
2

ZDwore = 3:—52 0.139 0.358
T,(1078)  —7390x 10°  —9.422% 10°
Pt (1073V) —0.409 —0.827

8.338
1.8137

—1.563
1.541

1
1.00006

0.805
—1.303

9 11.3458235
1.591 1
—1.550 —-1322
1.541 1.540
0.983 0.715
1.299 3.290
3.550% 108 1.657%
—1.395 —1.499

NCDn(rTe); N= 2NCDn(rTe) =1.008 x 10" cm~3

10.6
0.994

—1.317
1.540

0.710
3.331

1.673% 10%
—-1.396

In the degenerate Sb-Ge system, N = N — Ngpn(rsp) = Nepn(rsp); N = 2Ngpn(rsp) = 1.098 x 1017 cm™3

T(K) 4 6
&n 5.140 3.285
-4V - _
s(107) 0.981 1.323
|RD.,,.|in107%  1.538 1.540
ZT 0394 0.716
2
@Mvor =57~ 0.124 0.305
T, (10*8%) —7.166% 103 —9.712x 103
Pt (1073V) — 0392 —0.794

8.829
1.8136

—1.563
1.541

1
1.0002

2.465
—1.380

9 12.013487
1.756 1
—1.562 —1.322
1.541 1.540
0.999 0.715
1.067 3.290

851.47 1.657%
—1.406 —1.588

12.1
0.983

—1.310
1.540

0.702
3.403

1.700x 104
—1.585

In the degenerate Sn-Ge system, N = N — Ngp,(rsn) = Nepn(rsn); N = 2Ncpn(rsn) = 1.225 x 10 cm™3

T(K) 4 6
&n 5.504 3.619
s(1075) —0.929 -1.252
K
|RDy,|in1078  1.538 1.540
ZT 0353 0.642
Z
@Dyort =5z 0109 0.251
T, (10*8%) —6.951x 103  —9.488x 103
Pt (10-3V) - 0372 -0.751

9.5
1.8134

—1.563
1.541

1
1.0004

5.166
—1.485

10 12.925704
1.662 1
—1.557 -1322

1.541 1.540

0.992 0.715

1.190 3.290
2.339x% 108 1.657%
—1.557 —-1.708

13
0.986

— 1312
1.540

0.705
3.380

1.692% 104
—1.706
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Table 10. Here, for a given N and for a given degenerate a- Ge system, with increasing T, the reduced Fermi-energy &, decreases,
and other thermoelectric coefficients are in variations, as indicated by the arrows as: ( , ). One notes that with increasing T: (i) for
& 1814, S and ZT present same results: —1.322 x 10_4% and 0.715, respectively, (ii) for & = 1, S and ZT present same results:

2
-1.322x 10~ 4— and 0.715, respectively, (iii) for § 1.814 and & = 1, (ZTpmor = 31_62 present same results: 1 and 3.290,
P

respectively, and finally, (iv) the maximal value of |RDL,ch| is approximated to 1.541 x 107®, suggesting that in the degenerate Ge -
case the Wiedemann-Frank, given in Eq. (25a), is exact.

In the degenerate Ga-Ge system, N = N — Ngpn(Fea) = Nepn(fea); N = 2Nepn(fga) = 1.458 x 1018 cm™3

T(K) 10 20 30.41 35 41.377748 415
£ 6.935 3.434 1.8136 1.416 1 0.993
s(1074) —0.765 —1.291 -1.563 ~1.516 -1.322 - 1317
|RD_ ;| in107% 1537 1.540 1.541 1.541 1.540 1.540
ZT 0.240 0.682 1 0.941 0.715 0.710
@My =55z 0068 0.279 1.0002 1.640 3.290 3336
T,(107%%)  —6306x 10°  —9.682x 10° 3.180 6.869% 103 1.657% 1.675% 10
Pt (1073V) —0.765 —2.582 —4.753 —5.307 —5.469 —5.465

In the degenerate Mg-Ge system, N = N — N¢pn(fmg) = Nepn(fwg): N = 2Ncpn(rvg) = 1.915 % 10 cm=2

T(K) 10 20 36.47 40 49.621715 49.7
g, 8.247 4261 1.8135 1.547 1 0.996
s (10*4%) —0.656 —1.126 -1.563 —1.543 -1322 - 1319
|RDy,|in1078  1.537 1.539 1.541 1.541 1.540 1.540
ZT 0.176 0.519 1 0.975 0.715 0.712
2
ZDwort = 327 0.048 0.181 1.0003 1.375 3.290 3314
T.(10783) —5721x10°  —8258x 10° 4.626 4.353% 103 1.657% 1.667x 104
Pt (1073V) —0.656 2253 —5.700 —6.173 —6.558 —6.556

In the degenerate In- Ge system, N = N = Ncpn(fin) = Nepn(fin); N = 2Ngpn(rin) = 2.180 x 108 cm™3

T(K) 20 39.759 40 54.10808 542
g 8.965 4.652 1.8141 1.796 1 0.996
s(107) —0.607 ~1.058 ~1.563 —1.5629 -1.322 —1.319
|RD,,.|in1078  1.537 1.539 1.541 1.541 1.540 1.540

ZT 0.151 0.458 1 0.9999 0.715 0.712

Z

@D =5z~ 0041 0.152 0.9996 1.020 3.290 3316
T,(1078%)  —5415%10°  —7.633% 10° —4.458 260 1.657% 1.668% 104
Pt (1073V) —0.607 —2.116 —6.214 —6.252 —7.151 —7.148

Ernepy(N . T)

kT 1, the maximal value of |RDL,ch| is found to be

In summary, from above Tables, for &) =

equal to : 1.541x 1078, suggesting that the above Wiedemann-Frank thermoelectric conversion law, given

Wxohm

2
in Eq. (25a) is found to be exact, with the Lorenz number L = ? x (ZB) = 24429637 ( ) , even at

the limiting degenerate case, &,y 1. In other word, our above LVC(N T, rd(a))-expression, given in Eq.

(25b), is not useful in the present n(p)-type degenerate Ge crystals.
6. Concluding remarks

In the n(p)-type degenerate Ge -crystals, by using the same physical model, as that given in Eq. (7), and

same mathematical methods, as those proposed in Equations (14, 17, 22), and by taking into account the
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corrected values of energy-band-structure parameters, all the numerical results, obtained in II, are now
revised and performed. So, by basing on our following basic expressions, as:
(i)the effective extrinsic static dielectric constant, €(rgca)), due to the impurity size effect, determined by an
effective Bohr model [1], and given in Eq. (2),
(i) the critical donor (acceptor)-density, Nepnnop) (Fd(a)) » determined from the generalized effective Mott
criterion in the MIT, and given in Eq. (3), being used to determine the effective d(a)-density: N =N —
Ncon(cop) (Fd(ay)» Which gives a physical condition, needed to define the metal-insulator transition (MIT) at
T=0K, as: N = N — Ncpn(cpp) (Fa(a))=0 or N = Nepn(cop) (Facay)-
(iii) the Fermi energy, Egnpy(N ,T), determined in Eq. (A3) of the Appendix A, with a precision of the
order of 2.11 x 107 [3], and finally,
(iv) the electrical conductivity, G(N ,Fgca), T) , the thermal conductivity, K(N , Iy, T), and the Seebeck
coefficient, S(N , T), determined respectively in Equations (27, 25a, 30),
we have investigated the optical, electrical, and thermoelectric properties. Then, some concluding remarks
are discussed, and given in the following.

First of all, one notes that the MIT occurs in the degenerate case at T=0K and N = 0O, at which some new
consequences are given as follows.
(@) Epno(rpo)(N = 0) = 0, determined by Eq. (A4) of the Appendix A, since it is proportional to (N )23,
(b) As discussed in Eq. (5), suggesting that, in the MIT,
Egnigpny (N = 0, Yo, T = 0) = Egnagpz) (N = 0, Y@, T = 0) = Egnicrpi) (Foca)):
where Egn1(gp1), Egn2(gp2) and Egnicrgpiy are the optical band gap (OBG), reduced band gap and intrinsic band
gap, respectively.
(¢) As given in Eq. (27), the electrical conductivity, G(N , Iqca), T), is proportional to E,%no(,:po) or to (N )*3,
giving rise to: (N = 0,rye), T = 0) =0, and therefore, as discussed in Equations (27, 28, 29), and Eq.
(A7) of the Appendix A: U(N =0,rge), T=0K)=0, yy(N =0,r4@, T=0K)=0, and D(N =
0, rga), T = OK) = 0O, being new results.
(d) In Table 5, the values of these electrical-and-thermoelectric coefficients, localized in the EBT for =<0,
determined by replacing: N = Ncpnnpp) NEBE(CDF,) into Equations (27, 28, 29), and Eq. (A7) of the
Appendix A, for = 0, are reported.

Furthermore, for high N (or high N) and at low T, some concluding remarks are given as follows.
(1) In Table 2, we remark that the maximal relative deviations, in absolute values, |RD|, between
Neonavop) (Facy) and Nepncop (facay) are found to be equal to: 1.1097 (1.967) x 1075, respectively. In
other word, the critical donor(acceptor)-density, Ncpnnop) (Fd(a)) . determined in Eq. (3), can be used to

explain the densities of electrons (holes) localized in exponential conduction (valance)-band (EBT) tails,

Neonccop) (Fdea)-
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(2) In Table 6, we remark that: (i) for given N and T, the functions: 0(Fq(a)), H(rdca))> HH(Fda)) and D(rgca)),
calculated using respective Equations (27, 28, 29, A8 of the Appendix A), decrease with increasing rq(a), and
(ii) for given ) and T, the functions: G(N ), D(N ), (N ) and py(N ) increase, with increasing N.

(3) In Tables 7 and 8, one notes that (i) for a given T, with increasing (), due to the impurity size effect,

Ncon(copy(Fd(ay) » increases, since N(= 102°cm™3) is very high, N therefore decreases very slowly,

Ern(rp) (N , T=300K)

explaining the slow decrease ( ) in T ,

0, K, Cy, and Kppp , (ii) the numerical results:

|RDKvKApp.|3OOK 3.27 % (7.96 %) , respectively, confirm the Kapp -law, as that given in Eq. (25b), and

finally, (iii) |RDL,ch| 1.541 x 107® thus confirms that in the degenerate Ge -case the well-known
Wiedemann-Frank law, given in Eq. (252), is found to be exact.

(4) In Tables 9-10, for a given N = 2 X Nepnnpp) (Fdca)), and for a given degenerate d(a)- Ge system, with
increasing T, the reduced Fermi-energy &ny decreases, and other thermoelectric coefficients are in

variations, as indicated by the arrows: ( , ). One notes here that with increasing T: (i) for §ny  1.814,
while the values of S present a same minimum (S)in (=— 1563 x 1074 %) , those of ZT show a same

maximum ZTma (= ), (ii) for &npy = 1, those of S and those of ZT present same results: S( =— 1.322 x

2
10_4% ) and ZT (=0.715), respectively, (iii) for &,y 1.814 and &y = 1, those of (ZT)pmon = #
*Sn(p)
present same results: 1 and 3.290, respectively, and finally, (iv) the maximal value of |RDL,ch| is equal

approximately to 1.541 x 107°, confirming that in the degenerate Ge-case the Wiedemann-Frank law, given

2 2 %
in Eq. (25a), is exact, with the Lorenz number L = % x (%) = 24429637 (WK—Oth) , even at the limiting

degenerate case, &yp) 1. Therefore, our above LVC(N , T, rd(a))-expression, given in Eq. (25b), is found to

be not useful here.

In summary, all the numerical results, given in II [2], are now revised and performed in the present work.

Appendix

Appendix A. Fermi Energy and generalized Einstein relation

Al. In the n(p)-type Ge-crystals, the Fermi energy Ernp) = [E — EC](E,:IO = [EV - Efp]), Ec) being the
conduction (valence) band edges, obtained for any T and donor (acceptor) density N, being investigated in
our previous paper, with a precision of the order of 2.11 x 10™% [3], is now summarized in the following. In
this work, N is replaced by the effective density N , N = N — Ncpn(cppy (Fd(a))» Neon(copy (Fda)) being the
critical density, characteristic of the insulator-metal transition (MIT) phenomenon. It means that N =0 at
this transition.

First of all, we define the reduced electron density by:

427



3

n(oy*k8T\2 _
U(N oo T) = UN, ) = 7, Nogo (T) = 2% gy % (H255)7 (em™), (A1)

where N¢)(T) is the conduction (valence)-band density of states, and the values of gcy and My, are

defined and given in Table 1. Then, the reduced Fermi energy in the n(p)-type Ge-crystals is determined by :

Fn(F )(u) G(u)+AuBF(u) _ V()
kBpT 1+ALB En(p)( )= Wy’ A = 0.0005372 and B = 4.82842262, (A2)

2

2 4 8\ 3
where F(N Tdca): T) = aus (1 +bu s+ cu"S) 3, obtained foru 1, according to the degenerate cas,

2 3
= [(3VT/4)]¥3, b= %(g) , =% 3739855( ) and then G(u) Ln(u)+22xuxe % foru

1920
1, according to the non — degenerate case, with: d = 23/2 [ﬁ 2 >o.
So, in the present degenerate case (U 1), one has:
2
_4 _&\ 3
Erncep)(N 2 Faa): T) = Engep)(N . T) = Egno(epoy(U) < (1 +bu 3 +cu 3) : (A3)

Then, at T=0K, since u™! = 0, Eq. (A.3) is reduced to:

2xkngepy (N )
2XMn(p)

EFno(Fpo)(N ) = (A4)

being proportional to (N )%3, and equal to 0, Ernopoy(N = 0) = 0, according to the MIT, as discussed in
Section 2 and 3.

A2. Now, the generalized Einstein relation is defined by:

H(N rg@T) dN q

where D(N , ryca), T) is the diffusion coefficient, &y (U) is defined in (A2), and the mobility U(N , ryca), T)

D(N ra@ T) _ N, BErnep) _ kexT (u din(m(u))’

2 - (A.5)

is determined in Eq. (28). Then, by differentiating this function 8,(u) with respect to u, one thus obtains

dé,
EEJL;(U). Therefore,

D(N rg@).T) _ kgxT IO ORIOETIO)
M(N ra@T)  d W2(u) g (A.6)

8

. : 3 Siou 3
where W'(u) = ABuB™? and V'(u) = u™? + 272e7%(1 — du) + ZAuB~IF(U) | (1 + &) + <2220 2] One

1+bu” 3+cu 3

remarks that: (i) as U - O, one has: W?> 1 and u[V' xW —V xW?] 1, and therefore: D”('DT)(U) kBq—xT

and (ii) as U » oo, one has: W? = A%u?® and u[V xW —V x W] =§au2/3A2u25, and therefore, in this

b

highly degenerate case and at T=0K,

D(N Fg(), T=0) _ 2
HN ra@T=0) ~ 3 Erno(rpoy (N )/0). (A7)

One notes that, for N = 0, Erporpoy(N ) = O, as remarked in above Eq. (A4), u(N =0,1r4@) T = OK) =0,

as remarked in above Eq. (28), and therefore, for any ryc,), D(N =0,r4@) T = OK) = 0, according to the
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MIT. Now, replacing Eppo(rpo) given in Eq. (A.7) by Epnerp) determined in Eq. (A.3), Eq. (A.7) thus

becomes in the present degenerate case, as

2
O g T=0) 2 .
(N raT=0) 3 < EFno(rpo)(U) X (1+bus+eus) (A.8)

Appendix B. Approximate forms for band gap narrowing (BGN)
First of all, in the n(p)-type Ge -crystals, we define the effective reduced Wigner-Seitz radius Fgn(sp),

characteristic of the interactions, by:

3gc(v))1/3 < 1

= - 8 o (%\3  Ma)/mo
Fonsmy (N (@) = ( anN aonon (0a) 11723 x 10° x ( ) x i (B1)

N €(raa))

Then, the correlation energy of an effective electron gas, CE(rsn(Sp)), is found to be given by [1]:

087553 2[1~In (2)]
_ _ oa7ss3 |, 00y gz )N (onip) 0093288
ECE(rsn(SP)) = ECE(N ! rd(a)) - 0-0908+rsn(sp) + 1+0.03847728><r§h%g)’8876 . (Bz)

Then, the band gap narrowing (BGN) can be determined by [1]:

: 1/3 : 3 54 mg
BEg(N Ta) a3 % 525X Ni'™ + a5 x 00 NI x (2508 x [ — Ece(ren) X ronl) + a3 % [225] T x [T

1/4 1/2 — N =N—Ncpn(rg)
N~ +ag > s(sr?p *Np'" > 2+ a5 % [s(r ) NG Nr T 9.999%x107em=3’ (B3)
and
&g 1/3 € ; £ 5/4 Mn
A go(N Ta)  ag X 22X N> +ay x fos x NP x (2503 x [ — Ecg(rsp) X rsp]) + a3 % [% X
1/4 vz 2 6 — (N =N=Ncpp(ra)
Np' +2a, > w/s(r )< Nr 5 % [ e(r a)] * Ny, Np = (9.999x1017 cm_3)’ (B4)

Here, €, = 15.8, a; =3.80x1073(eV), a, =6.5x107%(eV) , a3 =2.8x1073(eV) , a, = 5.597 x
1073(eV) and a5 = 8.1 x 107*(eV).
Therefore, in Equations (B3, B4), at T=0 K and N =0, and for any rge), AEgngp)(N =0, rg@) =0

according to the metal-insulator transition (MIT).
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