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Abstract:

In two new single n*(p*) —p(n) X(x) -alloy junction solar cells at 300 K, [X(x) = CdS;_,Sey,
CdS;_4Tey],0 =< x < 1, by basing on the same physical model-and-treatment method, as used in our recent
works [1, 2], we obtain the highest (or maximal) efficiencies, Nimax (1imax.)» given in the following.

At x=0, Nimax (11max) =42.24 % (42.60 %) are investigated for CdS;_,Se, alloy-junctions, as given in Tables
2.2 (3.2), and Nymax.(1imax)=41.92 % (42.60 %), for CdS;_Te, alloy-junctions, as given in Tables 4.2 (5.2),
which can be compared with the corresponding ones given in the n*(p*) — p(n) crystalline CdS-junction
solar cells [1], as: Nimax.(limax) = 43.22 % (43.40 %), respectively.

Then, in particular, at x=1, Nimax (1imax) =46.07 % (46.59 %) and T,;=556.3 K (561.7 K) are obtained for
CdS;_Sey alloy-junctions, and Nimax (11max)=48.51 % (48.88 %) and Ty=582.6 K (586.8 K), for CdS;_, Te,
alloy-junctions, as given in Tables 4.2 (5.2), respectively, which could be found to be the new and original
results.

Finally, we can conclude that: (i) Nimax.(imax) and Ty increase with increasing x, and (ii), for obtaining the
highest efficiencies, the (CdS;_,Sey,, CdS;_,Tey)-alloy junctions could be chosen rather than the crystalline
CdS-junctions [1].
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1. Introduction

In two new single n*(p*) —p(n) X(X) -alloy junction solar cells at 300 K, [X(x) = CdS;_,Sey,
CdS;_4Tey],0 =< x < 1, by basing on the same physical model-and-treatment method, as used in our recent
works [1, 2], and also other works [3-6], some important results, obtained in the present work, are reported
in the following.

(i)-As noted in Tables 2.1, 3.1, 4.1 and 5.1, the dark carrier-minority saturation current density ()
decrease slightly with increasing ( y-radius for given x, but it increases strongly with increasing x for
given  ()-radius. Then, as remarked in Tables 2.2, 3.2, 4.2 and 5.2, at a same , the photovoltaic
conversion factor, ( y( ), also decrease slightly with increasing ( y-radius for given x, but it also
increases strongly with increasing x for given  ( y-radius. In other words, as discussed in Eq. (45), at a same
,both ( yand () have the same variations for the same physical conditions. It should be noted here
that, in Ref. [3], the “quality factor n” was assumed to be equal to 1, meaning that the maximal efficiency
value could not be obtained.
(ii)-With such variations of ¢ )( ), as observed in Tables 2.2, 3.2, 4.2 and 5.2, the maximal values of
()> () . and the corresponding ones of the H-reservoir temperature, , are obtained at the
corresponding = . -values, marked in bold, increase with increasing x for given ( )-radius.
(ii)-At x=0, Nimax.(limax) =42.24 % (42.60 %) are investigated for CdS;_,Se, alloy-junctions, as given in
Tables 2.2 (3.2), and Nimax (1imax)=41.92 % (42.60 %), for CdS;_,Te, alloy-junctions, as given in Tables 4.2
(5.2), which can be compared with the corresponding ones given in the n*(p™) — p(n) crystalline CdS-
junction solar cells [1], as: Nimax (1max) = 43.22 % (43.40 %), respectively.
(iv)-Finally, at x=1, ( ) =46.07 % (46.59 %) and =556.3 K (561.7 K) are obtained for
CdS;_,Sey alloy-junctions, and ( ) =48.51 % (48.88 %) and =582.6 K (586.8 K), for
CdS,_,Tey alloy-junctions, as given in Tables 4.2 (5.2), respectively, suggesting that in order to obtain the
highest efficiencies, the (CdS;_,Sey, CdS;_4Tey)-alloy junctions could be chosen rather than the crystalline
CdS-junctions [1].
In Section 2, the energy-band-structure parameters and the dark minority-carrier saturation current density,
due to the effects of x- Se concentration, impurity size, and heavy doping, are presented. In Section 3, the
photovoltaic effect is investigated. Finally, some numerical results and concluding remarks are given and

discussed in Section 4.
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2. Energy-band-structure parameters and dark minority-carrier saturation
current density, due to the effects of x- Se concentration, impurity size, and
heavy doping

First of all, in two single n*(p*) —p(n) X(x)- alloy junction solar cells, X(= CdS;_,Se,, CdS;_,Te,), we
present the effects of x-concentration, donor (acceptor) [d(a)]-size, temperature T and heavy doping,
affecting the energy-band-structure parameters [1, 2], in order to investigate the total minority-carrier
saturation current densities, as follows.

A. Effects of x-Se (Te) concentration

In the n™(p*) —p(n) single n*(p*) —p(n) X(x)- alloy junction at T=0 K, the energy-band-structure
parameters are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by [1, 2]:
m¢(x)/my, = 0.11 (0.095) x x + 0.197 x (1 — X), and

m,(x)/m, = 0.45 (0.82) x x + 0.801 x (1 — x), (1)
so that when x=0 one obtains: M¢(X)/My = Mc(casy/ Mo =0.197, My (X)/My = My cds)/M =0.801, and as
x=1, one has: m¢(X)/Mqy = Me(cdsey/ Mo =0.11, m¢(X)/ My = Me(carey/ Mo =0.095,
my(X)/ My = My(case)/ Mo=0.45, and finally, my(X)/my = Mycqgre)/Mp=0.82.

(ii)-The unperturbed relative dielectric constant of the intrinsic of the single crystalline X- alloy is found to
be defined by [1, 2]:

€(x) =10.2 (10.31) xx +9x (1 —Xx), (2)
which gives: as x=0, €5(X) = €cgs = 9, and as x=1, €,(X) = €cgse = 10.2 and £,(X) = €cqre = 10.31.
(iii)-Finally, the unperturbed band gap is found to be given by [1, 2]:

Ego(X) ineV =184 (1.62) xx +258 x (1 —x), 3)
giving rise to: Eqo(X) = Eycgs(X) = 2.58 €V as x=0, and as x=1, on gets: Ego(X) = Egcgse(X) = 1.84 €V and
Ego(X) = Egeare(X) = 1.62 €V.

Therefore, we can define the effective donor (acceptor)-ionization energy at rge) = lgo(ao) In absolute

values as [1, 2]:
13600%[Mc(yy (X)/mc]
[eo()]?

and then, the isothermal bulk modulus, by:

Edo(ao) x) = meV, 4

Edo(ao) (€3]
3 .
(4r/3)x (rdo(ao))

Bdo(ao) (X) = (5)

B. Effects of Impurity-size, with a given x

Here, the effects of ryp) and x-Se concentration affect the changes in all the energy-band-structure

parameters, expressed in terms of the effective relative dielectric constant €(rg(a), X), in the following.

598



At Igea) = F'do(ao) = I'sca) = 0.104 nm (0.148 nm), respectively, the needed boundary conditions are found

to be, for the impurity-atom volume V= (41/3) % (rd(a))s, Vdo(ao) = (411/3) % (rdo(ao))s, for the pressure
P, Po =0, and for the deformation potential energy (or the strain energy) o, o, = 0. Further, the two

important equations [1, 2, 4], needed to determine the o-variation Ao= 0— a0, = g, are defined by:

dp_

dv——E and p——— giving: d—V( )— =. Then, by an integration, one gets:

[80(ra(ey 0]y =By (X (V—Vetge) * 1 ()= Eaoay®) [ (142.)" = 1] x (22 )", ¢8)

Tdo(ao) "do(ao)
Furthermore, we also shown [1, 2, 3] that, as Iyiay > I'do(ac) ( Fd(a) < l'do(ac)) the compression
( dilatation) corresponding the repulsive (attractive) force increases (decreases) the energy gap

Egn(gp)(rd(a),x), and the effective donor (acceptor)-ionization energy Ed(a)(rd(a),x) in absolute values,

obtained in the effective Bohr model, which is represented by: =+ [Ao(rd(a), X)]n )’ respectively,

_ 5 :
— — £0(X) —
Egn(gp)(rd(a)ux) - Ego(x) - Ed(a)(rd(a):x) - Edo(ao) (X) - Edo(ao)(x) X <0—) —1| =+ [AO‘(I’d(a),X)]

| \e(ra(a)) n(p)’

for Fd(a) = I'do(ao)> and for ld(a) = I'do(ao)>

_ 5 .
— £ (X) —
Egn(gp)(rd(a)|x) - Ego(x) = Ed(a)(rd(a)vx) - Edo(ao) (X) - Edo(ao)(x) X (m) 1| == [AO‘(I’d(a),X)]n(p). (7)

Therefore, from Equations 6 and 7, one obtains the expressions for relative dielectric constant €(ryca), X) and

energy band gap Egngp (Faca) X), as:

: : _ £0(0)
(i)-for ld(a) = ldo(ac), SINCe s(rd(a),x)— 30 3 < &,(x),
fa@ \°_ | ejn( i@
\jl+[(rdo(ao)) l] ><In(rdo(ao))
I
Egncop) (@) X) ~ Ego () = Baca) (Faca) X) ~ Eaotae)(¥) = Edtogao) (X) [ rdiﬁz, - 1] xIn djﬁ:;) =0, (8a)

according to the increase in both Eg,gp) (raa) X) and Eqey (racy X), for a given x, and

€(X)

= ¢,(x), with a condition, given by:

(ii)-for I'q(a) = I'qoao) » Since €(ryeay X) = = -
[t sl
3 3
[(r;‘j%) — 1] x In(r;‘:%) <1,
3 3

Egneam (Facay %) ~ Ego(X) = Eda) (Faca): %) ~ Edogao) () == Edo(ao) (¥) * [(r;i%) - 1] x |n(r;i%) =0, (8.b)
corresponding to the decrease in both Egygp (Fa). ) and Egey (rac. X), for a given x.
C. Effect of T, with given x and
Here, as given in our previous works [1, 2], the intrinsic band gap Egingip) (Fdca), X, T) is given by:

Egingaip) (@ X T) IN €V = Egnggoy (Fagey X) — e x {43779 + 7.0043 x (1 = )}, ©)
which decreases, for given x and rg(g), with an increasing T.

Furthermore, in the n(p)-type X(X)-alloy, one can define the intrinsic carrier concentration Nincipy by:
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ooy (T Py ) = Ne(T,) > Ny(T,)  exp

—Egin(p) (TFd(@) X)
keT ’

where N¢)(T, X) is the conduction (valence)-band density of states, being defined as:

3

M) X xkgT\2 —
Noqy(T, X) = 2 (T0OXET)? (cm=3),

(10)

(In

So, the numerical results of Ege(ryca).X) » Bdoao)(X) » €(Facay,:X) and Egincgip)(Facay, X, T) , calculated using

Equations 4, 5, 8a (8b) and 9, are reported in following Tables 1.1 and 1.2.

Table 1.1 From Equations (5, 8a, 8b, 9) and in the n(p)-type 1—

-alloy, the numerical

results of the energy-

band-structure parameters, reported below, suggest that, with increasing x and (y, both  ( y() and ( () )
decrease, while the other ones increase.
Donor S Se Te Sn
(nm) =0.104 0.114 0.132 0.140
X 0, 0.5,0.75,1 0, 0.5,0.75,1 0, 0.5,0.75,1 0, 0.5,0.75,1

Bgo(X) in 108 (N/m?)
&(rg, X)

Eq(rg, x) meV

Egn(rg,x) eV

Egin(T = 300K, rg,X) eV

11.2,7.70, 6.21, 4.89
9.00, 9.60, 9.90, 10.2
33.1,22.6,18.3, 14.4
2.58,2.21,2.02,1.84
2.42,2.08,191,1.74

8.63,9.21,9.49,9.78
36.0,24.6,19.9,15.6
2.58,2.21,2.03,1.84
2.42,2.08,1.91,1.74

6.81,7.26,7.49,7.72
57.8,39.6,31.9,25.1
2.60,2.23,2.04,1.85
2.44,2.10,1.92,1.75

5.95,6.35,6.55,6.75
75.5,51.7,41.7,32.8
2.62,2.24,2.05,1.86
2.46,2.11,1.93,1.76

Acceptor Ga Mg In Cd
(nm) 0.126 0.140 0.144 =0.148
X 0, 05,0751 0 , 05,0751 0 ,0.5, 0.75, 1 0 , 0.5,0.75,1

Bao(X) in 108 (N/m?)
)
(,) eV
(,)ev
Egip(T = 300K, ry, ) eV

9.97,10.6,11.0,11.3
110, 75.2, 60.8,47.9
2.55,2.19,2.01,1.83
2.39,2.06, 1.90,1.73

9.12,9.72,10.0, 10.3
131, 89.9,72.7,57.3
2.58,2.21,2.02,1.84
242,2.08,191,1.74

9.03,9.63,9.93,10.2
134,91.7,74.1, 58.4
2.58,2.21,2.02,1.84
2.42,2.08,1.91,1.74

15.9, 10.9, 8.80, 6.94
9.00, 9.60, 9.90, 10.2
134,92.3,74.6, 58.8
2.58,2.21,2.03,1.84
2.42,2.08,191,1.74

Table 1.2 From Equations (5, 8a, 8b, 9) and in the n(p)-type 1—

-alloy, the numerical results of the energy-

band-structure parameters, reported below, suggest that, with increasing x and (y, both  ( y() and ( () )
decrease, while the other ones increase.

Donor S Se Te Sn

rg (nm) =0.104 0.114 0.132 0.140

X 0 ,05,0.751 0 , 05,0751 0 , 0.5 0751 0 , 050751
€(rg,x) 9.00, 9.65, 9.98,10.3 8.63,9.26, 9.57,9.89 6.81,7.30,7.55, 7.80 5.95,6.39, 6.60, 6.82

Bao(rgo, X) in 108 (N/m?)
Eq(rg, x) meV

Egn(ra,x) eV

Egin(T = 300K, rg,X) eV

11.2,7.24,5.59,4.13
33.1,21.3,164,12.2
2.58,2.10, 1.86, 1.62
2.42,197,1.74,1.52

36.0,23.2,17.9,13.2
2.58,2.10, 1.86, 1.62
2.42,197,1.75,1.52
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57.8,37.2,28.7,21.2
2.60,2.11, 1.87,1.63
2.44,1.98,1.76,1.53

75.5,48.6,37.6,27.8
2.62,2.13,1.88,1.63
2.46,2.00,1.77,1.53



Acceptor Ga Mg In Cd

r, (nm) 0.126 0.140 0.144 =0.148
X 0 , 05,0751 0 , 0.5, 0.75,1 0 , 05,0.75, 1 0, 05,0.75, 1

£(ra,x) 9.96,10.7, 11.0,11.4  9.11,9.78, 10.1,10.4  9.03,9.68,10.0,10.3  9.00, 9.65, 9.98,10.3
Bao(ra0,X) in 108 (N/m?) 15.9,13.9,13.1, 12.4
Ea(ra, X) meV 110,96.4,90.7,85.5 131, 115,108, 102 134, 117,110,104 134,118, 111,105
Egp(ra,X) eV 2.55,2.08,1.84,1.60  2.58, 2.10,1.86,1.62  2.58,2.10,1.86,1.62  2.58,2.10, 1.86, 1.62
Egip(T = 300K, ry,X) eV 239,1.95,1.72,1.50  2.41,1.97,1.74,1.52  2.42,1.97,1.74,152  2.42,197,1.75,1.52

D. Heavy Doping Effect, with given T, x and ()

Here, as given in our previous works [3], the Fermi energy (— ), band gap narrowing (BGN), and
apparent band gap narrowing (ABGN), are reported in the following.

First, the Fermi energy (— ), obtained for any T and any d(a)-density, ( y, being investigated in

our previous paper [3], with a precision of the order of 2.11 x 10™4, is found to be given by:

Q)= O =00005372and = 482842262, (12)
2
2 4 8\ 3
where u is the reduced electron density, ( (), . )Eﬁ, ()= 3(1+ 3+ 3) .=
2 , _3 _
[(GV7a)= 123, =2()°, =22 and () ()+22x x T 5 =232[L-
3o

Here, one notes that: (i) as 1, according to the HD [d(a)- ( )- alloy] ER-case, or to the degenerate case,

Eq. (12) is reduced to the function F(u), and (i) ——2 (") —1 (o the LD [a(d)- .- -
alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u).

Secondly, if denoting the effective Wigner-Seitz radius (), characteristic of the interactions, by:

00
C (»)’

1/3
OC (O (0 )= 14723108 x (—2)

- () =1(), (13)

the correlation energy of an effective electron gas, ¢ )( () () ), is given as [4]:

0.87553 2[1— (2] 3
—0.87553 +0.0908+ ()+( 2 )" ( ( 0093288

( )( )y () )=0.0908+ ) 1+0.03847728= LET372070

Now, taking into account various spin-polarized chemical potential-energy contributions such as [4]:
exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective
electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a)
interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction
screened Coulomb potential energy, the band gap narrowing (BGN) are given as follows.

Then, in the n-type HD  ( )- alloy, the BGN is found to be given by:
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1
1/3 3

() axx P ox Ox 3x(2B03x[—  ( )x D+ 3x

O 1% 1/4 O 172 OF. &+ _
N e N e e Yo R o I

where 1 =38x1073( ), ,=65x107%( ), 3=28x1073( ), ,=5597x10"3( ) and
5 =8.1x107%( ), and in the p-type HD ( )- alloy, as:

L /
o) X0 Ma O Sx(@503x [~ ( )x D)+ gx[ 2]

3 1
. w4 O 172 OB & _
\/7>< T2 N )~ *osX [( , )] x5 = (9.999x1017 ‘3)’ (14p)

where a; = 3.15 x 1073(eV), a, = 5.41 x 1074(eV), a3 = 2.32 x 1073(eV), a; = 4.12 x 1073(eV) and
as = 9.80 x 107°(eV).

Therefore, in the HD[d(a)- X(X) - alloy] ER, we can define the effective extrinsic carrier concentration,

nen(ep),by:
OHC O 0=y 0% ()= OG0 o< 49, (15)
where the apparent band gap narrowing (ABGN), ( ) 1s defined by:
C.00)= o0+ x (=)= .0, (16n)
C.o0)=  Co0r x (=) .00 (16p)

E. Total minority-carrier saturation current density
Inthetwo *( *)— () ( )- alloy -junction solar cells, denoted respectively by I(II), the total carrier-
minority saturation current density is defined by:

()=  HF ) (17)
where ( ) is the minority-electron (hole) saturation current density injected into the LD[a(d)- ()-
alloy] BR, and ( ) is the minority-hole (electron) saturation-current density injected into the HD[d(a)-

( )- alloy] ER.
¢ yinthe LD[a(d)- ( )-alloy]BR
Here, ( ) 1s determined by [1, 2]:

% 2 S yx [0 O )
O 09 (HC Y

¢ HC oy )= . , (18)

where 2( y( v () ) is determined Eq. (10), ()y( () , () ) is the minority electron (minority

hole) diffusion coefficient:

(., )= [850+ 570 l 2 -1y, (19a)
8><1017 —3

., ,)=—><[85+ 165 l 2 -1y, (19b)
4><1017 -3
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and ( y( () is the minority electron (minority hole) lifetime in the BR:
1

( )yt= o 3x1018x +183x10%1x 2 (20a)
( )l1=—+1176x108x +278x1073x 2 (20b)
10

( )inthe HD[d(a)- ( )- alloy]ER
In the non-uniformly and heavily doped emitter region of d(a)- X(x) devices, the effective Gaussian d(a)-
density profile or the d(a) (majority-e(h)) density, is defined in such the HD[d(a)- ( ) alloy] ER-width W,
as[1,2]:

-
|

2
= —(— — 0 U= 0O < <
Ot o )= Ox {()x [()()} ()"[()() 0= =,
1.066 (0.5) B
( () =79x10Y (2% 10%) x {— (W) } ( . (21)
where (y( =0)= () is the surface d(a)-density, and at the emitter-base junction, (,( = )=

¢ (), which decreases with increasing W. Further, the “effective doping density” is defined by:

— CoO - O0)
OC oy (»)E OO [ oty O ],

Ol =0 o 0 )= [« >(<)~()v)1’and
|
— — O
- [ ' = [} 22
Ol o) [ H OO )] (22)
|
where the apparent band gap narrowing ( ) 1s determined in Eq. (16), replacing () by
oC o )
Now, we can define the minority hole (minority electron) transport parameter  ( y as:
( )Ezm(v()): O= ()x( ())ZE O ( 5x) (23)
OLy )y O ()x () O O O) ()% [ ( )] '

the minority hole (electron) diffusion length, ¢ )( vy () ) by:
2 2 2
-2 — -1_ 2 _ O) = OGO
OC o o )= ox ol =0x ())—(" ()) —(x )~ ())’
where the constant C was chosen to be equal to: 2.0893 x 10730 ( 4/ ), and the minority hole (minority

electron) lifetime () as:

1 _ 1

_2 2.
O* O Ox(x ()

() (24)

Then, under low-level injection, in the absence of external generation, and for the steady-state case, we can

define the minority-h(e) density by:
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2

OF O=—— 25)
Ot=

(»

and a normalized excess minority-h(e) density u(x) or a relative deviation between ( )[ ( )] and

O Ol

—_OroOr= Or On
()= Or O ’ (26)
which must verify the two following boundary conditions as:
- (=09 (=01

(. =0)=

x (=0)[ (=07
(=)= (()()X )_1'

Here, ( y( ) is a photovoltaic conversion factor determined latter, (—) is the surface recombination
velocity at the emitter contact, V is the applied voltage, = ( /) is the thermal voltage, and the
minority-hole (electron) current density )( v )

Further, from the Fick’s law for minority hole (electron)-diffusion equations, one has [1, 2]:

- 5

— X2y O =) 2 o0 O O)L O
= X = X
()(’ ()‘ ) ()() ()(, (),) (27)

where  (y(, () )isgiveninEq. (22), ()and () are determined respectively in Equations (19)

and (23), and from the minority-hole (electron) continuity equation as:

O 0) o (4 yx 2 x @) — (+ Vx 2 . x O
(+) O HOx 260 (+) © OGO O ’
(28)
Therefore, the following second-order differential equation is obtained:
2 O)
(2)_ 00 ()_2(()):0’ (29)
O)

Then, taking into account the two above boundary conditions given in Eq. (22), one thus gets the general

solution of this Eq. (29), as:

__ (O (W ( ( )__ )
O=—Twcox (O~ SO~ ) L) (30)
where the factor ( , ) is determined by: ( )( C () )
—_ot=. . )
1 [ ’ - . 31
Coo ) * 0ot= ) o) D
Further, since O= x ()( =ﬁ, =2.0893x 10730 ( 4/), for the X(x)-alloy, being an
empirical parameter, chosen for each crystalline semiconductor, P(y) is thus found to be defined by:
= - y=(L = —_00
= (>()) » 0= = o )= (>())>< OO (>()>< 00 ’
(32)

where () is the effective minority hole (minority electron) diffusion length. Further, the minority-hole

(electron) current density injected into the HD[d(a)- X(x) alloy] ER is found to be given by:
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ol oo )= G ..o G w)]"< (U(—)x)‘l)v (33)

where ( ) 1s the saturation minority hole (minority electron) current density,

2 x <
O O « (+C )< () (34)
OCo O O* O CCN+HC)x ()

In the following, we will denote P(W) and ( , ) by P and I, for a simplicity. So, Eq. (30) gives:

2
_ _ O* O 1
¢ H>(=0 " O ()= O o o oS T O O (33)

( )(' () ()w)z

(= )= 2O O w O+x O 36)
¢ ) N O LI O I OC= 0 (O 0% O ()+x ()
and then,
O(=0 . OO ) o (H=0 o) 1
= = : 37
o= O O) cH(= 0o o) (O+x () 7)
Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region by:
=, o v )= g (= )X x x— OO ) and the
()( () ) ) 0 ( ) () ()[ ()] ()( ()()H()V) >
effective minority hole (minority electron) transit time [ ()] by: (H)O= v () (y )=
(= o o)X (= .. G . (».), and from Equations (24, 31), one
obtains:
OH= . O o) ( (=0 . . O ) _ 1
=1- =1- : 38
) (H(= 0o o) O+x O 38)

Now, some important results can be obtained and discussed below.

OoC O, o)

As 1 d wee, =(,)=
S (or ()) an ©, ( ) < OC (HO)X )

- 0, from Eq. (38), one has:

OH(=. . O ()")40,
)

suggesting a completely transparent emitter region (CTER)-case, where,

from Eq. (36), one obtains:

2
= . R O* O w1
(=" OO R T o OOy (39)
- _ — 0oC OO o)
1 - = —_ —_ —
Further, as (or ()) and 0, ( CoCy ) ot O o) oo, and
from Eq. (38) one has: Ol= '( )()’ O ) - 1, suggesting a completely opaque emitter region

(COER)-case, where, from Eq. (36), one gets:

2 X
= ' vy [ -0) - L O X . 40
¢ OO N RN P ) (40)

In summary, in the two *( *)— () X(x)-alloy junction solar cells, the dark carrier-minority saturation

current density  ( y, defined in Eq. (17), is now rewritten as:

HC o o O )= HC Or s ) O () (3D

where ( )and ( ) are determined respectively in Equations (36, 18).
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3. Photovoltaic conversion effect at 300K

Here, in the n*(p*) — p(n) X(x) -alloy junction solar cells at T=300 K, denoted respectively by I(ll), and for
physical conditions, respectively, as:

W = 0.1 pm, Ng=s(a=cay = 102 cm™3, 14y, X, S = 100 (%); Nazcaw@=sy = 107 em™3 | rya), X, (42)
we propose, at given open circuit voltages: Vogiocizy @nd Vociiocnz), the corresponding data of the short
circuit current density Js 1), in order to formulate our following treatment method of two fix points, as:

at Vociigoei2) = Vocniociizy = 2.041 (2.076) V,

Jseiser2) = Jsciseizy = 0.00749 (0.00939) (A/cm?), (43)

noting that these numerical results are given in Ref. [6], in which the authors assumed that the “quality factor
n” is equal to 1.

Now, we define the net current density J at T=300 K, obtained for the infinite shunt resistance, and
expressed as a function of the applied voltage V, flowing through the n*(p*) — p(n) X(x)-alloy junction of
solar cells, as:

Y, _ kgT

V) = Jon (V) = Joigamy < (€10 = 1), Xy (V) =
where the function n;(V) is the photovoltaic conversion factor (PVCF), noting that as V = V,, being the
open circuit voltage, J(V=V,) =0, the photocurrent density is defined by: J;,(V="V,y)=
Jeicsetty (W, Nagay, T Faay X S5 Nagay: Ty Fagay: X, Voc), for Voo = Vogiagociny-

Therefore, the photovoltaic conversion effect occurs, according to:

Jscicselty (W: Naay, T, X, S Nagays T Faey X Voe) = Joigoiny (W, Nagay: T, Faay X, S; Nagay, T, Fagay, X) x (€Xn®Ve) — 1), (45)

VOC
My Vo) XV’

where Ny (Voe) = Ny (W, Nagay, T, Faay %, S Nagays Faay X Voc), @nd Xiany (Voe) =
Here, one remarks that (i) for a given V,, both nyq;y and Jy 1y have the same variations, obtained in the same
physical conditions, as observed in the following calculation, (i) the function (eXit(e> —1) or the PVCF,
Ny, representing the photovoltaic conversion effect, converts the light, represented by Jscy, into the
electricity, by Joiomy , and finally, for given (W, Ngc, T, Faa). % S; Nagay, T, Facay, X, Voc) -values, nygy(Voe) is
determined.

Now, for Vo = Voei1oci1), ON€ can propose the general expressions for the PVCF, in order to get exactly the

values of Ny i1y (Vooriooiiny) a0 Nizgiizy (Vocizgoctizy ), @s functions of Ve, by:

aB)
Voe —1) , (46)

Nian (W, Nagay, T Fagay % S5 Nagay, T Faey: X Voe) = Miaginy (Vocaoensy) + Nizqizy (Voctzocizy) % (vocuuoum
where, for example, the values of a(f3), obtained for x = (0, 0.5, 0.75, and 1), will be reported in Tables 2.2 and
3.2, for CdS;_,Se, alloy junctions, and in Tables 4.2 and 5.2, for CdS;_,Te, alloy junctions, respectively. One
also notes that those a(f3)-values depend on (W, Ng(a), T, Fdcay X, S; Nagay, T, Faca), X)-ones.

So, one can determine the general expressions for the fill factors, as:

Xia1y(Voe)=In[Xiq1y (Voc) +b |

F|(||) (W, Nd(a)! T, rd(a), X, S, Na(d)r T« ra(d)x X, VOC) = Xiany(Vog)+a

,a=1and b=0.72. 47)
Finally, the efficiency n,(;y can be defined in the n™(p™) — p(n) X(x) alloy-junction solar cells, by:

. _ Iscigselny*VocxFiq
M (W, Naay: T Facay %, S5 Nagay, T Faqey, X, Vo) = ===,
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being assumed to be obtained at 1 sun illumination or at AM1.5G spectrum (P;, = 0.100 cmﬂz).
It should be noted that the maximal values of Ny, Nigymax.» are obtained at the corresponding ones of Voo =

Nty (WNgay TFday,S: Naga) TFacd) Voc)
0Voc

Voc:max.» at which = 0, as those given in next Tables 2.2, 3.2, 4.2 and 5.2,

being marked in bold. Further, from the well-known Carnot’s theorem, being obtained by the second
principle in thermodynamics, or by the entropy law, the maximum efficiency of a heat engine operating
between hot (H) and cold (C) reservoirs is the ratio of the temperature difference between the reservoirs,

Ty — T¢, to the H-reservoir temperature, Ty, expressed as:
Tc=300K

Mianmax. (W, Naay, T, Fa), S, Nagay: T Fads Vocmax) = 1 — Tr(WNaw TS, Nae T o Voormae) (49)
4. Numerical Results and Concluding Remarks
We will respectively consider the two following cases of “( ) — (') -junctions such as:

C 5 ) Q) - C 5 5 O)- —case, according to: 3 (¥ ) — junctions
denotedby: ( ¥ , T , T ),and

C 5 5 ) Q0) - C 5 5 ) OH- —case, according to: 3 ( * ) — junctions

denotedby: ( * , * , T ).
Now, by using the physical conditions, given in Eq. (42), we can determine various following photovoltaic
conversion coefficients.
(. I)Xm= - -
[+ 5 1 - - L 5 v 1 -

+ + + )

Here, there are the 3 ( * ) — 1- junctions, being denoted by: ( , ,
Then, the numerical results of —, , and , are calculated using Equations (38), (18), (36) and (41),

respectively, and obtained, as those given in Table 2.1. Further, those of , , , ,and , are

computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 2.2.

Table 2.1 In the HD [(Se; Te; Sn)- CdS;_,Se, -alloy] ER-LD[( Mg; In; Cd)-CdS;_,Se, -alloy] BR, for physical

conditions given in Eq. (42) and for a given x, our numerical results of %, JBpo» JEno and Jo; , are computed, using
he

Equations (38), (18), (36) and (41), respectively, noting that J,; decreases slightly with increasing rq)-radius for

given x, but it increases strongly with increasing x for given I'q(;)-radius, being new results.

Here, x=0, and for the ( * , * , * )-junctions and from Eq. (34), one obtains: — =

(0,0,0)
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in107%% ( / ?) 2.9988 2.9698 2.9602
in1073%® ( / 2) 1.0295 0.8985 0.7564
in107%% ( / 2) 2.9988 2.9707 2.9609
Here, x=0.5, and for the ( * , * , * )-junctions and from Eq. (34), one obtains: —=
(0,0,0)
in107%° ( / 2) 9.0481 8.9606 8.9315
in107% ( / 2) 6.8789 6.8402 6.7211
in10730 ( / 2) 9.0481 8.9607 8.9316
Here, x=0.75, and for the ( * , * , * )junctions and from Eq. (34), one obtains: —=
(0,0,0)
in107% ( / 2) 4.4951 44517 44372
in107® ( / 2?) 1.6729 1.7374 1.7954
in1072" ( / ?) 4.4951 44517 44372
Here, x=1, and for the ( * , * , 7+ )-junctions and from Eq. (34), one obtains: —=
(0,0,0)
in1072* ( / ?) 2.0381 2.0184 2.0119
in107%2 ( / ?) 1.0818 1.1671 1.2606
in10724 ( / 2?) 2.0381 2.0184 2.0119
Table 2.2 In the HD [(Se; Te; Sn)- 1— -alloy] ER-LD[( ; ; )- 1- -alloy] BR, for physical
conditions given in Eq. (42) and for a given x, our numerical results of | , , »and , are computed, using
Equations (46, 45, 47, 48, 49), respectively, noting that both ~and , marked in bold, increase with increasing x
for given ( y, being new results.
() (—) (%) (%)
Here, x=0. Forthe ( * , * , * )-junctions, the value of givenin Eq. (46)is: = 1.052.
+ + . + . + + . + . + + . + . + + + +
2.041 1.058; 1.058; 1.058 7.490; 7.490; 7.490 92.96; 92.96; 92.96 14.21; 14.21; 14.21
2.076 1.073; 1.073; 1.073 9.390; 9.390; 9.390 92.98; 92.98; 92.98 18.12; 18.12; 18.12
2.64 1.354; 1.354; 1.353 17.19; 17.19; 17.19 93.02; 93.02; 93.02 42.22;42.23;42.23
2.65 1.359; 1.359; 1.359 17.13;17.13; 17.13 93.02; 93.02; 93.02 42.23; 42.24; 42.24
: = () =519.3;519.4; 519.4
2.66 1.364; 1.364; 1.364 17.07; 17.07; 17.07 93.02; 93.02; 93.02 42.23;42.24;42.24
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3 1.543; 1.543; 1.543

13.65; 13.65; 13.66

93.00; 92.01; 93.01

38.10; 38.10; 38.10

Here, x=0.5. Forthe ( *

+ + . + . +

+ +

, )-junctions, the value of given in Eq. (46) is:

+ . + . +

+ . + . +

= 1.0635.

2.041 1.274;1.273; 1.273
2.076 1.291; 1.291; 1.290
2.68 1.649; 1.649; 1.649
2.69 1.655; 1.655; 1.655
2.70 1.662; 1.661; 1.661
3 1.852; 1.851; 1.851

7.490; 7.490; 7.490
9.406; 9.406; 9.406
18.02; 18.03; 18.03
17.96; 17.96; 17.96

17.89; 17.89; 17.89
14.80; 14.80; 14.80

91.84;91.84;91.84
91.86; 91.87;91.87
91.93; 91.93; 91.93
91.93; 91.93; 91.93

91.93; 91.93; 91.93
91.91;91.91; 91.91

14.04; 14.04; 14.04
17.94; 17.94; 17.94
44.41;44.41;44.42
44.41; 44.41; 44.42

() =539.7;539.7; 339.8

44.40; 44.40; 44.41
40.81; 40.82; 40.82

Here, x=0.75. Forthe ( *+

+ + . + . +

+ +

, )-junctions, the value of

+ . + . +

given in Eq. (46) is:

+ . + . +

=1.071

2.041 1.415; 1.415; 1.415 7.490; 7.490; 7.490 91.13; 91.13; 91.13 13.93; 13.93; 13.93
2.076 1.434; 1.434; 1.433 9.403; 9.404; 9.404 91.16; 91.16; 91.16 17.79; 17.78; 17.80
2.69 1.836; 1.835; 1.835 18.49; 18.50; 18.50 91.24;91.24;91.24 45.39; 45.40; 45.40
2.70 1.843; 1.842; 1.842 18.43; 18.43; 18.43 91.24;91.24;91.24 45.40; 45.41; 45.41
: = () =549.4; 549.5; 549.5
2.71 1.850; 1.849; 1.849 18.36; 18.36; 18.36 91.24;91.24;91.24 45.40; 45.40; 45.41
3 2.054; 2.054; 2.053 15.38; 15.38; 15.38 91.22;91.22;91.22 42.09; 42.10; 42.10
Here,x=1.Forthe ( * , * , ™ )-junctions, the value of given in Eq. (46)is: = 1.0798.

+ . s .+ .+
2.041 1.590; 1.590; 1.590 7.490; 7.490; 7.490 90.29; 90.29; 90.29 13.80; 13.80; 13.80
2.076 1.610; 1.609; 1.609 9.384; 9.384; 9.384 90.32; 90.32; 90.32 17.59; 17.60; 17.60
2.71 2.072;2.072; 2.071 18.80; 18.80; 18.80 90.43; 90.43; 90.43 46.06; 46.07; 46.07
2.72 2.080; 2.079; 2.079 18.73; 18.73; 18.73 90.43; 90.43; 90.43 46.06; 46.07; 46.07

: = () =556.2; 556.3; 556.3
2.73 2.088;2.087; 2.087 18.66; 18.66; 18.66 90.42; 90.43; 90.43 46.06; 46.06; 46.07
3 2.302;2.301; 2.301 15.89; 15.89; 15.89 90.40; 90.40; 90.40 43.10; 43.11; 43.11
[ v - - [ ; ] _
Here, thereare3( ¥ )— ;= junctions, being denotedby: ( +* , * |, * ).
Then, the numerical results of —, , and , are calculated using Equations (38), (18), (36) and

(41), respectively, and obtained, as those given in Table 3.1. Further, those of ,and , are

b b b

computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 3.2.
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Table 3.1 In the HD [(Mg; In; Cd)- CdS,;_,Se, -alloy] ER-LD[(Se; Te; Sn)- CdS;_,Se, -alloy] BR, for physical

conditions given in Eq. (42) and for a given X, our numerical results of ==, Jgng, Jepo, and Joj are computed, using
E

Tett
Te

Equations (38), (18), (36) and (41), respectively, noting that J,;, decreases slightly with increasing r,(g)-radius for given

X, but it increases strongly with increasing x for given ry(g)-radius, being new results.

+ + + +
Here, x=0, and for the ( * , * , * )-junctions and from Eq. (34), one obtains: —=
(0,0,0)

in107% ( / 2?) 1.7992 0.6102 0.2687

in1073 (/ ?) 1.5401 1.3943 1.3480

in10734 ( / 2) 1.7200 1.4553 1.3749
Here, x=0.5, and for the ( * , * , * )-junctions and from Eq. (34), one obtains: —=
(0,0,0)

in107%0 ( / 2?) 4.5499 2.0135 1.1008

in107 ( / ?) 1.8969 1.7732 1.7332

in107° ( / 2) 2.3519 1.9746 1.8432

Here, x=0.75, and for the ( * , * , ° )-junctions and from Eq.

(34), one obtains: — =

(0,0,0)

in107%7 ( / 2) 2.0992 1.0386 0.6217

in107%" ( / ?) 5.3289 5.0488 4.9572

in1072" ( / 2?) 7.4281 6.0873 5.5789
Here, x=1, and for the ( * , = , * )-junctions and from Eq. (34), one obtains: —=
(0,0,0)

in1075 ( / ?) 8.9090 4.8693 3.1605

in107 ( / ?) 1.1251 1.0790 1.0638

in107* ( / ?) 2.0160 1.5659 1.3798
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Table 3.2 In the HD [(

)- 1— -alloy] ER-LD[(Se; Te; Sn)-

conditions given in Eq. (42) and for a given X, our numerical results of ,

Equations (46, 45, 47, 48, 49), respectively, noting that both

x for given

( )» being new results.

~and , marked in bold, increase with increasing

, and

-alloy] BR, for physical

()

(—

(%)

(%)

Here, x=0. Forthe (  *

+

+ - + . +
1 1

)-junctions, the value of given in Eq. (46) is:

+ - + . +
1 1

+ . + . +
’ 1

= 1.0533.

2.041
2.076
2.65
2.66

2.67

1.084; 1.081; 1.080
1.099; 1.096; 1.095
1.391; 1.388; 1.387
1.396; 1.393; 1.392

1.402; 1.398; 1.397
1.579; 1.576; 1.575

7.490; 7.490; 7.490
9.391; 9.395; 9.397
17.26; 17.29; 17.30
17.20; 17.23; 17.24

17.13; 17.16; 17.17
13.79; 13.81; 13.82

92.82;92.84; 92.84
92.84; 92.85; 92.86
92.89; 92.90; 92.91
92.89; 92.90; 92.91

92.89; 92.90; 92.91
92.87; 92.89; 92.89

14.19; 14.19; 14.19
18.10; 18.11; 18.12
42.49; 42.57; 42.60
42.49; 42.57; 42.60

() =521.6;522.4; 522.6

42.48; 42.56; 42.59
38.44; 38.49; 38.51

Here, x=0.5. Forthe (  *

+

+ - + - +
1 1

+

+ - + - +
1 1

)-junctions, the value of given in Eq. (46) is:

+ . + - +
’ 1

= 1.064.

2.041
2.076
2.68
2.69

2.70

1.293;1.290; 1.288
1.311; 1.307; 1.306
1.675; 1.670; 1.668
1.681; 1.676; 1.674

1.687; 1.682; 1.681
1.880; 1.875; 1.873

7.490; 7.490; 7.490
9.389; 9.395; 9.397
17.94; 17.98; 18.00
17.88; 17.92; 17.93

17.81; 17.85; 17.87
14.77; 14.80; 14.81

91.74; 91.76; 91.77
91.76; 91.78; 91.79
91.83;91.85;91.86
91.83;91.85; 91.86

91.83;91.85;91.86
91.81;91.83; 91.84

14.02; 14.03; 14.03
17.88; 17.90; 17.91
44.16; 44.27; 44.32
44.16; 44.27; 44.32

() =537.25;538.3; 338.8

44.15; 44.27; 44.31
40.68; 40.76; 40.79

Here, x=0.75. Forthe ( *

+

+ - + - +
1 1

+

+ - + - +
1 1

)-junctions, the value of

given in Eq. (46) is:

+ . + - +
’ 1

=1.0712.

+ . + . +
’ ’

2.041
2.076
2.69
2.70

2.71

1.428; 1.423; 1.421
1.447;1.442; 1.439
1.852; 1.846; 1.843
1.859; 1.853; 1.850

1.866; 1.860; 1.857
2.072; 2.065; 2.062

7.490; 7.490; 7.490
9.390; 9.397; 9.401
18.41; 18.46; 18.49
18.34; 18.40; 18.42

18.27; 18.33; 18.35
15.33; 15.37; 15.38

91.07; 91.09; 91.10
91.10; 91.12; 91.13
91.18;91.21;91.22
91.18;91.21;91.22

91.18; 91.21; 91.22
91.16; 91.18; 91.19

13.92; 13.92; 13.93
17.76; 17.78; 17.78
45.15; 45.30; 45.37
45.16; 45.31; 45.37

() =547.0; 548.5; 549.1

45.15; 45.30; 45.37
41.93; 42.04; 42.09

Here, x=1. Forthe (  *

+

+ - + . +
1 1

)-junctions, the value of given in Eq. (46) is:

+ - + . +
1 1

+ . + . +
’ 1

=1.0801.

2.041

1.589; 1.581; 1.577

7.490; 7.490; 7.490

90.29; 90.33; 90.35

13.80; 13.81; 13.81

, are computed, using



2.076 1.609; 1.601; 1.597 9.391; 9.402; 9.407 90.32; 90.36; 90.38 17.61; 17.64; 17.65
2.71 2.072;2.061; 2.056 18.87; 18.96; 19.00 90.43; 90.47; 90.48 46.25; 46.48; 46.59
2.72 2.080; 2.069; 2.064 18.80; 18.89; 18.93 90.43; 90.47; 90.48 46.26; 46.48; 46.59

: = ( ) =558.1; 560.5; 561.7
2.73 2.087;2.077; 2.072 18.73; 18.82; 18.86 90.43; 90.47; 90.48 46.25;46.47; 46.58
3 2.301; 2.290; 2.284 15.95; 16.01; 16.03 90.40; 90.44; 90.46 43.26; 43.43; 43.52
(. )Xx= - -

[+ 1 - - L+ 7 1 -

Here, therearethe 3 ( * )— - junctions, being denotedby: ( * , T, * ),

Then, from above physical conditions, given in Eq. (42), the numerical results of —, , and , are

calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 4.1.

Further, those of , , and  are computed, using Equations (46, 45, 47, 48, 49), respectively, and

reported in the following Table 4.2.

Table 4.1. In the HD [(Se; Te; Sn)- 1— -alloy] ER-LD[(  ; ; )- 1- -alloy] BR and for physical

conditions given in Eq. (42) and for a given x, our numerical results of Th—“, JBpo» Jeno» and Jo are computed, using
hE

Equations (38), (18), (36) and (41), respectively, noting that J,; decreases slightly for given x with increasing ry) -

radius for given x, but it increases strongly with increasing x for given ryc) -radius, being new results.

n*p Se*Mg Te*In sn*cd

Here, x=0, and for the (Se*Mg,Te*In,Sn*Cd )-junctions and from Eq. (34), one obtains: :"T“ =
E

(0, 0, 0) suggesting a completely transparent condition.

Jgpo in 107%° (A/cm?) 5.8715 5.8148 5.7959

Jeno in 10739 (A/cm?) 9.8161 6.5403 4.4542

Joi  in1073% (A/cm?) 5.8725 5.8154 5.7963

Here, x=0.5, and for the (Se*Mg, Te*In,Sn*Cd )-junctions and from Eq. (34), one obtains: :th =
E

(0, 0, 0) suggesting a completely transparent condition.

Jgpo in 10727 (A/cm?) 1.3814 1.3680 1.3636
Jeno in 10732 (A/cm?) 3.0406 3.1481 3.0927
Jo in107%7 (A/cm?) 1.3814 1.3640 1.3636

. T
obtains: M=
The

Here, x=0.75, and for the (Se*Mg,Te*In,Sn*Cd )-junctions and from Eq. (34), one

(0, 0, 0) suggesting a completely transparent condition.

Jgpo in 10724 (A/cm?) 6.2893 6.2285 6.2083
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Jeno in 10731 (A/cm?)
Joy in107%* (A/cm?)

2.8584

3.4715
6.2285

3.8702
6.2083

Here,

x=1, and for

(Se*Mg, Te*In, Sn*Cd

(0, 0, 0) suggesting a completely transparent condition.

)-junctions and from Eq.

(34), one obtains:

Thit —

Jgpo in 10720 (A/cm?) 2.6473 2.6387
Jeno in 10730 (A/cm?) 3.7678 47414
Jo in107%° (A/cm?) 2.6473 2.6387
Table 4.2. In the HD [(Se; Te; Sn)- 1— -alloy] ER-LD[(  ; ; ) 1- -alloy] BR, for physical

conditions given in Eq. (42) and for a given X, our numerical results of , , ,and ,are computed, using

Equations (46, 45, 47, 48, 49), respectively, noting that both ~and , marked in bold, increase with increasing x

for given ( y, being new results.

Voc(V) n Jscl ClmAz Fi(%) (%)

Here, x=0. For the (Se*Mg, Te* In, Sn* Cd)-junctions, the value of a given in Eq. (46) is: o = 1.052.

n*p Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd
2.041 1.068; 1.068; 1.068 7.490; 7.490; 7.490 92.91; 92.91; 92.91 14.20; 14.20; 14.20
2.076 1.083; 1.083; 1.083 9.371; 9.371; 9.371 92.93; 92.93; 92.93 18.08; 18.08; 18.08
2.65 1.371; 1.371; 1.371 17.01; 17.01; 17.01 92.97;92.97; 92.97 41.91;41.92; 41.92
2.66 1.376; 1.376; 1.376 16.95; 16.95; 16.95 92.97;92.97; 92.97 41.92; 41.92; 41.92

: = () =516.5; 516.5; 516.5
2.67 1.381; 1.381; 1.381 16.88; 16.88; 16.88 92.97;92.97; 92.97 41.91; 41.91; 41.91
3 1.557; 1.557; 1.557 13.51; 13.59; 13.59 92.95; 92.95; 92.95 37.90; 37.90; 37.90

Here, x=0.5. For the (Se*Mg, Te*In, Sn*Cd)-junctions, the value of o given in Eq. (46) is: a = 1.069.

n*p Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd
2.041 1.386; 1.386; 1.386 7.490; 7.490; 7.490 91.28;91.28;91.28 13.95; 13.95; 13.95
2.076 1.404; 1.404; 1.404 9.392; 9.392; 9.392 91.30; 91.31; 91.31 17.80; 17.80; 17.80
2.69 1.799; 1.798; 1.798 18.27; 18.27; 18.27 91.38; 91.38; 91.38 44.90; 44.91; 44.91
2.70 1.805; 1.805; 1.805 18.20; 18.20; 18.20 91.38;91.38; 91.38 44.91; 44.92; 44.92

: = () =544.6; 544.7; 544.7
2.71 1.812; 1.812; 1.812 18.13; 18.13; 18.13 91.38; 91.38; 91.38 44.90; 44.91; 44.91
3 2.012;2.012; 2.012 15.18; 15.18; 15.18 91.36; 91.36; 91.36 41.60; 41.61; 41.61

Here, x=0.75. For the (Se*Mg, Te*In, Sn*Cd)-junctions, the value of a given in Eq. (46) is: a = 1.083.

n“p

Se*Mg; Te*In; Sn*Cd

Se*Mg; Te*In; Sn*Cd

Se*Mg; Te*In; Sn*Cd

Se*Mg; Te*In; Sn*Cd

2.041

1.627; 1.626; 1.626

7.490; 7.490; 7.490

90.11; 90.11; 90.11

13.77;13.77; 13.78



2.076

1.647; 1.646; 1.646

9.409; 9.410; 9.410

90.15; 90.15; 90.15

17.61; 17.61; 17.61

2.71 2.119;2.118; 2.118 19.20; 19.20; 19.21 90.26; 90.26; 90.26 46.97; 46.97; 46.98
2.72 2.127;2.126; 2.126 19.13; 19.14; 19.14 90.26; 90.26; 90.26 46.98; 46.98; 46.99
: = () =565.8; 565.8; 565.9
2.73 2.135;2.134;2.134 19.06; 19.06; 19.07 90.26; 90.26; 90.26 46.97; 46.98;46.98
3 2.353;2.353;2.353 16.24; 16.24; 16.24 90.23; 90.23; 90.24 43.95; 43.96; 43.96

Here, x=1. For the (Se*Mg, Te*In, Sn* Cd)-junctions, the value of a given in Eq. (46) is: o = 1.102.

n*p Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd Se*Mg; Te*In; Sn*Cd
2.041 1.965; 1.964; 1.964 7.490; 7.490; 7.490 88.56; 88.56; 88.56 13.54; 13.54; 13.54
2.076 1.987; 1.987; 1.987 9.390; 9.390; 9.391 88.61; 88.61; 88.61 17.27;17.27;,17.27
2.73 2.566; 2.565; 2.565 20.01; 20.01; 20.01 88.77, 88.77; 88.77 48.49; 48.50; 48.50
2.74 2.575;2.575;,2.574 19.94; 19.94; 19.95 88.77; 88.77, 88.77 48.50; 48.51; 48.51
: = () =582.5; 582.6; 582.6
2.75 2.585;2.584;2.584 19.87; 19.87; 19.87 88.77, 88.77; 88.77 48.50; 48.51; 48.51
3 2.830; 2.829; 2.829 17.23;17.23;17.23 88.74; 88.74; 88.74 45.86; 45.87; 45.87
[ & 5 1 - - L 5 5 1 -
Here, thereare3( © )— ;- junctions, being denotedby: ( + , * |, * ).
Then, from above physical conditions, the numerical results of —, , and , are calculated using

Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 5.1. Further, those of

, , , and
following Table 5.2.
Table 5.1. In the HD [(Mg; In; Cd)- CdS;_,Te, -alloy] ER-LD[(Se; Te; Sn)-CdS;_,Te, -alloy] BR, for physical

are computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the

conditions given in Eq. (42) and for a given x, our numerical results of f:, JBno» JEpOa and Jo) are computed, using

Equations (38), (18), (36) and (41), respectively, noting that J,;, decreases slightly with increasing r,(g)-radius for given

X, but it increases strongly with increasing x for given I'yq)-radius, being new results.

p*n Mg*Se In*Te Cd*Sn

Here, x=0, and for the (Mg*Se, In"Te,Cd*Sn )-junctions and from Eq. (34), one obtains: :’;“=
eE

(0, 0, 0) suggesting a completely transparent condition.

Jgno in 1073 (A/cm?) 1.7992 0.6102 0.1643
Jepo in 1073* (A/cm?) 1.5401 1.3943 1.3480
Jon in107%* (A/cm?) 1.7200 1.4553 1.3645

Here, x=0.5, and for the (Mg*Se, In"Te,Cd*Sn )-junctions and from Eq. (34), one obtains: :’;“=
eE

(0, 0, 0) suggesting a completely transparent condition.
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Jgno in 10728 (A/cm?) 4.4047 2.0176 1.1344
Jepo in 10727 (A/cm?) 3.2941 3.1975
Jo in 10727 (A/cm?) 4.0365 3.4958 3.3110

Here,

x=0.75, and for

th  (Mg*Se, In"Te, Cd*Sn

(0, 0, 0) suggesting a completely transparent condition.

)-junctions and  from

(34), one obtains:

eE

Jgno in 10724 (A/cm?) 2.0386 1.0570 0.6572
Jepo in 10723 (A/cm?) 1.5015 1.4600
Joi  in 1072 (A/em?) 1.8348 1.6072 1.5257

Here,

x=1, and for

(Mg*Se, In*Te, Cd*Sn

(0, 0, 0) suggesting a completely transparent condition.

)-junctions and  from

(34), one obtains:

eE

Jgno in 10721 (A/cm?) 8.7909 5.0854 3.4567
Jepo in 10720 (A/cm?) 6.3830 6.2160
Jo in 10720 (A/cm?) 7.7810 6.8915 6.5617
Table 5.2. Inthe HD [(  ; ; )- 1— -alloy] ER-LD[(Se; Te; Sn)- 41— -alloy] BR, for physical

conditions given in Eq. (42) and for a given X, our numerical results of |, , , ,and ,are computed, using

Equations (46, 45, 47, 48, 49), respectively, noting that both ~and , marked in bold, increase with increasing

x for given ( y, being new results.

Voc(V) n Jscil (C%) Fi1(%) i (%)

Here, x=0. For the (Mg* Se, In*Te, Cd* Sn)-junctions, the value of a given in Eq. (46) is: 3 = 1.0533.

p*n Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn
2.041 1.084; 1.081; 1.080 7.490; 7.490; 7.490 92.82;92.84; 92.84 14.19; 14.19; 14.19
2.076 1.099; 1.096; 1.095 9.391; 9.396; 9.397 92.84; 92.86; 92.86 18.10; 18.11; 18.12
2.65 1.391; 1.388; 1.387 17.26; 17.29; 17.30 92.89; 92.90; 92.91 42.49; 42.57; 42.60
2.66 1.396; 1.393; 1.392 17.20; 17.23; 17.24 92.89; 92.90; 92.91 42.49; 42.57; 42.60

: = () =521.6; 522.4; 522.6
2.67 1.402; 1.398; 1.397 17.13; 17.16; 17.17 92.89; 92.90; 92.91 42.48;42.57; 42.59
3 1.579; 1.576; 1.575 13.79; 13.81; 13.82 92.87; 92.89; 92.89 38.44; 38.49; 38.51

Here, x=0.5. For the (Mg*Se, In*Te, Cd*Sn)-junctions, the value of o given in Eq. (46) is: B = 1.071.

p*n Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn
2.041 1.413; 1.409; 1.408 7.490; 7.490; 7.490 91.15;91.16; 91.17 13.93; 13.94; 13.94
2.076 1.431; 1.427; 1.426 9.407;9.413;9.415 91.17;91.19; 91.20 17.81; 17.82;17.82



2.69

1.832; 1.827; 1.826

18.52; 18.57; 18.58

91.26; 91.27; 91.28

45.48; 45.58; 45.63

2.70 1.839; 1.834; 1.833 18.46; 18.50; 18.51 91.26;91.27;91.28 45.48; 45.59; 45.63

: = () =550.2; 551.4; 551.8
2.71 1.846; 1.841; 1.840 18.39; 18.43; 18.44 91.26;91.27;91.28 45.47; 45.58; 45.62
3 2.050; 2.045; 2.043 15.40; 15.43; 15.44 91.23;91.25;91.26 42.16;42.23;42.26

Here, x=0.75. For the (Mg™*Se, In*Te, Cd* Sn)-junctions, the value of a given in Eq. (46) is: 3 = 1.084.

p*n Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn
2.041 1.663; 1.659; 1.657 7.490; 7.490; 7.490 89.94; 89.96; 89.97 13.75; 13.75; 13.75
2.076 1.684; 1.679; 1.677 9.385; 9.391; 9.393 89.98; 90.00; 90.01 17.53; 17.54; 17.55
2.71 2.166; 2.160; 2.158 19.07; 19.11; 19.13 90.09; 90.11; 90.12 46.55; 46.68; 46.73
2.72 2.174; 2.168; 2.166 19.00; 19.05; 19.06 90.09; 90.11; 90.12 46.56; 46.69; 46.74

; = () =561.4; 562.7; 563.3
2.73 2.182;2.176; 2.174 18.93; 18.98; 18.99 90.09; 90.11; 90.12 46.56; 46.68; 46.73
3 2.406; 2.399; 2.397 16.17; 16.20; 16.21 90.06; 90.08; 90.09 43.68; 43.78; 43.81

Here, x=1. For the (Mg*Se, In* Te, Cd*Sn)-junctions, the value of a given in Eq. (46) is: § = 1.105.

p*n Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn Mg*Se; In*Te; Cd*Sn
2.041  2.019;2.012;2.010 7.490; 7.490; 7.490 88.32; 88.35; 88.36 13.50; 13.50; 13.51
2.076  2.076;2.035;2.033 9.385;9.391; 9.394 88.37; 88.40; 88.41 17.22;17.23; 17.24
2.74 2.643;2.635;2.632 20.06; 20.12; 20.14 88.54; 88.57; 88.58 48.66; 48.82; 48.88
2.75 2.653;2.645; 2.642 19.99; 20.04; 20.07 88.54; 88.57; 88.58 48.66; 48.82; 48.88

: = () =584.3; 586.2; 586.8
2.76 2.663;2.655; 2.652 19.81; 19.97; 19.99 88.54; 88.56; 88.58 48.65; 48.81; 48.87
3 2.905; 2.896; 2.892 17.35;17.39; 17.41 88.51; 88.53; 88.55 46.08; 46.20; 46.25

Finally, some concluding remarks, obtained from those numerical results reported in above Tables 2.2, 3.2,
4.2 and 5.2, are discussed as follows.

(i)-As noted in Tables 2.1, 3.1, 4.1 and 5.1, the dark carrier-minority saturation current density ()

decrease slightly with increasing ( y-radius for given x, but it increases strongly with increasing x for

given  ( y-radius. Then, as remarked in Tables 2.2, 3.2, 4.2 and 5.2, at a same , the photovoltaic

conversion factor, ( y( ), also decrease slightly with increasing ( y-radius for given x, but it also

increases strongly with increasing x for given  ( y-radius. In other words, as discussed in Eq. (45), at a same

,both  ( yand () have the same variations for the same physical conditions, noting here that in Ref.

[6] the quality factor n was assumed to be equal to 1.
(ii)-With such variations of ( y( ), as observed in Tables 2.2, 3.2, 4.2 and 5.2, the maximal values of

_, and the corresponding ones of the H-reservoir temperature, , are obtained at =

() )

,» being marked in bold, increase with increasing x for given  ( )-radius.
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(iii)-In particular, we obtain: (a) inthe “( *)— () - alloy-junction solar cells, at x=0 and for

o0 T ), (  )=42.24 % (42.60 %), as those given in Tables 2.2 (3.2), and (b) in the
CH- () - alloy-junction solar cells, at x=0 and for * ( * ), ( )=41.92%
(42.60 %), as those given in Tables 4.2 (5.2). These results can be compared with the corresponding ones
giveninthe *( %) — () crystalline CdS-junction solar cells [1], as: () =43.22% (43.40 %).

(iv)-Finally, we obtain: (a)inthe *( %) — () _ alloy-junction solar cells, at x=1 and for
( T, ( )=46.07 % (46.59 %) and  =556.3 K (561.7 K), as those given in Tables 2.2 (3.2),
and (b) in the *( ") — () _ alloy-junction solar cells, at x=1 and for +* ( * ),
( ) =48.51 % (48.88 %) and =582.6 K (586.8 K), as those given in Tables 4.2 (5.2),

suggesting that in order to obtain the highest efficiencies, the (CdS;_,Sey, CdS;_,Te,)-alloy junctions could
be chosen rather than the crystalline CdS-junctions [1].
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