

SCIREA Journal of Physics ISSN: 2706-8862 http://www.scirea.org/journal/Physics December 19, 2023 Volume 8, Issue 6, December 2023

https://doi.org/10.54647/physics140600

46 % (46 %) [48 % (49 %)]-Maximal Efficiencies $\eta_{Imax.(IImax.)}$ investigated in Two New Single $n^+(p^+) - p(n) X(x)$ -Alloy Junction Solar Cells at 300 K, $[X(x) \equiv CdS_{1-x}Se_x, CdS_{1-x}Te_x]$, $0 \le x \le 1$, According to Highest Hot Reservoir Temperatures, T_H , obtained from Carnot-Efficiency Theorem, being proved by Entropy Law

H. Van Cong, K. C. Ho-Huynh Thi^{*}, P. Blaise, C. T. Pivet^{*}, C. V. Huynh^{*}, M. Cayrol, and S. Munoz Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France. Email: van-cong.huynh@univ-perp.fr ; *huynhvc@outlook.fr

* Groupe de Physique Théorique, 20 Rue du Col de Lli, F-66100 Perpignan, France.

Abstract:

In two new single $n^+(p^+) - p(n) \quad X(x)$ -alloy junction solar cells at 300 K, $[X(x) \equiv CdS_{1-x}Se_x, CdS_{1-x}Te_x], 0 \le x \le 1$, by basing on the same physical model-and-treatment method, as used in our recent works [1, 2], we obtain the highest (or maximal) efficiencies, $\eta_{Imax.(IImax.)}$, given in the following.

At x=0, $\eta_{\text{Imax},(\text{IImax},)}$ =42.24 % (42.60 %) are investigated for CdS_{1-x}Se_x alloy-junctions, as given in Tables 2.2 (3.2), and $\eta_{\text{Imax},(\text{IImax},)}$ =41.92 % (42.60 %), for CdS_{1-x}Te_x alloy-junctions, as given in Tables 4.2 (5.2), which can be compared with the corresponding ones given in the n⁺(p⁺) – p(n) crystalline CdS-junction solar cells [1], as: $\eta_{\text{Imax},(\text{IImax},)}$ = 43.22 % (43.40 %), respectively.

Then, in particular, at x=1, $\eta_{\text{Imax.(IImax.)}}$ =46.07 % (46.59 %) and T_{H} =556.3 K (561.7 K) are obtained for CdS_{1-x}Se_x alloy-junctions, and $\eta_{\text{Imax.(IImax.)}}$ =48.51 % (48.88 %) and T_{H} =582.6 K (586.8 K), for CdS_{1-x}Te_x alloy-junctions, as given in Tables 4.2 (5.2), respectively, which could be found to be the new and original results.

Finally, we can conclude that: (i) $\eta_{\text{Imax},(\text{IImax},)}$ and T_{H} increase with increasing x, and (ii), for obtaining the highest efficiencies, the $(\text{CdS}_{1-x}\text{Se}_x, \text{CdS}_{1-x}\text{Te}_x)$ -alloy junctions could be chosen rather than the crystalline CdS-junctions [1].

Keywords: single $(CdS_{1-x}Se_x, CdS_{1-x}Te_x)$ -alloy junction solar cells; single crystalline CdS-junction solar cells; photovoltaic conversion factor; photovoltaic conversion efficiency

1. Introduction

In two new single $n^+(p^+) - p(n) \quad X(x)$ -alloy junction solar cells at 300 K, $[X(x) \equiv CdS_{1-x}Se_x, CdS_{1-x}Te_x], 0 \le x \le 1$, by basing on the same physical model-and-treatment method, as used in our recent works [1, 2], and also other works [3-6], some important results, obtained in the present work, are reported in the following.

(i)-As noted in Tables 2.1, 3.1, 4.1 and 5.1, the dark carrier-minority saturation current density $J_{ol(oll)}$ decrease slightly with increasing $r_{d(a)}$ -radius for given x, but it increases strongly with increasing x for given $r_{d(a)}$ -radius. Then, as remarked in Tables 2.2, 3.2, 4.2 and 5.2, at a same V_{oc} , the photovoltaic conversion factor, $n_{l(II)}(V_{oc})$, also decrease slightly with increasing $r_{d(a)}$ -radius for given x, but it also increases strongly with increasing x for given $r_{d(a)}$ -radius. In other words, as discussed in Eq. (45), at a same V_{oc} , both $J_{ol(oll)}$ and $n_{l(ll)}$ have the same variations for the same physical conditions. It should be noted here that, in Ref. [3], the "quality factor n" was assumed to be equal to 1, meaning that the maximal efficiency value η_{max} could not be obtained.

(ii)-With such variations of $n_{I(II)}(V_{oc})$, as observed in Tables 2.2, 3.2, 4.2 and 5.2, the maximal values of $\eta_{I(II)}$, $\eta_{I(II)max}$, and the corresponding ones of the H-reservoir temperature, T_H , are obtained at the corresponding $V_{oc} = V_{oc;max}$ -values, marked in bold, increase with increasing x for given $r_{d(a)}$ -radius.

(iii)-At x=0, $\eta_{\text{Imax.(IImax.)}}$ =42.24 % (42.60 %) are investigated for CdS_{1-x}Se_x alloy-junctions, as given in Tables 2.2 (3.2), and $\eta_{\text{Imax.(IImax.)}}$ =41.92 % (42.60 %), for CdS_{1-x}Te_x alloy-junctions, as given in Tables 4.2 (5.2), which can be compared with the corresponding ones given in the n⁺(p⁺) – p(n) crystalline CdS-junction solar cells [1], as: $\eta_{\text{Imax.(IImax.)}}$ = 43.22 % (43.40 %), respectively.

(iv)-Finally, at x=1, $\eta_{Imax.(IImax.)}$ =46.07 % (46.59 %) and T_H =556.3 K (561.7 K) are obtained for CdS_{1-x}Se_x alloy-junctions, and $\eta_{Imax.(IImax.)}$ =48.51 % (48.88 %) and T_H =582.6 K (586.8 K), for CdS_{1-x}Te_x alloy-junctions, as given in Tables 4.2 (5.2), respectively, suggesting that in order to obtain the highest efficiencies, the (CdS_{1-x}Se_x, CdS_{1-x}Te_x)-alloy junctions could be chosen rather than the crystalline CdS-junctions [1].

In Section 2, the energy-band-structure parameters and the dark minority-carrier saturation current density, due to the effects of x- Se concentration, impurity size, and heavy doping, are presented. In Section 3, the photovoltaic effect is investigated. Finally, some numerical results and concluding remarks are given and discussed in Section 4.

2. Energy-band-structure parameters and dark minority-carrier saturation current density, due to the effects of x- Se concentration, impurity size, and heavy doping

First of all, in two single $n^+(p^+) - p(n) X(x)$ - alloy junction solar cells, $X \equiv CdS_{1-x}Se_x, CdS_{1-x}Te_x)$, we present the effects of x-concentration, donor (acceptor) [d(a)]-size, temperature T and heavy doping, affecting the energy-band-structure parameters [1, 2], in order to investigate the total minority-carrier saturation current densities, as follows.

A. Effects of x-Se (Te) concentration

In the $n^+(p^+) - p(n)$ single $n^+(p^+) - p(n) X(x)$ - alloy junction at T=0 K, the energy-band-structure parameters are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by [1, 2]: $m_c(x)/m_o = 0.11 (0.095) \times x + 0.197 \times (1 - x)$, and

$$m_{v}(x)/m_{o} = 0.45 \ (0.82) \times x + 0.801 \times (1 - x), \tag{1}$$

so that when x=0 one obtains: $m_c(x)/m_o = m_{c(CdS)}/m_o = 0.197$, $m_v(x)/m_o = m_{v(CdS)}/m_o = 0.801$, and as x=1, one has: $m_c(x)/m_o = m_{c(CdSe)}/m_o = 0.11$, $m_c(x)/m_o = m_{c(CdTe)}/m_o = 0.095$, $m_v(x)/m_o = m_{v(CdSe)}/m_o = 0.45$, and finally, $m_v(x)/m_o = m_{v(CdTe)}/m_o = 0.82$.

(ii)-The unperturbed relative dielectric constant of the intrinsic of the single crystalline X- alloy is found to be defined by [1, 2]:

$$\varepsilon_0(x) = 10.2 \ (10.31) \ \times x \ + 9 \ \times \ (1 - x), \tag{2}$$

which gives: as x=0, $\epsilon_o(x) = \epsilon_{CdS} = 9$, and as x=1, $\epsilon_o(x) = \epsilon_{CdSe} = 10.2$ and $\epsilon_o(x) = \epsilon_{CdTe} = 10.31$.

(iii)-Finally, the unperturbed band gap is found to be given by [1, 2]:

$$E_{g0}(x) \text{ in eV} = 1.84 (1.62) \times x + 2.58 \times (1 - x), \tag{3}$$

giving rise to: $E_{go}(x) = E_{gCdS}(x) = 2.58 \text{ eV}$ as x=0, and as x=1, on gets: $E_{go}(x) = E_{gCdSe}(x) = 1.84 \text{ eV}$ and $E_{go}(x) = E_{gCdTe}(x) = 1.62 \text{ eV}$.

Therefore, we can define the effective donor (acceptor)-ionization energy at $r_{d(a)} = r_{do(ao)}$ in absolute values as [1, 2]:

$$E_{do(ao)}(x) = \frac{13600 \times [m_{c(v)}(x)/m_0]}{[\varepsilon_0(x)]^2} \text{ meV},$$
(4)

and then, the isothermal bulk modulus, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{(4\pi/3) \times (r_{do(ao)})^3} .$$
(5)

B. Effects of Impurity-size, with a given x

Here, the effects of $r_{d(a)}$ and x-Se concentration affect the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant $\epsilon(r_{d(a)}, x)$, in the following.

At $r_{d(a)} = r_{do(ao)} = r_{S(Cd)} = 0.104 \text{ nm} (0.148 \text{ nm})$, respectively, the needed boundary conditions are found to be, for the impurity-atom volume $V = (4\pi/3) \times (r_{d(a)})^3$, $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$, for the pressure p, $p_o = 0$, and for the deformation potential energy (or the strain energy) σ , $\sigma_o = 0$. Further, the two important equations [1, 2, 4], needed to determine the σ -variation $\Delta\sigma \equiv \sigma - \sigma_o = \sigma$, are defined by: $\frac{dp}{dV} = -\frac{B}{V}$ and $p = -\frac{d\sigma}{dV}$. giving: $\frac{d}{dV} (\frac{d\sigma}{dV}) = \frac{B}{V}$. Then, by an integration, one gets:

$$\left[\Delta\sigma(r_{d(a)}, x)\right]_{d(a)} = B_{do(ao)}(x) \times (V - V_{do(ao)}) \times \ln\left(\frac{V}{V_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3.$$
(6)

Furthermore, we also shown [1, 2, 3] that, as $r_{d(a)} > r_{do(ao)}$ ($r_{d(a)} < r_{do(ao)}$), the compression (dilatation) corresponding the repulsive (attractive) force increases (decreases) the energy gap $E_{gn(gp)}(r_{d(a)}, x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)}, x)$ in absolute values, obtained in the effective Bohr model, which is represented by: $\pm [\Delta\sigma(r_{d(a)}, x)]_{n(p)}$, respectively,

$$E_{gn(gp)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = + \left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)}$$

for $r_{d(a)} \ge r_{do(ao)}$, and for $r_{d(a)} \le r_{do(ao)}$,

$$E_{gn(gp)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = - \left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)}.$$
 (7)

Therefore, from Equations 6 and 7, one obtains the expressions for relative dielectric constant $\epsilon(r_{d(a)}, x)$ and energy band gap $E_{gn(gp)}(r_{d(a)}, x)$, as:

(i)-for
$$r_{d(a)} \ge r_{do(ao)}$$
, since $\varepsilon(r_{d(a)}, x) = \frac{\varepsilon_0(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \le \varepsilon_0(x)$,

 $E_{gn(gp)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0,$ (8a) according to the increase in both $E_{gn(gp)}(r_{d(a)}, x)$ and $E_{d(a)}(r_{d(a)}, x)$, for a given x, and

(ii)-for
$$r_{d(a)} \le r_{do(a0)}$$
, since $\varepsilon(r_{d(a)}, x) = \frac{\varepsilon_0(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(a0)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(a0)}}\right)^3}} \ge \varepsilon_0(x)$, with a condition, given by:

$$\left[\left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 - 1 \right] \times \ln \left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 < 1,$$

$$E_{gn(gp)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 - 1 \right] \times \ln \left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 \le 0,$$

$$(8.b)$$

corresponding to the decrease in both $E_{gn(gp)}(r_{d(a)}, x)$ and $E_{d(a)}(r_{d(a)}, x)$, for a given x.

C. Effect of T, with given x and $r_{d(a)}$

Here, as given in our previous works [1, 2], the intrinsic band gap $E_{gin(gip)}(r_{d(a)}, x, T)$ is given by:

$$E_{gin(gip)}(r_{d(a)}, x, T) \text{ in } eV = E_{gn(gp)}(r_{d(a)}, x) - \frac{10^{-4} \times T^2}{T + 94 \text{ K}} \times \{4.3779x + 7.0043 \times (1 - x)\},$$
(9)

which decreases, for given x and $r_{d(a)}$, with an increasing T.

Furthermore, in the n(p)-type X(x)-alloy, one can define the intrinsic carrier concentration $n_{in(ip)}$ by:

$$n_{i n(p)}^{2}(T, r_{d(a)}, x) \equiv N_{c}(T, x) \times N_{v}(T, x) \times \exp\left(\frac{-E_{gin(p)}(T, r_{d(a)}, x)}{k_{B}T}\right),$$
(10)

where $N_{c(v)}(T, x)$ is the conduction (valence)-band density of states, being defined as:

$$N_{c(v)}(T, x) = 2 \times \left(\frac{m_{c(v)}(x) \times k_B T}{2\pi\hbar^2}\right)^{\frac{3}{2}} (cm^{-3}).$$
(11)

So, the numerical results of $E_{d(a)}(r_{d(a)}, x)$, $B_{do(ao)}(x)$, $\epsilon(r_{d(a)}, x)$ and $E_{gin(gip)}(r_{d(a)}, x, T)$, calculated using Equations 4, 5, 8a (8b) and 9, are reported in following Tables 1.1 and 1.2.

Table 1.1 From Equations (5, 8a, 8b, 9) and in the n(p)-type $CdS_{1-x}Se_x$ -alloy, the numerical results of the energyband-structure parameters, reported below, suggest that, with increasing x and $r_{d(a)}$, both $B_{do(ao)}(x)$ and $\varepsilon(r_{d(a)}, x)$ decrease, while the other ones increase.

Donor		S	Se	Te	Sn
r_d (nm)	7	r _{do} =0.104	0.114	0.132	0.140
x	7	0, 0.5, 0.75, 1	0, 0.5, 0.75, 1	0, 0.5, 0.75, 1	0, 0.5, 0.75, 1
B _{do} (x) in 1	$10^{8} (N/m^{2})$ >	11.2, 7.70, 6.21, 4.89			
ε(r _d ,x) ↘		9.00 , 9.60, 9.90, 10.2	8.63, 9.21, 9.49, 9.78	6.81, 7.26, 7.49, 7.72	5.95, 6.35, 6.55, 6.75
$E_d(r_d, x) m$	neV ⊅	33.1, 22.6, 18.3, 14.4	36.0, 24.6, 19.9, 15.6	57.8, 39.6, 31.9, 25.1	75.5, 51.7, 41.7, 32.8
$E_{gn}(r_d, x) \epsilon$	eV 🗡	2.58 , 2.21, 2.02, 1.84	2.58, 2.21, 2.03, 1.84	2.60, 2.23, 2.04, 1.85	2.62, 2.24, 2.05, 1.86
$E_{gin}(T = 3$	00K, r _d , x) eV ⊅	2.42 , 2.08, 1.91, 1.74	2.42, 2.08, 1.91, 1.74	2.44, 2.10, 1.92, 1.75	2.46, 2.11, 1.93, 1.76
Acceptor		Ga	Mg	In	Cd
Acceptor r_a (nm)	7	Ga 0.126	Mg 0.140	In 0.144	Cd r _{ao} =0.148
Acceptor r_a (nm) x	7	Ga 0.126 0 , 0.5, 0.75, 1	Mg 0.140 0 , 0.5, 0.75, 1	In 0.144 0 ,0.5, 0.75, 1	Cd r _{ao} =0.148
Acceptor r_a (nm) x $B_{a0}(x)$ in 1	∕ 10 ⁸ (N/m ²) ∖	Ga 0.126 0 , 0.5, 0.75, 1	Mg 0.140 0 , 0.5, 0.75, 1	In 0.144 0 ,0.5, 0.75, 1	Cd r _{ao} =0.148 0 , 0.5, 0.75, 1 15.9, 10.9, 8.80, 6.94
Acceptor r_a (nm) x $B_{ao}(x)$ in 1 $\varepsilon(r_a, x) \searrow$	ר גענער אין	Ga 0.126 0 , 0.5, 0.75, 1 9.97, 10.6, 11.0, 11.3	Mg 0.140 0 , 0.5, 0.75, 1 9.12, 9.72, 10.0, 10.3	In 0.144 0,0.5,0.75,1 9.03,9.63,9.93,10.2	Cd r _{ao} =0.148 0 , 0.5, 0.75, 1 15.9, 10.9, 8.80, 6.94 9.00, 9.60, 9.90, 10.2
Acceptor r_a (nm) x $B_{ao}(x)$ in 1 $\varepsilon(r_a, x) \searrow$ $E_a(r_a, x) n$	7 10 ⁸ (N/m ²) \> neV ≯	Ga 0.126 0 , 0.5, 0.75, 1 9.97, 10.6, 11.0, 11.3 110, 75.2, 60.8, 47.9	Mg 0.140 0 , 0.5, 0.75, 1 9.12, 9.72, 10.0, 10.3 131, 89.9, 72.7, 57.3	In 0.144 0,0.5,0.75,1 9.03,9.63,9.93,10.2 134,91.7,74.1,58.4	Cd r _{ao} =0.148 0 , 0.5, 0.75, 1 15.9, 10.9, 8.80, 6.94 9.00, 9.60, 9.90, 10.2 134, 92.3, 74.6, 58.8
Acceptor r_a (nm) x $B_{ao}(x)$ in 1 $\varepsilon(r_a, x) \searrow$ $E_a(r_a, x) n$ $E_{gp}(r_a, x)$	7 10 ⁸ (N/m ²) ∖ neV 7 eV 7	Ga 0.126 0, 0.5, 0.75, 1 9.97, 10.6, 11.0, 11.3 110, 75.2, 60.8, 47.9 2.55, 2.19, 2.01, 1.83	Mg 0.140 0 , 0.5, 0.75, 1 9.12, 9.72, 10.0, 10.3 131, 89.9, 72.7, 57.3 2.58, 2.21, 2.02, 1.84	In 0.144 0,0.5,0.75,1 9.03,9.63,9.93,10.2 134,91.7,74.1,58.4 2.58,2.21,2.02,1.84	Cd r _{ao} =0.148 0 , 0.5, 0.75, 1 15.9, 10.9, 8.80, 6.94 9.00, 9.60, 9.90, 10.2 134, 92.3, 74.6, 58.8 2.58, 2.21, 2.03, 1.84

Table 1.2 From Equations (5, 8a, 8b, 9) and in the n(p)-type $CdS_{1-x}Te_x$ -alloy, the numerical results of the energyband-structure parameters, reported below, suggest that, with increasing x and $r_{d(a)}$, both $B_{do(ao)}(x)$ and $\varepsilon(r_{d(a)}, x)$ decrease, while the other ones increase.

Donor		S	Se	Te	Sn
r _d (nm)	<i>r</i>	r _{do} =0.104	0.114	0.132	0.140
x	7	0 , 0.5 , 0.75, 1	0 , 0.5, 0.75, 1	0 , 0.5, 0.75, 1	0 , 0.5, 0.75, 1
ε(r _d ,x) ↘		9.00 , 9.65, 9.98, 10.3	8.63, 9.26, 9.57, 9.89	6.81, 7.30, 7.55, 7.80	5.95, 6.39, 6.60, 6.82
$B_{do}(r_{d0}, x)$ i	$n \ 10^8 \ (N/m^2)$ >	11.2, 7.24, 5.59, 4.13			
$E_d(r_d, x)$ me	eV 🖊	33.1, 21.3, 16.4, 12.2	36.0, 23.2, 17.9, 13.2	57.8, 37.2, 28.7, 21.2	75.5, 48.6, 37.6, 27.8
$E_{gn}(r_d, x) e^{t}$	V Z	2.58 , 2.10, 1.86, 1.62	2.58, 2.10, 1.86, 1.62	2.60, 2.11, 1.87, 1.63	2.62, 2.13, 1.88, 1.63
$E_{gin}(T = 30$	00K, r _d , x) eV ⊅	2.42 , 1.97, 1.74, 1.52	2.42, 1.97, 1.75, 1.52	2.44, 1.98, 1.76, 1.53	2.46, 2.00, 1.77, 1.53

Acceptor		Ga	Mg	In	Cd
r _a (nm)	7	0.126	0.140	0.144	r _{ao} =0.148
x	7	0 , 0.5, 0.75, 1	0 , 0.5, 0.75, 1	0 , 0.5,0.75, 1	0 , 0.5, 0.75, 1
ε(r _a ,x) ↘		9.96, 10.7, 11.0, 11.4	9.11, 9.78, 10.1, 10.4	9.03, 9.68, 10.0, 10.3	9.00 , 9.65, 9.98, 10.3
$B_{ao}(r_{a0}, x)$ in	$10^{8} (N/m^{2})$ >				15.9, 13.9, 13.1, 12.4
$E_a(r_a, x) \text{ meV}$	1	110, 96.4, 90.7, 85.5	131, 115, 108, 102	134, 117, 110, 104	134, 118, 111, 105
$E_{gp}(r_a, x) eV$	7	2.55, 2.08, 1.84, 1.60	2.58, 2.10, 1.86, 1.62	2.58, 2.10, 1.86, 1.62	2.58 , 2.10, 1.86, 1.62
$E_{gip}(T = 300$	K, r _a , x) eV ⊅	2.39, 1.95, 1.72, 1.50	2.41, 1.97, 1.74, 1.52	2.42, 1.97, 1.74, 1.52	2.42 , 1.97, 1.75, 1.52

D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works [3], the Fermi energy $E_{Fn}(-E_{Fp})$, band gap narrowing (BGN), and apparent band gap narrowing (ABGN), are reported in the following.

First, the Fermi energy $E_{Fn}(-E_{Fp})$, obtained for any T and any d(a)-density, $N_{d(a)}$, being investigated in our previous paper [3], with a precision of the order of 2.11×10^{-4} , is found to be given by:

$$\frac{E_{Fn}(u)}{k_BT}\left(\frac{-E_{Fp}(u)}{k_BT}\right) = \frac{G(u) + Au^BF(u)}{1 + Au^B}, A = 0.0005372 \text{ and } B = 4.82842262,$$
(12)

where u is the reduced electron density, $u(N_{d(a)}, T, x) \equiv \frac{N_{d(a)}}{N_{c(v)}(T, x)}$, $F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$, $a = \left[(3\sqrt{\pi}/4) \times u\right]^{2/3}$, $b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2$, $c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4$, and $G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}$; $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0$.

Here, one notes that: (i) as $u \gg 1$, according to the HD [d(a)-X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function F(u), and (ii) $\frac{E_{Fn}(u\ll 1)}{k_BT}(\frac{-E_{Fp}(u\ll 1)}{k_BT}) \ll -1$, to the LD [a(d)- $CdS_{1-x}Se_x$ alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u).

Secondly, if denoting the effective Wigner-Seitz radius $r_{sn(sp)}$, characteristic of the interactions, by:

$$r_{sn(sp)}(N_{d(a)}, r_{d(a)}, x) = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}}{N_{d(a)}}\right)^{1/3} \times \frac{m_{c(v)}(x)}{\varepsilon(r_{d(a)}, x)}, g_{c(v)} = 1(1),$$
(13)

the correlation energy of an effective electron gas, $E_{cn(cp)}(N_{d(a)}, r_{d(a)}, x)$, is given as [4]:

$$E_{cn(cp)}(N_{d(a)}, r_{d(a)}, x) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}}$$

Now, taking into account various spin-polarized chemical potential-energy contributions such as [4]: exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowing (BGN) are given as follows.

Then, in the n-type HD X(x)- alloy, the BGN is found to be given by:

$$\Delta E_{gn}(N_d, r_d, x) \simeq a_1 \times \frac{\varepsilon_o(x)}{\varepsilon(r_d, x)} \times N_r^{1/3} + a_2 \times \frac{\varepsilon_o(x)}{\varepsilon(r_d, x)} \times N_r^{\frac{1}{3}} \times (2.503 \times [-E_{cn}(r_{sn}) \times r_{sn}]) + a_3 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_d, x)}\right]^{5/4} \times \sqrt{\frac{m_v}{m_c}} \times N_r^{1/4} + a_4 \times \sqrt{\frac{\varepsilon_o(x)}{\varepsilon(r_d, x)}} \times N_r^{1/2} \times 2 + a_5 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_d, x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}}, N_r \equiv \left(\frac{N_d}{9.999 \times 10^{17} \, \text{cm}^{-3}}\right), \quad (14n)$$

where $a_1 = 3.8 \times 10^{-3} (eV)$, $a_2 = 6.5 \times 10^{-4} (eV)$, $a_3 = 2.8 \times 10^{-3} (eV)$, $a_4 = 5.597 \times 10^{-3} (eV)$ and $a_5 = 8.1 \times 10^{-4} (eV)$, and in the p-type HD X(x)- alloy, as:

$$\Delta E_{gp}(N_a, r_a, x) \simeq a_1 \times \frac{\varepsilon_o(x)}{\varepsilon(r_a x)} \times N_r^{1/3} + a_2 \times \frac{\varepsilon_o(x)}{\varepsilon(r_a x)} \times N_r^{\frac{1}{3}} \times (2.503 \times [-E_{cp}(r_{sp}) \times r_{sp}]) + a_3 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_a x)}\right]^{5/4} \times \sqrt{\frac{m_c}{m_v}} \times N_r^{1/4} + 2a_4 \times \sqrt{\frac{\varepsilon_o(x)}{\varepsilon(r_a x)}} \times N_r^{1/2} + a_5 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_a x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}}, \ N_r \equiv \left(\frac{N_a}{9.999 \times 10^{17} \, cm^{-3}}\right),$$
(14p)

where $a_1 = 3.15 \times 10^{-3}$ (eV), $a_2 = 5.41 \times 10^{-4}$ (eV), $a_3 = 2.32 \times 10^{-3}$ (eV), $a_4 = 4.12 \times 10^{-3}$ (eV) and $a_5 = 9.80 \times 10^{-5}$ (eV).

Therefore, in the HD[d(a)- X(x) - alloy] ER, we can define the effective extrinsic carrier concentration, $n_{en(ep)}^{*}$, by :

$$n_{en(ep)}^{*}(N_{d(a)}, T, r_{d(a)}, x) \equiv \sqrt{N_{d(a)} \times p_{o}(n_{o})} = n_{in(ip)}(T, r_{d(a)}, x) \times exp\left[\frac{\Delta E_{agn(agp)}}{2k_{B}T}\right],$$
(15)

where the apparent band gap narrowing (ABGN), $\Delta E_{agn(agp)}$, is defined by:

$$\Delta E_{agn}(N_d, T, r_d, x) \equiv \Delta E_{gn}(N_d, r_d, x) + k_B T \times ln\left(\frac{N_d}{N_c(T, x)}\right) - E_{Fn}(N_d, T, x),$$
(16n)

$$\Delta E_{agp}(N_a, T, r_a, x) \equiv \Delta E_{gp}(N_a, r_a, x) + k_B T \times ln\left(\frac{N_a}{N_\nu(T, x)}\right) + E_{Fp}(N_a, T, x)].$$
(16p)

E. Total minority-carrier saturation current density

In the two $n^+(p^+) - p(n) X(x)$ - alloy -junction solar cells, denoted respectively by I(II), the total carrierminority saturation current density is defined by:

$$J_{oI(oII)} \equiv J_{Eno(Epo)} + J_{Bpo(Bno)} \tag{17}$$

where $J_{Bpo(Bno)}$ is the minority-electron (hole) saturation current density injected into the LD[a(d)- X(x)alloy] BR, and $J_{Eno(Epo)}$ is the minority-hole (electron) saturation-current density injected into the HD[d(a)-X(x)- alloy] ER.

$J_{Bpo(Bno)}$ in the LD[a(d)- X(x)- alloy]BR

Here, $J_{Bpo(Bno)}$ is determined by [1, 2]:

$$J_{Bpo(Bno)}(N_{a(d)}, T, r_{a(d)}, x) = \frac{e \times n_{ip(in)}^{2}(T, r_{a(d)}, x) \times \sqrt{\frac{D_{e(h)}(N_{a(d)}, T, r_{a(d)}, x)}{\tau_{eB(hB)}(N_{a(d)})}}}{N_{a(d)}},$$
(18)

where $n_{ip(in)}^2(T, r_{d(a)}, x)$ is determined Eq. (10), $D_{e(h)}(N_{a(d)}, T, r_{a(d)}, x)$ is the minority electron (minority hole) diffusion coefficient:

$$D_e(N_a, T, r_a, x) = \frac{k_B T}{e} \times \left[850 + \frac{5750}{1 + \left(\frac{N_a}{8 \times 10^{17} cm^{-3}}\right)^{1.8}} \right] \times \left(\frac{\varepsilon(r_a, x)}{\varepsilon_o(x)}\right)^2 (cm^2 s^{-1}),$$
(19a)

$$D_h(N_d, T, r_d, x) = \frac{k_B T}{e} \times \left[85 + \frac{1165}{1 + \left(\frac{N_d}{4 \times 10^{17} \, cm^{-3}}\right)^{0.44}} \right] \times \left(\frac{\varepsilon(r_d, x)}{\varepsilon_o(x)}\right)^2 (cm^2 s^{-1}),$$
(19b)

and $\tau_{eB(hB)}(N_{a(d)})$ is the minority electron (minority hole) lifetime in the BR:

$$\tau_{eB}(N_a)^{-1} = \frac{1}{10^{-7}} + 3 \times 10^{-13} \times N_a + 1.83 \times 10^{-31} \times N_a^2,$$
(20a)

$$\tau_{hB}(N_d)^{-1} = \frac{1}{10^{-7}} + 11.76 \times 10^{-13} \times N_d + 2.78 \times 10^{-31} \times N_d^2.$$
(20b)

$J_{Eno(Epo)}$ in the HD[d(a)- X(x)- alloy]ER

In the non-uniformly and heavily doped emitter region of d(a)- X(x) devices, the effective Gaussian d(a)density profile or the d(a) (majority-e(h)) density, is defined in such the HD[d(a)- X(x) alloy] ER-width W, as [1, 2]:

$$\rho_{d(a)}(y, N_{d(a)}, W) = N_{d(a)} \times exp\left\{-\left(\frac{y}{W}\right)^2 \times ln\left[\frac{N_{d(a)}}{N_{do(ao)}(W)}\right]\right\} \equiv N_{d(a)} \times \left[\frac{N_{d(a)}}{N_{do(ao)}(W)}\right]^{-\left(\frac{y}{W}\right)^2}, \ 0 \le y \le W,$$

$$N_{do(ao)}(W) \equiv 7.9 \times 10^{17} \ (2 \times 10^5) \times exp\left\{-\left(\frac{W}{184.2 \ (1) \times 10^{-7} \ cm}\right)^{1.066 \ (0.5)}\right\} \ (cm^{-3}), \tag{21}$$

where $\rho_{d(a)}(y=0) = N_{d(a)}$ is the surface d(a)-density, and at the emitter-base junction, $\rho_{d(a)}(y=W) = N_{do(ao)}(W)$, which decreases with increasing W. Further, the "effective doping density" is defined by:

$$N_{d(a)}^{*}(y, N_{d(a)}, T, r_{d(a)}, x) \equiv \rho_{d(a)}(y) / exp \left[\frac{\Delta E_{agn(agp)}(\rho_{d(a)}, T, r_{d(a)}, x)}{k_{B}T} \right],$$

$$N_{d(a)}^{*}(y = 0, N_{d(a)}, T, r_{d(a)}, x) \equiv \frac{N_{d(a)}}{exp \left[\frac{\Delta E_{agn(agp)}(N_{d(a)}, T, r_{d(a)}, x)}{k_{B}T} \right]}, \text{ and}$$

$$N_{d(a)}^{*}(y = W, T, r_{d(a)}, x) \equiv \frac{N_{do(ao)}(W)}{exp \left[\frac{\Delta E_{agn(agp)}(N_{do(ao)}(W), T, r_{d(a)}, x)}{k_{B}T} \right]},$$
(22)

where the apparent band gap narrowing $\Delta E_{agn(agp)}$ is determined in Eq. (16), replacing $N_{d(a)}$ by $\rho_{d(a)}(y, N_{d(a)}, W)$.

Now, we can define the minority hole (minority electron) transport parameter $F_{h(e)}$ as:

$$F_{h(e)}(y, N_{d(a)}, T, r_{d(a)}, x) \equiv \frac{n_{in(ip)}^{2}(T, r_{d(a)})}{p_{o}(n_{o}) \times D_{h(e)}} = \frac{N_{d(a)}^{*}}{D_{h(e)}} \equiv \frac{N_{d(a)}}{D_{h(e)}} \times \left(\frac{n_{in(ip)}}{n_{in(ip)}^{*}}\right)^{2} \equiv \frac{N_{d(a)}}{D_{h(e)} \times exp\left[\frac{\Delta E_{agn(agp)}}{k_{B}T}\right]} (cm^{-5} \times s),$$
(23)

the minority hole (electron) diffusion length, $L_{h(e)}(y, N_{d(a)}, T, r_{d(a)}, x)$ by:

$$L_{h(e)}^{-2}(y, N_{d(a)}, T, r_{d(a)}, x) = \left[\tau_{hE(eE)} \times D_{h(e)}\right]^{-1} = \left(C \times F_{h(e)}\right)^{2} = \left(C \times \frac{N_{d(a)}^{*}}{D_{h(e)}}\right)^{2} = \left(C \times \frac{n_{in(ip)}^{2}(T, r_{d(a)})}{p_{o}(n_{o}) \times D_{h(e)}}\right)^{2},$$

where the constant C was chosen to be equal to: $2.0893 \times 10^{-30} (cm^4/s)$, and the minority hole (minority electron) lifetime $\tau_{hE(eE)}$ as:

$$\tau_{hE(eE)} \equiv \frac{1}{D_{h(e)} \times L_{h(e)}^{-2}} = \frac{1}{D_{h(e)} \times (C \times F_{e(h)})^2}.$$
(24)

Then, under low-level injection, in the absence of external generation, and for the steady-state case, we can define the minority-h(e) density by:

$$p_o(y)[n_o(y)] \equiv \frac{n_{in(ip)}^2}{N_{d(a)}^*(y=W,T,r_{d(a)},x)},$$
(25)

and a normalized excess minority-h(e) density u(x) or a relative deviation between p(y)[n(y)] and $p_o(y)[n_o(y)]$.

$$u(y) \equiv \frac{p(y)[n(y)] - p_o(y)[n_o(y)]}{p_o(y)[n_o(y)]},$$
(26)

which must verify the two following boundary conditions as:

$$u(y = 0) \equiv \frac{-J_h(y=0)[J_e(y=0)]}{eS \times p_o(y=0)[n_o(y=0)]},$$

$$u(y = W) = exp\left(\frac{V}{n_{I(II)}(V) \times V_T}\right) - 1.$$

Here, $n_{I(II)}(V)$ is a photovoltaic conversion factor determined latter, $S\left(\frac{cm}{s}\right)$ is the surface recombination velocity at the emitter contact, V is the applied voltage, $V_T \equiv (k_B T/e)$ is the thermal voltage, and the minority-hole (electron) current density $J_{h(e)}(y, r_{d(a)}, x)$.

Further, from the Fick's law for minority hole (electron)-diffusion equations, one has [1, 2]:

$$J_{h(e)}(y, r_{d(a)}, x) = \frac{-e(+e) \times n_{in(ip)}^2}{F_{h(e)}(y)} \times \frac{du(y)}{dy} = \frac{-e(+e)n_{in(ip)}^2 D_{h(e)}(N_{d(a)}, r_{d(a)}, x)}{N_{d(a)}^*(y, r_{d(a)}, x)} \times \frac{du(y)}{dy},$$
(27)

where $N_{d(a)}^{*}(y, r_{d(a)}, x)$ is given in Eq. (22), $D_{h(e)}$ and $F_{h(e)}$ are determined respectively in Equations (19) and (23), and from the minority-hole (electron) continuity equation as:

$$\frac{dJ_{h(e)}(y,r_{d(a)},x)}{dy} = -e(+e) \times n_{i\,n(p)}^2 \times \frac{u(y)}{F_{h(e)}(y) \times L_{h(e)}^2(y)} = -e(+e) \times n_{i\,n(p)}^2 \times \frac{u(y)}{N_{d(a)}^*(y,r_{d(a)},x) \times \tau_{hE(eE)}}$$

(28)

Therefore, the following second-order differential equation is obtained:

$$\frac{d^2u(y)}{dy^2} - \frac{dF_{h(e)}(y)}{dy} \times \frac{du(y)}{dy} - \frac{u(y)}{L_{h(e)}^2(y)} = 0,$$
(29)

Then, taking into account the two above boundary conditions given in Eq. (22), one thus gets the general solution of this Eq. (29), as:

$$u(y) = \frac{\sinh(P(y)) + I(W,S) \times \cosh(P(y))}{\sinh(P(W)) + I(W,S) \times \cosh(P(W))} \times \left(exp\left(\frac{V}{n_{I(II)}(V) \times V_T}\right) - 1\right),\tag{30}$$

where the factor I(W, S) is determined by: $D_{h(e)}(N_d, T, r_{d(a)}, x)$

$$I(T, r_{d(a)}, x, W, S) = \frac{D_{h(e)}(y = W, N_{do(ao)}(W), T, r_{d(a)}, x)}{S \times L_{h(e)}(y = W, N_{do(ao)}(W), T, r_{d(a)}, x)}.$$
(31)

Further, since $\frac{dP(y)}{dy} \equiv C \times F_{h(e)}(y) = \frac{1}{L_{h(e)}(x)}$, $C = 2.0893 \times 10^{-30} (cm^4/s)$, for the X(x)-alloy, being an

empirical parameter, chosen for each crystalline semiconductor, P(y) is thus found to be defined by:

$$P(y) \equiv \int_{0}^{y} \frac{dy}{L_{h(e)}(y)} , \quad 0 \le y \le W \quad , \quad P(y = W) \equiv \left(\frac{1}{W} \times \int_{0}^{W} \frac{dy}{L_{h(e)}(y)}\right) \times W \equiv \frac{W}{L_{h(e)}^{*}(y)} = \frac{L_{h(e)}(y)}{L_{h(e)}^{*}(y)} \times \frac{W}{L_{h(e)}(y)}$$
(32)

where $L_{h(e)}^{*}(y)$ is the effective minority hole (minority electron) diffusion length. Further, the minority-hole (electron) current density injected into the HD[d(a)- X(x) alloy] ER is found to be given by:

$$J_{h(e)}(y, W, N_{d(a)}, T, r_{d(a)}, x, S, V) = -J_{Eno}(y, W, N_d, T, r_d, x, S) \left[J_{Epo}(y, W, N_a, T, r_a, x, S)\right] \times \left(exp\left(\frac{V}{n_{I(II)}(V) \times V_T}\right) - 1\right),$$
(33)

where $J_{Eno(Epo)}$ is the saturation minority hole (minority electron) current density,

$$J_{Eno(Epo)}(y, W, N_{d(a)}, T, r_{d(a)}, x, S) = \frac{en_{in(ip)}^{2} \times D_{h(e)}}{N_{d(a)}^{*}(y, N_{d(a)}, T, r_{d(a)}, x) \times L_{h(e)}} \times \frac{cosh(P(x)) + I(W, S) \times sinh(P(x))}{sinh(P(W)) + I(W, S) \times cosh(P(W))}.$$
(34)

In the following, we will denote P(W) and I(W, S) by P and I, for a simplicity. So, Eq. (30) gives:

$$J_{Eno(Epo)}(y = 0, W, N_{d(a)}, T, r_{d(a)}, x, S) = \frac{en_{in(ip)}^{2} \times D_{h(e)}}{N_{d(a)}^{*}(y, N_{d(a)}, T, r_{d(a)}, x) \times L_{h(e)}} \times \frac{1}{\sinh(P) + I \times \cosh(P)} ,$$
(35)

$$J_{Eno(Epo)}(y = W, W, N_{d(a)}, T, r_{d(a)}, x, S) = \frac{en_{in(ip)}^{2} \times D_{h(e)}}{N_{d(a)}^{*}(y = W, N_{d(a)}, T, r_{d(a)}, x) \times L_{h(e)}} \times \frac{\cosh(P) + I \times \sinh(P)}{\sinh(P) + I \times \cosh(P)},$$
(36)

and then,

$$\frac{J_{h(e)}(y=0,W,N_{d(a)},T,r_{d(a)},x,S,V)}{J_{h(e)}(y=W,W,N_{d(a)},T,r_{d(a)},x,S,V)} \equiv \frac{J_{Eno(Epo)}(y=0,W,N_{d(a)},T,r_{d(a)},x,S)}{J_{Eno(Epo)}(y=W,W,N_{d(a)},T,r_{d(a)},x,S)} = \frac{1}{\cosh(P) + I \times \sinh(P)}.$$
(37)

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region by:

$$Q_{h(e)}^{*}(y = W, N_{d(a)}, T, r_{d(a)}, x) \equiv \int_{0}^{W} + e(-e) \times u(y) \times p_{o}(y) [n_{o}(y)] \times \frac{\tau_{hE(eE)}(N_{d(a)}, T, r_{d(a)}, x)}{\tau_{hE(eE)}(\rho_{d(a)}(x), T, r_{d(a)}, x)} dy , \text{ and the}$$

effective minority hole (minority electron) transit time [htt(ett)] by: $\tau^*_{htt(ett)}(y = W, W, N_{d(a)}, r_{d(a)}, x, S) \equiv Q^*_{h(e)}(y = W, N_{d(a)}, T, r_{d(a)}, x)/J_{Eno(Epo)}(y = W, W, N_{d(a)}, T, r_{d(a)}, x, S)$, and from Equations (24, 31), one obtains:

$$\frac{\tau_{htt(ett)}^{*}(y=W,W,N_{d(a)},T,r_{d(a)},x,S)}{\tau_{hE(eE)}} \equiv 1 - \frac{J_{Eno(Epo)}(y=0,W,N_{d(a)},T,r_{d(a)},x,S)}{J_{Eno(Epo)}(y=W,W,N_{d(a)},T,r_{d(a)},x,S)} = 1 - \frac{1}{\cosh(P) + I \times \sinh(P)}.$$
(38)

Now, some important results can be obtained and discussed below.

As $P \ll 1$ (or $W \ll L_{h(e)}$) and $S \to \infty$, $I \equiv I(W, S) = \frac{D_{h(e)}(N_{do(ao)}(W), T, r_{d(a)}, x)}{S \times L_{h(e)}(N_{do(ao)}(W), T, r_{d(a)}, x)} \to 0$, from Eq. (38), one has:

 $\frac{\tau_{htt(ett)}^{*}(y=W,W,N_{d(a)},T,r_{d(a)},x,S)}{\tau_{hE(eE)}} \to 0, \text{ suggesting a completely transparent emitter region (CTER)-case, where,}$

from Eq. (36), one obtains:

$$J_{Eno(Epo)}(y = W, N_{d(a)}, T, r_{d(a)}, x, S \to \infty) \to \frac{en_{in(ip)}^2 \times D_{h(e)}}{N_{d(a)}^*(y = W, N_{d(a)}, T, r_{d(a)}, x) \times L_{h(e)}} \times \frac{1}{P(W)}.$$
(39)

Further, as $P \gg 1$ (or $W \gg L_{h(e)}$) and $S \rightarrow 0$, $I \equiv I(y = W, r_{d(a)}, x, S) = \frac{D_{h(e)}(N_{do(ao)}(W), T, r_{d(a)}, x)}{S \times L_{h(e)}(N_{do(ao)}(W), T, r_{d(a)}, x)} \rightarrow \infty$, and

from Eq. (38) one has: $\frac{\tau_{htt(ett)}^{*}(y=W,W,N_{d(a)},T,r_{d(a)},x,S)}{\tau_{hE(eE)}} \to 1, \text{ suggesting a completely opaque emitter region}$

(COER)-case, where, from Eq. (36), one gets:

$$J_{Eno(Epo)}(y = W, N_{d(a)}, T, r_{d(a)}, x, S \to 0) \to \frac{en_{in(ip)}^2 \times D_{h(e)}}{N_{d(a)}^*(y = W, N_{d(a)}, T, r_{d(a)}, x) \times L_{h(e)}} \times tanh(P).$$
(40)

In summary, in the two $n^+(p^+) - p(n) X(x)$ -alloy junction solar cells, the dark carrier-minority saturation current density $J_{oI(oII)}$, defined in Eq. (17), is now rewritten as:

 $J_{ol(oll)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, r_{a(d)}, x) \equiv J_{Eno(Epo)}(W, N_{d(a)}, T, r_{d(a)}, x, S) + J_{Bpo(Bno)}(N_{a(d)}, T, r_{a(d)}, x), \quad (41)$ where $J_{Eno(Epo)}$ and $J_{Bpo(Bno)}$ are determined respectively in Equations (36, 18).

3. Photovoltaic conversion effect at 300K

Here, in the $n^+(p^+) - p(n) X(x)$ -alloy junction solar cells at T=300 K, denoted respectively by I(II), and for physical conditions, respectively, as:

$$W = 0.1 \,\mu\text{m}, N_{d \equiv S(a \equiv Cd)} = 10^{20} \,\text{cm}^{-3}, r_{d(a)}, x, S = 100 \,(\frac{\text{cm}}{\text{s}}); N_{a \equiv Cd(d \equiv S)} = 10^{17} \,\text{cm}^{-3} , r_{a(d)}, x, x, (42)$$

we propose, at given open circuit voltages: $V_{ocl1(ocl2)}$ and $V_{ocl1(ocl2)}$, the corresponding data of the short circuit current density $J_{scl(II)}$, in order to formulate our following treatment method of two fix points, as:

at
$$V_{ocl1(ocl2)} = V_{ocl1(ocl2)} = 2.041 (2.076) V_{ocl1(ocl2)}$$

$$J_{scl1(scl2)} = J_{scl1(scl2)} = 0.00749 (0.00939) (A/cm^2),$$
(43)

noting that these numerical results are given in Ref. [6], in which the authors assumed that the "quality factor n" is equal to 1.

Now, we define the net current density J at T=300 K, obtained for the infinite shunt resistance, and expressed as a function of the applied voltage V, flowing through the $n^+(p^+) - p(n) X(x)$ -alloy junction of solar cells, as:

$$J(V) \equiv J_{ph.}(V) - J_{ol(oII)} \times (e^{X_{I(II)}(V)} - 1), \ X_{I(II)}(V) \equiv \frac{V}{n_{I(II)}(V) \times V_{T}}, \ V_{T} \equiv \frac{k_{B}T}{e} = 0.02585 V,$$
(44)

where the function $n_{I(II)}(V)$ is the photovoltaic conversion factor (PVCF), noting that as $V = V_{oc}$, being the open circuit voltage, $J(V = V_{oc}) = 0$, the photocurrent density is defined by: $J_{ph.}(V = V_{oc}) \equiv J_{scl(scII)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc})$, for $V_{oc} \ge V_{ocl1(ocII1)}$.

Therefore, the photovoltaic conversion effect occurs, according to:

$$J_{scI(scII)}(W, N_{d(a)}, T, r_{d(a)}x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc}) \equiv J_{oI(oII)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x) \times (e^{X_{I(II)}(V_{oc})} - 1),$$
(45)
where $n_{I(II)}(V_{oc}) \equiv n_{I(II)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, r_{a(d)}, x, V_{oc}),$ and $X_{I(II)}(V_{oc}) \equiv \frac{V_{oc}}{n_{I(II)}(V_{oc}) \times V_{T}}.$

Here, one remarks that (i) for a given V_{oc} , both $n_{I(II)}$ and $J_{oI(II)}$ have the same variations, obtained in the same physical conditions, as observed in the following calculation, (ii) the function $(e^{X_{I(II)}(V_{oc})} - 1)$ or the PVCF, $n_{I(II)}$, representing the photovoltaic conversion effect, converts the light, represented by $J_{scI(scII)}$, into the electricity, by $J_{oI(oII)}$, and finally, for given $(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc})$ -values, $n_{I(II)}(V_{oc})$ is determined.

Now, for $V_{oc} \ge V_{ocl1(ocl11)}$, one can propose the general expressions for the PVCF, in order to get exactly the values of $n_{I1(II1)}(V_{ocl1(ocl11)})$ and $n_{I2(II2)}(V_{ocl2(ocl12)})$, as functions of V_{oc} , by:

$$n_{I(II)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc}) = n_{I1(II1)}(V_{oc11(ocII1)}) + n_{I2(II2)}(V_{oc12(ocII2)}) \times \left(\frac{V_{oc}}{V_{ocI1(ocII1)}} - 1\right)^{\alpha(\beta)},$$
(46)

where, for example, the values of $\alpha(\beta)$, obtained for x = (0, 0.5, 0.75, and 1), will be reported in Tables 2.2 and 3.2, for $CdS_{1-x}Se_x$ alloy junctions, and in Tables 4.2 and 5.2, for $CdS_{1-x}Te_x$ alloy junctions, respectively. One also notes that those $\alpha(\beta)$ -values depend on (W, $N_{d(a)}$, T, $r_{d(a)}$, x, S; $N_{a(d)}$, T, $r_{a(d)}$, x)-ones.

So, one can determine the general expressions for the fill factors, as:

$$F_{I(II)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc}) = \frac{X_{I(II)}(V_{oc}) - \ln[X_{I(II)}(V_{oc}) + b]}{X_{I(II)}(V_{oc}) + a}, a=1 and b=0.72.$$
(47)

Finally, the efficiency $\eta_{I(II)}$ can be defined in the $n^+(p^+) - p(n) X(x)$ alloy-junction solar cells, by:

$$\eta_{I(II)}(W, N_{d(a)}, T, r_{d(a)}, x, S; N_{a(d)}, T, r_{a(d)}, x, V_{oc}) \equiv \frac{J_{scI(scII)} \times V_{oc} \times F_{I(II)}}{P_{in.}},$$
(48)

being assumed to be obtained at 1 sun illumination or at AM1.5G spectrum ($P_{in.} = 0.100 \frac{W}{cm^2}$).

It should be noted that the maximal values of $\eta_{I(II)}$, $\eta_{I(II)max.}$, are obtained at the corresponding ones of $V_{oc} = V_{oc;max.}$, at which $\frac{\partial \eta_{I(II)}(W,N_{d(a)},T,r_{d(a)},S,N_{a(d)},T,r_{a(d)},V_{oc})}{\partial V_{oc}} = 0$, as those given in next Tables 2.2, 3.2, 4.2 and 5.2, being marked in bold. Further, from the well-known Carnot's theorem, being obtained by the second principle in thermodynamics, or by the entropy law, the maximum efficiency of a heat engine operating between hot (**H**) and cold (**C**) reservoirs is the ratio of the temperature difference between the reservoirs, $T_H - T_C$, to the H-reservoir temperature, T_H , expressed as:

 $\eta_{I(II)max.}(W, N_{d(a)}, T, r_{d(a)}, S, N_{a(d)}, T, r_{a(d)}, V_{oc;max.}) = 1 - \frac{T_C = 300 \text{ K}}{T_H(W, N_{d(a)}, T, r_{d(a)}, S, N_{a(d)}, T, r_{a(d)}, V_{oc;max.})}.$ (49)

4. Numerical Results and Concluding Remarks

We will respectively consider the two following cases of $n^+(p^+) - p(n)$ -junctions such as:

HD (*Se* ; *Te*; *Sn*) X(x) alloy ER - LD (*Mg* ; *In* ; *Cd*) X(x) - alloy BR - case, according to: 3 (n^+p) - junctions denoted by: (Se^+Mg , Te^+In , Sn^+Cd), and

HD (*Mg*; *In*; *Cd*) *X*(*x*) *alloy ER* – *LD* (*Se*; *Te*; *Sn*) *X*(*x*) – *alloy BR* – case, according to: 3 (p^+n) – junctions denoted by: (*Mg*⁺*Se*, *In*⁺*Te*, *Cd*⁺*Sn*).

Now, by using the physical conditions, given in Eq. (42), we can determine various following photovoltaic conversion coefficients.

 $(4.1) X(x) \equiv CdS_{1-x}Se_x - Alloy$

Firs case: HD [Se; Te; Sn] $CdS_{1-x}Se_x$ Alloy ER - LD [Mg; In; Cd] $CdS_{1-x}Se_x$ Alloy BR

computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 2.2.

Here, there are the 3 $(n^+p) - CdS_{1-x}Se_x$ junctions, being denoted by: (Se^+Mg, Te^+In, Sn^+Cd) . Then, the numerical results of $\frac{\tau_{htt}^*}{\tau_{hE}}, J_{Bpo}, J_{Eno}$ and J_{oI} , are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 2.1. Further, those of $n_I, J_{scI}, F_I, \eta_I$, and T_H , are

Table 2.1 In the HD [(Se; Te; Sn)- $CdS_{1-x}Se_x$ -alloy] ER-LD[(Mg; In; Cd)- $CdS_{1-x}Se_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of $\frac{\tau_{htt}^*}{\tau_{hE}}$, J_{Bpo} , J_{Eno} and J_{o1} , are computed, using Equations (38), (18), (36) and (41), respectively, noting that J_{o1} decreases slightly with increasing $r_{d(a)}$ -radius for given x, but it increases strongly with increasing x for given $r_{d(a)}$ -radius, being new results.

n^+p	p Se ⁺ Mg			Se ⁺ Mg	Te ⁺ In				Sn ⁺ C	d			
Here,	x=0,	and	for	the	(Se ⁺ Mg, Te ⁺ In, Sn ⁺ Cd)-junctions	and	from	Eq.	(34),	one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
(0, 0, 0) sugge	esting	а сот	pletel	y transparent condition.								

J_{Bpo} in 10^{-35} (A/cm^2) \searrow	2.9988	2.9698				2.960)2		
J_{Eno} in 10^{-38} (A/cm^2) >	1.0295	0.8985				0.756	54		
J_{ol} in 10 ⁻³⁵ (A/cm ²) >	2.9988	2.9707				2.960)9		
Here, x=0.5 , and for	the (Se^+Mg, Te^+In, Sn^+Cd))-junctions	and	from	Eq.	(34),	one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
(0, 0, 0) suggesting a compl	etely transparent condition.								
$J_{Bpo} \text{ in } 10^{-30} (A/cm^2)$ \	9.0481	8.9606				8.93	15		
J_{Eno} in 10^{-35} (A/cm ²) >	6.8789	6.8402				6.72	11		
J_{ol} in 10 ⁻³⁰ (A/cm ²) >	9.0481	8.9607				8.93	16		
Here, x=0.75 , and for	the (Se^+Mg, Te^+In, Sn^+Cd))-junctions	and	from	Eq.	(34),	one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
(0, 0, 0) suggesting a compl	etely transparent condition.								
$J_{Bpo} \text{ in } 10^{-27} \ (A/cm^2) \ \mathbb{V}$	4.4951	4.4517				4.43	72		
J_{Eno} in 10^{-33} (A/cm ²) \nearrow	1.6729	1.7374				1.795	54		
J_{ol} in $10^{-27} (A/cm^2)$ >	4.4951	4.4517				4.437	72		
Here, $x=1$, and for the formula $(0, 0, 0)$ suggesting a completion of $(0, 0, 0)$ suggesting	the (Se^+Mg, Te^+In, Sn^+Cd) etely transparent condition.)-junctions	and	from	Eq.	(34),	one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
J_{Bpo} in 10^{-24} (A/cm ²) \searrow	2.0381	2.0184				2.01	19		
J_{Eno} in 10^{-32} (A/cm ²) \nearrow	1.0818	1.1671				1.260)6		
J_{ol} in 10^{-24} (A/cm ²) >	2.0381	2.0184				2.01	19		

Table 2.2 In the HD [(Se; Te; Sn)- $CdS_{1-x}Se_x$ -alloy] ER-LD[(Mg; In; Cd)- $CdS_{1-x}Se_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of n_I , J_{scl} , F_I , η_I , and T_H , are computed, using Equations (46, 45, 47, 48, 49), respectively, noting that both η_{Imax} and T_H , marked in bold, increase with increasing x for given $r_{d(a)}$, being new results.

$V_{oc}(V)$	n_I	$J_{scl}(\frac{mA}{cm^2})$	<i>F</i> ₁ (%)	$\eta_{I}(\%)$
Here, x =	=0. For the $(Se^+Mg, Te^+In,$	Sn^+Cd)-junctions, the value of	α given in Eq. (46) is: $\alpha = 1$.	052.
n^+p	Se^+Mg ; Te^+In ; Sn^+Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se^+Mg ; Te^+In ; Sn^+Cd	Se^+Mg ; Te^+In ; Sn^+Cd
2.041	1.058; 1.058; 1.058	7.490; 7.490; 7.490	92.96; 92.96; 92.96	14.21; 14.21; 14.21
2.076	1.073; 1.073; 1.073	9.390; 9.390; 9.390	92.98; 92.98; 92.98	18.12; 18.12; 18.12
2.64	1.354; 1.354; 1.353	17.19; 17.19; 17.19	93.02; 93.02; 93.02	42.22; 42.23; 42.23
2.65	1.359; 1.359; 1.359	17.13; 17.13; 17.13	93.02; 93.02; 93.02	42.23; 42.24; 42.24
V _{oc;ma}	$x_{x} = 2.65 V$		$T_H(H)$	K) =519.3; 519.4; 519.4
2.66	1.364; 1.364; 1.364	17.07; 17.07; 17.07	93.02; 93.02; 93.02	42.23; 42.24; 42.24

1.543; 1.543; 1.543

93.00; 92.01; 93.01

38.10; 38.10; 38.10

Here, x	Here, x=0.5 . For the (<i>Se</i> ⁺ <i>Mg</i> , <i>Te</i> ⁺ <i>In</i> , <i>Sn</i> ⁺ <i>Cd</i>)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.0635$.									
n^+p	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se^+Mg ; Te^+In ; Sn^+Cd						
2.041	1.274; 1.273; 1.273	7.490; 7.490; 7.490	91.84; 91.84; 91.84	14.04; 14.04; 14.04						
2.076	1.291; 1.291; 1.290	9.406; 9.406; 9.406	91.86; 91.87; 91.87	17.94; 17.94; 17.94						
2.68	1.649; 1.649; 1.649	18.02; 18.03; 18.03	91.93; 91.93; 91.93	44.41; 44.41; 44.42						
2.69	1.655; 1.655; 1.655	17.96; 17.96; 17.96	91.93; 91.93; 91.93	44.41; 44.41; 44.42						
V _{oc;m}	ax. = 2.69 V		$T_H($	(K) =539.7; 539.7; 339.8						
2.70	1.662; 1.661; 1.661	17.89; 17.89; 17.89	91.93; 91.93; 91.93	44.40; 44.40; 44.41						
3	1.852; 1.851; 1.851	14.80; 14.80; 14.80	91.91; 91.91; 91.91	40.81; 40.82; 40.82						

Here, **x=0.75**. For the (Se^+Mg , Te^+In , Sn^+Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.071$.

n^+p	Se^+Mg ; Te^+In ; Sn^+Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se^+Mg ; Te^+In ; Sn^+Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd
2.041	1.415; 1.415; 1.415	7.490; 7.490; 7.490	91.13; 91.13; 91.13	13.93; 13.93; 13.93
2.076	1.434; 1.434; 1.433	9.403; 9.404; 9.404	91.16; 91.16; 91.16	17.79; 17.78; 17.80
2.69	1.836; 1.835; 1.835	18.49; 18.50; 18.50	91.24; 91.24; 91.24	45.39; 45.40; 45.40
2.70	1.843; 1.842; 1.842	18.43; 18.43; 18.43	91.24; 91.24; 91.24	45.40; 45.41; 45.41
V _{oc;max}	$x_{.} = 2.70 V$		$T_H(I)$	K) =549.4; 549.5; 549.5
2.71	1.850; 1.849; 1.849	18.36; 18.36; 18.36	91.24; 91.24; 91.24	45.40; 45.40; 45.41
3	2.054; 2.054; 2.053	15.38; 15.38; 15.38	91.22; 91.22; 91.22	42.09; 42.10; 42.10

Here, x=1. For the (Se⁺Mg, Te⁺In, Sn⁺Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.0798$.

n^+p	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd
2.041	1.590; 1.590; 1.590	7.490; 7.490; 7.490	90.29; 90.29; 90.29	13.80; 13.80; 13.80
2.076	1.610; 1.609; 1.609	9.384; 9.384; 9.384	90.32; 90.32; 90.32	17.59; 17.60; 17.60
2.71	2.072; 2.072; 2.071	18.80; 18.80; 18.80	90.43; 90.43; 90.43	46.06; 46.07; 46.07
2.72	2.080; 2.079; 2.079	18.73; 18.73; 18.73	90.43; 90.43; 90.43	46.06; 46.07; 46.07
V _{oc;m}	ax. = 2.72 V		$T_H($	K) =556.2; 556.3; 556.3
2.73	2.088; 2.087; 2.087	18.66; 18.66; 18.66	90.42; 90.43; 90.43	46.06; 46.06; 46.07
3	2.302; 2.301; 2.301	15.89; 15.89; 15.89	90.40; 90.40; 90.40	43.10; 43.11; 43.11

Second case: HD [Mg; In; Cd] $CdS_{1-x}Se_x$ Alloy ER - LD [Se; Te; Sn] $CdS_{1-x}Se_x$ Alloy BR Here, there are 3 $(p^+n) - CdS_{1-x}Se_x$ junctions, being denoted by: (Mg^+Se, In^+Te, Cd^+Sn) . Then, the numerical results of $\frac{\tau_{ett}^*}{\tau_{eF}}$, J_{Bno} , J_{Epo} and J_{oII} , are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 3.1. Further, those of n_{II} , J_{scII} , F_{II} , η_{II} , and T_H , are

computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 3.2.

Table 3.1 In the HD [(Mg; In; Cd)- CdS_{1-x}Se_x-alloy] ER-LD[(Se; Te; Sn)- CdS_{1-x}Se_x-alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of $\frac{\tau_{ett}^*}{\tau_{eE}}$, J_{Bno}, J_{Epo}, and J_{oII} are computed, using Equations (38), (18), (36) and (41), respectively, noting that J_{oII} decreases slightly with increasing r_{a(d)}-radius for given x, but it increases strongly with increasing x for given r_{a(d)}-radius, being new results.

p^+n	Mg ⁺ Se	In ⁺ Te			Cd+Sn		
Here, x=0, and for (0, 0, 0) <i>suggesting a com</i>	the $(Mg^+Se, In^+Te, npletely transparent contracts the transparent $	<i>Cd⁺Sn</i>)-junctions a ondition.	nd from	Eq.	(34), on	e obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
$J_{Bno} \text{ in } 10^{-35} (A/cm^2) \checkmark$	1.7992	0.6102			0.2687		
J_{Epo} in 10^{-34} (A/cm ²) \	1.5401	1.3943			1.3480		
J_{oII} in $10^{-34} (A/cm^2)$ >	1.7200	1.4553			1.3749		
Here, x=0.5 , and for	or the (Mg^+Se, In^+Te^-)	e, Cd ⁺ Sn)-junctions	and from	Eq.	(34), on	e obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
(0, 0, 0) <i>suggesting a com</i>	upletely transparent co	ondition.					
$J_{Bno} \text{ in } 10^{-30} (A/cm^2) \searrow$	4.5499	2.0135			1.1008		
$J_{Epo} \text{ in } 10^{-29} (A/cm^2) \searrow$	1.8969	1.7732			1.7332		
J_{oII} in $10^{-29} (A/cm^2)$ >	2.3519	1.9746			1.8432		
Here, $x=0.75$, and f	For the (Mg^+Se, In^+T)	Te, Cd ⁺ Sn)-junctions	and from	Eq.	(34), or	ne obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
(0, 0, 0) suggesting a com	ipletely transparent co	ondition.					
$J_{Bno} \text{ in } 10^{-27} (A/cm^2) \searrow$	2.0992	1.0386			0.6217		
J_{Epo} in 10^{-27} (A/cm^2) \searrow	5.3289	5.0488			4.9572		
J_{oII} in 10^{-27} (A/cm ²) >	7.4281	6.0873			5.5789		
Here, x=1 , and for	the $(Mg^+Se, In^+Te,$	<i>Cd</i> ⁺ <i>Sn</i>)-junctions a	nd from	Eq.	(34), on	e obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
(0, 0, 0) <i>suggesting a com</i>	npletely transparent co	ondition.					
$J_{Bno} \text{ in } 10^{-25} (A/cm^2) \searrow$	8.9090	4.8693			3.1605		
J_{Epo} in 10^{-24} (A/cm ²) \searrow	1.1251	1.0790			1.0638		
J_{oII} in $10^{-24} (A/cm^2)$ >	2.0160	1.5659			1.3798		

Table 3.2 In the HD [(Mg; In; Cd)- $CdS_{1-x}Se_x$ -alloy] ER-LD[(Se; Te; Sn)- $CdS_{1-x}Se_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of n_{II} , J_{scII} , F_{II} , η_{II} , and T_H , are computed, using Equations (46, 45, 47, 48, 49), respectively, noting that both η_{IImax} and T_H , marked in bold, increase with increasing x for given $r_{a(d)}$, being new results.

$V_{oc}(V)$	n_{II}	$J_{scII}(\frac{mA}{cm^2})$	<i>F</i> ₁₁ (%)	$\eta_{II}(\%)$
Here, x =	=0 . For the $(Mg^+Se, In^+Te,$	Cd^+Sn)-junctions, the value of	α given in Eq. (46) is: $\beta = 1$.	0533.
p^+n	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn
2.041	1.084; 1.081; 1.080	7.490; 7.490; 7.490	92.82; 92.84; 92.84	14.19; 14.19; 14.19
2.076	1.099; 1.096; 1.095	9.391; 9.395; 9.397	92.84; 92.85; 92.86	18.10; 18.11; 18.12
2.65	1.391; 1.388; 1.387	17.26; 17.29; 17.30	92.89; 92.90; 92.91	42.49; 42.57; 42.60
2.66	1.396; 1.393; 1.392	17.20; 17.23; 17.24	92.89; 92.90; 92.91	42.49; 42.57; 42.60
V _{oc;ma}	$x_{.} = 2.66 V$		$T_H(H)$	K) =521.6; 522.4; 522.6
2.67	1.402; 1.398; 1.397	17.13; 17.16; 17.17	92.89; 92.90; 92.91	42.48; 42.56; 42.59
3	1.579; 1.576; 1.575	13.79; 13.81; 13.82	92.87; 92.89; 92.89	38.44; 38.49; 38.51

Here, **x=0.5**. For the (Mg^+Se, In^+Te, Cd^+Sn) -junctions, the value of α given in Eq. (46) is: $\beta = 1.064$.

Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg+Se; In+Te; Cd+Sn	
1 .293; 1.290; 1.288	7.490; 7.490; 7.490	91.74; 91.76; 91.77	14.02; 14.03; 14.03	
1.311; 1.307; 1.306	9.389; 9.395; 9.397	91.76; 91.78; 91.79	17.88; 17.90; 17.91	
1.675; 1.670; 1.668	17.94; 17.98; 18.00	91.83; 91.85; 91.86	44.16; 44.27; 44.32	
1.681; 1.676; 1.674	17.88; 17.92; 17.93	91.83; 91.85; 91.86	44.16; 44.27; 44.32	
$x_{.} = 2.69 V$		$T_H(I)$	K) =537.2; 538.3; 338.8	
1.687; 1.682; 1.681	17.81; 17.85; 17.87	91.83; 91.85; 91.86	44.15; 44.27; 44.31	
1.880; 1.875; 1.873	14.77; 14.80; 14.81	91.81; 91.83; 91.84	40.68; 40.76; 40.79	
	$Mg^{+}Se; In^{+}Te; Cd^{+}Sn$ 1.293; 1.290; 1.288 1.311; 1.307; 1.306 1.675; 1.670; 1.668 1.681; 1.676; 1.674 x . = 2.69 V 1.687; 1.682; 1.681 1.880; 1.875; 1.873	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 1.293; 1.290; 1.288 7.490; 7.490; 7.490 1.311; 1.307; 1.306 9.389; 9.395; 9.397 1.675; 1.670; 1.668 17.94; 17.98; 18.00 1.681; 1.676; 1.674 17.88; 17.92; 17.93 $\mathbf{x}. = \mathbf{2.69V}$ 1.687; 1.682; 1.681 1.880; 1.875; 1.873 14.77; 14.80; 14.81	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 1.293; 1.290; 1.2887.490; 7.490; 7.49091.74; 91.76; 91.771.311; 1.307; 1.3069.389; 9.395; 9.39791.76; 91.78; 91.791.675; 1.670; 1.66817.94; 17.98; 18.0091.83; 91.85; 91.861.681; 1.676; 1.67417.88; 17.92; 17.9391.83; 91.85; 91.86 $\mathbf{x}. = \mathbf{2.69V}$ T _H (1)1.687; 1.682; 1.68117.81; 17.85; 17.871.880; 1.875; 1.87314.77; 14.80; 14.8191.81; 91.83; 91.84	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 1.293; 1.290; 1.2887.490; 7.490; 7.49091.74; 91.76; 91.7714.02; 14.03; 14.031.311; 1.307; 1.3069.389; 9.395; 9.39791.76; 91.78; 91.7917.88; 17.90; 17.911.675; 1.670; 1.66817.94; 17.98; 18.0091.83; 91.85; 91.8644.16; 44.27; 44.321.681; 1.676; 1.67417.88; 17.92; 17.9391.83; 91.85; 91.8644.16; 44.27; 44.32 $\mathbf{x}. = \mathbf{2.69V}$ $\mathbf{T}_H(\mathbf{K}) = \mathbf{537.2; 538.3; 338.8}$ 1.687; 1.682; 1.68117.81; 17.85; 17.8791.83; 91.85; 91.8644.15; 44.27; 44.311.880; 1.875; 1.87314.77; 14.80; 14.8191.81; 91.83; 91.8440.68; 40.76; 40.79

Here, x=0.75. For the (Mg^+Se, In^+Te, Cd^+Sn) -junctions, the value of α given in Eq. (46) is: $\beta = 1.0712$.

p^+n	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	
2.041	1.428; 1.423; 1.421	7.490; 7.490; 7.490	91.07; 91.09; 91.10	13.92; 13.92; 13.93	
2.076	1.447; 1.442; 1.439	9.390; 9.397; 9.401	91.10; 91.12; 91.13	17.76; 17.78; 17.78	
2.69	1.852; 1.846; 1.843	18.41; 18.46; 18.49	91.18; 91.21; 91.22	45.15; 45.30; 45.37	
2.70	1.859; 1.853; 1.850	18.34; 18.40; 18.42	91.18; 91.21; 91.22	45.16; 45.31; 45.37	
V _{oc;max}	$x_{c} = 2.70 V$		$T_H(I)$	K) =547.0; 548.5; 549.1	
2.71	1.866; 1.860; 1.857	18.27; 18.33; 18.35	91.18; 91.21; 91.22	45.15; 45.30; 45.37	
3	2.072; 2.065; 2.062	15.33; 15.37; 15.38	91.16; 91.18; 91.19	41.93; 42.04; 42.09	

Here, x=1. For the (Mg^+Se, In^+Te, Cd^+Sn) -junctions, the value of α given in Eq. (46) is: $\beta = 1.0801$. p^+n $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 2.041 1.589; 1.581; 1.577 7.490; 7.490; 7.490 90.29; 90.33; 90.35 13.80; 13.81; 13.81

2.076	1.609; 1.601; 1.597	9.391; 9.402; 9.407	90.32; 90.36; 90.38	17.61; 17.64; 17.65
2.71	2.072; 2.061; 2.056	18.87; 18.96; 19.00	90.43; 90.47; 90.48	46.25; 46.48; 46.59
2.72	2.080; 2.069; 2.064	18.80; 18.89; 18.93	90.43; 90.47; 90.48	46.26; 46.48; 46.59
V _{oc;max}	$c_{} = 2.72 V$		$T_H(K) =$	=558.1; 560.5; 561.7
V _{oc;max} 2.73	$a_{c.} = 2.72 V$ 2.087; 2.077; 2.072	18.73; 18.82; 18.86	T _H (K) = 90.43; 90.47; 90.48	= 558.1; 560.5; 561.7 46.25; 46.47; 46.58

$(4.2) X(x) \equiv CdS_{1-x}Te_x - Alloy$

Firs case: HD [Se; Te; Sn] $CdS_{1-x}Te_x$ Alloy ER - LD [Mg; In; Cd] $CdS_{1-x}Te_x$ Alloy BR Here, there are the 3 $(n^+p) - CdS_{1-x}Te_x$ junctions, being denoted by: (Se^+Mg, Te^+In, Sn^+Cd) .

Then, from above physical conditions, given in Eq. (42), the numerical results of $\frac{\tau_{htt}^*}{\tau_{hE}}$, J_{Bpo} , J_{Eno} and J_{oI} , are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 4.1. Further, those of n_I , J_{scI} , F_I , η_I and T_H are computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 4.2.

Table 4.1. In the HD [(Se; Te; Sn)- $CdS_{1-x}Te_x$ -alloy] ER-LD[(Mg; In; Cd)- $CdS_{1-x}Te_x$ -alloy] BR and for physical conditions given in Eq. (42) and for a given x, our numerical results of $\frac{\tau_{htt}^*}{\tau_{hE}}$, J_{Bpo} , J_{Eno} , and J_{o1} are computed, using Equations (38), (18), (36) and (41), respectively, noting that J_{o1} decreases slightly for given x with increasing $r_{d(a)}$ -radius for given x, but it increases strongly with increasing x for given $r_{d(a)}$ -radius, being new results.

n ⁺ p	Se ⁺ Mg	Te ⁺ In			Sn ⁺ Cd		
Here, x=0 , and for	the (Se ⁺ Mg, Te ⁺ In, S	n ⁺ Cd)-junctions	and from	Eq. (3	34), one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
(0, 0, 0) suggesting a compl	letely transparent conditi	on.					
$J_{\rm Bpo} \text{ in } 10^{-35} \text{ (A/cm}^2 \text{) }$	5.8715	5.8148			5.7959		
J_{Eno} in 10^{-39} (A/cm ²) \searrow	9.8161	6.5403			4.4542		
J_{oI} in 10 ⁻³⁵ (A/cm ²) >	5.8725	5.8154			5.7963		
Here, x=0.5 , and for	the (Se ⁺ Mg, Te ⁺ In,	Sn ⁺ Cd)-junctions	and from	Eq. ((34), one	obtains:	$\frac{\tau_{htt}^*}{\tau_{hE}} =$
(0, 0, 0) suggesting a compl	etely transparent conditi	ion.					
$J_{\rm Bpo} \text{ in } 10^{-27} \text{ (A/cm}^2 \text{) }$	1.3814	1.3680			1.3636		
J_{Eno} in 10^{-33} (A/cm ²) \nearrow	3.0406	3.1481			3.0927		
J_{oI} in 10^{-27} (A/cm ²) >	1.3814	1.3640			1.3636		
Here, x=0.75 , and for	r the (Se ⁺ Mg, Te ⁺ In,	, Sn ⁺ Cd)-junctions	and from	Eq. ((34), one	obtains:	$rac{ au_{htt}^{*}}{ au_{hE}} =$
(0, 0, 0) suggesting a compl	letely transparent conditi	on.					
$J_{\rm Bpo} \text{ in } 10^{-24} \text{ (A/cm}^2 \text{) }$	6.2893	6.2285			6.2083		

$\begin{array}{ll} J_{Eno} \mbox{ in } 10^{-31} \mbox{ (A/cm}^2) \nearrow \\ J_{ol} \mbox{ in } 10^{-24} \mbox{ (A/cm}^2) \searrow \end{array}$	2.8584 6.2893	3.4715 6.2285	3.8702 6.2083
Here, x=1 , and for (0, 0, 0) suggesting a complet	the (Se ⁺ Mg, Te ⁺ In, Sn ⁺ Cd tely transparent condition.)-junctions and	from Eq. (34), one obtains: $\frac{\tau_{htt}^*}{\tau_{hE}} =$
$J_{\rm Bpo} \text{ in } 10^{-20} \text{ (A/cm}^2) \text{ S}$	2.6721	2.6473	2.6387
J_{Eno} in 10^{-30} (A/cm ²) \nearrow	2.6574	3.7678	4.7414
J_{oI} in 10 ⁻²⁰ (A/cm ²) >	2.6721	2.6473	2.6387

Table 4.2. In the HD [(Se; Te; Sn)- $CdS_{1-x}Te_x$ -alloy] ER-LD[(Mg; In; Cd)- $CdS_{1-x}Te_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of n_I , J_{scl} , F_I , η_I , and T_H , are computed, using Equations (46, 45, 47, 48, 49), respectively, noting that both η_{Imax} . and T_H , marked in bold, increase with increasing x for given $r_{d(a)}$, being new results.

V _{oc} (V)	n _I	$J_{scI}(\frac{mA}{cm^2})$	F _I (%)	η _I (%)					
Here, x =	Here, $\mathbf{x}=0$. For the (Se ⁺ Mg, Te ⁺ In, Sn ⁺ Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.052$.								
n ⁺ p	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd					
2.041	1.068; 1.068; 1.068	7.490; 7.490; 7.490	92.91; 92.91; 92.91	14.20; 14.20; 14.20					
2.076	1.083; 1.083; 1.083	9.371; 9.371; 9.371	92.93; 92.93; 92.93	18.08; 18.08; 18.08					
2.65	1.371; 1.371; 1.371	17.01; 17.01; 17.01	92.97; 92.97; 92.97	41.91; 41.92; 41.92					
2.66	1.376; 1.376; 1.376	16.95; 16.95; 16.95	92.97; 92.97; 92.97	41.92; 41.92; 41.92					
V _{oc;max}	$_{\rm K.}=2.66{\rm V}$		T _H (K) =516.5; 516.5; 516.5					
2.67	1.381; 1.381; 1.381	16.88; 16.88; 16.88	92.97; 92.97; 92.97	41.91; 41.91; 41.91					
3	1.557; 1.557; 1.557	13.51; 13.59; 13.59	92.95; 92.95; 92.95	37.90; 37.90; 37.90					
Here, x =	Here, x=0.5 . For the (Se ⁺ Mg, Te ⁺ In, Sn ⁺ Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.069$.								
n ⁺ p	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd					

2.041	1.386; 1.386; 1.386	7.490; 7.490; 7.490	91.28; 91.28; 91.28	13.95; 13.95; 13.95
2.076	1.404; 1.404; 1.404	9.392; 9.392; 9.392	91.30; 91.31; 91.31	17.80; 17.80; 17.80
2.69	1.799; 1.798; 1.798	18.27; 18.27; 18.27	91.38; 91.38; 91.38	44.90; 44.91; 44.91
2.70	1.805; 1.805; 1.805	18.20; 18.20; 18.20	91.38; 91.38; 91.38	44.91; 44.92; 44.92
V _{oc;ma}	$a_{\rm X.} = 2.70 {\rm V}$		T _H (K) =544.6; 544.7; 544.7
2.71	1.812; 1.812; 1.812	18.13; 18.13; 18.13	91.38; 91.38; 91.38	44.90; 44.91; 44.91
3	2.012; 2.012; 2.012	15.18; 15.18; 15.18	91.36; 91.36; 91.36	41.60; 41.61; 41.61

Here, **x=0.75**. For the (Se⁺Mg, Te⁺In, Sn⁺Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.083$. n⁺p Se⁺Mg; Te⁺In; Sn⁺Cd Se⁺Ng; Te⁺In; Sn⁺Cd Se⁺Ng; Te⁺In; Sn⁺Cd Se⁺Ng; Te⁺In; Sn⁺Cd Se⁺Ng; Te⁺In; Sn⁺Cd

2.076	1.647; 1.646; 1.646	9.409; 9.410; 9.410	90.15; 90.15; 90.15	17.61; 17.61; 17.61
2.71	2.119; 2.118; 2.118	19.20; 19.20; 19.21	90.26; 90.26; 90.26	46.97; 46.97; 46.98
2.72	2.127; 2.126; 2.126	19.13; 19.14; 19.14	90.26; 90.26; 90.26	46.98; 46.98; 46.99
V _{oc;max}	= 2.72 V		T _H (K) =	=565.8; 565.8; 565.9
V_{oc;max} 2.73	. = 2.72 V 2.135; 2.134; 2.134	19.06; 19.06; 19.07	T _H (K) = 90.26; 90.26; 90.26	= 565.8; 565.8 ; 565.9 46.97; 46.98;46.98

Here, x=1. For the (Se⁺Mg, Te⁺In, Sn⁺Cd)-junctions, the value of α given in Eq. (46) is: $\alpha = 1.102$.

Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd
1.965; 1.964; 1.964	7.490; 7.490; 7.490	88.56; 88.56; 88.56	13.54; 13.54; 13.54
1.987; 1.987; 1.987	9.390; 9.390; 9.391	88.61; 88.61; 88.61	17.27; 17.27; 17.27
2.566; 2.565; 2.565	20.01; 20.01; 20.01	88.77; 88.77; 88.77	48.49; 48.50; 48.50
2.575; 2.575; 2.574	19.94; 19.94; 19.95	88.77; 88.77; 88.77	48.50; 48.51; 48.51
$_{\rm K.} = 2.74 {\rm V}$		T _H ((K) =582.5; 582.6; 582.6
2.585; 2.584; 2.584	19.87; 19.87; 19.87	88.77; 88.77; 88.77	48.50; 48.51; 48.51
2.830; 2.829; 2.829	17.23; 17.23; 17.23	88.74; 88.74; 88.74	45.86; 45.87; 45.87
	Se ⁺ Mg; Te ⁺ In; Sn ⁺ Cd 1.965; 1.964; 1.964 1.987; 1.987; 1.987 2.566; 2.565; 2.565 2.575; 2.575; 2.574 x = 2 .74 V 2.585; 2.584; 2.584 2.830; 2.829; 2.829	Se ⁺ Mg; Te ⁺ In; Sn ⁺ CdSe ⁺ Mg; Te ⁺ In; Sn ⁺ Cd $1.965; 1.964; 1.964$ $7.490; 7.490; 7.490$ $1.987; 1.987; 1.987$ $9.390; 9.390; 9.391$ $2.566; 2.565; 2.565$ $20.01; 20.01; 20.01$ $2.575; 2.575; 2.574$ $19.94; 19.94; 19.95$ $\mathbf{x}. = \mathbf{2.74 V}$ $2.585; 2.584; 2.584$ $2.830; 2.829; 2.829$ $17.23; 17.23; 17.23$	Se ⁺ Mg; Te ⁺ In; Sn ⁺ CdSe ⁺ Mg; Te ⁺ In; Sn ⁺ CdSe ⁺ Mg; Te ⁺ In; Sn ⁺ Cd1.965; 1.964; 1.9647.490; 7.490; 7.49088.56; 88.56; 88.561.987; 1.987; 1.9879.390; 9.390; 9.39188.61; 88.61; 88.612.566; 2.565; 2.56520.01; 20.01; 20.0188.77; 88.77; 88.772.575; 2.575; 2.57419.94; 19.94; 19.9588.77; 88.77; 88.77 $\mathbf{x}_{.} = 2.74 V$ T _H (2.585; 2.584; 2.58419.87; 19.87; 19.872.830; 2.829; 2.82917.23; 17.23; 17.2388.74; 88.74; 88.74

Second case: HD [Mg; In; Cd] $CdS_{1-x}Te_x$ Alloy ER - LD [Se; Te; Sn] $CdS_{1-x}Te_x$ Alloy BR Here, there are 3 $(p^+n) - CdS_{1-x}Te_x$ junctions, being denoted by: (Mg^+Se, In^+Te, Cd^+Sn) .

Then, from above physical conditions, the numerical results of $\frac{\tau_{ett}^*}{\tau_{eE}}$, J_{Bno} , J_{Epo} and J_{oII} , are calculated using Equations (38), (18), (36) and (41), respectively, and obtained, as those given in Table 5.1. Further, those of n_{II} , J_{scII} , F_{II} , η_I and T_H are computed, using Equations (46, 45, 47, 48, 49), respectively, and reported in the following Table 5.2.

Table 5.1. In the HD [(Mg; In; Cd)- $CdS_{1-x}Te_x$ -alloy] ER-LD[(Se; Te; Sn)- $CdS_{1-x}Te_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of $\frac{\tau_{ett}^*}{\tau_{eE}}$, J_{Bno} , J_{Epo} , and J_{oII} are computed, using Equations (38), (18), (36) and (41), respectively, noting that J_{oII} decreases slightly with increasing $r_{a(d)}$ -radius for given x, but it increases strongly with increasing x for given $r_{a(d)}$ -radius, being new results.

p ⁺ n		Mg ⁺ Se		In ⁺ Te		Cd ⁺ Sn							
Here,	x=0,	and	for	the	(Mg ⁺ Se, In ⁺ Te, Cd ⁺ Sn)-junctions	and	from	Eq.	(34),	one	obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
(0, 0, 0)) sugge	sting a c	omple	tely tra	nsparent condition.								
J _{Bno} in	10-35 (A/cm ²)) \	1.7	7992	0.610	2			0.16	43		
J _{Epo} in	10 ⁻³⁴ (A/cm^2)	2	1.:	5401	1.394	.3			1.34	80		
J _{oII} ir	n 10 ⁻³⁴	(A/cm ²) >	1.7	7200	1.455	3			1.36	45		
Here,	x=0.5	, and	for	the	(Mg ⁺ Se, In ⁺ Te, Cd ⁺ Sn)-junctions	and	from	Eq.	(34),	one	obtains:	$rac{ au_{ett}^{*}}{ au_{eE}} =$
(0, 0, 0)) sugge	sting a c	omple	tely tra	nsparent condition.								

$\begin{array}{l} J_{\rm Bno} \mbox{ in } 10^{-28} \mbox{ (A/cm}^2) \searrow \\ J_{\rm Epo} \mbox{ in } 10^{-27} \mbox{ (A/cm}^2) \searrow \\ J_{\rm oII} \mbox{ in } 10^{-27} \mbox{ (A/cm}^2) \searrow \end{array}$	4.4047 3.5960 4.0365	2.0176 3.2941 3.4958	1.1344 3.1975 3.3110	
Here, x=0.75 , and for (0, 0, 0) suggesting a comple	r th (Mg ⁺ Se, In ⁺ Te, Cd ⁺ Sn tely transparent condition.)-junctions and from	n Eq. (34), one obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
$\begin{array}{l} J_{Bno} \text{ in } 10^{-24} \ (\text{A/cm}^2) \searrow \\ J_{Epo} \text{ in } 10^{-23} \ (\text{A/cm}^2) \searrow \\ J_{oII} \text{ in } 10^{-23} \ (\text{A/cm}^2) \searrow \end{array}$	2.0386 1.6309 1.8348	1.0570 1.5015 1.6072	0.6572 1.4600 1.5257	
Here, $x=1$, and for $(0, 0, 0)$ suggesting a comple	the (Mg ⁺ Se, In ⁺ Te, Cd ⁺ Sn tely transparent condition.)-junctions and from	n Eq. (34), one obtains:	$\frac{\tau_{ett}^*}{\tau_{eE}} =$
$\begin{array}{l} J_{Bno} \text{ in } 10^{-21} \ (\text{A/cm}^2) \searrow \\ J_{Epo} \text{ in } 10^{-20} \ (\text{A/cm}^2) \searrow \\ J_{oII} \text{ in } 10^{-20} \ (\text{A/cm}^2) \searrow \end{array}$	8.7909 6.9019 7.7810	5.0854 6.3830 6.8915	3.4567 6.2160 6.5617	

Table 5.2. In the HD [(Mg; In; Cd)- $CdS_{1-x}Te_x$ -alloy] ER-LD[(Se; Te; Sn)- $CdS_{1-x}Te_x$ -alloy] BR, for physical conditions given in Eq. (42) and for a given x, our numerical results of n_{II} , J_{scII} , F_{II} , η_{II} , and T_H , are computed, using Equations (46, 45, 47, 48, 49), respectively, noting that both η_{IImax} and T_H , marked in bold, increase with increasing x for given $r_{a(d)}$, being new results.

n _{II}	$J_{scII}(\frac{mA}{cm^2})$	F _{II} (%)	η _{II} (%)
■0. For the (Mg ⁺ Se, In ⁺ Te,	Cd ⁺ Sn)-junctions, the value of	α given in Eq. (46) is: $\beta = 1$.	0533.
Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn
1.084; 1.081; 1.080	7.490; 7.490; 7.490	92.82; 92.84; 92.84	14.19; 14.19; 14.19
1.099; 1.096; 1.095	9.391; 9.396; 9.397	92.84; 92.86; 92.86	18.10; 18.11; 18.12
1.391; 1.388; 1.387	17.26; 17.29; 17.30	92.89; 92.90; 92.91	42.49; 42.57; 42.60
1.396; 1.393; 1.392	17.20; 17.23; 17.24	92.89; 92.90; 92.91	42.49; 42.57; 42.60
$x_{x} = 2.66 V$		T _H ((K) =521.6; 522.4; 522.6
1.402; 1.398; 1.397	17.13; 17.16; 17.17	92.89; 92.90; 92.91	42.48; 42.57; 42.59
1.579; 1.576; 1.575	13.79; 13.81; 13.82	92.87; 92.89; 92.89	38.44; 38.49; 38.51
	n _{II} =0. For the (Mg ⁺ Se, In ⁺ Te, Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn 1.084; 1.081; 1.080 1.099; 1.096; 1.095 1.391; 1.388; 1.387 1.396; 1.393; 1.392 x. = 2.66 V 1.402; 1.398; 1.397 1.579; 1.576; 1.575	n_{II} $J_{scII}(\frac{mA}{cm^2})$ =0. For the (Mg+Se, In+Te, Cd+Sn)-junctions, the value of Mg+Se; In+Te; Cd+Sn1.084; 1.081; 1.0807.490; 7.490; 7.490; 7.4901.099; 1.096; 1.0959.391; 9.396; 9.3971.391; 1.388; 1.38717.26; 17.29; 17.301.396; 1.393; 1.39217.20; 17.23; 17.24 $\mathbf{x.}$ = 2.66 V1.402; 1.398; 1.39717.13; 17.16; 17.171.579; 1.576; 1.57513.79; 13.81; 13.82	n_{II} $J_{scII}(\frac{mA}{cm^2})$ $F_{II}(\%)$ =0. For the (Mg+Se, In+Te, Cd+Sn)-junctions, the value of α given in Eq. (46) is: $\beta = 1$. Mg+Se; In+Te; Cd+SnMg+Se; In+Te; Cd+Sn $Mg+Se; In+Te; Cd+Sn$ Mg+Se; In+Te; Cd+SnMg+Se; In+Te; Cd+Sn $1.084; 1.081; 1.080$ $7.490; 7.490; 7.490$ $92.82; 92.84; 92.84$ $1.099; 1.096; 1.095$ $9.391; 9.396; 9.397$ $92.84; 92.86; 92.86$ $1.391; 1.388; 1.387$ $17.26; 17.29; 17.30$ $92.89; 92.90; 92.91$ $1.396; 1.393; 1.392$ $17.20; 17.23; 17.24$ $92.89; 92.90; 92.91$ $x. = 2.66 V$ $T_{H}(1.402; 1.398; 1.397)$ $17.13; 17.16; 17.17$ $1.579; 1.576; 1.575$ $13.79; 13.81; 13.82$ $92.87; 92.89; 92.90; 92.91$

Here, x=0.5. For the (Mg⁺Se, In⁺Te, Cd⁺Sn)-junctions, the value of α given in Eq. (46) is: $\beta = 1.071$.

p+n	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn
2.041	1.413; 1.409; 1.408	7.490; 7.490; 7.490	91.15; 91.16; 91.17	13.93; 13.94; 13.94
2.076	1.431; 1.427; 1.426	9.407; 9.413; 9.415	91.17; 91.19; 91.20	17.81; 17.82; 17.82

2.69	1.832; 1.827; 1.826	18.52; 18.57; 18.58	91.26; 91.27; 91.28	45.48; 45.58; 45.63
2.70	1.839; 1.834; 1.833	18.46; 18.50; 18.51	91.26; 91.27; 91.28	45.48; 45.59; 45.63
V _{oc;max}	= 2.70 V		$T_{\rm H}({\rm K})$ =	=550.2; 551.4; 551.8
2.71	1.846; 1.841; 1.840	18.39; 18.43; 18.44	91.26; 91.27; 91.28	45.47; 45.58; 45.62
3	2.050; 2.045; 2.043	15.40; 15.43; 15.44	91.23; 91.25; 91.26	42.16; 42.23; 42.26

Here, x=0.75. For the (Mg⁺Se, In⁺Te, Cd⁺Sn)-junctions, the value of α given in Eq. (46) is: $\beta = 1.084$.

p ⁺ n	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	
2.041	1.663; 1.659; 1.657	7.490; 7.490; 7.490	89.94; 89.96; 89.97	13.75; 13.75; 13.75	
2.076	1.684; 1.679; 1.677	9.385; 9.391; 9.393	89.98; 90.00; 90.01	17.53; 17.54; 17.55	
2.71	2.166; 2.160; 2.158	19.07; 19.11; 19.13	90.09; 90.11; 90.12	46.55; 46.68; 46.73	
2.72	2.174; 2.168; 2.166	19.00; 19.05; 19.06	90.09; 90.11; 90.12	46.56; 46.69; 46.74	
$\mathbf{V}_{\mathrm{oc;max.}} = 2.72 \mathrm{V}$			T _H (K) =561.4; 562.7; 563.3		
2.73	2.182; 2.176; 2.174	18.93; 18.98; 18.99	90.09; 90.11; 90.12	46.56; 46.68; 46.73	
3	2.406; 2.399; 2.397	16.17; 16.20; 16.21	90.06; 90.08; 90.09	43.68; 43.78; 43.81	

Here, x=1. For the (Mg⁺Se, In⁺Te, Cd⁺Sn)-junctions, the value of α given in Eq. (46) is: $\beta = 1.105$.

Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn	
2.019; 2.012; 2.010	7.490; 7.490; 7.490	88.32; 88.35; 88.36	13.50; 13.50; 13.51	
2.076; 2.035; 2.033	9.385; 9.391; 9.394	88.37; 88.40; 88.41	17.22; 17.23; 17.24	
2.643; 2.635; 2.632	20.06; 20.12; 20.14	88.54; 88.57; 88.58	48.66; 48.82; 48.88	
2.653; 2.645; 2.642	19.99; 20.04; 20.07	88.54; 88.57; 88.58	48.66; 48.82; 48.88	
$= 2.75 \mathrm{V}$		T _H (K) =584.3; 586.2; 586.8		
2.663; 2.655; 2.652	19.81; 19.97; 19.99	88.54; 88.56; 88.58	48.65; 48.81; 48.87	
2.905; 2.896; 2.892	17.35; 17.39; 17.41	88.51; 88.53; 88.55	46.08; 46.20; 46.25	
	Mg ⁺ Se; In ⁺ Te; Cd ⁺ Sn 2.019; 2.012; 2.010 2.076; 2.035; 2.033 2.643; 2.635; 2.632 2.653; 2.645; 2.642 = 2.75 V 2.663; 2.655; 2.652 2.905; 2.896; 2.892	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 2.019; 2.012; 2.0107.490; 7.490; 7.4902.076; 2.035; 2.0339.385; 9.391; 9.3942.643; 2.635; 2.63220.06; 20.12; 20.142.653; 2.645; 2.64219.99; 20.04; 20.07 $= 2.75 V$ 2.663; 2.655; 2.6522.905; 2.896; 2.89217.35; 17.39; 17.41	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $2.019; 2.012; 2.010$ $7.490; 7.490; 7.490$ $88.32; 88.35; 88.36$ $2.076; 2.035; 2.033$ $9.385; 9.391; 9.394$ $88.37; 88.40; 88.41$ $2.643; 2.635; 2.632$ $20.06; 20.12; 20.14$ $88.54; 88.57; 88.58$ $2.653; 2.645; 2.642$ $19.99; 20.04; 20.07$ $88.54; 88.57; 88.58$ $2.663; 2.655; 2.652$ $19.81; 19.97; 19.99$ $88.54; 88.56; 88.58$ $2.905; 2.896; 2.892$ $17.35; 17.39; 17.41$ $88.51; 88.53; 88.55$	$Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ $Mg^+Se; In^+Te; Cd^+Sn$ 2.019; 2.012; 2.0107.490; 7.490; 7.49088.32; 88.35; 88.3613.50; 13.50; 13.512.076; 2.035; 2.0339.385; 9.391; 9.39488.37; 88.40; 88.4117.22; 17.23; 17.242.643; 2.635; 2.63220.06; 20.12; 20.1488.54; 88.57; 88.5848.66; 48.82; 48.882.653; 2.645; 2.64219.99; 20.04; 20.0788.54; 88.57; 88.5848.66; 48.82; 48.88 $I = 2.75 V$ T _H (K) =584.3; 586.2; 586.82.663; 2.655; 2.65219.81; 19.97; 19.9988.54; 88.56; 88.5848.65; 48.81; 48.872.905; 2.896; 2.89217.35; 17.39; 17.4188.51; 88.53; 88.5546.08; 46.20; 46.25

Finally, some concluding remarks, obtained from those numerical results reported in above Tables 2.2, 3.2, 4.2 and 5.2, are discussed as follows.

(i)-As noted in Tables 2.1, 3.1, 4.1 and 5.1, the dark carrier-minority saturation current density $J_{ol(oll)}$ decrease slightly with increasing $r_{d(a)}$ -radius for given x, but it increases strongly with increasing x for given $r_{d(a)}$ -radius. Then, as remarked in Tables 2.2, 3.2, 4.2 and 5.2, at a same V_{oc} , the photovoltaic conversion factor, $n_{l(II)}(V_{oc})$, also decrease slightly with increasing $r_{d(a)}$ -radius for given x, but it also increases strongly with increasing x for given $r_{d(a)}$ -radius. In other words, as discussed in Eq. (45), at a same V_{oc} , both $J_{ol(oll)}$ and $n_{l(II)}$ have the same variations for the same physical conditions, noting here that in Ref. [6] the quality factor n was assumed to be equal to 1.

(ii)-With such variations of $n_{I(II)}(V_{oc})$, as observed in Tables 2.2, 3.2, 4.2 and 5.2, the maximal values of $\eta_{I(II)}$, $\eta_{I(II)max}$, and the corresponding ones of the H-reservoir temperature, T_H , are obtained at $V_{oc} = V_{oc;max}$, being marked in bold, increase with increasing x for given $r_{d(a)}$ -radius.

(iii)-In particular, we obtain: (a) in the $n^+(p^+) - p(n) CdS_{1-x}Se_x$ alloy-junction solar cells, at x=0 and for Sn^+Cd (Cd^+Sn), $\eta_{Imax,(IImax,)}$ =42.24 % (42.60 %), as those given in Tables 2.2 (3.2), and (b) in the $n^+(p^+) - p(n) CdS_{1-x}Te_x$ alloy-junction solar cells, at x=0 and for Sn^+Cd (Cd^+Sn), $\eta_{Imax,(IImax,)}$ =41.92 % (42.60 %), as those given in Tables 4.2 (5.2). These results can be compared with the corresponding ones given in the $n^+(p^+) - p(n)$ crystalline CdS-junction solar cells [1], as: $\eta_{Imax,(IImax,)} = 43.22$ % (43.40 %). (iv)-Finally, we obtain: (a) in the $n^+(p^+) - p(n) CdS_{1-x}Se_x$ alloy-junction solar cells, at x=1 and for Sn^+Cd (Cd^+Sn), $\eta_{Imax,(IImax,)} = 46.07$ % (46.59 %) and $T_H = 556.3$ K (561.7 K), as those given in Tables 2.2 (3.2), and (b) in the $n^+(p^+) - p(n) CdS_{1-x}Te_x$ alloy-junction solar cells, at x=1 and for Sn^+Cd (Cd^+Sn), $\eta_{Imax,(IImax,)} = 48.51$ % (48.88 %) and $T_H = 582.6$ K (586.8 K), as those given in Tables 4.2 (5.2), suggesting that in order to obtain the highest efficiencies, the ($CdS_{1-x}Se_x$, $CdS_{1-x}Te_x$)-alloy junctions could be chosen rather than the crystalline CdS-junctions [1].

References

- H. Van Cong, "(43.82%, or 44.05%)- Limiting Highest Efficiencies, Obtained Respectively in n⁺(p⁺) – p(n) Crystalline CdS-Junction Solar Cells at 300 K, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion, "European Journal of Theoretical and Applied Sciences, vol. 1, pp. 229-245, 2023.
- H. Van Cong, "(14.82%, 12.16%, 26.55%, or 23.69%)- Limiting Highest Efficiencies obtained in n⁺(p⁺) p(n) Crystalline (X≡ Ge, GaSb, CdTe, or CdSe)-Junction Solar Cells, Due to the Effects of Impurity Size, Temperature, Heavy Doping, and Photovoltaic Conversion, "SCIREA J. Phys., vol. 8, pp. 575-595, 2023.
- 3. H. Van Cong, and G. Debiais, "A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993; H. Van Cong, and B. Doan Khanh, "Simple accurate general expression of the Fermi-Dirac integral F_j(a) and for j> -1," Solid-State Electron., vol. 35, pp. 949-951, 1992; H. Van Cong, "New series representation of Fermi-Dirac integral F_j(-∞ < a < ∞) for arbitrary j> -1, and its effect on F_j(a ≥ 0₊) for integer j ≥ 0," Solid-State Electron., vol. 34, pp. 489-492, 1991.
- H. Van Cong et al., "Size effect on different impurity levels in semiconductors," Solid State Communications, vol. 49, pp. 697-699, 1984; H. Van Cong, "Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems," Physica B, vol. 487, pp. 90-101, 2016.
- 5. H. Van Cong, and G. Debiais, "Energy band structure parameters and their data, derived from the measurements of minority carrier current density in heavily doped emitters of silicon devices," Solar Ener. Mater. and Solar Cells, vol. 45, pp. 385-399, 1997; "Apparent band-gap narrowing and its data derived from the measurements of minority-carrier current density in heavily doped emitters of silicon devices," Physica Status Solidi A, vol. 155, pp. 547-553, 1996; H. Van Cong, "A new solution for

minority-carrier injection into the heavily doped emitter of silicon devices," Physica Status Solidi A, vol. 171, pp. 631-64, 1999.

 P. Singh & N. Ravindra, "Temperature dependence of solar cell performance-An analysis," Solar Energy Materials and Solar Cells, Vol. 101, pp. 36-45, 2012.