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Abstract: A form of the transverse magnetic susceptibility is derived and the resonance absorption and transverse magnetization 
are studied for an anti-ferromagnetic spin system interacting with a phonon reservoir in the spin-wave region, employing the TCLE 
method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the revised 
spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir. Here, the TCLE method 
of linear response is a method in which the admittance of a physical system is directly derived from time-convolutionless equations 
with external driving terms. The approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and the amplitude of the expectation value of the transverse magnetization, 
which is referred as “the magnetization-amplitude”, are derived for the anti-ferromagnetic system in a transversely rotating 
magnetic-field. For an anti-ferromagnetic system of one-dimensional infinite spins in the transversely rotating magnetic-field, the 
power absorption and magnetization-amplitude are investigated numerically in the region valid for the lowest spin-wave 
approximation. The approximate formulas of the resonance frequencies, peak-heights and line half-widths, are shown to coincide 
well with the results investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude 
in the resonance region, and also are shown to satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the 
peak-heights increase and the line half-widths decrease, and thus are verified numerically. In the resonance region of the power 
absorption and magnetization-amplitude, it is shown that as the temperature T becomes high, the resonance frequencies increase 
slightly, the peak-heights decrease and the line half-widths increase, and that as the wave number k becomes large, the resonance 
frequencies and peak-heights increase, and the line half-widths decrease, and also that as the spin-magnitude S becomes large, the 
resonance frequencies and peak-heights of the power absorption and magnetization-amplitude become large. The effects of the 
memory and initial correlation for the spin system and phonon reservoir, which are represented by the interference terms in the 
TCLE method and are referred as “the interference effects”, are confirmed to increase the power absorption and magnetization-
amplitude in the resonance region, and are shown to produce effects that cannot be disregarded for the high temperature, for the 
non-quickly damped reservoir or for the small wave number k.

Keywords: Anti-Ferromagnetic spin system; Resonance absorption; Transverse magnetic susceptibility; The TCLE method of linear 
response; Non-equilibrium thermo-field dynamics; Spin-wave method

1 Introduction
The theories of anti-ferromagnetic resonance were macroscopically treated by Nagamiya [1], Kittel and Keffer [2, 3], and 
were microscopically developed using the spin-wave method [4] by Nakamura [5], Ziman [6], Kubo [7], Akhiezer et al. [8, 
9] and Oguchi and Honma [10]. The anti-ferromagnetic resonance was also discussed using the method of the collective 
motion of spins by Mori and Kawasaki [11], and was studied numerically using the method of calculating the dynamical 
susceptibility directly by Miyashita et al. [12, 13, 14, 15], and besides its theories were developed by the quantum field 
theoretical approach of Oshikawa and Affleck to the electron spin resonance in spin-1/2 chains [16, 17, 18]. However, 
these theories for anti-ferromagnetic resonance do not deal with the effects of the phonon reservoir interacting with the 
spin systems, and therefore those theories cannot elucidate the damping mechanism of the spin for the case that the spin-
spin interactions or the spin-wave interactions are small. In such a case, it is necessary to consider the anti-ferromagnetic 
spin systems interacting with the phonon reservoirs and to study the effects of the phonon reservoir. Uchiyama et al. [19] 
proposed a method in which the Kubo formula [20] is calculated using the time-convolution (TC) master equation to 
study effects of the heat reservoir, and applied it to a two-spin system and a three-spin system. Also, the author and 
Miyashita [21] formulated the non-equilibrium thermo-field dynamics (NETFD) for an anti-ferromagnetic system of 
many spins interacting with a phonon reservoir, using the spin-wave method [4, 7]. Recently in Ref. [22], the author 
derived a form of the transverse magnetic susceptibility and has discussed the resonance absorption for an anti-
ferromagnetic system of many spins interacting with a phonon reservoir, using the spin-wave method [4, 7]. It may be an 
interesting problem to study furthermore the resonance absorption for the anti-ferromagnetic system of many spins 
interacting with a phonon reservoir.
      In the previous paper [22], the author derived a form of the transverse magnetic susceptibility and discussed 
the resonance absorption for an anti-ferromagnetic system of many spins interacting with a phonon reservoir in the
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spin-wave region, employing the TCLE method of linear response [23, 24, 25] in terms of the non-equilibrium thermo-
field dynamics (NETFD) [26, 27, 28, 29, 30]. Here, the TCLE method of linear response is a method in which the
admittance of a physical system is directly derived from time-convolutionless equations with external driving terms
[23, 24, 25, 31, 32, 33, 34, 35, 36]. In the previous papers [21, 22], the interaction between the spin system and
phonon reservoir was taken to point all of the spins to the “down” direction by the phonon-reservoir field, and thus
the spin-phonon interaction does not reflect the energy transfer between the spin system and phonon reservoir at the
“down” spin sites. In the problem of collision of the anti-ferromagnetic spin system with the phonon reservoir, it may
be necessary to take the spin-phonon interaction to reflect the energy transer between the spin system and phonon
reservoir not only at the “up” spin sites but also at the “down” spin sites.

In the present paper, we consider an anti-ferromagnetic spin system with a uniaxial anisotropy energy and an
anisotropic exchange interaction under an external static magnetic-field in the spin-wave region, interacting with
a phonon reservoir and with an external driving magnetic-field which is a transversely rotating classical field, and
study microscopically the power absorption and the transverse magnetization in the resonance region, including the
effects of the memory and initial correlation for the spin system and phonon reservoir. We derive a form of the
transverse magnetic susceptibility of the anti-ferromagnetic system by employing the TCLE method of linear response
[23, 24, 25, 29, 30] in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the
spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir not only
at the “up” spin sites but also at the “down” spin sites, in the spin-wave approximation employing the spin-wave
method of Kubo [7]. We examine analytically the power absorption and the amplitude of the expectation values
of the transverse magnetizations, which is referred as “the magnetization-amplitude”, in the resonance region of the
anti-ferromagnetic system in the spin-wave region, derive the approximate formulas of the resonance frequencies, peak-
heights (heights of peak) and line half-widths in the resonance region, and investigate numerically the line shapes for an
anti-ferromagnetic system of one-dimensional infinite spins. We also investigate numerically the effects of the memory
and initial correlation for the spin system and phonon reservoir, i.e., the interference effects. We use the same symbols
and notations as in Refs. [21, 22], and provide the same basic requirements (axioms) as in Refs. [21, 22].

Here, we mention the validity and usefulness of the TCLE method of linear response. In Refs. [34, 35, 36],
the relation between the TCLE method and relaxation method for the problem of linear response was analytically
examined in the second-order approximation for the interaction between the physical system and heat reservoir, where
the relaxation method is the one in which the Kubo formula [20] is calculated for the physical system interacting
with the heat reservoir. The admittances derived employing each method were shown to have the same second-order
terms and mutually different higher-order terms. The admittances derived employing each method were numerically
investigated and were shown to agree well in the resonance region, for a quantum oscillator interacting with a heat
reservoir [34] and for a quantum spin interacting with a heat reservoir [35, 37, 38]. This shows that the TCLE method
is coincident with the relaxation method in the second-order approximation for the system-reservoir interaction,
and that the second-order TCLE method is valid in this approximation. In Refs. [23, 24, 25], the TCLE method
and relaxation method were formulated in terms of the NETFD, and the relation between the admittances derived
employing each method was analytically examined in the second-order approximation for the interaction between the
physical system and heat reservoir [25]. When the relaxation method is employed in the van Hove limit [39] or in
the narrowing limit [40], in which the heat reservoir is damped quickly, that is to say, the correlation time τc of the
heat reservoir is much less than the relaxation time τr of the physical system, i.e., τc � τr, or τc → 0, as done in
the formulation of the NETFD [26, 27, 28], the obtained admittance is valid only in that limit and coincides with
the one without the interference terms in the admittance derived employing the TCLE method [25, 34, 35]. In the
TCLE method, the interference terms are included in the time-convolutionless (TCL) equations with external driving
terms [23, 24, 25, 31, 32, 33, 34, 35, 36], represent the effects of the memory and initial correlation for the physical
system and heat reservoir, and give the effects of the deviation from the van Hove limit [39] or the narrowing limit
[40]. When the TCLE method is employed, the complex admittance of the physical system can be calculated by
inserting the interference terms into the results obtained in the van Hove limit [39] or in the narrowing limit [40],
in which the NETFD has been formulated [21, 26, 27, 28, 29, 30]. Thus, by employing the NETFD and the TCLE
method [23, 24, 25, 29, 30] as done in Refs. [22, 41, 42], the complex admittance of the physical system can be derived
including the effects of the memory and initial correlation for the physical system and heat reservoir, i.e., the effects
of the motion of the heat reservoir which influence the physical system. As discussed in Ref. [22], one can discuss
variations of the peak-heights and line half-widths in the resonance regions of the power-absorption, etc. employing
the TCLE method theoretically, because the admittance derived emloying the second-order TCLE method is valid
even if the heat reservoir is damped slowly, in the region valid for the second-order perturbation approximation.

In Section 2, we give the Hamiltonian for an anti-ferromagnetic spin system interacting with a phonon reservoir
under an external static magnetic-field in the spin-wave region. In Section 3, we derive forms of the transverse magnetic
susceptibility and magnetization-amplitude for the anti-ferromagnetic system by employing the TCLE method of linear
response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the spin-phonon
interaction taken to reflect the energy transfer between the spin system and phonon reservoir in Appendix A, and
derive the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths in
the resonance region of the power absorption and magnetization-amplitude. In Section 4, we investigate numerically

-43-



the power absorption and magnetization-amplitude in the resonance region of an anti-ferromagnetic system of one-
dimensional infinite spins. In Section 5, we give a short summary and some concluding remarks.

2 Model and Hamiltonian of anti-ferromagnetic spin system

We consider an anti-ferromagnetic spin system with a uniaxial anisotropy energy and with an anisotropic exchange
interaction under an external static magnetic-field �Hz in the z direction, in interaction with a phonon reservoir. The
anti-ferromagnetic spin system is in the spin-wave region, and we proceed in the spin-wave approximation by employing
the spin-wave method of Kubo [7]. We consider a bipartite lattice and denote the sites of sublattices by l and m,
where l denote the sites of “up” spins, and m denote the sites of “down” spins. We take the principal axis of the
uniaxial anisotropy energy and anisotropic exchange interaction as the z axis, and describe the Hamiltonian HS of the
anti-ferromagnetic spin system under the external static magnetic-field �Hz as

HS = h̄
∑
〈l, m〉

{
J1(S+

l S−m + S−l S+
m) + 2 J2 Sz

l Sz
m

} − h̄ ωz

{ N/2∑
l

Sz
l +

N/2∑
m

Sz
m

}
− h̄K

{ N/2∑
l

(Sz
l )2 +

N/2∑
m

(Sz
m)2

}
, (2.1)

with S±j = Sx
j ± iSy

j (j = l, m), where ωz is the Zeeman frequency ωz = γHz with the magnetomechanical ratio γ. In
the above Hamiltonian HS, h̄J1 and h̄J2 are the exchange energies, h̄K is the anisotropy energy, N is the total number
of spins, and the summation

∑
〈l, m〉 is taken over all nearest-neighbor pairs. Here, the spin operators �Sl denote “up”

spins of spin magnitude S at sites l, and the spin operators �Sm denote “down” spins of spin magnitude S at sites m.
As done by Kubo [7], we introduce the two kinds of the creation and annihilation operators for the spin deviation.
The spin operators �Sl at up-spin sites l are expressed as

S+
l =

√
2 S pl al , S−l =

√
2 S a†l pl , Sz

l = S − a†l al , (2.2)

with the Bose operators al and a†l introduced in Ref. [4], where the operators pl are defined by

pl =
(
1 − a†l al

2 S

1/2

=
(
1 − nl

2 S

1/2

= 1 − nl

4 S
− · · · , (nl = a†l al). (2.3)

The spin operators �Sm at down-spin sites m are expressed as

S+
m =

√
2 S b†m pm , S−m =

√
2 S pm bm , Sz

m = −S + b†m bm , (2.4)

with the Bose operators bm and b†m introduced in Ref. [4], where the operators pm are defined by

pm =
(
1 − b†m bm

2 S

1/2

=
(
1 − nm

2 S

1/2

= 1 − nm

4 S
− · · · , (nm = b†m bm). (2.5)

The Bose operators a†l and al are the creation and annihilation operators of spin deviation of “up” spins at sites l,
respectively, and the Bose operators b†m and bm are the creation and annihilation operators of spin deviation of “down”
spins at sites m, respectively. These Bose operators satisfy the commutation relations

[ al , a†l′ ] = δl l′ , [ bm , b†m′ ] = δm m′ , (2.6)

while the other commutators vanish. The Fourier transformations for the Bose operators al and bm are performed as

al =
2
N

∑
k

āk exp(− i�k·�rl), āk =
2
N

∑
l

al exp(i�k·�rl), (2.7a)

bm =
2
N

∑
k

b̄k exp(i�k ·�rm), b̄k =
2
N

∑
m

bm exp(− i�k·�rm), (2.7b)

where the transformed operators āk and b̄k are the Bose operators and satisfy the commutation relations

[ āk , ā†k′ ] = δkk′ , [ b̄k , b̄†k′ ] = δkk′ , (2.8)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit the
overbar “¯” unless the meaning is confusing. By substituting (2.2) and (2.4) into Hamiltonian HS given by (2.1), by
expanding it in accordance with (2.3) and (2.5), and by performing the Fourier transformations (2.7a) and (2.7b),
the Hamiltonian HS given by (2.1) for the spin system can be divided as HS =HS0 +HS1 with the free spin-wave
Hamiltonian HS0, which was derived in Ref. [21] in the wave-number representation as

HS0 = 2zh̄J1S
∑

k

{
ηk(akbk + a†kb†k) + (ζ + κ + hz) a†kak + (ζ + κ − hz) b†kbk

} − zh̄J2NS2 − h̄KNS2, (2.9)
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with ηk, ζ, κ and hz defined by

ηk =
1
z

∑
σ

exp(i�k·�σ), ζ =
J2

J1
, κ =

K(2 S − 1)
2 zJ1S

, hz =
ωz

2 zJ1S
=

γ Hz

2 zJ1S
, (2.10)

where HS1 is parts of the higher-order in the spin-wave approximation [21] and represents the interaction among the
spin-waves. Here, �σ denotes the vectors to the nearest-neighbour site from each site, and z is the number of the
vectors. In order to diagonalize the free spin-wave Hamiltonian HS0 given by (2.9), the operators ak, a†k, bk, and b†k
are transformed according to Refs. [7, 10], as

ak = αk cosh θk − β†k sinh θk , bk = −α†k sinh θk + βk cosh θk , (2.11)

and their Hermite conjugates, where the operators αk, α†k, βk, and β†k are the Bose operators and satisfy the commu-
tation relations

[ αk , α†k′ ] = δkk′ , [ βk , β†k′ ] = δkk′ , (2.12)

while the other commutators vanish. Taking the choice of θk as

sinh 2θk = ηk/ (ζ + κ)2 − η2
k , cosh 2θk = (ζ + κ)/ (ζ + κ)2 − η2

k , (2.13)

the free spin-wave Hamiltonian HS0 given by (2.9) takes the diagonal form given by Refs. [21, 22].
We next consider the interaction between the anti-ferromagnetic spin system and phonon reservoir. We assume

that each spin interacts only with the reservoir field at the same site as the spin, and thus neglect the spin-phonon
interactions among the different sites. We also assume that the phonon reservoir is composed of many phonon which
are represented by the Bose operators Ra

lν and Rb
mν of mode ν at sites l and m, respectively, and their Hermite

conjugates. We perform the Fourier transformations for the phonon operators Ra
lν and Rb

mν at the up-spin sites l and
down-spin sites m separately, as

Ra
lν =

2
N

∑
k

R̄a
kν exp(− i�k·�rl), R̄a

kν =
2
N

∑
l

Ra
lν exp(i�k·�rl), (2.14a)

Rb
mν =

2
N

∑
k

R̄b
kν exp(i�k·�rm), R̄b

kν =
2
N

∑
m

Rb
mν exp(− i�k·�rm), (2.14b)

and their Hermite conjugates, where the transformed operators R̄a
kν , R̄b

kν and their Hermite conjugates are the Bose
operators and satisfy the commutation relations

[ R̄a
kν , R̄a†

k′ν′ ] = δkk′δνν′ , [ R̄b
kν , R̄b†

k′ν′ ] = δkk′δνν′ , (2.15)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “¯”
unless the meaning is confusing. The interaction Hamiltonian HSR between the spin system and phonon reservoir is
taken as

HSR = − h̄

2

{ ∑
l, ν

(
g∗1ν S+

l Ra†
lν + g1ν S−l Ra

lν +
∑
m, ν

(
g1ν S+

m Rb
mν + g∗1ν S−m Rb†

mν

}

− h̄
{∑

l, ν

g2ν Sz
l Ra†

lν Ra
lν +

∑
m, ν

g2ν Sz
m Rb†

mν Rb
mν

}
, (2.16a)

= − h̄

2

∑
k, ν

{√
2 S (g∗1ν akRa†

kν + g1ν a†kRa
kν) +

√
2 S (g1ν b†kRb

kν + g∗1ν bkRb†
kν)

}
+ · · ·

− h̄
∑
k, ν

g2ν

(
S − 2

N

∑
k′

a†k′ak′ Ra†
kνRa

kν − h̄
∑
k, ν

g2ν

( 2
N

∑
k′

b†k′bk′ − S Rb†
kνRb

kν + · · · , (2.16b)

where g1ν and g2ν are the coupling constants between the spin and the phonon of mode ν. In the derivation of
(2.16b), we have substituted (2.2) and (2.4) into (2.16a) and have expanded it according to (2.3) and (2.5). In (2.16b),
the first “ · · · ” denotes the higher-order parts of the first term of (2.16a) in the spin-wave approximation, and the
second “ · · · ” denotes the off-diagonal parts in the Fourier transformation of the second term of (2.16a). The above
spin-phonon interaction Hamiltonian HSR reflects the energy transfer between the spin system and phonon reservoir,
and is different from the spin-phonon interaction taken in Refs. [21, 22], which does not reflect the energy transfer
between the spin system and phonon reservoir at the sites m of “down” spins, because the spin-phonon interaction
taken in Refs. [21, 22] was taken to point all of the spins to the “down” direction by the phonon-reservoir field.
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In the spin-phonon interaction HSR given by (2.16), we assume that same as the x and y components of the spin,
the z component of the spin is coupled only with the phonon operators of the same wave-number as the spin. We also
assume that the thermal equilibrium value of the phonon number of the wave number k at the up-spin sites l coincides
with that of the wave number k at the down-spin sites m in the phonon reservoir, and put

∑
ν

g2ν〈1R|Ra†
kνRa

kν |ρR〉 =
∑

ν

g2ν〈1R|Rb†
kνRb

kν |ρR〉 =
∑

ν

g2ν〈1R|R†kνRkν |ρR〉, (2.17)

with the Bose operators Rkν and R†kν , where 〈1R| · · · |ρR〉= trR · · · ρR is the notaion of thermo-field dynamics. Here, ρR
is the normalized, time-independent density operator for the phonon reservoir with the Hamiltonian HR, and is given
by

ρR = exp(− β HR)/〈1R| exp(− β HR) |1R〉 = exp(− β HR)/ trR exp(− β HR), (2.18)

which is the thermal equilibrium density operator at temperature T = (kBβ)−1, where notation trR denotes the trace
operation in the space of the phonon reservoir. We do not specify the Hamiltonian HR of the phonon reservoir explicitly.
For the later convenience, we renormalize the free spin-wave Hamiltonian HS0, the free spin-wave energies h̄ε±k and
the spin-phonon interaction HSR, as follows

HS0 = h̄
∑

k

{
ε+k α†k αk + ε−k β†k βk +

1
2

(ε+k + ε−k )
}
− z h̄ J1 N S (ζ + κ) − z h̄ J2 N S2 − h̄ K N S2, (2.19)

h̄ ε±k = 2 z h̄ J1 S
{√

(ζ + κ)2 − η2
k ± hz

} ± h̄
∑

ν

g2ν 〈1R|R†kνRkν |ρR〉, (2.20)

HSR = − h̄ S/2
∑
k, ν

{
g∗1ν (akRa†

kν + bkRb†
kν) + g1ν (a†kRa

kν + b†kRb
kν)

}

− h̄
∑
k, ν

g2ν

{
(S − a†kak)(Ra†

kνRa
kν − 〈1R|Ra†

kνRa
kν |ρR〉) + (b†kbk − S)(Rb†

kνRb
kν − 〈1R|Rb†

kνRb
kν |ρR〉)

}
, (2.21)

where we have ignored the higher-order parts in the spin-wave approximation, the off-diagonal parts and the wave-
number mixing in HSR. Hereafter, we use HS0, h̄ε±k and HSR given by (2.19)− (2.21), respectively, for the free spin-
wave Hamiltonian, the free spin-wave energies and the spin-phonon interaction. We besides assume that the thermal
equilibrium values of the phonon operators vanish, i.e., 〈1R|Ra(b)

kν |ρR〉= 〈1R|Ra(b)†
kν |ρR〉= 0. Then, we have

〈1R|HSR|ρR〉 = 0, 〈1R|ĤSR|ρR〉 = 0, [ĤSR = (HSR − H̃†SR)/h̄], (2.22)

where ĤSR are the renormalized hat-Hamiltonian defined by ĤSR =(HSR − H̃†SR)/h̄ [25]. The renormalized free spin-
wave energies h̄ε±k given by (2.20) include the thermal equilibrium values of the phonon number, which depend on
temperature T in general. We assume that the phonon operators for each wave number and each mode are mutually
independent and assume that

〈1R|Ra
kν(t)Ra

kν |ρR〉 = 〈1R|Ra†
kν(t)Ra†

kν |ρR〉 = 〈1R|Rb
kν(t)Rb

kν |ρR〉 = 〈1R|Rb†
kν(t)Rb†

kν |ρR〉 = 0, (2.23a)

〈1R|R̃a
kν(t)R̃a

kν |ρR〉 = 〈1R|R̃a†
kν(t)R̃a†

kν |ρR〉 = 〈1R|R̃b
kν(t)R̃b

kν |ρR〉 = 〈1R|R̃b†
kν(t)R̃b†

kν |ρR〉 = 0, (2.23b)

with the Heisenberg operators R
a(b)
kν (t)= exp(iĤRt)R

a(b)
kν exp(−iĤRt), R̃

a(b)
kν (t)= exp(iĤRt)R̃

a(b)
kν exp(−iĤRt), and their

Hermite conjugates, which are the Heisenberg operators in the space of the phonon reservoir. We also assume that
the phonon operators at the up-spin sites l are independent of the phonon operators at the down-spin sites m, e.g.,
〈1R|Ra

kν(t)Rb
kν |ρR〉= 〈1R|Ra†

kν(t)Rb
kν |ρR〉=0. We besides assume that the correlation function for the phonon operator

with the wave number k at the up-spin sites l coincides with the correlation function for the phonon operator with
the wave number k at the down-spin sites m, and put

∑
ν

|g1ν |2〈1R|Ra†
kν(t)Ra

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rb†
kν(t)Rb

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|R†kν(t)Rkν |ρR〉, (2.24a)

∑
ν

|g1ν |2〈1R|Ra
kν(t)Ra†

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rb
kν(t)Rb†

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rkν(t)R†kν |ρR〉, (2.24b)

∑
ν

g2
2ν 〈1R|∆(Ra†

kν(t)Ra
kν(t))∆(Ra†

kνRa
kν)|ρR〉 =

∑
ν

g2
2ν 〈1R|∆(Rb†

kν(t)Rb
kν(t))∆(Rb†

kνRb
kν)|ρR〉

=
∑

ν

g2
2ν 〈1R|∆(R†kν(t)Rkν(t))∆(R†kνRkν)|ρR〉, (2.24c)

where we have put, for example, as ∆(R†kν(t)Rkν(t))= R†kν(t)Rkν(t) − 〈1R|R†kνRkν |ρR〉 and ∆(R†kνRkν) =R†kνRkν −
〈1R|R†kνRkν |ρR〉. As done in Refs. [21, 22], we assume that the phonon correlation function given by (2.24c) is real.
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In Appendix A, we reformulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon interaction
(2.21) taken to reflect the energy transfer between the spin system and phonon reservoir.

In the last of this section, we check the ground state of the anti-ferromagnetic spin system. In the lowest spin-wave
approximation, the Hamiltonian HS0 of the spin system, which is given by (2.19) and (2.20), can be rewritten as

HS0 = 2zh̄J1S (ζ + κ)
∑

k

{√
1 − tanh2(2θk) − 1

}
+

∑
k

{ε+k α†kαk + ε−k β†kβk} − zh̄J2NS2 − h̄KNS2, (2.25)

which we have put tanh(2θk)= ηk/(ζ + κ) according to (2.13). Then, the ground state energy EG
S0 of the spin system

in the lowest spin-wave approximation is given by

EG
S0 = −zh̄J2NS2 − h̄KNS2 + 2zh̄J1S (ζ + κ)

∑
k

{√
1 − tanh2(2θk) − 1

}
, (2.26)

which is smaller than the energy −zh̄J2NS2−h̄KNS2 of the Neel ordered state with the anisotropy energy h̄K, because

the third term of EG
S0 given by (2.26) is negative according to { 1 − tanh2(2θk)− 1}< 0. Thus, the ground state of

the spin system in the lowest spin-wave approximation is lower than the Neel ordered state with the anisotropy energy
[43]. In the case of an anti-ferromagnetic spin system with the isotropic exchange interaction and without anisotropy
energy, i.e., ζ =1, K =0, κ = 0, the ground state energy of the spin system in the lowest spin-wave approximation
becomes

EG
S0 = −zh̄JNS2 + 2zh̄JS

∑
k

{√
1 − η2

k − 1
}
, (J = J1 = J2 ; K = 0), (2.27)

which is smaller than the energy −zh̄JNS2 of the Neel ordered state [43], where we have put J =J1 = J2, and thus
the ground state of the spin system is lower than the Neel ordered state.

3 Resonance absorption and transverse magnetization

In this section, we derive forms of the transverse magnetic susceptibility, the expectation value of the transverse
magnetization and its amplitude for the anti-ferromagnetic spin system interacting with the phonon reservoir, by
employing the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD)
reformulated in Appendix A. The TCLE method of linear response was formulated in terms of the NETFD in Refs.
[23, 24, 25], and it was surveyed in Appendix A of Ref. [22]. We consider the case that the external driving magnetic-
field �Hj(t) at site j is a transversely rotating classical field :

�Hj(t) = (Hj cos ωt , −Hj sinωt , 0), (H∗j = Hj ; j = l, m), (3.1)

and take the interaction Hed(t) of the spin system with the external driving field as

Hed(t) = − h̄ γ
∑

j

�Sj · �Hj(t) = − (1/2) h̄ γ
∑

j

{S+
j H−j (t) + S−j H+

j (t)}, (j = l, m),

= − h̄ γ

2

{∑
l

Hl {S+
l exp(i ω t) + S−l exp(− i ω t)} +

∑
m

Hm{S+
m exp(i ω t) + S−m exp(− i ω t)}

}
,

= − h̄ γ S/2
{∑

l

Hl {al exp(i ω t) + a†l exp(− i ω t)} +
∑
m

Hm{b†m exp(i ω t) + bm exp(− i ω t)}
}

+ · · · , (3.2)

with H±j (t) = Hx
j (t) ± i Hy

j (t) = Hj exp(∓ i ω t), where we have performed the transformations (2.2) and (2.4) and
the expansions (2.3) and (2.5). Here, “· · · ” denotes the higher-order parts in the spin-wave approximation, and we
neglect the higher-order parts in the following. By performing the Fourier transformations (2.7a) and (2.7b), the above
interaction Hed(t) can be rewritten in the wave-number representation as

Hed(t) = − h̄ γ S/2
∑

k

{
(ak + b†k) H̄k exp(i ω t) + (a†k + bk) H̄∗k exp(− i ω t)

}
, (3.3)

where H̄k is the Fourier transformation of Hj [ = H∗j ] :

Hj = 2/N
∑

k

H̄k exp(i�k·�rj), H̄k = 2/N
∑

j

Hj exp(− i�k·�rj), (j = l, m). (3.4)
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Hereafter, we mainly use the Fourier transformed variables and we omit “¯” unless the meaning is confusing. When the
external driving magnetic-field �Hj(t) is uniform in space, i.e., Hj =H , we have Hk = H0 δk0 and H0 =H∗0 = N/2 H ,
and the form of the interaction Hed(t) becomes

Hed(t) = − (1/2) h̄ γ H
√

N S
{
(a0 + b†0) exp(i ω t) + (a†0 + b0) exp(− i ω t)

}
. (3.5)

The transverse magnetic susceptibility χS+
k S−

k
(ω) for the anti-ferromagnetic spin system specified in Section 2, is

given by employing the TCLE method formulated in terms of the NETFD [22, 23, 24, 25], as

χS+
k S−

k
(ω) =

1
2

∫ ∞
0

dt 〈1S| γ h̄ S+
k U(t) exp←

{
− i

∫ t

0

dτ ĤS1(τ)
}

× {
i (γ/2)(S−k − S̃+

k )|ρ0〉 + |D(2)

S−
k

[ω]〉} exp(i ω t), (3.6)

in the the second-order approximation for the spin-phonon interaction, where U(t) and ĤS1(t) are defined by (A.21)
and (A.22), respectively, and |ρ0〉 is defined by |ρ0〉= 〈1R|ρTE〉 for ρTE given by (A.3). Here, S±k are the Fourier
transformations of the sin operators S±j , i.e.,

S±j = 2/N
∑

k

S̄±k exp(∓ i�k·�rj), S̄±k = 2/N
∑

j

S±j exp(± i�k·�rj), (j = l, m), (3.7)

with S̄±k ⇒S±k , i.e., “¯” is omitted hereafter unless the meaning is confusing. The above transverse susceptibility
χS+

k S−
k

(ω) is valid even if the spin system is interacting with a non-quickly damped phonon-reservoir. Here, the

interference thermal state |D(2)

S−
k

[ω]〉 represents the effects of the memory and initial correlation for the spin system

and phonon reservoir, and can be written as [22, 23, 24, 25]

|D(2)

S−
k

[ω]〉 = i γ S/2
∫ ∞

0

dτ

∫ τ

0

ds
{〈1R|ĤSR exp{− i Ĥ0 τ}ĤSR exp{i Ĥ0(τ − s)}

× (
a†k − ãk + bk − b̃†k |ρ0〉|ρR〉 exp(i ω s)

− 〈1R|ĤSR exp{− i Ĥ0 s}(a†k − ãk + bk − b̃†k
× exp{i Ĥ0 ·(s − τ)}ĤSR|ρ0〉|ρR〉 exp(i ω s)

}
, (3.8)

with H0 =HS0 +HR, where we have neglected the higher-order parts in the spin-wave approximation. The above
interference thermal state |D(2)

S−
k

[ω]〉 is calculated by substituting (2.21) into (3.8) in Appendix B, can be expressed as

(B.2) by using the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by (A.25a)− (A.25c), and can be rewritten

as

|D(2)

S−
k

[ω]〉 = γ S/2 (cosh θk − sinh θk){|D(2)
k1 [ω]〉/(2 (ω − ε+k )) + |D(2)

k2 [ω]〉/(2 (ω + ε−k ))}, (3.9)

with |D(2)
k1 [ω]〉 and |D(2)

k2 [ω]〉 defined by

|D(2)
k1 [ω]〉 = S (cosh 2θk + 1) (α†k − α̃k)|ρ0〉 {Φ+

k (ω) − Φ+
k (ε+k )}

+ S (cosh 2θk − 1) (α†k − α̃k)|ρ0〉 {Φ−k (ω) − Φ−k (ε+k )}
− S sinh 2θk (βk − β̃†k)|ρ0〉 {(Φ+

k (ω) − Φ+
k (ε+k )) + (Φ−k (ω) − Φ−k (ε+k ))}

+ sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉 {Ψk(ω + ε−k ) − Ψk}
+ (cosh2 2θk + 1) (α†k − α̃k)|ρ0〉 {Ψk(ω − ε+k ) − Ψ0

k}
+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {
sinh 2θk (βk − β̃†k)|ρ0〉 {Ψk(ω + ε−k ) − Ψk}

− cosh 2θk (α†k − α̃k)|ρ0〉 {Ψk(ω − ε+k ) − Ψ0
k}

}
, (3.10)

|D(2)
k2 [ω]〉 = S sinh 2θk (α†k − α̃k)|ρ0〉 {(Φ+

k (ω) − Φ+
k (− ε−k )) + (Φ−k (ω) − Φ−k (− ε−k ))}

− S (cosh 2θk − 1) (βk − β̃†k)|ρ0〉 {Φ+
k (ω) − Φ+

k (− ε−k )}
− S (cosh 2θk + 1) (βk − β̃†k)|ρ0〉 {Φ−k (ω) − Φ−k (− ε−k )}
+ sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉 {Ψk(ω − ε+k ) − Ψ∗k}
+ (cosh2 2θk + 1) (βk − β̃†k)|ρ0〉 {Ψk(ω + ε−k ) − Ψ0

k}
+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {
cosh 2θk (βk − β̃†k)|ρ0〉 {Ψk(ω + ε−k ) − Ψ0

k}
− sinh 2θk (α†k − α̃k)|ρ0〉 {Ψk(ω − ε+k ) − Ψ∗k}

}
. (3.11)
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Here, Φ±k (ε) are defined by (A.42) and (A.43), and Ψk(ε) is defined by

Ψk(ε) = φzz
k (ε) =

∫ ∞
0

dτ
∑

ν

g2
2ν〈1R|∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)|ρR〉 exp(i ε τ), (3.12)

with Ψk(ε+k + ε−k )=Ψk and Ψk(0) = Ψ0
k, which are defined by (A.44) and (A.54). The lowest-order part χ

(0)

S+
k S−

k

(ω)

of the transverse magnetic susceptibility χS+
k S−

k
(ω) given by (3.6) in the sin-wave approximation, takes the following

forms

χ
(0)

S+
k S−

k

(ω) =
h̄γ2S

2

∫ ∞
0

dt 〈1S|(ak + b†k)U(t) exp(i ω t)
{
i {a†k − ãk + bk − b̃†k}|ρ0〉

+ (cosh θk − sinh θk) {|D(2)
k1 [ω]〉/(2 (ω − ε+k )) + |D(2)

k2 [ω]〉/(2 (ω + ε−k ))}}, (3.13a)

=
h̄γ2S

2

∫ ∞
0

dt (cosh θk − sinh θk)2〈1S|{αk(t) + β††k (t)} exp(i ω t)
{
i {α†k − α̃k + βk − β̃†k}|ρ0〉

+ {|D(2)
k1 [ω]〉/(2 (ω − ε+k )) + |D(2)

k2 [ω]〉/(2 (ω + ε−k ))}}, (3.13b)

where we have used the axioms (A.26), the Heisenberg operators (A.27a), (A.27b) and their tilde conjugates. According
to the transformations (A.33a), (A.33b), (A.37a), (A.37b) and their tilde conjugates, the thermal-state conditions
(A.36) and their tilde conjugates, the relations (A.34a) and (A.34b), the axioms (A.7) and their tilde conjugates, the
forms (A.57a) and (A.57b) of the quasi-particle operators, we have

〈1S|αk(t) = Zα
k (t)1/2〈1S|λk(t) = Zα

k (0)1/2 exp{(− i ε+k − Γk+) t }〈1S|λk

+ Zβ
k (0)1/2∆∗k−

exp{(− i ε+k − Γk+) t} − exp{(i ε−k − Γ∗k−) t}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k ,

= exp{(− i ε+k − Γk+) t }〈1S|αk

+ ∆∗k−
exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }

i (ε+k + ε−k ) + Γk+ − Γ∗k−
〈1S|β†k , (3.14a)

〈1S|β††k (t) = Zβ
k (t)1/2〈1S| ξ̃k(t) = Zβ

k (0)1/2 exp{(i ε−k − Γ∗k−) t }〈1S| ξ̃k

+ Zα
k (0)1/2∆k+

exp{(− i ε+k − Γk+) t} − exp{(i ε−k − Γ∗k−) t}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk ,

= exp{(i ε−k − Γ∗k−) t }〈1S|β†k
+ ∆k+

exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|αk . (3.14b)

By virtue of the commutation relations (A.5), the axioms (A.7) and their tilde conjugates, we obtain

Xα
k1(ω) = 〈1S|αk |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xα
k1(ω)′ + i Xα

k1(ω)′′,

=
{
S {(cosh 2θk + 1)(Φ+

k (ω) − Φ+
k (ε+k )) + (cosh 2θk − 1)(Φ−k (ω) − Φ−k (ε+k ))}

+ (cosh2 2θk + 1)(Ψk(ω − ε+k ) − Ψ0
k) − sinh2 2θk (Ψk(ω + ε−k ) − Ψk)

}
/{2 (ω − ε+k )}, (3.15a)

Xα
k2(ω) = 〈1S|αk |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xα
k2(ω)′ + i Xα

k2(ω)′′,

=
{
S sinh 2θk {(Φ+

k (ω) − Φ+
k (− ε−k )) + (Φ−k (ω) − Φ−k (− ε−k ))}

+ sinh 2θk cosh 2θk {(Ψk(ω − ε+k ) − Ψ∗k) − (Ψk(ω + ε−k ) − Ψ0
k)}}/{2 (ω + ε−k )}, (3.15b)

Xβ
k1(ω) = 〈1S|β†k |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xβ
k1(ω)′ + i Xβ

k1(ω)′′,

=
{
S sinh 2θk{(Φ+

k (ω) − Φ+
k (ε+k )) + (Φ−k (ω) − Φ−k (ε+k ))}

+ sinh 2θk cosh 2θk {(Ψk(ω − ε+k ) − Ψ0
k) − (Ψk(ω + ε−k ) − Ψk)}}/{2 (ω − ε+k )}, (3.16a)

Xβ
k2(ω) = 〈1S|β†k |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xβ
k2(ω)′ + i Xβ

k2(ω)′′,

=
{
S {(cosh 2θk − 1)(Φ+

k (ω) − Φ+
k (− ε−k )) + (cosh 2θk + 1)(Φ−k (ω) − Φ−k (− ε−k ))}

− (cosh2 2θk + 1)(Ψk(ω + ε−k ) − Ψ0
k) + sinh2 2θk (Ψk(ω − ε+k ) − Ψ∗k)

}
/{2 (ω + ε−k )}, (3.16b)

where we have defined Xα
k1(ω), Xα

k2(ω), Xβ
k1(ω) and Xβ

k2(ω), which correspond to the interference terms, are referred
as “the corresponding interference terms” and represent the effects of the memory and initial correlation for the 
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spin system and phonon reservoir. Here, X
α(β)
k1(2)(ω)′ and X

α(β)
k1(2)(ω)′′ are the real and imaginary parts of X

α(β)
k1(2)(ω),

respectively. By substituting (3.14a) and (3.14b) into (3.13b), and by performing the integration in (3.13b) considering
that Γ′k± are positive for positive ε±k according to (A.60), the transverse susceptibility χ

(0)

S+
k S−

k

(ω) in the lowest spin-wave
approximation can be expressed as

χ
(0)

S+
k S−

k

(ω) = (h̄γ2S/2)(cosh θk − sinh θk)2{χ(0)1
k± (ω) + χ

(0)2
k± (ω) + χ

(0)3
k± (ω)}, (3.17)

where χ
(0)n
k± (ω) (n =1, 2, 3) are defined by

χ
(0)1
k± (ω) =

− i − Xα
k1(ω)

i (ω − ε+k ) − Γk+

+
−∆∗k−Xβ

k1(ω)
{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}

, (3.18a)

χ
(0)2
k± (ω) =

i − Xβ
k2(ω)

i (ω + ε−k ) − Γ∗k−
+

−∆k+ Xα
k2(ω)

{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}
, (3.18b)

χ
(0)3
k± (ω) =

−Xα
k2(ω)

i (ω − ε+k ) − Γk+

+
−Xβ

k1(ω)
i (ω + ε−k ) − Γ∗k−

+
−∆k+{i + Xα

k1(ω)} + ∆∗k−{i − Xβ
k2(ω)}

{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}
, (3.18c)

which lead to the real parts χ
(0)n
k± (ω)′ and the imaginary parts of χ

(0)n
k± (ω)′′ of χ

(0)n
k± (ω) (n =1, 2, 3), as

χ
(0)1
k± (ω)′ =

Xα
k1(ω)′ Γ′k+ − (1 + Xα

k1(ω)′′)(ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
{{∆′k−Xβ

k1(ω)′ + ∆′′k−Xβ
k1(ω)′′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k−Xβ
k1(ω)′′ − ∆′′k−Xβ

k1(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.19a)

χ
(0)2
k± (ω)′ =

Xβ
k2(ω)′ Γ′k− + (1 − Xβ

k2(ω)′′)(ω + ε−k + Γ′′k−)
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k2(ω)′ − ∆′′k+Xα
k2(ω)′′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k+Xα
k2(ω)′′ + ∆′′k+Xα

k2(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.19b)

χ
(0)3
k± (ω)′ =

Xα
k2(ω)′ Γ′k+ − Xα

k2(ω)′′(ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Xβ

k1(ω)′ Γ′k− − Xβ
k1(ω)′′(ω + ε−k + Γ′′k−)

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k1(ω)′ − ∆′′k+(1 + Xα
k1(ω)′′)}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k+(1 + Xα
k1(ω)′′) + ∆′′k+Xα

k1(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

+ {∆′k−Xβ
k2(ω)′ − ∆′′k−(1 − Xβ

k2(ω)′′)}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}
− {∆′k−(1 − Xβ

k2(ω)′′) + ∆′′k−Xβ
k2(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}

}
/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.19c)

χ
(0)1
k± (ω)′′ =

Xα
k1(ω)′(ω − ε+k − Γ′′k+) + (1 + Xα

k1(ω)′′)Γ′k+

(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
{{∆′k−Xβ

k1(ω)′′ − ∆′′k−Xβ
k1(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k−Xβ
k1(ω)′ + ∆′′k−Xβ

k1(ω)′′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.20a)

χ
(0)2
k± (ω)′′ =

Xβ
k2(ω)′(ω + ε−k + Γ′′k−) − (1 − Xβ

k2(ω)′′)Γ′k−
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k2(ω)′′ + ∆′′k+Xα
k2(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k+Xα
k2(ω)′ − ∆′′k+Xα

k2(ω)′′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.20b)
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χ
(0)3
k± (ω)′′ =

Xα
k2(ω)′(ω − ε+k − Γ′′k+) + Xα

k2(ω)′′Γ′k+

(ω − ε+k − Γ′′k+)2 + (Γ′k+)2
+

Xβ
k1(ω)′(ω + ε−k + Γ′′k−) + Xβ

k1(ω)′′Γ′k−
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+(1 + Xα

k1(ω)′′) + ∆′′k+Xα
k1(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k+Xα
k1(ω)′ − ∆′′k+(1 + Xα

k1(ω)′′)}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
− {∆′k−(1 − Xβ

k2(ω)′′) + ∆′′k−Xβ
k2(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k−Xβ
k2(ω)′ − ∆′′k−(1 − Xβ

k2(ω)′′)}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}. (3.20c)

Then, the real part χ
(0)

S+
k S−

k

(ω)′ and imaginary part χ
(0)

S+
k S−

k

(ω)′′ of the transverse susceptibility χ
(0)

S+
k S−

k

(ω) in the lowest
spin-wave approximation are given by

χ
(0)

S+
k S−

k

(ω)′ = (h̄γ2S/2)(cosh θk − sinh θk)2{χ(0)1
k± (ω)′ + χ

(0)2
k± (ω)′ + χ

(0)3
k± (ω)′ }, (3.21a)

χ
(0)

S+
k S−

k

(ω)′′ = (h̄γ2S/2)(cosh θk − sinh θk)2{χ(0)1
k± (ω)′′ + χ

(0)2
k± (ω)′′ + χ

(0)3
k± (ω)′′ }. (3.21b)

Since the second terms of χ
(0)1
k± (ω) and χ

(0)2
k± (ω) given by (3.18a) and (3.18b), and the third term of χ

(0)3
k± (ω) given by

(3.18c), can be considered to give small contribution in the resonance region, the real part χ
(0)

S+
k S−

k

(ω)′ and imaginary

part χ
(0)

S+
k S−

k

(ω)′′ of the transverse susceptibility in the lowest spin-wave approximation take approximately the forms

χ
(0)

S+
k S−

k

(ω)′ ∼= h̄γ2

2

{Ξα
k (ω)′ Γ′k+ − Ξα

k (ω)′′ (ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Πβ

k (ω)′ Γ′k− − Πβ
k (ω)′′ (ω + ε−k + Γ′′k−)

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

}
, (3.22a)

χ
(0)

S+
k

S−
k

(ω)′′ ∼= h̄γ2

2

{Ξα
k (ω)′′ Γ′k+ + Ξα

k (ω)′ (ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Πβ

k (ω)′ (ω + ε−k + Γ′′k−) + Πβ
k (ω)′′ Γ′k−

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

}
, (3.22b)

in the resonance region, where we have put as

Ξα
k (ω) = Ξα

k (ω)′ + i Ξα
k (ω)′′ = S (cosh θk − sinh θk)2{i + Xα

k1(ω) + Xα
k2(ω)}, (3.23a)

Πβ
k (ω) = Πβ

k (ω)′ + i Πβ
k(ω)′′ = S (cosh θk − sinh θk)2{− i + Xβ

k1(ω) + Xβ
k2(ω)}, (3.23b)

with the real parts Ξα
k (ω)′, Πβ

k (ω)′ and the imaginary parts Ξα
k (ω)′′, Πβ

k (ω)′′ of Ξα
k (ω), Πβ

k (ω).
The power loss of the transversely rotating magnetic-field given by (3.1) is given by h̄γ|Hk|2ωχS+

k S−
k

(ω)′′ for the
anti-ferromagnetic spin system with the wave-number k [24]. When the anti-ferromagnetic system with the wave-
number k is in the periodic motion with the frequency ω, the power absorption of the anti-ferromagnetic system is
given by h̄γ|Hk|2ωχS+

k S−
k

(ω)′′. Hereafter, the power absorption of the anti-ferromagnetic system with the wave-number
k in the periodic motion with the frequency ω is referred as “Pk(ω)”, i.e.,

Pk(ω) = h̄ γ |Hk|2 ω χS+
k S−

k
(ω)′′, (3.24)

which is expressed in the lowest spin-wave approximation as

P
(0)
k (ω) = h̄ γ |Hk|2 ω χ

(0)

S+
k S−

k

(ω)′′. (3.25)

The line shape of the power absorption P
(0)
k (ω) has two peaks at frequencies ω ∼= ε+k +Γ′′k+, − ε−k −Γ′′k− according to the

approximate form (3.22b) for the imaginary part χ
(0)

S+
k S−

k

(ω)′′ of the transverse susceptibility in the lowest spin-wave

approximation. For positive frequency ω (>0), the resonance frequency ωP
Rk and the peak-height (height of peak) HP

Rk

in the resonance region of the power absorption P
(0)
k (ω) are approximately given by

ωP
Rk

∼= ε+k + Γ′′k+, (3.26)

HP
Rk

∼= h̄2 γ3 |Hk|2 ωP
Rk Ξα

k (ωP
Rk)′′/(2 Γ′k+), (3.27)

with Γ′k+ and Γ′′k+ given by (A.59a) and (A.59b), according to (3.22b). In order to obtain the approximate formula of
the line half-width ∆ωP

Rk in the resonance region of the power absorption P
(0)
k (ω), we put as ∆ωP

Rk/2 = x1Γ′k+ for the
first-step approximation of ∆ωP

Rk, which satisfies

1
2
HP

Rk
∼= h̄2 γ3 |Hk|2 ωP

Rk

4 Γ′k+

Ξα
k (ωP

Rk)′′ ∼= h̄2 γ3 |Hk|2
ωP
Rk + x1 Γ′k+

2 (x2
1 + 1) Γ′k+

{
Ξα

k (ωP
Rk)′′ + x1 Ξα

k (ωP
Rk)′

}
, (3.28)
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where we have approximated Ξα
k (ωP

Rk + x1Γ′k+) with Ξα
k (ωP

Rk) in the right-hand side of the above equation. Equation
(3.28) can be rewritten as

{ωP
Rk Ξα

k (ωP
Rk)′′ − 2 Γ′k+Ξα

k (ωP
Rk)′} x2

1 − 2 {ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′} x1 − ωP

Rk Ξα
k (ωP

Rk)′′ ∼= 0. (3.29)

By obtaining the positive solution of the above second-order equation for x1, the first-step approximation of the line
half-width ∆ωP

Rk can be derived as

2 x1Γ′k+
∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′ +

{
(ωP

Rk)2 {(Ξα
k (ωP

Rk)′)2 + (Ξα
k (ωP

Rk)′′)2}
+ (Γ′k+)2(Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk)′}. (3.30)

Then, by putting as ∆ωP
Rk/2 = xΓ′k+, the approximate formula of the line half-width ∆ωP

Rk for the power absorption
P

(0)
k (ω), can be derived from the equation

h̄2 γ3 |Hk|2 ωP
Rk

4Γ′k+

Ξα
k (ωP

Rk)′′ ∼= h̄2 γ3 |Hk|2
ωP
Rk + xΓ′k+

2 (x2 + 1) Γ′k+

{
Ξα

k (ωP
Rk + x1Γ′k+)′′ + xΞα

k (ωP
Rk + x1Γ′k+)′

}
, (3.31)

which can be rewritten as
{
ωP
Rk Ξα

k (ωP
Rk)′′ − 2 Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′

}
x2 − 2

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′

+ Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′′
}

x − ωP
Rk {2 Ξα

k (ωP
Rk + x1Γ′k+)′′ − Ξα

k (ωP
Rk)′′} ∼= 0. (3.32)

By obtaining the positive solution of the above second-order equation for x, the approximate formula of the line
half-width ∆ωP

Rk in the resonance region of the power absorption P
(0)
k (ω) can be derived as

∆ωP
Rk

∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′ + Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′′

+
{
(ωP

Rk)2 (Ξα
k (ωP

Rk + x1Γ′k+)′)2 + (Γ′k+)2 (Ξα
k (ωP

Rk + x1Γ′k+)′′)2

+ 2 ωP
Rk Ξα

k (ωP
Rk)′′{Γ′k+ Ξα

k (ωP
Rk + x1Γ′k+)′ + ωP

Rk Ξα
k (ωP

Rk + x1Γ′k+)′′}
− 2 ωP

Rk Γ′k+ Ξα
k (ωP

Rk + x1Γ′k+)′ Ξα
k (ωP

Rk + x1Γ′k+)′′ − (ωP
Rk)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′}. (3.33)

We consider the dynamics of the transverse magnetization with the wave-number k in the stationary state of the
anti-ferromagnetic spin system. In the stationay state, 〈1S|h̄S+

k |ρ1(t)〉 have the form

〈1S|h̄S+
k |ρ1(t)〉 = (2/γ)χS+

k S−
k

(ω)Hk exp(− i ω t), (t → ∞), (3.34)

with |ρ1(t)〉= 〈1R|ρT1(t)〉= |trRρT1(t)〉, where ρT1(t) is the first-order part of the density operator ρT(t) for the total
system in powers of the external driving magnetic-field. The expectation value Mx

k (t) of the x-component of the
magnetization with the wave-number k, can be expressed as

Mx
k (t) = {〈1S|h̄S+

k |ρ1(t)〉 + 〈1S|h̄S−k |ρ1(t)〉}/2 = Re 〈1S|h̄S+
k |ρ1(t)〉, (3.35a)

= (2/γ)
{
(χS+

k S−
k

(ω)Hk)′ cos(ω t) + (χS+
k S−

k
(ω)Hk)′′ sin(ω t)

}
, (3.35b)

= (2/γ)|χS+
k S−

k
(ω)Hk| sin{ω t + δk(ω)}, (3.35c)

where the phase δk(ω) is defined by

sin δk(ω) = (χS+
k S−

k
(ω)Hk)′/|χS+

k S−
k

(ω)Hk|, cos δk(ω) = (χS+
k S−

k
(ω)Hk)′′/|χS+

k S−
k

(ω)Hk|. (3.36)

The expectation value My
k (t) of the y-component of the magnetization with wave-number k, can be expressed as

My
k (t) = {〈1S|h̄S+

k |ρ1(t)〉 − 〈1S|h̄S−k |ρ1(t)〉}/(2 i) = Im 〈1S|h̄S+
k |ρ1(t)〉, (3.37a)

= (2/γ)
{
(χS+

k S−
k

(ω)Hk)′′ cos(ω t) − (χS+
k S−

k
(ω)Hk)′ sin(ω t)}. (3.37b)

= (2/γ)|χS+
k S−

k
(ω)Hk| cos{ω t + δk(ω)}. (3.37c)

Thus, the expectation values Mx
k (t) and My

k (t) of the x-component and y-component of the magnetization with the
wave-number k oscillate with the frequency ω and the amplitude AM

k(ω) given by

AM
k(ω) = (2/γ)|χS+

k
S−

k
(ω)Hk| = (2/γ)|Hk| |χS+

k
S−

k
(ω)| = (2/γ)|Hk| (χS+

k
S−

k
(ω)′)2 + (χS+

k
S−

k
(ω)′′)2, (3.38)
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which is expressed in the lowest spin-wave approximation as

A
M(0)
k (ω) = (2/γ)|Hk| (χ(0)

S+
k S−

k

(ω)′)2 + (χ(0)

S+
k S−

k

(ω)′′)2. (3.39)

According to the approximate forms (3.22a) and (3.22b) of the real and imaginary parts in the resonance region of the
transverse susceptibility χ

(0)

S+
k S−

k

(ω) in the lowest spin-wave approximation, the amplitude A
M(0)
k (ω) of the expectation

values of the transverse magnetization, which is referred as “the magnetization-amplitude”, has two peaks at frequen-
cies ω ∼= ε+k + Γ′′k+, − ε−k −Γ′′k−. Thus, the expectation values Mx

k (t) amd My
k (t) of the x-component and y-component

of the magnetization with the wave-number k oscillate with the large amplitude A
M(0)
k (ωM

Rk) at the resonance frequency
ωM
Rk, which coincides with the resonance frequency ωP

Rk of the power absorption P
(0)
k (ω) approximately. For positive fre-

quency ω (>0), the resonance frequency ωM
Rk and the peak-height (height of peak) HM

Rk of the magnetization-amplitude
A

M(0)
k (ω) with the wave-number k are approximately given by

ωM
Rk

∼= ε+k + Γ′′k+, (3.40)

HM
Rk

∼= h̄ γ |Hk|
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
/ Γ′k+, (3.41)

with Γ′k+ and Γ′′k+ given by (A.59a) and (A.59b). These approximate formulas can be derived by substituting (3.22a)
and (3.22b) into (3.39) in the lowest spin-wave approximation. In order to obtain the approximate formula of the line
half-width ∆ωM

Rk in the resonance region of the magnetization-amplitude A
M(0)
k (ω) with the wave-number k, we put as

∆ωM
Rk/2= y1Γ′k+ for the first-step approximation of ∆ωM

Rk, which satisfies

1
2
HM

Rk
∼= h̄ γ

|Hk|
2 Γ′k+

{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
,

∼= h̄ γ
|Hk|
Γ′k+

{(Ξα
k (ωM

Rk)′ − y1 Ξα
k (ωM

Rk)′′

y2
1 + 1

2

+
(Ξα

k (ωM
Rk)′′ + y1 Ξα

k (ωM
Rk)′

y2
1 + 1

2}1/2

, (3.42)

where we have approximated Ξα
k (ωM

Rk + y1Γ′k+) with Ξα
k (ωM

Rk) in the right-hand side of the above equation. Equation
(3.42) gives the positive solution y1

∼=
√

3. By putting as ∆ωM
Rk/2 = yΓ′k+, the approximate formula of the line half-width

∆ωM
Rk in the resonance region of the magnetization-amplitude, can be derived from the equation

h̄ γ
|Hk|
2 Γ′k+

{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2 ∼= h̄ γ
|Hk|
Γ′k+

{(Ξα
k (ωM

Rk +
√

3Γ′k+)′ − y Ξα
k (ωM

Rk +
√

3 Γ′k+)′′

y2 + 1

2

+
(Ξα

k (ωM
Rk +

√
3Γ′k+)′′ + y Ξα

k (ωM
Rk +

√
3Γ′k+)′

y2 + 1

2}1/2

, (3.43)

which can be rewritten as
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}
(y2 + 1) ∼= 4

{
(Ξα

k (ωM
Rk +

√
3Γ′k+)′)2 + (Ξα

k (ωM
Rk +

√
3Γ′k+)′′)2

}
. (3.44)

By obtaining the positive solution of the above equation for y, the approximate formula of the line half-width ∆ωM
Rk

in the resonance region of the magnetization-amplitude, can be derived as

∆ωM
Rk

∼= 2 Γ′k+

{
4
{Ξα

k (ωM
Rk +

√
3Γ′k+)′}2 + {Ξα

k (ωM
Rk +

√
3 Γ′k+)′′}2

{Ξα
k (ωM

Rk)′}2 + {Ξα
k (ωM

Rk)′′}2
− 1

}1/2

. (3.45)

If the relaxation method, in which the Kubo formula [20] is calculated for the physical system interacting with the
heat reservoir, is employed [25] in the van Hove limit [39] or in the narrowing limit [40], in which the correlation time
τc of the heat reservoir is much less than the relaxation time τr of the physical system (τc � τr or τc → 0), i.e., the
Kubo formula [20] is calculated from the second-order TCL equations with no external driving terms in this limit, one
obtains the transverse susceptibility [25]

χrv
S+

k S−
k

(ω) =
i

4

∫ ∞
0

dt 〈1S| γ h̄ S+
k U(t) exp←

{
− i

∫ t

0

dτ ĤS1(τ)
}

γ (S−k − S̃+
k )|ρ0〉 exp(i ω t), (3.46)

which coincides with the ones without the interference thermal state |D(2)

S−
k

[ω]〉 in the transverse susceptibility χS+
k S−

k
(ω)

given by (3.6) derived employing the TCLE method. That limit neglects the effects of the memory and initial
correlation for the spin system and phonon reservoir. Therefore, the above susceptibility χrv

S+
k S−

k

(ω) is valid for a quickly

damped reservoir (the reservoir correlation time τc → 0), but not for a non-quickly damped reservoir, because the 
influence of motion of the phonon reservoir on the motoin of the spin system is neglected in that limit. The transverse 
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susceptibility χS+
k S−

k
(ω) derived employing the TCLE method includes the interference thermal state |D(2)

S−
k

[ω]〉, which
represents the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e., the effects
of deviation from the van Hove limit [39] or the narrowing limit [40], and is valid even if the spin system is interacting
with a non-quickly damped phonon-reservoir in the region valid for the second-order perturbation approximation. The
coincidence of the TCLE method and relaxation method in the second-order approximation for the system-reservoir
interaction [25, 34, 35, 36, 37, 38], means that the interference effects, i.e., the effects of the interference terms or
the interference thermal state, which are included in the susceptibility derived employing the TCLE method, are the
effects of motion of the phonon reservoir which influence the motoin of the spin system. Therefore, the interference
effects are considered to increase the power absorption and magnetization-amplitude in the resonance region to excite
the phonon reservoir for a non-quickly damped reservoir, because the external driving field excites not only the spin
system but also the phonon reservoir for a non-quickly damped reservoir. These are investigated numerically in the
following section.

4 Numerical investigation

In the present section, we assume a damped phonon-reservoir model and numerically investigate the power absorption
and the magnetization-amplitude (the amplitude of the expectation value of the transverse magnetization) for the
anti-ferromagnetic spin system, which is interacting with the phonon reservoir and with the transversely rotating
magnetic-field given by (3.1), under an external static magnetic-field in the spin-wave region. We assume that the
phonon reservoir consists of a phonon system coupled directly to the spin system and of a reservoir subsystem coupled
to the phonon system, where the reservoir subsystem (R-subsystem) is damped quickly, as done in Refs. [21, 22, 41, 42].
Then, the correlation functions of the phonon operators can be derived using the relaxation theory for the phonon
system [44, 45, 46], and are assumed to take the forms

∑
ν

| g1ν |2〈1R|R†kν(t)Rkν |ρR〉 = g2
1 n̄(ωRk) exp(i ωRk t − γRk t), (4.1a)

∑
ν

| g1ν |2〈1R|Rkν(t)R†kν |ρR〉 = g2
1 {n̄(ωRk) + 1} exp(− i ωRk t − γRk t), (4.1b)

∑
ν

g2
2ν〈1R|∆(R†kν(t)Rkν(t))∆(R†kνRkν)|ρR〉 =

∑
ν

g2
2ν〈1R|∆(R†kνRkν)∆(R†kν(t)Rkν(t))|ρR〉,

= g2
2 n̄(ωRk){n̄(ωRk) + 1} exp(− 2 γRk t), (4.1c)

with the coupling constants g1 and g2 between the spin and phonon, where ωRk and γRk (> 0) are, respectively, the
characteristic frequency and damping constant of the phonon reservoir. Here, n̄(ωRk) is given by

n̄(ωRk) = {exp(βh̄ωRk) − 1}−1 = {exp(h̄ωRk/(kBT ) − 1}−1. (4.2)

The phonon correlation function (4.1c) is real as assumed in Section 2. By using the above correlation functions,
Φ±k (ε) defined by (A.42) and (A.43) can be expressed as [21].

Φ+
k (ε) = Φ+

k (ε)′ + i Φ+
k (ε)′′ =

1
2

{
1 − exp

(− h̄ ε

kB T

)} ∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε τ),

=
g2
1

2

{
1 − exp

(− h̄ ε

kB T

)} n̄(ωRk) + 1
(ε − ωRk)2 + γ2

Rk

{
γRk + i (ε − ωRk)

}
, (4.3)

Φ−k (ε) = Φ−k (ε)′ + i Φ−k (ε)′′ =
1
2

{
1 − exp

(− h̄ ε

kB T

)} ∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε τ),

=
g2
1

2

{
1 − exp

(− h̄ ε

kB T

)} n̄(ωRk)
(ε + ωRk)2 + γ2

Rk

{
γRk + i (ε + ωRk)

}
, (4.4)

where Φ±k (ε)′ and Φ±k (ε)′′ are, respectively, the real part and imaginary part of Φ±k (ε). We also have for Ψk(ε) defined
by (3.12), the forms

Ψk(ε) = Ψk(ε)′ + i Ψk(ε)′′ = g2
2

n̄(ωRk){n̄(ωRk) + 1}
− i ε + 2γRk

= g2
2 n̄(ωRk){n̄(ωRk) + 1} 2 γRk + i ε

ε2 + (2 γRk)2
, (4.5)

where Ψk(ε)′ and Ψk(ε)′′ are, respectively, the real part and imaginary part of Ψk(ε). For Ψk [ =Ψk(ε+k + ε−k )] and Ψ0
k

[ =Ψk(0)] defined by (A.44) and (A.54), respectively, we have

Ψk = Ψk(ε+k + ε−k ) = Ψ′k + i Ψ′′k = g2
2 n̄(ωRk){n̄(ωRk) + 1} 2 γRk + i (ε+k + ε−k )

(ε+k + ε−k )2 + (2 γRk)2
, (4.6)

Ψ0
k = Ψk(0) = g2

2 n̄(ωRk){n̄(ωRk) + 1}/(2 γRk). (4.7)
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The above expressions given by (4.3)− (4.7) show that Φ±k (ε±k )′ is positive for positive ε±k and that Ψ0
k ≥Ψ′k. Then,

the forms of Γ′k±, Γ′′k±, ∆′k± and ∆′′k± given by (A.59a)− (A.59d) can be written as

Γ′k± =
g2
1S

4

{
1 − exp

(− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
± 1

2

} γRk ·(cosh 2θk ± 1)
(ε±k ∓ ωRk)2 + γ2

Rk

+
g2
1S

4

{
1 − exp

(− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
∓ 1

2

} γRk ·(cosh 2θk ∓ 1)
(ε±k ± ωRk)2 + γ2

Rk

+
g2
2 n̄(ωRk){n̄(ωRk) + 1}

4 γRk

{
1 +

(ε+k + ε−k )2 cosh2 2θk + 4γ2
Rk

(ε+k + ε−k )2 + 4γ2
Rk

}
, (4.8a)

Γ′′k± =
g2
1S

4

{
1 − exp

(− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
± 1

2

} (ε±k ∓ ωRk)(cosh 2θk ± 1)
(ε±k ∓ ωRk)2 + γ2

Rk

+
g2
1S

4

{
1 − exp

(− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
∓ 1

2

} (ε±k ± ωRk)(cosh 2θk ∓ 1)
(ε±k ± ωRk)2 + γ2

Rk

− g2
2 n̄(ωRk){n̄(ωRk) + 1} ε+k + ε−k

2 {(ε+k + ε−k )2 + 4γ2
Rk}

sinh2 2θk , (4.8b)

∆′k± =
g2
1S

4

{
1 − exp

(− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
± 1

2

} γRk sinh 2θk

(ε±k ∓ ωRk)2 + γ2
Rk

+
g2
1S

4

{
1 − exp

(− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
∓ 1

2

} γRk sinh 2θk

(ε±k ± ωRk)2 + γ2
Rk

+ g2
2 n̄(ωRk){n̄(ωRk) + 1} (ε+k + ε−k )2 sinh 2θk cosh 2θk

4γRk{(ε+k + ε−k )2 + 4γ2
Rk}

, (4.8c)

∆′′k± =
g2
1S

4

{
1 − exp

(− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
± 1

2

}(ε±k ∓ ωRk) sinh 2θk

(ε±k ∓ ωRk)2 + γ2
Rk

+
g2
1S

4

{
1 − exp

(− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
∓ 1

2

}(ε±k ± ωRk) sinh 2θk

(ε±k ± ωRk)2 + γ2
Rk

− g2
2 n̄(ωRk){n̄(ωRk) + 1} ε+k + ε−k

2 {(ε+k + ε−k )2 + 4γ2
Rk}

sinh 2θk cosh 2θk . (4.8d)

In Appendix C, we give the forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.15a)− (3.16b). We

consider the case that the phonon reservoir consists of a phonon system of lattice vibration, which has the frequency
proportional to the magnitude |k| of the wave number k, and of a reservoir subsystem coupled to the phonon system,
where the reservoir subsystem (R-subsystem) is damped quickly. We assume that the characteristic frequency of the
phonon reservoir is given by

ωRk = V |k| + ωR0, (4.9)

where ωR0 is the characteristic frequency of the phonon reservoir with the wave number k =0 and is the frequency shift
of the phonon system, which is generated by the motion of the reservoir subsystem coupled to the phonon system. We
also assume for consistency with assumptions (4.1a)− (4.1c) that∑

ν

g2ν 〈1R|R†kνRkν |ρR〉 = g2 n̄(ωRk). (4.10)

Then, the free spin-wave energies ε±k given by (2.20) can be written as

h̄ ε±k = 2 z h̄ J1 S
{√

(ζ + κ)2 − η2
k ± hz

} ± h̄ g2 n̄(ωRk), (4.11)

with ηk, ζ, κ and hz defined by (2.10). We consider the case that the spin system and phonon reservoir are in the
thermal equilibrium state at the initial time t = 0. The initial values nα

k (0) and nβ
k(0) are derived in Appendix D and

take the following forms

nα
k (0) = n̄(ε+k ) + g2

1 S (cosh 2θk + 1) {n̄(ωRk) − n̄(ε+k )} (ε+k − ωRk)2 − (γRk)2

2 {(ε+k − ωRk)2 + (γRk)2}2

+ g2
1 S (cosh 2θk − 1) {n̄(ε+k ) + n̄(ωRk) + 1} (ε+k + ωRk)2 − (γRk)2

2 {(ε+k + ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
, (4.12a)
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nβ
k(0) = n̄(ε−k ) + g2

1 S (cosh 2θk − 1)
{
n̄(ε−k ) + n̄(ωRk) + 1

} (ε−k + ωRk)2 − (γRk)2

2 {(ε−k + ωRk)2 + (γRk)2}2

+ g2
1 S (cosh 2θk + 1)

{
n̄(ωRk) − n̄(ε−k )

} (ε−k − ωRk)2 − (γRk)2

2 {(ε−k − ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
. (4.12b)

We consider an anti-ferromagnetic system of one-dimensional infinite spins interacting with the phonon reservoir.
For the case of a regular-interval ranked spin chain, we have

z = 2 , ηk = cos k , (4.13)

where k is the wave number multiplied by the sublattice constant and is referred to as “the wave number” hereafter.
We perform the numerical calculations for the case of g1/J1 =0.25, g2/J1 =0.25, ωR0/J1 =0.5 and V/J1 = 0.5. The
damping constant γRk of the phonon reservoir, which is equal to the inverse of its correlation time τc, is assumed to
be independent of the wave number k and is taken as γRk/J1 =0.5. The wave-number summation is replaced with the
integral as

2
N

∑
k

=
1
2π

∫ π

−π

dk, (N → ∞), (4.14)

for N →∞, where the wave-number summation goes over (N/2) wave-numbers. The wave-number summation is
performed by the numerical integration for N →∞. In Appendix E, we investigate numerically the region valid for
the lowest spin-wave approximation in the anti-ferromagnetic system of one-dimensional infinite spins. In Appendix
E, the lowest spin-wave approximation is shown to be valid in the regions of the temperature T and anisotropy energy
h̄K given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0, for the spin-magnitude S ≥ 5/2,
ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0, in the meaning that na/(4S) [ = 〈nl〉/(4S)] and nb/(4S) [ = 〈nm〉/(4S)], which
correspond to the expectation values of the second terms in the expansions given by Eqs. (2.3) and (2.5), respectively,
are smaller than about 0.01, where the expectation values na [ = na(∞)] and nb [ =nb(∞)] are, respectively, the
expectation values of the up-spin deviation number and down-spin deviation number in the infinite time limit (t→∞).

We next investigate numerically the power absorption and the amplitude of the expectation value of the transverse
magnetization, which is referred as “the magnetization-amplitude”, for the anti-ferromagnetic spin system in the
region valid for the lowest spin-wave approximation, meaning that na/(4S) [ = 〈nl〉/(4S)] and nb/(4S) [ = 〈nm〉/(4S)],
which correspond to the expectation values of the second terms in the expansions given by Eqs. (2.3) and (2.5),
respectively, are smaller than about 0.01. In Appendix F, we give the forms of the collision operator C(2) and the
interference thermal state |D(2)

S−
k

[ω]〉 for the the spin-phonon interaction HSR taken in the previous papers [21, 22],
which does not reflect the energy transfer between the spin system and phonon reservoir at the sites m of “down”
spins. In Fig. 1, the power absorptions P

(0)
k (ω) given by (3.25), scaled by h̄2γ3 |Hk|2, are displayed varying the

frequency ω scaled by J1 from 15.5 to 20.0 for the cases of wave numbers k =0, π/6,π/4,π/3,π/2, respectively, and
for the spin-magnitudes S =5/2, the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given
by K/J1 =2.0, with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. In Fig. 2, the magnetization-amplitudes A

M(0)
k (ω) given by

(3.39), scaled by h̄γ|Hk|/J1, are displayed varying the frequency ω scaled by J1 from 15.5 to 20.0 for the cases of
wave numbers k =0, π/6,π/4,π/3,π/2, respectively, and for the spin-magnitudes S =5/2, the temperature T given by
kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. In Figs.
1 and 2, the results derived according to the spin-phonon interaction given by (2.21), which reflect the energy transfer
between the spin system and phonon reservoir, are displayed by the solid lines, and the results derived according to the
spin-phonon interaction given by (F.2), which is taken in the previous papers [21, 22] and does not reflect the energy
transfer between the spin system and phonon reservoir at the sites m of “down” spins, are displayed by the dots. The
latter results coincide well with the former results. Figures 1 and 2 show that the power absorption and magnetization-
amplitude have a peak for each wave-number, and that in the resonance regions, as the wave number k becomes large,
the resonance frequencies become large, the peak-heights (heights of peak) increase, and the line half-widths decrease.
When the external driving magnetic-field is uniform in space, the power absorption and magnetization-amplitude of
the spin system in the stationary state are given by P

(0)
k (ω) and A

M(0)
k (ω) with the wave number k =0 in the lowest

spin-wave approximation. In Fig. 3, the power absorptions P
(0)
k (ω) given by (3.25), scaled by h̄2γ3 |Hk|2, are displayed

varying the frequency ω scaled by J1 from 14.0 to 33.0 for the cases of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2, and
for the wave-number k =0, the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by
K/J1 = 2.0, with ζ [ =J2/J1]= 1.0 and ωz/J1 = 1.0. In Fig. 4, the magnetization-amplitudes A

M(0)
k (ω) given by (3.39),

scaled by h̄γ|Hk|/J1, are displayed varying the frequency ω scaled by J1 from 14.0 to 33.0 for the cases of spin-
magnitudes S =5/2, 3, 7/2, 4, 9/2, and for the wave-number k = 0, the temperature T given by kBT/(h̄J1) = 1.0 and 
the anisotropy energy h̄K given by K/J1 = 2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. In Figs. 3 and 4, the results
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Figure 1: The power absorptions P
(0)
k (ω) given by (3.25), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency

ω scaled by J1 from 15.5 to 20.0 for the cases of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-magnitudes
S =5/2, the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 =2.0, with ζ
[ =J2/J1] = 1.0 and ωz/J1 =1.0. The results derived according to the spin-phonon interaction given by (2.21) are
displayed by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are
displayed by the dots.

Figure 2: The magnetization-amplitudes A
M(0)
k (ω) given by (3.39), scaled by h̄γ|Hk|/J1, are displayed varying the

frequency ω scaled by J1 from 15.5 to 20.0 for the cases of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-
magnitudes S =5/2, the temperature T given by kBT/(h̄J1) =1.0 and the anisotropy energy h̄K given by K/J1 = 2.0,
with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. The results derived according to the spin-phonon interaction given by (2.21)
are displayed by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are
displayed by the dots.

derived according to the spin-phonon interaction given by (2.21), which reflect the energy transfer between the spin
system and phonon reservoir, are displayed by the solid lines, and the results derived according to the spin-phonon
interaction given by (F.2), which is taken in the previous papers [21, 22] and does not reflect the energy transfer
between the spin system and phonon reservoir at the sites m of “down” spins, are displayed by the dots. The latter
results coincide well with the former results. Figures 3 and 4 show that in the resonance regions of the power absorption
and magnetization-amplitude, as the spin-magnitude S becomes large, the resonance frequencies become large, and
the peak-heights increase. As seen in Figs. 1− 4, the facts that the results derived according to the spin-phonon
interaction given by (F.2) coincide well with the results derived according to the spin-phonon interaction given by
(2.21), show that the energy transfer between the spin system and phonon reservoir at the sites m of “down” spins
has few influence on the power absorptions and magnetization-amplitudes. Figs. 1− 4 also show that each peak of the
line shapes of magnetization-amplitude A

M(0)
k (ω) has the hemline longer than that of the power absorption P

(0)
k (ω).

Let us see temperature dependence of the line shapes in the resonance regions of the power absorption P
(0)
k (ω) and

magnetization-amplitudes A
M(0)
k (ω). In Fig. 5, we display the resonance frequency ωP

Rk scaled by J1 in the resonance
region of the power absorption P

(0)
k (ω) varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases

of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by
K/J1 = 2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The resonance frequency ωP

Rk investigated calculating numerically
the power absorption P

(0)
k (ω) given by (3.25), are displayed by the solid lines, and the approximate formula given by

(3.26) for the resonance frequency ωP
Rk are displayed by the dots. In Fig. 6, we display the resonance frequency ωM

Rk

scaled by J1 in the resonance region of the magnetization-amplitude A
M(0)
k (ω) varying the temperature T scaled by

h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2, and for the wave number k =0 and
the anisotropy energy h̄K given by K/J1 = 2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. The resonance frequency ωM

Rk

investigated calculating numerically the magnetization-amplitude A
M(0)
k (ω) given by (3.39), are displayed by the solid

lines, and the approximate formula given by (3.40) for the resonance frequency ωM
Rk are displayed by the dots. Figures

5 and 6 show in the resonance region that as the temperature T becomes high, the resonance frequencies ωP
Rk and

ωM
Rk become large slightly, that as the spin-magnitude S becomes large, the resonance frequencies ωP

Rk and ωM
Rk become

large, and that the approximate formulas given by (3.26) and (3.40) for the resonance frequencies ωP
Rk and ωM

Rk, coincide
well with the results investigated calculating numerically the power absorption P

(0)
k (ω) and magnetization-amplitude

A
M(0)
k (ω) given by (3.25) and (3.39) for the temperature T given by kBT/(h̄J1)≤ 1.1. In Fig. 7, we display the natural

logarithm log(HP
Rk) of the peak-height HP

Rk (height of peak) scaled by h̄2γ3 |Hk|2 in the resonance region of the power
absorption P

(0)
k (ω) varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes
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Figure 3: The power absorptions P
(0)
k (ω) given by (3.25), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω

scaled by J1 from 14.0 to 33.0 for the cases of spin-magnitudes S = 5/2, 3, 7/2, 4, 9/2, and for the wave-number k =0,
the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 =2.0, with J2/J1 =1.0 and
ωz/J1 =1.0. The results derived according to the spin-phonon interaction given by (2.21) are displayed by the solid
lines, and the results derived according to the spin-phonon interaction given by (F.2) are displayed by the dots.

Figure 4: The magnetization-amplitudes A
M(0)
k (ω) given by (3.39), scaled by h̄γ|Hk|/J1, are displayed varying the

frequency ω scaled by J1 from 14.0 to 33.0 for the cases of spin-magnitudes S = 5/2, 3, 7/2, 4, 9/2, and for the wave-
number k =0, the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 =2.0, with
J2/J1 =1.0 and ωz/J1 =1.0. The results derived according to the spin-phonon interaction given by (2.21) are displayed
by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are displayed by the
dots.
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Figure 5: The resonance frequency ωP
Rk scaled by J1 for the power absorption P

(0)
k (ω), are displayed by the solid lines

varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2,
and for the wave-number k =0 and the anisotropy energy h̄K given by K/J1 =2.0, with J2/J1 =1.0 and ωz/J1 = 1.0.
The dots denote the approximate formula given by (3.26) for the resonance frequency ωP

Rk.

Figure 6: The resonance frequency ωM
Rk scaled by J1 for the magnetization-amplitudes A

M(0)
k (ω), are displayed

by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes
S =5/2, 3, 7/2, 4, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by K/J1 =2.0, with
J2/J1 =1.0 and ωz/J1 =1.0. The dots denote the approximate formula given by (3.40) for the resonance frequency
ωM
Rk.
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S =5/2, 3, 7/2, 4, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by K/J1 =2.0, with ζ
[ =J2/J1] = 1.0 and ωz/J1 =1.0. The natural logarithm log(HP

Rk) of the peak-height HP
Rk investigated calculating

numerically the power absorption P
(0)
k (ω) given by (3.25), are displayed by the solid lines, and the natural logarithm

of the approximate formula given by (3.27) for the peak-height HP
Rk are displayed by the dots. In Fig. 8, we display the

natural logarithm log(HM
Rk) of the peak-height HM

Rk scaled by h̄γ|Hk|/J1 in the resonance region of the magnetization-
amplitude A

M(0)
k (ω) varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes

S =5/2, 3, 7/2, 4, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by K/J1 =2.0, with ζ
[ =J2/J1] = 1.0 and ωz/J1 =1.0. The natural logarithm log(HM

Rk) of the peak-height HM
Rk investigated calculating

numerically the magnetization-amplitude A
M(0)
k (ω) given by (3.39), are displayed by the solid lines, and the natural

logarithm of the approximate formula given by (3.41) for the peak-height HM
Rk are displayed by the dots. Figures 7 and

8 show in the resonance region that as the temperature T becomes high, the peak-heights HP
Rk and HM

Rk decrease, that
as the spin-magnitude S becomes large, the peak-heights HP

Rk and HM
Rk increases, and that the approximate formulas

given by (3.27) and (3.41) for the peak-height HP
Rk and HM

Rk, coincide well with the results investigated calculating
numerically the power absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) given by (3.25) and (3.39) for the

temperature T given by kBT/(h̄J1)≤ 1.1. In Fig. 9, we display the line half-width ∆ωP
Rk scaled by J1 in the resonance
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Figure 7: The natural logarithm log(HP
Rk) of the peak-height HP

Rk scaled by h̄2γ3 |Hk|2 for the power absorption
P

(0)
k (ω), are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases

of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2, and for the wave-number k =0 and the anisotropy energy h̄K given by
K/J1 = 2.0, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the natural logarithm of the approximate formula
given by (3.27) for the peak-height HP

Rk.

Figure 8: The natural logarithm log(HM
Rk) of the peak-height HM

RF scaled by h̄γ|Hk|/J1 for the magnetization-amplitudes
A

M(0)
k (ω), are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases

of spin-magnitudes S =5/2, 3, 7/2, 4, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by
K/J1 = 2.0, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the natural logarithm of the approximate formula
given by (3.41) for the peak-height HM

Rk.

region of the power absorption P
(0)
k (ω) varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of

spin-magnitudes S =5/2, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given by K/J1 = 2.0,
with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The line half-width ∆ωP

Rk investigated calculating numerically the power
absorption P

(0)
k (ω) given by (3.25), are displayed by the solid lines, and the approximate formula given by (3.33) for

the line half-width ∆ωP
Rk are displayed by the dots. In Fig. 10, we display the line half-width ∆ωM

Rk scaled by J1 in
the resonance region of the magnetization-amplitude A

M(0)
k (ω) varying the temperature T scaled by h̄J1/kB from 0.1 to

1.1 for the cases of spin-magnitudes S =5/2, 9/2, and for the wave number k = 0 and the anisotropy energy h̄K given
by K/J1 =2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The line half-width ∆ωM

Rk investigated calculating numerically
the magnetization-amplitude A

M(0)
k (ω) given by (3.39), are displayed by the solid lines, and the approximate formula

given by (3.45) for the line half-width ∆ωM
Rk are displayed by the dots. Figures 9 and 10 show in the resonance region

that as the temperature T becomes high, the line half-widths ∆ωP
Rk and ∆ωM

Rk increase, that as the spin-magnitude
S becomes large, the line half-widths ∆ωP

Rk and ∆ωM
Rk decrease slightly, and that the approximate formulas given

by (3.33) and (3.45) for the line half-width ∆ωP
Rk and ∆ωM

Rk, coincide well with the results investigated calculating
numerically the power absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) given by (3.25) and (3.39) for the
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temperature T given by kBT/(h̄J1)≤ 1.1. Figures 9 and 10 also show that the line half-widths in the resonance region
of the magnetization-amplitude are larger than those of the power absorption.
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Figure 9: The line half-width ∆ωP
Rk scaled by J1 for the power absorption P

(0)
k (ω), are displayed by the solid lines

varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 9/2, and for the
wave-number k =0 and the anisotropy energy h̄K given by K/J1 =2.0, with J2/J1 =1.0 and ωz/J1 =1.0. The dots
denote the approximate formula given by (3.33) for the line half-width ∆ωP

Rk.

Figure 10: The line half-width ∆ωM
Rk scaled by J1 for the magnetization-amplitudes A

M(0)
k (ω), are displayed by the

solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 9/2,
and for the wave number k =0 and the anisotropy energy h̄K given by K/J1 = 2.0, with J2/J1 =1.0 and ωz/J1 = 1.0.
The dots denote the approximate formula given by (3.45) for the line half-width ∆ωM

Rk.

In the last of this section, we investigate the effects of the memory and initial correlation for the anti-ferromagnetic
spin system and phonon reservoir numerically. Those effects are represented by the interference terms in the TCLE
method and are referred as “the interference effects”. In Fig. 11, the power absorption P

(0)
k (ω) scaled by h̄2γ3 |Hk|2

are displayed varying the frequency ω scaled by J1 from 15.0 to 17.5 in comparison with P
rv(0)
k (ω) scaled by h̄2γ3 |Hk|2,

where P
rv(0)
k (ω) is the power absorption derived employing the relaxation method [25] in the van Hove limit [39] or in

the narrowing limit [40], and is given by

P
rv(0)
k (ω) = h̄ γ |Hk|2 ω χ

rv(0)

S+
k S−

k

(ω)′′, (4.15)

in the lowest spin-wave approximation. Here, χ
rv(0)

S+
k S−

k

(ω)′′ is the imaginary part of the transverse susceptibility

χ
rv(0)

S+
k S−

k

(ω) derived employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40]

in the lowest spin-wave approximation. The transverse susceptibility χ
rv(0)

S+
k S−

k

(ω) coincides with the one without the

corresponding interference terms X
α(β)
k1(2)(ω) given by (3.15) and (3.16) in the transverse susceptibility χ

(0)

S+
k S−

k

(ω) given

by (3.13) or (3.17), which has been derived employing the TCLE method in the lowest spin-wave approximation.
In Fig. 11, the power absorptions P

(0)
k (ω) and P

rv(0)
k (ω) are displayed for the cases of temperatures T given by

kBT/(h̄J1)=0.5, 0.7, 1.0, and for the spin-magnitude S = 5/2, the wave number k =0 and the anisotropy energy h̄K

given by K/J1 =2.0, with ζ [= J2/J1] = 1.0 and ωz/J1 = 1.0. The power absorption P
(0)
k (ω) is displayed by the solid

lines and the power absorption P
rv(0)
k (ω) is displayed by the short dash lines, in Fig. 11. The power absorption

P
(0)
k (ω) given by (3.25), which have been derived employing the TCLE method, includes the interference effects which

are the effects of the memory and initial correlation for the spin system and phonon reservoir [25], and are neglected
in the power absorption P

rv(0)
k (ω) derived employing the relaxation method [25] in the van Hove limit [39] or in the

narrowing limit [40] in the lowest spin-wave approximation. In Fig. 12, the magnetization-amplitude A
M(0)
k (ω) scaled

by h̄γ|Hk|/J1, are displayed varying the frequency ω scaled by J1 from 15.0 to 17.5 in comparison with A
Mrv(0)
k (ω)

scaled by h̄γ|Hk|/J1, where A
Mrv(0)
k (ω) is the magnetization-amplitude derived employing the relaxation method [25]

in the van Hove limit [39] or in the narrowing limit [40], and is given by

A
Mrv(0)
k (ω) = (2/γ)|Hk| (χrv(0)

S+
k S−

k

(ω)′)2 + (χrv(0)

S+
k S−

k

(ω)′′)2, (4.16)
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in the lowest spin-wave approximation. Here, χ
rv(0)

S+
k

S−
k

(ω)′ is the real part of the transverse susceptibility χ
rv(0)

S+
k

S−
k

(ω)

derived employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40] in the lowest
spin-wave approximation. In Fig. 12, the magnetization-amplitudes A

M(0)
k (ω) and A

Mrv(0)
k (ω) are displayed for the cases

of temperatures T given by kBT/(h̄J1)=0.5, 0.7, 1.0, and for the spin-magnitude S = 5/2, the wave number k =0 and
the anisotropy energy h̄K given by K/J1 =2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The magnetization-amplitude
A

M(0)
k (ω) is displayed by the solid lines and the magnetization-amplitude A

Mrv(0)
k (ω) are displayed by the short dash

lines, in Fig. 12. The magnetization-amplitudes A
M(0)
k (ω) given by (3.39), which have been derived employing the

TCLE method, includes the interference effects which are the effects of the memory and initial correlation for the spin
system and phonon reservoir [25], and are neglected in the magnetization-amplitude A

Mrv(0)
k (ω) derived employing the

relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40] in the lowest spin-wave approximation.
Figures 11 and 12 show that the interference effects increase the power absorptions and magnetization-amplitude in the
resonance region and produce effects that cannot be disregarded, and that as the temperature T becomes high, those
effects become large comparatively. In Fig. 13, the rate (HP

Rk −HPrv
Rk )/HP

Rk of the interference effects (HP
Rk −HPrv

Rk ) for
the peak-height HP

Rk of the power absorption P
(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from

0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 9/2, and for the anisotropy energy h̄K given by K/J1 = 2.0, the
wave-number k =0 and the daming constant γRk given by γRk/J1 =0.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. Here,
HP

Rk is the peak-height of the power absorption P
(0)
k (ω), the approximate formula given by (3.27) is used for HP

Rk, and
HPrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.27). In Fig.

14, the rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the magnetization-
amplitudes A

M(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of

spin-magnitudes S = 5/2, 9/2, and for the anisotropy energy h̄K given by K/J1 =2.0, the wave-number k =0 and the
daming constant γRk given by γRk/J1 =0.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. Here, HM

Rk is the peak-height of
the magnetization-amplitudes A

M(0)
k (ω), the approximate formula given by (3.41) is used for HM

Rk, and HMrv
Rk is the one

without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.41). Figures 13 and 14 show

in the resonance region that as the temperature T becomes high, the interference effects for the power absorption
P

(0)
k (ω) and the magnetization-amplitudes A

M(0)
k (ω), become large. As the spin-magnitude S becomes large, those

effects become small slightly. In Fig. 15, the rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the

peak-height HP
Rk of the power absorption P

(0)
k (ω), are displayed varying the daming constant γRk scaled by J1 from 0.5

to 3.5 for the cases of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-magnitude S = 5/2, the temperature T
given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0.
Here, the peak-height HP

Rk is the peak-height of the power absorption P
(0)
k (ω), the approximate formula given by

(3.27) is used for HP
Rk, and HPrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate

formula (3.27). In Fig. 16, the rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk

of the magnetization-amplitudes A
M(0)
k (ω), are displayed varying the daming constant γRk scaled by J1 from 0.5 to 3.5

for the cases of wave numbers k =0,π/6, π/4,π/3,π/2, and for the spin-magnitudes S =5/2, the temperature T given
by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 =2.0, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. Here,
HM

Rk is the peak-height of the magnetization-amplitudes A
M(0)
k (ω), the approximate formula given by (3.41) is used for

HM
Rk, and HMrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.41).

Figures 15 and 16 show in the resonance region that as the damping constant γRk of the phonon reservoir becomes
small, the interference effects for the power absorption P

(0)
k (ω) and the magnetization-amplitude A

M(0)
k (ω), become

large, and also that as the wave number k becomes small, those effects become large. Since the damping constant γRk
of the phonon reservoir is equal to the inverse of its correlation time τc, the interference effects become large as the
phonon reservoir is damped slowly. Thus, the interference effects produce effects that cannot be disregarded for the
high temperature, for the non-quickly damped reservoir or for the small wave-number.

5 Summary and concluding remarks

We have considered an anti-ferromagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange
interaction under an external static magnetic-field in the spin-wave region, interacting with a phonon reservoir, and
have derived a form of the transverse magnetic susceptibility for such a spin system interacting with an external
driving magnetic-field, which is a transversely rotating classical field, in the spin-wave approximation by employing
the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which have been
reformulated for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon
reservoir. We have analytically examined the power absorption and the amplitude of the expectation value of the
transverse magnetization, which is referred as “the magnetization-amplitude”, for the anti-ferromagnetic spin system,
and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and magnetization-amplitude. We have numerically investigated
the power absorption and magnetization-amplitude for an anti-ferromagnetic system of one-dimensional infinite spins
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Figure 11: The power absorptions P
(0)
k (ω) and P

rv(0)
k (ω), scaled by h̄2γ3|Hk|2, are displayed varying the frequency ω

scaled by J1 from 15.0 to 17.5, for the cases of temperatures T given by kBT/(h̄J1) =0.5, 0.7, 1.0, and for the wave-
number k =0, the spin-magnitude S =5/2 and the anisotropy energy h̄K given by K/J1 = 2.0, with J2/J1 = 1.0 and
ωz/J1 =1.0. The power absorption P

(0)
k (ω) is displayed by the solid lines, and P

rv(0)
k (ω) is displayed by the short dash

lines and coincides with the one without the corresponding interference terms in the power absorption P
(0)
k (ω) derived

employing the TCLE method in the lowest spin-wave approximation.

Figure 12: The magnetization-amplitudes A
M(0)
k (ω) and A

Mrv(0)
k (ω), scaled by h̄γ|Hk|/J1, are displayed varying the

frequency ω scaled by J1 from 15.0 to 17.5 for the cases of temperatures T given by kBT/(h̄J1)=0.5, 0.7, 1.0, and
for the wave-number k =0, the spin-magnitude S =5/2 and the anisotropy energy h̄K given by K/J1 = 2.0, with
J2/J1 =1.0 and ωz/J1 = 1.0. The magnetization-amplitude A

M(0)
k (ω) is displayed by the solid lines, and A

Mrv(0)
k (ω)

is displayed by the short dash lines and coincides with the one without the corresponding interference terms in the
magnetization-amplitude A

M(0)
k (ω) derived employing the TCLE method in the lowest spin-wave approximation.
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Figure 13: The rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the peak-height HP

Rk of the power
absorption P

(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-

magnitudes S = 5/2, 9/2, and for the wave-number k =0 and the anisotropy energy h̄K given by K/J1 = 2.0, with
J2/J1 =1.0 and ωz/J1 =1.0. Here, the peak-height HP

Rk is the approximate formula given by (3.27), and HPrv
Rk is the

one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.27).

Figure 14: The rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the
magnetization-amplitudes A

M(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for

the cases of spin-magnitudes S =5/2, 9/2, and for the wave-number k = 0 and the anisotropy energy h̄K given by
K/J1 = 2.0, with J2/J1 = 1.0 and ωz/J1 = 1.0. Here, the peak-height HM

Rk is the approximate formula given by (3.41),
and HMrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.41).
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by assuming a damped phonon-reservoir model in the region valid for the lowest spin-wave approximation. Here,
the valid region means that na/(4S) [ = 〈nl〉/(4S)] and nb/(4S) [ = 〈nm〉/(4S)], which correspond to the expectation
values of the second terms in the expansions given by Eqs. (2.3) and (2.5) respectively, are smaller than about 0.01 in
that region, where the expectation values na [= na(∞)] and nb [ =nb(∞)] are the expectation values of the up-spin
deviation number and down-spin deviation number, respectively, in the infinite time limit (t→∞). We have mainly
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Figure 15: The rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the peak-height HP

Rk of the power
absorption P

(0)
k (ω), are displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5

to 3.5 for the cases of wave numbers k =0,π/6, π/4,π/3,π/2, and for the spin-magnitude S = 5/2, the temperature
T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 2.0, with J2/J1 = 1.0 and ωz/J1 = 1.0.
Here, the peak-height HP

Rk is the approximate formula given by (3.27), and HPrv
Rk is the one without the corresponding

interference terms Xα
k1(2)(ω) in the approximate formula (3.27).

Figure 16: The rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the
magnetization-amplitudes A

M(0)
k (ω), are displayed varying the daming constant γRk of the phonon reservoir, scaled by

J1, for the phonon reservoir from 0.5 to 3.5 for the cases of wave numbers k =0, π/6,π/4,π/3,π/2, and for the spin-
magnitude S = 5/2, the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 2.0,
with J2/J1 = 1.0 and ωz/J1 = 1.0. Here, the peak-height HM

Rk is the approximate formula given by (3.41), and HMrv
Rk is

the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula (3.41).

obtained the following results by the numerical investigations for the power absorption and magnetization-amplitude.
1. The power absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) with the wave number k have a peak for each

wave-number. As the wave number k becomes large, the resonance frequencies and peak-heights (heights of peak)
increase, and the line half-widths decrease in the resonance region. Thus, as the wave number k becomes large, the
line shapes of the power absorption and magnetization-amplitude show “the narrowing” in the resonance region.
2. In the resonance region of the power absorption and magnetization-amplitude, as the spin-magnitude S becomes
large, the resonance frequencies become large, the peak-heights increase and the line half-widths decrease slightly.
3. In the resonance region of the power absorption and magnetization-amplitude, as the temperature T becomes
high, the resonance frequencies increase slightly, the peak-heights decrease and the line half-widths increase. The
approximate formulas of the resonance frequencies, peak-heights and line half-widths, which have been derived in the
resonance region of the power absorption and magnetization-amplitude, coincide well with the results investigated
calculating numerically the analytic results of the power absorption and magnetization-amplitude.
4. The effects of the memory and initial correlation for the spin system and phonon reservoir, which are represented by
the interference terms in the TCLE method and are referred as “the interference effects”, increase the power absorption
and magnetization-amplitude in the resonance region, and become large as the temperature T becomes high, as the
phonon reservoir is damped slowly or as the wave number k becomes small. Thus, the interference effects produce
effects that cannot be neglected for the high temperature, for the non-quickly damped reservoir or for the small wave
number k. Those effects become small slightly as the spin-magnitude S becomes large.
5. Each peak of the line shapes of magnetization-amplitude has the hemline longer than that of the power absorption.
Also, the line half-widths in the resonance region of the magnetization-amplitude are larger than those of the power
absorption.
6. The energy transfer between the anti-ferromagnetic spin system and phonon reservoir at the “down”spin sites has
few influence on the power absorptions and magnetization-amplitudes of the spin system, i.e., the numerical results
derived according to the spin-phonon interaction given by (F.2) coincide almost with those derived according to the
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spin-phonon interaction given by (2.21).
We have analytically examined the power absorption and magnetization-amplitude for the anti-ferromagnetic spin

system, and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line
half-widths in the resonance region. The approximate formulas of the resonance frequencies for the power absorption
and magnetization-amplitude are given by (3.26) and (3.40), respectively, i.e.

ωP
Rk

∼= ε+k + Γ′′k+, ωM
Rk

∼= ε+k + Γ′′k+, (5.1)

with Γ′′k+ given by (A.59b) or (4.8b). As shown in Figs. 5 and 6, the approximate formulas of the resonance frequencies
ωP
Rk and ωM

Rk coincide well with the results investigated calculating numerically the analytic results of the power
absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) in the lowest spin-wave approximation, respectively, for the

temperature T given by kBT/(h̄J1)≤ 1.1. The approximate formulas of the peak-heights for the power absorption and
magnetization-amplitude are given by (3.27) and (3.41), respectively, i.e.

HP
Rk

∼= h̄2 γ3 |Hk|2 ωP
Rk Ξα

k (ωP
Rk)′′/(2 Γ′k+), (5.2)

HM
Rk

∼= h̄γ |Hk|
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
/ Γ′k+, (5.3)

with Γ′k+ given by (A.59a) or (4.8a), where Ξα
k (ω)′ and Ξα

k (ω)′′ are the real and imaginary parts of Ξα
k (ω) given by

(3.23a), respectively, i.e.

Ξα
k (ω)′ = S (cosh 2θk − sinh 2θk)2 {Xα

k1(ω)′ + Xα
k2(ω)′}, (5.4a)

Ξα
k (ω)′′ = S (cosh 2θk − sinh 2θk)2 {1 + Xα

k1(ω)′′ + Xα
k2(ω)′′}. (5.4b)

The approximate formulas of the peak-heights HP
Rk and HM

Rk include the real and imaginary parts of the corresponding
interference terms Xα

k1(ω) and Xα
k2(ω) given by (C.3b) and (C.4b) at the resonance frequencies. The interference

terms produce the effects that increase the peak-heights of the power absorption and magnetization-amplitude in the
resonance region, as seen in Figs. 11 and 12. As shown in Figs. 7 and 8, the approximate formulas of the peak-heights
HP

Rk and HM
Rk coincide well with the results investigated calculating numerically the analytic results of the power

absorption P
(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) in the lowest spin-wave approximation, respectively, for the

temperature T given by kBT/(h̄J1)≤ 1.1. The approximate formulas derived for the line half-widths in the resonance
region of the power absorption and magnetization-amplitude are given by (3.33) and (3.45), respectively, i.e.,

∆ωP
Rk

∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′ + Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′′

+
{
(ωP

Rk)2 (Ξα
k (ωP

Rk + x1Γ′k+)′)2 + (Γ′k+)2 (Ξα
k (ωP

Rk + x1Γ′k+)′′)2

+ 2 ωP
Rk Ξα

k (ωP
Rk)′′{Γ′k+ Ξα

k (ωP
Rk + x1Γ′k+)′ + ωP

Rk Ξα
k (ωP

Rk + x1Γ′k+)′′}
− 2 ωP

Rk Γ′k+ Ξα
k (ωP

Rk + x1Γ′k+)′ Ξα
k (ωP

Rk + x1Γ′k+)′′ − (ωP
Rk)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′}, (5.5)

∆ωM
Rk

∼= 2 Γ′k+

{
4
{Ξα

k (ωM
Rk +

√
3Γ′k+)′}2 + {Ξα

k (ωM
Rk +

√
3Γ′k+)′′}2

{Ξα
k (ωM

Rk)′}2 + {Ξα
k (ωM

Rk)′′}2
− 1

}1/2

, (5.6)

where x1 is given by

x1
∼= {

ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′ +

{
(ωP

Rk)2 {(Ξα
k (ωP

Rk)′)2 + (Ξα
k (ωP

Rk)′′)2}
+ (Γ′k+)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk)′}. (5.7)

As shown in Figs. 9 and 10, the approximate formulas of the line half-widths ∆ωP
Rk and ∆ωM

Rk coincide well with the
results investigated calculating numerically the analytic results of the power absorption P

(0)
k (ω) and magnetization-

amplitude A
M(0)
k (ω) in the lowest spin-wave approximation, respectively, for the temperature given by kBT/(h̄J1)≤ 1.1.

The above approximate formulas derived for the resonance frequencies, peak-heights and line half-widths in the
resonance region of the power absorption and magnetization-amplitude, are useful for investigating dependence of the
line shapes on variation of various physical quantities. As examples, we investigate dependence of the peak-heights
and line half-widths in the resonance region of the power absorption and magnetization-amplitude on the anisotropy
energy and the damping constant of the phonon reservoir. In Fig. 17, the approximate formula (3.27) or (5.2) of the
peak-height HP

Rk in the resonance region of the power absorption P
(0)
k (ω), scaled by h̄2γ3 |Hk|2, is displayed varying

the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases of anisotropy energies h̄K
given by A= K/J1 =1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given by kBT/(h̄J1)=1.0 and the spin-magnitude
S =5/2, with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. In Fig. 18, the approximate formula (3.41) or (5.3) of peak-height
HM

Rk in the resonance region of the magnetization-amplitudes A
M(0)
k (ω), scaled by h̄γ |Hk|/J1, is displayed varying the

daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases of anisotropy energies h̄K 
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given by A= K/J1 =1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given by kBT/(h̄J1)=1.0 and the spin-magnitude
S =5/2, with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. The anisotropy energy is denoted as “A” [ = K/J1] in Figs. 17 and
18. Figures 17 and 18 show in the resonance region of the power absorption and magnetization-amplitude that as the
damping constant γRk of the phonon reservoir becomes large, the peak-heights HP

Rk and HM
Rk increase, and also that as

the anisotropy energy h̄K increases, the peak-heights HP
Rk and HM

Rk increase. In Fig. 19, the approximate formula (3.33)
or (5.5) of the line half-width ∆ωP

Rk in the resonance region of the power absorption P
(0)
k (ω), scaled by J1, is displayed

varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases of anisotropy
energies h̄K given by A=K/J1 =1.5, 2.0, 3.0, 5.0, and for the temperature T given by kBT/(h̄J1) =1.0 and the spin-
magnitude S =5/2, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. In Fig. 20, the approximate formula (3.45) or (5.6) of
the line half-width ∆ωM

Rk in the resonance region of the magnetization-amplitudes A
M(0)
k (ω), scaled by J1, is displayed

varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases of anisotropy
energies h̄K given by A=K/J1 =1.5, 2.0, 3.0, 5.0, and for the temperature T given by kBT/(h̄J1) =1.0 and the spin-
magnitude S = 5/2, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The anisotropy energy is denoted as “A” [ =K/J1] in
Figs. 19 and 20. Figures 19 and 20 show in the resonance region of the power absorption and magnetization-amplitude
that as the damping constant γRk of the phonon reservoir becomes large, the line half-widths ∆ωP

Rk and ∆ωM
Rk decrease,

and that as the anisotropy energy h̄K increases, the line half-widths ∆ωP
Rk and ∆ωM

Rk decrease slightly. Figures 17− 20
show in the resonance region of the power absorption and magnetization-amplitude that as the damping constant γRk
of the phonon reservoir becomes large, the peak-heights HP

Rk and HM
Rk increase and the line half-widths ∆ωP

Rk and ∆ωM
Rk

decrease. Since the damping constant γRk of the phonon reservoir is equal to the inverse of its correlation time τc, the
phonon reservoir is damped quickly as the damping constant become large. Thus, as the phonon reservoir is damped
quickly, the line shapes of the power absorption and magnetization-amplitude show “the narrowing”, in the resonance
region.
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Figure 17: The approximate formula (3.27) for the peak-height HP
Rk in the resonance region of the power absorption

P
(0)
k (ω), scaled by h̄2γ3 |Hk|2, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from

0.5 to 5.5 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T
given by kBT/(h̄J1)= 1.0 and the spin-magnitude S = 5/2, with J2/J1 = 1.0 and ωz/J1 = 1.0.

Figure 18: The approximate formula (3.41) for the peak-height HM
Rk in the resonance region of the magnetization-

amplitudes A
M(0)
k (ω), scaled by h̄γ |Hk|/J1, is displayed varying the daming constant γRk of the phonon reservoir,

scaled by J1, from 0.5 to 5.5 for the cases of anisotropy energies h̄K given by A=K/J1 =1.5, 2.0, 2.5, 3.0, 4.0, and for
the temperature T given by kBT/(h̄J1)=1.0 and the spin-magnitude S = 5/2, with J2/J1 = 1.0 and ωz/J1 = 1.0.

We have discussed the linear response of an anti-ferromagnetic spin system interacting with a phonon reservoir to
an external driving magnetic-field, which is a transversely rotating classical field, by employing the TCLE method in
the second-order approximation for the system-reservoir interaction, including the effects of the memory and initial
correlation for the spin system and phonon reservoir, i.e., the interference effects (the effects of interference between
the external driving field and the phonon reservoir), which are represented by the interference terms or the interference
thermal state in the TCLE method, give the effects of the deviation from the van Hove limit [39] or the narrowing limit
[40]. The interference effects are the effects of collision of the spin system excited by the external driving field with
the phonon reservoir, and influence the motoin of the spin system according to the motion of the phonon reservoir,
and therefore those effects increases the power absorption and magnetization-amplitude in the resonance region for a
non-quickly damped phonon-reservoir as seen in Figs. 11 and 12, because the external driving field excites not only
the spin system but also the phonon reservoir in that region. The interference effects become large as the temperature
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Figure 19: The approximate formula (3.33) for the line half-width ∆ωP
Rk in the resonance region of the power absorption

P
(0)
k (ω), scaled by J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to

5.5 for the cases of anisotropy energies h̄K given by A= K/J1 =1.5, 2.0, 3.0, 5.0, and for the temperature T given by
kBT/(h̄J1)=1.0 and the spin-magnitude S = 5/2, with J2/J1 =1.0 and ωz/J1 = 1.0.

Figure 20: The approximate formula (3.45) for the line half-width ∆ωM
Rk in the resonance region of the magnetization-

amplitudes A
M(0)
k (ω), scaled by J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1,

from 0.5 to 5.5 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.5, 2.0, 3.0, 5.0, and for the temperature
T given by kBT/(h̄J1)=1.0 and the spin-magnitude S = 5/2, with J2/J1 =1.0 and ωz/J1 =1.0.

becomes high as seen in Figs. 13 and 14, and also become large as the phonon reservoir is damped slowly or as the wave
number k becomes small as seen in Figs. 15 and 16, and thus those effects produce effects that cannot be neglected for
the high temperature, for the non-quickly damped reservoir or for the small wave number k. If the phonon reservoir
is damped quickly, that is to say, the relaxation time τr of the spin system is much greater than the correlation time
τc of the phonon reservoir, i.e., τr � τc, as being discussed in Ref. [25], one obtains the transverse susceptibility
χrv

S+
k S−

k

(ω) given by (3.46) without the interference thermal state |D(2)

S−
k

[ω]〉 in the transverse susceptibility χS+
k S−

k
(ω)

[(3.6)] derived employing the TCLE method [25]. The susceptibility χrv
S+

k S−
k

(ω) is derived employing the relaxation

method [25] in the van Hove limit [39] or in the narrowing limit [40], and is valid only in the limit in which the
phonon reservoir is damped quickly [25]. Since the transverse relaxation times of the anti-ferromagnetic spin system
are equal to (Γ′k±)−1 according to (A.57a) and (A.57b), where Γ′k± is given by (A.59a) or (4.8a), and the transverse
correlation time of the phonon reservoir is equal to (γRk)−1 according to (4.1a) or (4.1b), we have (Γ′k±)−1 � (γRk)−1,
i.e., Γ′k±� γRk, or (the transverse correlation time (γRk)−1 = τTc of the phonon reservoir)→ 0 in the van Hove limit
[39] or in the narrowing limit [40]. In this limit, since the corresponding interference terms X

α(β)
k1 (ω) and X

α(β)
k2 (ω)

vanish according to (C.3)− (C.6) as seen in Figs. 15 and 16, the transverse susceptibility becomes χrv
S+

k S−
k

(ω) given

by (3.46), and therefore one cannot discuss theoretically variations of the peak-heights and line half-widths in the
resonance region of the power-absorption and magnetization-amplitude, because the peak-heights approach to ∞ and
the line half-widths approach to 0 in that limit as seen in Figs. 17− 20. The transverse magnetic susceptibility
χS+

k S−
k

(ω) derived employing the second-order TCLE method is valid even if the phonon reservoir is damped slowly,
in the region valid for the second-order perturbation approximation. Thus, the TCLE method is available for a spin
system interacting with a non-quickly damped phonon-reservoir as well, and one can discuss theoretically variations
of the peak-heights and line half-widths in the resonance region of the power-absorption and magnetization-amplitude
derived employing the TCLE method, whereas one cannot discuss theoretically variations of the peak-heights and line
half-widths employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40], in which
the phonon reservoir is damped quickly [25].

We have analytically examined the power absorption and magnetization-amplitude in the resonance region of an
anti-ferromagnetic spin system interacting with a phonon reservoir using the spin-wave method [4, 7], and have derived
the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths in the lowest
spin-wave approximation. We have numerically investigated an anti-ferromagnetic system of one-dimensional ininite
spins in the region valid for the lowest spin-wave approximation, and have shown that the approximate formulas of
the resonance frequencies, peak-heights and line half-widths in the resonance region, coincide well with the results
investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude, and
satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-heights increase and the line
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half-widths decrease, and thus we have numerically verified the approximate formulas. The approximate formulas
obtained for the resonance frequencies, peak-heights and line half-widths in the resonance region, may have to be
verified for the various cases both experimentally and by the other theoretical method, e.g. the simulation method.
We have also shown numerically that the energy transfer between the spin system and phonon reservoir at the “down”
spin sites has few influence on the power absorptions and magnetization-amplitudes. We have besides investigated
numerically the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e., the
interference effects (the effects of interference between the external driving field and the phonon reservoir), and have
shown that those effects produce effects that cannot be neglected for the high temperature, for the non-quickly
damped reservoir or for the small wave-number. Although the numerical investigation have been performed for an
anti-ferromagnetic system of one-dimensional infinite spins, the analytic results obtained in the present paper are
available for two- and three-dimensional spin systems as well.

Appendix

A NETFD for anti-ferromagnetic spin system

In this Appendix, we consider the anti-ferromagnetic spin system interacting with the phonon reservoir, which has
been modeled in Section 2, and reformulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon
interaction (2.21) taken to reflect the energy transfer between the spin system and phonon reservoir.

A.1 Basic formulation

We first provide the time-convolutionless (TCL) equation of motion for the anti-ferromagnetic spin system and phonon
reservoir. We take the Hamiltonian H of the anti-ferromagnetic system and phonon reservoir under an external static
magnetic-field, as

H = HS + HR + HSR = H0 + HSR , (H0 = HS + HR), (A.1)

and provide the basic requirements (axioms)

Ĥ |ρTE〉 = 0, ĤS |ρS〉 = 0, ĤR |ρR〉 = 0, (A.2)

as in Ref. [28], where ρTE and ρS are the normalized, time-independent density operators given by

ρTE = exp(−β H)/〈1| exp(−β H)〉 = exp(−β H)/ Tr exp(−β H), (A.3)
ρS = exp(−β HS)/〈1S| exp(−β HS)〉 = exp(−β HS)/ tr exp(−β HS), (A.4)

which are the thermal equilibrium density operators at temperature T =(kBβ)−1, where Tr= tr trR. Here, Ĥ, ĤS and
ĤR are the renormalized hat-Hamiltonians defined by, for example, Ĥ=(H−H̃†)/h̄ [25]. The spin deviation operators
αk, βk, the phonon operators Ra

kν , Rb
kν and their tilde conjugates satisfy the commutation relations

[
αk , α†k′

]
=

[
α̃k , α̃†k′

]
=

[
βk , β†k′

]
=

[
β̃k , β̃†k′

]
= δkk′ , (A.5)[

Ra
kν , Ra†

k′ν′
]

=
[
R̃a

kν , R̃a†
k′ν′

]
=

[
Rb

kν , Rb†
k′ν′

]
=

[
R̃b

kν , R̃b†
k′ν′

]
= δkk′ δνν′ , (A.6)

while the other commutators vanish. As done in Refs. [21, 22, 28], we provide the basic requirements

〈1S|αk = 〈1S|α̃†k , 〈1S|βk = 〈1S|β̃†k , (A.7)

〈1R|Ra
kν = 〈1R|R̃a†

kν , 〈1R|Rb
kν = 〈1R|R̃b†

kν , (A.8)

and their tilde conjugates.
In the thermal-Liouville space of the spin system and phonon reservoir, the time-evolution of the thermal state

|ρT(t)〉 [ = ρT(t)|1〉] for the density operator ρT(t) of the total system is given by the Schrödinger equation [26, 27, 28]

(d/dt) |ρT(t)〉 = − i Ĥ |ρT(t)〉. (A.9)

The spin system and phonon reservoir are assumed to be in the thermal state |ρT(0)〉 at the initial time t =0 as an
initial condition. In order to eliminate the irrelevant part associated with the phonon reservoir, we introduce the
time-independent projection operators P and Q defined by [27]

P = |ρR〉〈1R| = ρR |1R〉〈1R| and Q = 1 − P . (A.10)

Proceeding in the same way as in Ref. [47], the time-convolutionless (TCL) equation of motion for the reduced thermal
state |ρ(t)〉 [ = 〈1R|ρT(t)〉] can be obtained as [29, 30]

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(t) |ρ(t)〉 + |I(t)〉, (A.11)
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where the collision operator C(t) and the thermal state |I(t)〉 are given by

C(t) = − i 〈1R| ĤSR {Θ(t) − 1} |ρR〉, (A.12)

|I(t)〉 = − i 〈1R| ĤSR Θ(t) exp(− iQĤQ t )Q |ρT(0)〉, (A.13)

with Θ(t) defined by

Θ(t) =
{

1 + i

∫ t

0

dτ exp(− iQĤQ τ)QĤP exp(i Ĥ τ)
}−1

. (A.14)

Here, we have adopted the first order renormalization given by (2.19)− (2.21) for the free spin-wave Hamiltonian, the
free spin-wave energies and the spin-phonon interaction. The thermal state |I(t)〉 depends on the initial condition
of the spin system and phonon reservoir, and represents the effects of the initial correlation for the spin system and
phonon reservoir.

We now consider the case that the spin system is interacting so weakly with the phonon reservoir that we can
use the second-order approximation, and expand Eq. (A.11) up to the second order in powers of the spin-phonon
interaction. When we assume the initial condition that the spin system and phonon reservoir are in the thermal
equilibrium state at the initial time t= 0, i.e., |ρT(0)〉= |ρTE〉, Eq. (A.11) reduces to

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(2)(t) |ρ(t)〉 + |I(2)(t)〉, (A.15)

where C(2)(t) and |I(2)(t)〉 are given by [29, 30]

C(2)(t) = −
∫ t

0

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR exp(i Ĥ0 τ)
∣∣ρR〉, (A.16)

|I(2)(t)〉 = i
〈
1R

∣∣ ĤSR exp(− i Ĥ0 t)
∫ β

0

dβ ′ ρS ρR exp(β ′h̄ Ĥ0)
∣∣HSR

〉
,

= − lim
µ→+0

∫ ∞
t

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR ρS ρR
∣∣1〉

e−µ τ . (A.17)

If the relaxation time τr of the spin system is much greater than the correlation time τc of the phonon reservoir, i.e.,
τr � τc, the thermal state |I(2)(t)〉 becomes small negligibly [25, 29, 30, 48]. Thus, in the case that the relaxation
time τr of the spin system is much larger than the correlation time τc of the phonon reservoir, i.e., τr � τc, which
corresponds to the van Hove limit [39] or the narrowing limit [40], the phonon reservoir is damped quickly, and we
have C(2)(t)=C(2)(∞) and |I(2)(t)〉=0. In this Appendix, we consider such a case. Then, the reduced thermal state
|ρ(t)〉 [ = 〈1R|ρT(t)〉 ] satisfies the following equation and initial condition

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(2) |ρ(t)〉 ; |ρ(0)〉 = 〈1R|ρT(0)〉 = 〈1R|ρTE〉, (A.18)

for τr � τc, where the collision operator C(2) is defined by

C(2) = C(2)(∞) = −
∫ ∞

0

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR exp(i Ĥ0 τ)
∣∣ρR〉. (A.19)

Equation (A.18) is can be formally solved as

|ρ(t)〉 = exp{− i ĤS t + C(2) t}|ρ0〉 = U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (τr � τc), (A.20)

with ρ0 = ρ(0) = trR ρTE, i.e., |ρ0〉= |ρ(0)〉= 〈1R|ρTE〉. Here, we have divided the Hamiltonian HS of the spin system into
the unperturbed part HS0 and the perturbed part HS1, i.e., HS = HS0 + HS1, and have defined

U(t) = exp {− (i ĤS0 − C(2)) t } = exp {− i (ĤS0 + i C(2)) t }, (A.21)

ĤS1(t) = U−1(t) ĤS1 U(t), [ ĤS1 = (HS1 − H̃†S1)/h̄ ]. (A.22)

Then, the expectation value of a physical quantity A of the spin system can be described as

〈1|A|ρT(t)〉 = 〈1S|A|ρ(t)〉 = 〈1S|AU(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉. (A.23)

This expression is convenient for the expansion in powers of the spin-wave interaction HS1.
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A.2 Collision operator and thermal-state conditions

By substituting (2.21) into (A.19) and by using the basic requirements (A.8) and their tilde conjugates, we can derive
the concrete expression of the collision operator C(2) given by (A.19), as

C(2) =
−S

2

∑
k

{
(φ+−

k (ε+k ) + φ−+
k (−ε+k )){(αk − α̃†k)α†k cosh 2θk − (β†k − β̃k)α†k sinh 2θk}

− (φ−+
k (ε+k )∗ + φ+−

k (−ε+k )∗){(αk − α̃†k) α̃k cosh 2θk − (β†k − β̃k) α̃k sinh 2θk}
+ (φ−+

k (ε+k ) + φ+−
k (−ε+k )){(α†k − α̃k)αk cosh 2θk − (βk − β̃†k)αk sinh 2θk}

− (φ+−
k (ε+k )∗ + φ−+

k (−ε+k )∗){(α†k − α̃k) α̃†k cosh 2θk − (βk − β̃†k) α̃†k sinh 2θk}
+ (φ+−

k (−ε−k ) + φ−+
k (ε−k )){(β†k − β̃k)βk cosh 2θk − (αk − α̃†k)βk sinh 2θk}

− (φ−+
k (−ε−k )∗ + φ+−

k (ε−k )∗){(β†k − β̃k) β̃†k cosh 2θk − (αk − α̃†k) β̃†k sinh 2θk}
+ (φ−+

k (−ε−k ) + φ+−
k (ε−k )){(βk − β̃†k)β†k cosh 2θk − (α†k − α̃k)β†k sinh 2θk}

− (φ+−
k (−ε−k )∗ + φ−+

k (ε−k )∗){(βk − β̃†k) β̃k cosh 2θk − (α†k − α̃k) β̃k sinh 2θk}
}

− S

2

∑
k

{
(φ+−

k (ε+k ) − φ−+
k (−ε+k ))(αk − α̃†k)α†k − (φ−+

k (ε+k )∗ − φ+−
k (−ε+k )∗)(αk − α̃†k)α̃k

+ (φ−+
k (ε+k ) − φ+−

k (−ε+k ))(α†k − α̃k)αk − (φ+−
k (ε+k )∗ − φ−+

k (−ε+k )∗)(α†k − α̃k)α̃†k
− (φ+−

k (−ε−k ) − φ−+
k (ε−k ))(β†k − β̃k)βk + (φ−+

k (−ε−k )∗ − φ+−
k (ε−k )∗)(β†k − β̃k)β̃†k

− (φ−+
k (−ε−k ) − φ+−

k (ε−k ))(βk − β̃†k)β†k + (φ+−
k (−ε−k )∗ − φ−+

k (ε−k )∗)(βk − β̃†k)β̃k

}
− 1

2

∑
k

{{(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk − (αkβk + α†kβ†k − α̃†kβ̃†k − α̃kβ̃k) sinh 2θk}

× {(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk φzz
k (0)

− ((αkβk − α̃†kβ̃†k)φzz
k (ε+k + ε−k ) + (α†kβ†k − α̃kβ̃k)φzz

k (ε+k + ε−k )∗) sinh 2θk}
+ {α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}{α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}φzz

k (0)
}
, (A.24)

where φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) are given by

φ+−
k (ε) =

1
2

∑
ν

| g1ν |2
∫ ∞

0

dτ 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε τ), (A.25a)

φ−+
k (ε) =

1
2

∑
ν

| g1ν |2
∫ ∞

0

dτ 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε τ), (A.25b)

φzz
k (ε) =

∑
ν

g2
2ν

∫ ∞
0

dτ
〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp(i ε τ). (A.25c)

In the derivation of the above form for the collision operator C(2), we have ignored the correlation between the first
term and second term in the spin-phonon interaction (2.21), and have neglected the spin-wave interaction HS1 in the
Hamiltonian HS of the spin system. The basic requirements (A.7) and their tilde conjugates lead to

〈1S|C(2) = 0, 〈1S|U(t) = 〈1S|U−1(t) = 〈1S|, (A.26)

for U(t) defined by (A.21). The evolution operator U(t) is non-unitary in general, i.e., U †(t) 
= U−1(t), because the
collision operator C(2) is non-Hermitian though ĤS0 [ = (HS0 − H̃†S0)/h̄] is Hermitian. Therefore, for t 
= 0, we have
(U−1(t)αkU(t))† 
= U−1(t)α†kU(t) and (U−1(t)α̃kU(t))† 
= U−1(t)α̃†kU(t) and so for β, β̃. Considering this, as done in
Refs. [21, 22, 27, 28], we define the Heisenberg operators as

αk(t) = U−1(t)αk U(t), α††k (t) = U−1(t)α†k U(t), (A.27a)

βk(t) = U−1(t)βk U(t), β††k (t) = U−1(t)β†k U(t), (A.27b)

and their tilde conjugates, which satisfy the canonical commutation relations

[ αk(t) , α††k′ (t) ] = [ α̃k(t) , α̃††k′ (t) ] = [ βk(t) , β††k′ (t) ] = [ β̃k(t) , β̃††k′ (t) ] = δk k′ , (A.28)

while the other commutators vanish. According to the axioms (A.7), (A.26) and their tilde conjugates, we have

〈1S|αk(t) = 〈1S|α̃††k (t), 〈1S|βk(t) = 〈1S|β̃††k (t), (A.29)
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and their tilde conjugates, which are the thermal-state conditions at time t for the bra-vector 〈1S| of the spin system.
By proceeding as in Refs. [24, 28], the thermal-state conditions at time t for the ket-vector |ρ0〉 [ = ρ0|1S〉= 〈1R|ρTE〉]
of the spin system, can be obtained as

αk(t) |ρ0〉 = hα
k (t) α̃††k (t) |ρ0〉, βk(t) |ρ0〉 = hβ

k (t) β̃††k (t) |ρ0〉, (A.30)

and their tilde conjugates, where the c-number functions hα
k (t) and hβ

k(t) are given by

hα
k (t) = nα

k (t){1 + nα
k (t)}−1 ; hβ

k (t) = nβ
k (t){1 + nβ

k(t)}−1, (A.31)

with the quantities nα
k (t) and nβ

k (t) defined by

nα
k (t) = 〈1S|α††k (t)αk(t)|ρ0〉, nβ

k (t) = 〈1S|β††k (t)βk(t)|ρ0〉. (A.32)

Here, the bra-vector 〈1S| and ket-vector |ρ0〉 are normalized, i.e., 〈1S|ρ0〉= tr ρ0 =1, and ρ0 is given by ρ0 =trR ρTE.
We now introduce the annihilation and creation quasi-particle operators defined by [21, 22]

λk(t) = Zα
k (t)1/2 {αk(t) − hα

k (t) α̃††k (t)}, λ‡k(t) = Zα
k (t)1/2 {α††k (t) − α̃k(t)}, (A.33a)

ξk(t) = Zβ
k (t)1/2 {βk(t) − hβ

k (t) β̃††k (t)}, ξ‡k(t) = Zβ
k (t)1/2 {β††k (t) − β̃k(t)}, (A.33b)

and their tilde conjugates, where the normalization factor Zα
k (t) and Zβ

k (t) are given by

Zα
k (t) = {1 − hα

k (t)}−1 = 1 + nα
k (t), hα

k (t) = 1 − Zα
k (t)−1, (A.34a)

Zβ
k (t) = {1 − hβ

k(t)}−1 = 1 + nβ
k (t), hβ

k (t) = 1 − Zβ
k (t)−1. (A.34b)

These lead to the canonical commutation relations of the quasi-particle operators :

[ λk(t) , λ‡k′ (t) ] = [ λ̃k(t) , λ̃‡k′ (t) ] = [ ξk(t) , ξ‡k′ (t) ] = [ ξ̃k(t) , ξ̃‡k′ (t) ] = δk k′ , (A.35)

while the other commutators vanish. The thermal state conditions (A.29) and (A.30) and their tilde conjugates give

〈1S|λ‡k(t) = 0, 〈1S| ξ‡k(t) = 0 ; λk(t)|ρ0〉 = 0, ξk(t)|ρ0〉 = 0, (A.36)

and their tilde conjugates. According to Eqs. (A.36) and their tilde conjugates, 〈1S| and |ρ0〉 are, respectively, called
the thermal vacuum bra-vector and the thermal vacuum ket-vector for the spin system [27, 28]. Performing the
inverse transformation of (A.33a), (A.33b), and their tilde conjugates, we have

αk(t) = Zα
k (t)1/2 {λk(t) + hα

k (t) λ̃‡k(t)}, α††k (t) = Zα
k (t)1/2 {λ‡k(t) + λ̃k(t)}, (A.37a)

βk(t) = Zβ
k (t)1/2 {ξk(t) + hβ

k (t) ξ̃‡k(t)}, β††k (t) = Zβ
k (t)1/2 {ξ‡k(t) + ξ̃k(t)}, (A.37b)

and their tilde conjugates. The free spin-wave hat-Hamiltonian ĤS0 takes the diagonal forms

ĤS0 =
∑

k

{
ε+k (α†k αk − α̃†k α̃k) + ε−k (β†k βk − β̃†k β̃k)

}
=

∑
k

{
ε+k (λ‡k λk − λ̃‡k λ̃k) + ε−k (ξ‡k ξk − ξ̃‡k ξ̃k)

}
, (A.38)

with λk = λk(0), λ‡k =λ‡k(0), ξk = ξk(0) and ξ‡k = ξ‡k(0).

A.3 Forms of the quasi-particle operators

We next derive the forms of the quasi-particle operators. The equations of motion for nα
k (t) and nβ

k(t) defined by
(A.32) can be obtained, by using the thermal-state conditions (A.29) and (A.30), as

d

dt
nα

k (t) = 〈1S|
( d

dt
α††k (t)αk(t) |ρ0〉 = 〈1S|U−1(t) [ i ĤS0 − C(2), α†k αk ] U(t) |ρ0〉, (A.39a)

= − (S/2) {{(φ−+
k (ε+k ) − φ+−

k (ε+k )∗)∗ + (φ−+
k (ε+k ) − φ+−

k (ε+k )∗)}
+ {(φ+−

k (−ε+k ) − φ−+
k (−ε+k )∗)∗ + (φ+−

k (−ε+k ) − φ−+
k (−ε+k )∗)}} cosh 2θk nα

k (t)

+ (S/2) {(φ+−
k (ε+k ) + φ+−

k (ε+k )∗) + S2(φ−+
k (−ε+k ) + φ−+

k (−ε+k )∗)} cosh 2θk

− (S/2) {{(φ−+
k (ε+k ) − φ+−

k (ε+k )∗)∗ + (φ−+
k (ε+k ) − φ+−

k (ε+k )∗)}
− {(φ+−

k (−ε+k ) − φ−+
k (−ε+k )∗)∗ + (φ+−

k (−ε+k ) − φ−+
k (−ε+k )∗)}}nα

k (t)

+ (S/2) {(φ+−
k (ε+k ) + φ+−

k (ε+k )∗) − (φ−+
k (−ε+k ) + φ−+

k (−ε+k )∗)}
+ (1/2){φzz

k (ε+k + ε−k ) + φzz
k (ε+k + ε−k )∗} sinh2 2θk (nα

k (t) + nβ
k (t) + 1), (A.39b)

= −{S (Φ+
k (ε+k )′ + Φ−k (ε+k )′) cosh 2θk + S (Φ+

k (ε+k )′ − Φ−k (ε+k )′) − Ψ′k sinh2 2θk}nα
k (t)

+ {S (Φ+
k (ε+k )′ + Φ−k (ε+k )′) cosh 2θk + S (Φ+

k (ε+k )′ − Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk nβ
k (t) + Ψ′k sinh2 2θk, (A.39c)
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d

dt
nβ

k(t) = 〈1S|
( d

dt
β††k (t)βk(t) |ρ0〉 = 〈1S|U−1(t) [ i ĤS0 − C(2), β†k βk ] U(t) |ρ0〉, (A.40a)

= − (S/2) {{(φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗) + (φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗)∗}
+ {(φ−+

k (ε−k ) − φ+−
k (ε−k )∗) + (φ−+

k (ε−k ) − φ+−
k (ε−k )∗)∗}} cosh 2θk nβ

k (t)

+ (S/2) {(φ−+
k (−ε−k ) + φ−+

k (−ε−k )∗) + (φ+−
k (ε−k ) + φ+−

k (ε−k )∗)} cosh 2θk

+ (S/2) {{(φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗) + (φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗)∗}
− {(φ−+

k (ε−k ) − (φ+−
k (ε−k )∗) + (φ−+

k (ε−k ) − φ+−
k (ε−k )∗)∗}}nβ

k(t)

− (S/2) {(φ−+
k (−ε−k ) + φ−+

k (−ε−k )∗) − (φ+−
k (ε−k ) + φ+−

k (ε−k )∗)}
+ (1/2){φzz

k (ε+k + ε−k ) + φzz
k (ε+k + ε−k )∗} sinh2 2θk (nα

k (t) + nβ
k (t) + 1), (A.40b)

= −{S (Φ−k (ε−k )′ + Φ+
k (ε−k )′) cosh 2θk − S (Φ−k (ε−k )′ − Φ+

k (ε−k )′) − Ψ′k sinh2 2θk}nβ
k(t)

+ {S (Φ−k (ε−k )′ + Φ+
k (ε−k )′) cosh 2θk − S (Φ−k (ε−k )′ − Φ+

k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk nα
k (t) + Ψ′k sinh2 2θk, (A.40c)

with n̄(ε) defined by

n̄(ε) = {exp(β h̄ ε) − 1}−1 = {exp(h̄ ε/(kBT )) − 1}−1, (A.41)

where Φ±k (ε)′ and Ψ′k are the real parts of Φ±k (ε) [ = Φ±k (ε)′+ i Φ±k (ε)′′ ] and Ψk [ =Ψ′k + i Ψ′′k ], which are defined by

Φ+
k (ε) = φ−+

k (ε) − φ+−
k (ε)∗ =

1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|[Rkν(τ), R†kν ]|ρR〉 exp(i ε τ), (A.42)

Φ−k (ε) = φ+−
k (− ε) − φ−+

k (− ε)∗ =
1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|[R†kν(τ), Rkν ]|ρR〉 exp(i ε τ), (A.43)

Ψk = φzz
k (ε+k + ε−k ) =

∫ ∞
0

dτ
∑

ν

g2
2ν〈1R|∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)|ρR〉 exp{i (ε+k + ε−k ) τ}. (A.44)

In the derivations of Eqs. (A.39c) and (A.40c), we have used the relations [21]

φ+−
k (ε) + φ+−

k (ε)∗ = 2 n̄(ε) Φ+
k (ε)′, φ−+

k (−ε) + φ−+
k (−ε)∗ = 2 n̄(ε)Φ−k (ε)′, (A.45)

which were derived in Appendix A of Ref. [21]. According to the assumption that the phonon correlation function
(2.24c) is real, we have Ψ′k = (φzz

k (ε+k + ε−k )+φzz
k (ε+k + ε−k )∗)/2= (φzz

k (ε+k + ε−k )+φzz
k (− ε+k − ε−k ))/2. The solutions of

Eqs. (A.39c) and (A.40c) can be written as

nα
k (t) =

∫ t

0

dτ
{{S(Φ+

k (ε+k )′ + Φ−k (ε+k )′) cosh 2θk + S(Φ+
k (ε+k )′ − Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk nβ
k (τ) + Ψ′k sinh2 2θk

}
exp{−ΓL

k+ ·(t − τ)} + nα
k (0) exp(−ΓL

k+ t), (A.46a)

nβ
k (t) =

∫ t

0

dτ
{{S(Φ−k (ε−k )′ + Φ+

k (ε−k )′) cosh 2θk − S(Φ−k (ε−k )′ − Φ+
k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk nα
k (τ) + Ψ′k sinh2 2θk

}
exp{−ΓL

k− ·(t − τ)} + nβ
k (0) exp(−ΓL

k− t), (A.46b)

with nα
k (0) = 〈1S|α†kαk|ρ0〉 and nβ

k (0) = 〈1S|β†kβk|ρ0〉, where we have put for brevity as

ΓL
k± = S (Φ±k (ε±k )′ + Φ∓k (ε±k )′) cosh 2θk ± S (Φ±k (ε±k )′ − Φ∓k (ε±k )′) − Ψ′k sinh2 2θk. (A.47)

By substituting each of the above forms for nα
k (t) and nβ

k (t) into the other, we obtain the approximate solutions as

nα
k (t) = nα

k (0) exp(−ΓL
k+ t) + Ψ′k sinh2 2θk nβ

k (0)
exp(−ΓL

k− t) − exp(−ΓL
k+ t)

ΓL
k+ − ΓL

k−
+

{{S (Φ+
k (ε+k )′ + Φ−k (ε+k )′) cosh 2θk + S (Φ+

k (ε+k )′ − Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk

}{1 − exp(−ΓL
k+ t)}/ ΓL

k+ + O(g4), (A.48a)

nβ
k (t) = nβ

k (0) exp(−ΓL
k− t) + Ψ′k sinh2 2θk nα

k (0)
exp(−ΓL

k+ t) − exp(−ΓL
k− t)

ΓL
k− − ΓL

k+

+
{{S (Φ−k (ε−k )′ + Φ+

k (ε−k )′) cosh 2θk − S (Φ−k (ε−k )′ − Φ+
k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk

}{1 − exp(−ΓL
k− t)}/ ΓL

k− + O(g4), (A.48b)
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where O(g4) denotes the fourth-order parts in powers of the spin-phonon interaction. Owing to stability of the anti-
ferromagnetic spin system, we assume that ΓL

k± are positive for positive ε±k , i.e., ΓL
k± > 0 for ε±k > 0. Then, as time t

becomes infinite (t→∞), nα
k (t) and nβ

k (t) approach the finite values

nα
k (∞) =

n̄+
k ΓL

k−(ΓL
k+ + Ψ′k sinh2 2θk) + (n̄−k + 1)(ΓL

k− + Ψ′k sinh2 2θk)Ψ′k sinh2 2θk

ΓL
k+ΓL

k− − (Ψ′k)2 sinh4 2θk

, (A.49a)

nβ
k(∞) =

n̄−k ΓL
k+(ΓL

k− + Ψ′k sinh2 2θk) + (n̄+
k + 1)(ΓL

k+ + Ψ′k sinh2 2θk)Ψ′k sinh2 2θk

ΓL
k+ΓL

k− − (Ψ′k)2 sinh4 2θk

, (A.49b)

which are derived from Eqs. (A.39c) and (A.40c) in the infinite limit (t→∞), where we have put n̄±k = n̄(ε±k ).
The equations of motion for the quasi-particle operators λk(t) and ξk(t) can be derived, by performing the trans-

formations (A.33), (A.37) and their tilde conjugates, by using the thermal-state conditions (A.29) and their tilde
conjugates, and by considering the assumption that the phonon correlation function (2.24c) is real, as follows,

(d/dt)Zα
k (t)1/2〈1S|λk(t) = (d/dt) 〈1S|αk(t) = 〈1S|U−1(t) [ i ĤS0 − C(2), αk ] U(t),

= 〈1S|
{− i ε+k αk(t) − αk(t){S(φ−+

k (ε+k ) − φ+−
k (ε+k )∗) − S (φ+−

k (−ε+k ) − φ−+
k (−ε+k )∗)}/2

− αk(t){S (φ−+
k (ε+k ) − φ+−

k (ε+k )∗) + S (φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)} cosh 2θk/2

− β††k (t){S (φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗)∗ + S (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)∗} sinh 2θk/2

− φzz
k (0) αk(t) cosh2 2θk/2 − φzz

k (0) αk(t)/2 + φzz
k (ε+k + ε−k )αk(t) sinh2 2θk/2

− φzz
k (0) β††k (t) sinh 2θk cosh 2θk/2 + φzz

k (ε+k + ε−k )∗ β††k (t) sinh 2θk cosh 2θk/2
}
, (A.50a)

=
{− i ε+k − {S (Φ+

k (ε+k ) + SΦ−k (ε+k )) cosh 2θk + S (Φ+
k (ε+k ) − Φ−k (ε+k ))}/2 − Ψ0

k cosh2 2θk/2

− Ψ0
k/2 + Ψk sinh2 2θk/2

}
Zα

k (t)1/2 〈1S|λk(t) − {
S(Φ−k (ε−k )∗ + SΦ+

k (ε−k )∗) sinh 2θk/2

+ (Ψ0
k − Ψ∗k) sinh 2θk cosh 2θk/2

}
Zβ

k (t)1/2 〈1S| ξ̃k(t), (A.50b)

(d/dt)Zβ
k (t)1/2〈1S| ξk(t) = (d/dt) 〈1S|βk(t) = 〈1S|U−1(t) [ i ĤS0 − C(2), βk ] U(t),

= 〈1S|
{− i ε−k βk(t) + βk(t){S(φ+−

k (−ε−k ) − φ−+
k (−ε−k )∗) − S (φ−+

k (ε−k ) − φ+−
k (ε−k )∗)}/2

− βk(t){S (φ+−
k (−ε−k ) − φ−+

k (−ε−k )∗) + S (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)} cosh 2θk/2

− α††k (t){S (φ−+
k (ε+k ) − φ+−

k (ε+k )∗)∗ + S (φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)∗} sinh 2θk/2

− φzz
k (0) βk(t) cosh2 2θk/2 − φzz

k (0) βk(t)/2 + φzz
k (ε+k + ε−k )βk(t) sinh2 2θk/2

− φzz
k (0) α††k (t) sinh 2θk cosh 2θk/2 + φzz

k (ε+k + ε−k )∗ α††k (t) sinh 2θk cosh 2θk/2
}
, (A.51a)

=
{− i ε−k − {S (Φ−k (ε−k ) + Φ+

k (ε−k )) cosh 2θk − S(Φ−k (ε−k ) − Φ+
k (ε−k ))}/2 − Ψ0

k cosh2 2θk/2

− Ψ0
k/2 + Ψk sinh2 2θk/2

}
Zβ

k (t)1/2 〈1S| ξk(t) − {
S (Φ+

k (ε+k )∗ + Φ−k (ε+k )∗) sinh 2θk/2

+ (Ψ0
k − Ψ∗k) sinh 2θk cosh 2θk/2

}
Zα

k (t)1/2 〈1S| λ̃k(t), (A.51b)

where Φ+
k (ε), Φ−k (ε) and Ψk are given by (A.42)− (A.44). The above equations can be rewritten as

(d/dt)Zα
k (t)1/2〈1S|λk(t) = {− i ε+k − Γk+}Zα

k (t)1/2〈1S|λk(t) − ∆∗k−Zβ
k (t)1/2〈1S| ξ̃k(t), (A.52a)

(d/dt)Zβ
k (t)1/2〈1S| ξ̃k(t) = {i ε−k − Γ∗k−}Zβ

k (t)1/2〈1S| ξ̃k(t) − ∆k+Zα
k (t)1/2〈1S|λk(t). (A.52b)

where we have put for brevity as

Γk± = {S (Φ±k (ε±k ) + Φ∓k (ε±k )) cosh 2θk ± S (Φ±k (ε±k ) − Φ∓k (ε±k ))}/2

− Ψk sinh2 2θk/2 + Ψ0
k ·(cosh2 2θk + 1)/2, (A.53a)

∆k± = S (Φ±k (ε±k ) + Φ∓k (ε±k )) sinh 2θk/2 + (Ψ0
k − Ψk) sinh 2θk cosh 2θk/2, (A.53b)

with Φ+
k (ε), Φ−k (ε) and Ψk defined by (A.42), (A.43) and (A.44), respectively. Here, we have put

Ψ0
k = φzz

k (0) =
∫ ∞

0

dτ
∑

ν

g2
2ν〈1R|∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)|ρR〉, (A.54)
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which is real according to the assumption that the phonon correlation function (2.24c) is real. The solutions of Eqs.
(A.52a) and (A.52b) can be written as

Zα
k (t)1/2 〈1S|λk(t) = Zα

k (τ)1/2 〈1S|λk(τ) exp{(− i ε+k − Γk+)(t − τ)}

−
∫ t

τ

dt1 exp{(− i ε+k − Γk+)(t − t1)}∆∗k− Zβ
k (t1)1/2 〈1S| ξ̃k(t1), (A.55a)

Zβ
k (t)1/2 〈1S| ξ̃k(t) = Zβ

k (τ)1/2 〈1S| ξ̃k(τ) exp{(i ε−k − Γ∗k−)(t − τ)}

−
∫ t

τ

dt1 exp{(i ε−k − Γ∗k−)(t − t1)}∆k+ Zα
k (t1)1/2 〈1S|λk(t1), (A.55b)

from which we can obtain the approximate solutions as in Ref. [21]. Thus, we can obtain the forms of the quasi-particle
operators, which are valid up to second order in powers of the spin-phonon interaction, as

〈1S|λk(t) = Zα
k (t)−1/2 Zα

k (τ)1/2 exp{(− i ε+k − Γk+)(t − τ)}〈1S|λk(τ)

+ ∆∗k−
Zβ

k (τ)1/2

Zα
k (t)1/2

· exp{(− i ε+k − Γk+)(t − τ)} − exp{(i ε−k − Γ∗k−)(t − τ)}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k(τ), (A.56a)

〈1S| ξ̃k(t) = Zβ
k (t)−1/2 Zβ

k (τ)1/2 exp{(i ε−k − Γ∗k−)(t − τ)}〈1S| ξ̃k(τ)

+ ∆k+
Zα

k (τ)1/2

Zβ
k (t)1/2

· exp{(− i ε+k − Γk+)(t − τ)} − exp{(i ε−k − Γ∗k−)(t − τ)}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk(τ). (A.56b)

Rewriting the quasi-particle forms (A.56a) and (A.56b) for τ =0 by putting λk = λk(0) and ξk = ξk(0), we have

〈1S|λk(t) = Zα
k (t)−1/2 Zα

k (0)1/2 exp{(− i ε+k − Γk+) t }〈1S|λk

+ ∆∗k−
Zβ

k (0)1/2

Zα
k (t)1/2

· exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k , (A.57a)

〈1S| ξ̃k(t) = Zβ
k (t)−1/2 Zβ

k (0)1/2 exp{(i ε−k − Γ∗k−) t }〈1S| ξ̃k

+ ∆k+
Zα

k (0)1/2

Zβ
k (t)1/2

· exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk . (A.57b)

These formulas are useful for the perturbation calculations of correlation functions, susceptibilities, et al.
From the above quasi-particle forms (A.57a) and (A.57b), we can obtain the quasi-particle correlation forms as

〈1S|λk(t)λ‡k|ρ0〉 = Zα
k (t)−1/2 Zα

k (0)1/2 exp{− i (ε+k + Γ′′k+) t − Γ′k+ t }, (A.58a)

〈1S| ξk(t) ξ‡k|ρ0〉 = Zβ
k (t)−1/2 Zβ

k (0)1/2 exp{− i (ε−k + Γ′′k−) t − Γ′k− t }, (A.58b)

〈1S| ξ̃k(t)λ‡k|ρ0〉 =
exp{− i (ε+k + Γ′′k+) t − Γ′k+ t } − exp{i (ε−k + Γ′′k−) t − Γ′k− t }

i (ε+k + ε−k + Γ′′k+ + Γ′′k−) + Γ′k+ − Γ′k−
× Zβ

k (t)−1/2 Zα
k (0)1/2 (∆′k+ + i ∆′′k+), (A.58c)

〈1S|λ̃k(t) ξ‡k|ρ0〉 =
exp{− i (ε−k + Γ′′k−) t − Γ′k− t } − exp{i (ε+k + Γ′′k+) t − Γ′k+ t }

i (ε+k + ε−k + Γ′′k+ + Γ′′k−) + Γ′k− − Γ′k+

× Zα
k (t)−1/2 Zβ

k (0)1/2 (∆′k− + i ∆′′k−), (A.58d)

with λ‡k =λ‡k(0) and ξ‡k = ξ‡k(0), where Γ′k±, ∆′k± and Γ′′k±, ∆′′k± are the real parts and the imaginary parts of Γk± and
∆k±, which are defined by (A.53a) and (A.53b), respectively, and are given by

Γ′k± = S Φ±k (ε±k )′(cosh 2θk ± 1)/2 + S Φ∓k (ε±k )′(cosh 2θk ∓ 1)/2

− (Ψ′k/2) sinh2 2θk + (Ψ0
k/2)(cosh2 2θk + 1), (A.59a)

Γ′′k± = S Φ±k (ε±k )′′(cosh 2θk ± 1)/2 + S Φ∓k (ε±k )′′(cosh 2θk ∓ 1)/2 − (Ψ′′k/2) sinh2 2θk, (A.59b)

∆′k± = S (Φ±k (ε±k )′ + Φ∓k (ε±k )′) sinh 2θk/2 + (Ψ0
k − Ψ′k) sinh 2θk cosh 2θk/2, (A.59c)

∆′′k± = S (Φ±k (ε±k )′′ + Φ∓k (ε±k )′′) sinh 2θk/2 − Ψ′′k sinh 2θk cosh 2θk/2. (A.59d)

Considering that Φ±k (ε±k )′ is positive for positive ε±k , i.e., Φ±k (ε±k )′ > 0 for ε±k > 0, as shown in Appendix A of Ref.
[21], and that Ψ0

k is non-negative, i.e., Ψ0
k ≥ 0, as shown in Ref. [29, 30], we notice from (A.44) and (A.54) that Γ′k±

are positive for positive ε±k , i.e.,

Γ′k± ≥ S Φ±k (ε±k )′(cosh 2θk ± 1)/2 + S Φ∓k (ε±k )′(cosh 2θk ∓ 1)/2 + Ψ0
k > 0, for ε±k > 0. (A.60)
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The quasi-particle correlation forms (A.58a) and (A.58b) for the semi-free field show that the λ quasi-particle with
the wave-number k has the energy h̄(ε+k + Γ′′k+) and decays exponentially with the life-time (Γ′k+)−1, that the ξ quasi-
particle with the wave-number k has the energy h̄(ε−k + Γ′′k−) and decays exponentially with the life-time (Γ′k−)−1.
The quasi-particle correlation forms (A.58c) and (A.58d) for the semi-free field show that the λ quasi-particle and
the ξ quasi-particle change to the ξ̃ quasi-particle and the λ̃ quasi-particle, respectively, through the spin-phonon
interaction.

B Form of the interference thermal state |D(2)
S−k

[ω]〉
In this Appendix, a form of the interference thermal state |D(2)

S−
k

[ω]〉 given by (3.8) is derived. The interference thermal

state |D(2)

S−
k

[ω]〉 given by (3.8) can be expressed by substituting the spin-phonon interaction (2.21) into (3.8) and by

using the free spin-wave Hamiltonian (2.19), the axioms (A.2), (A.8) and their tilde conjugates, and the assumptions
(2.23a), (2.23b) and (2.24a)− (2.24c), as

|D(2)

S−
k

[ω]〉 =
i γ S

√
S

4
√

2

∫ ∞
0

dτ

∫ τ

0

ds
∑

ν

|g1ν |2 (cosh θk − sinh θk)

× {
(〈1R|Rkν(τ)R†kν |ρR〉 − 〈1R|R†kνRkν(τ)|ρR〉) exp(i ω s)

× {{(cosh 2θk + 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉 exp(i ε+k τ − i ε+k s)

+ {sinh 2θk (α†k − α̃k) − (cosh 2θk − 1) (βk − β̃†k)}|ρ0〉 exp(− i ε−k τ + i ε−k s)
}

+ (〈1R|R†kν(τ)Rkν |ρR〉 − 〈1R|RkνR†kν(τ)|ρR〉) exp(i ω s)

× {{(cosh 2θk − 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉 exp(i ε+k τ − i ε+k s)

+ {sinh 2θk (α†k − α̃k) − (cosh 2θk + 1) (βk − β̃†k)}|ρ0〉 exp(− i ε−k τ + i ε−k s)
}}

+
i γ

√
S

2
√

2

∫ ∞
0

dτ

∫ τ

0

ds
∑

ν

g2
2ν(cosh θk − sinh θk)〈1R|∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)|ρR〉 exp(i ω s)

× {
sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉 exp{i (ε+k + ε−k ) τ − i ε+k s}

+ sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉 exp{− i (ε+k + ε−k ) τ + i ε−k s}
+ (cosh2 2θk + 1) (α†k − α̃k)|ρ0〉 exp(− i ε+k s) + (cosh2 2θk + 1) (βk − β̃†k)|ρ0〉 exp(i ε−k s)

+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {
sinh 2θk (βk − β̃†k)|ρ0〉 exp{i (ε+k + ε−k ) τ − i ε+k s}

− sinh 2θk (α†k − α̃k)|ρ0〉 exp{− i (ε+k + ε−k ) τ + i ε−k s}
− cosh 2θk (α†k − α̃k)|ρ0〉 exp(− i ε+k s) + cosh 2θk (βk − β̃†k)|ρ0〉 exp(i ε−k s)

}}
, (B.1)

with ∆(R†kν(t)Rkν(t))= R†kν(t)Rkν(t) − 〈1R|R†kνRkν |ρR〉 and ∆(R†kνRkν)=R†kνRkν − 〈1R|R†kνRkν |ρR〉, where we have
ignored the higher-order parts in the spin-wave approximation, and have used the assumption that the phonon corre-
lation function given by (2.24c) is real. Here, we have used the relations α†kαk|ρ0〉= α̃†kα̃k|ρ0〉 and β†kβk|ρ0〉= β̃†kβ̃k|ρ0〉,
which are led from the thermal-state conditions (A.30) and their tilde conjugates. The above form of interference
thermal state |D(2)

S−
k

[ω]〉 can be written by using the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by

(A.25a)− (A.25c), as

|D(2)

S−
k

[ω]〉 =
γ S

√
S

2
√

2

{
(cosh θk − sinh θk){(cosh 2θk + 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉

× {(φ−+
k (ω) − φ+−

k (ω)∗) − (φ−+
k (ε+k ) − φ+−

k (ε+k )∗)}/(ω − ε+k )

+ (cosh θk − sinh θk){sinh 2θk (α†k − α̃k) − (cosh 2θk − 1) (βk − β̃†k)}|ρ0〉
× {(φ−+

k (ω) − φ+−
k (ω)∗) − (φ−+

k (− ε−k ) − φ+−
k (− ε−k )∗)}/(ω + ε−k )

+ (cosh θk − sinh θk){(cosh 2θk − 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉
× {(φ+−

k (−ω) − φ−+
k (−ω)∗) − (φ+−

k (− ε+k ) − φ−+
k (− ε+k )∗)}/(ω − ε+k )

+ (cosh θk − sinh θk){sinh 2θk (α†k − α̃k) − (cosh 2θk + 1) (βk − β̃†k)}|ρ0〉
× {(φ+−

k (−ω) − φ−+
k (−ω)∗) − (φ+−

k (ε−k ) − φ−+
k (ε−k )∗)}/(ω + ε−k )

}
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+
γ
√

S

2
√

2
(cosh θk − sinh θk)

× {{(cosh2 2θk + 1) (α†k − α̃k)|ρ0〉{φzz
k (ω − ε+k ) − φzz

k (0)}
+ sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉{φzz

k (ω + ε−k ) − φzz
k (ε+k + ε−k )}}/(ω − ε+k )

+ {sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉{φzz
k (ω − ε+k ) − φzz

k (− ε+k − ε−k )}
+ (cosh2 2θk + 1) (βk − β̃†k)|ρ0〉{φzz

k (ω + ε−k ) − φzz
k (0)}}/(ω + ε−k )

+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {{sinh 2θk (βk − β̃†k)|ρ0〉{φzz
k (ω + ε−k ) − φzz

k (ε+k + ε−k )}
− cosh 2θk (α†k − α̃k)|ρ0〉{φzz

k (ω − ε+k ) − φzz
k (0)}}/(ω − ε+k )

+ {cosh 2θk (βk − β̃†k)|ρ0〉{φzz
k (ω + ε−k ) − φzz

k (0)}
− sinh 2θk (α†k − α̃k)|ρ0〉{φzz

k (ω − ε+k ) − φzz
k (− ε+k − ε−k )}}/(ω + ε−k )

}}
. (B.2)

C Calculation of corresponding interference terms X
α(β)
k1(2)(ω)

In this Appendix, the forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.15a)− (3.16b), are derived.

In order to deal with the fractions in the calculations of X
α(β)
k1(2)(ω) defined by (3.15a)− (3.16b), we use the following

forms for Φ±k (ε) defined by (A.42) and (A.43) with the phonon correlation functions given by (4.1a) and (4.1b) :

Φ+
k (ε) =

1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[Rkν(τ), R†kν ]|ρR〉 exp(i ε τ) =
g2
1/2

− i (ε− ωRk) + γRk
, (C.1)

Φ−k (ε) =
1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[R†kν(τ), Rkν ]|ρR〉 exp(i ε τ) =
− g2

1/2
− i (ε + ωRk) + γRk

. (C.2)

The forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.15a)− (3.16b), are derived using (C.1),

(C.2) and (4.5)− (4.7) as follows,

Xα
k1(ω) = 〈1S|αk |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xα
k1(ω)′ + i Xα

k1(ω)′′,

=
i (g2

1/4) S (cosh 2θk + 1)
{− i (ω − ωRk) + γRk}{− i (ε+k − ωRk) + γRk}

− i (g2
1/4) S (cosh 2θk − 1)}

{− i (ω + ωRk) + γRk}{− i (ε+k + ωRk) + γRk}
− g2

2 sinh2 2θk
i n̄(ωRk){n̄(ωRk) + 1}

2 {− i (ω + ε−k ) + 2γRk}{− i (ε+k + ε−k ) + 2γRk}
+ g2

2 (cosh2 2θk + 1)
i n̄(ωRk){n̄(ωRk) + 1}

4 γRk{− i (ω − ε+k ) + 2γRk}
, (C.3a)

= g2
1 S

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} (cosh 2θk + 1)

+ g2
1 S

γRk (ω + ε+k + 2 ωRk) − i {(γRk)2 − (ω + ωRk)(ε+k + ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε+k + ωRk)2 + (γRk)2} (cosh 2θk − 1)

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk{(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1), (C.3b)
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Xα
k2(ω) = 〈1S|αk |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xα
k2(ω)′ + i Xα

k2(ω)′′,

=
i (g2

1/4) S sinh 2θk

{− i (ω − ωRk) + γRk}{− i (−ε−k − ωRk) + γRk}
+

− i (g2
1/4) S sinh 2θk

{− i (ω + ωRk) + γRk}{− i (−ε−k + ωRk) + γRk}
+ g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

2 {− i (ω − ε+k ) + 2γRk}{− i (− ε+k − ε−k ) + 2γRk}
− g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

4 γRk {− i (ω + ε−k ) + 2γRk }
, (C.4a)

= g2
1 S

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} sinh 2θk

+ g2
1 S

γRk (ω − ε−k + 2 ωRk) − i {(γRk)2 + (ω + ωRk)(ε−k − ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε−k − ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk {(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (C.4b)

Xβ
k1(ω) = 〈1S|β†k |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xβ
k1(ω)′ + i Xβ

k2(ω)′′,

=
i g2

1 S sinh 2θk

4 {− i (ω − ωRk) + γRk}{− i (ε+k − ωRk) + γRk}
+

− i g2
1 S sinh 2θk

4 {− i (ω + ωRk) + γRk}{− i (ε+k + ωRk) + γRk}
− g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

2 {− i (ω + ε−k ) + 2γRk}{− i (ε+k + ε−k ) + 2γRk}
+ g2

2

i n̄(ωRk){n̄(ωRk) + 1}
4 γRk {− i (ω − ε+k ) + 2γRk}

sinh 2θk cosh 2θk , (C.5a)

= g2
1 S

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} sinh 2θk

+ g2
1 S

γRk (ω + ε+k + 2 ωRk) − i {(γRk)2 − (ω + ωRk)(ε+k + ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε+k + ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk {(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (C.5b)

Xβ
k2(ω) = 〈1S|β†k |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xβ
k2(ω)′ + i Xβ

k2(ω)′′,

= g2
1

i S(cosh 2θk − 1)
4 {− i (ω − ωRk) + γRk}{− i (− ε−k − ωRk) + γRk}

+ g2
1

− i S(cosh 2θk + 1)
4 {− i (ω + ωRk) + γRk}{− i (−ε−k + ωRk) + γRk}

− g2
2

i n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1)
4 γRk{− i (ω + ε−k ) + 2γRk}

+ g2
2

i n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

2 {− i (ω − ε+k ) + 2γRk}{− i (− ε+k − ε−k ) + 2γRk}
, (C.6a)

= g2
1 S

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} (cosh 2θk − 1)

+ g2
1 S

γRk (ω − ε−k + 2 ωRk) − i {(γRk)2 + (ω + ωRk)(ε−k − ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε−k − ωRk)2 + (γRk)2} (cosh 2θk + 1)

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk{(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1). (C.6b)
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D Derivation of forms of nα
k (0) and nβ

k(0)

In this Appendix, we consider the case that the anti-ferromagnetic spin system and phonon reservoir are in the
thermal equilibrium state at the initial time t =0, i.e., ρT(0) = ρTE, and derive forms of nα

k (0) [ = 〈1S|α†kαk|ρ0〉] and nβ
k (0)

[ = 〈1S|β†kβk|ρ0〉] up to the second order in powers of the spin-phonon interaction in the lowest spin-wave approximation.
The thermal state |ρ0〉 [ = |ρ(0)〉= 〈1R|ρT(0)〉= 〈1R|ρTE〉] can be expanded in powers of the spin-phonon interaction, as
[36]

|ρ0〉 = |ρS〉 + |ρ(2)
0 〉 + · · · , (D.1)

with ρS given by (A.4), where |ρ(2)
0 〉 is the second-order part of |ρ0〉 [ = 〈1R|ρTE〉] in powers of the spin-phonon interaction

and is given by

|ρ(2)
0 〉 =

∫ β

0

dβ1

∫ β1

0

dβ2

〈
1R

∣∣{HSR(−ih̄β1)HSR(−ih̄β2)

− 〈1| HSR(−ih̄β1)HSR(−ih̄β2)|ρR〉|ρS〉
}∣∣ρR〉∣∣ρS〉. (D.2)

The above form for |ρ(2)
0 〉 can be expressed with time-integrals alone by transforming inverse-temperature-integrals

into time-integrals, as done in Ref. [36], as

|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ2 〈1R| ĤSR(−τ2) ĤSR(−τ1) |ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

. (D.3)

Here, HSR(t) and ĤSR(t) are defined by HSR(t) = exp(iH0t/h̄)HSR exp(−iH0t/h̄) and ĤSR(t)= exp(iĤ0t)ĤSR exp(−iĤ0t),
where H0 =HS +HR. By substituting (2.21) into (D.3), 〈1S|α†kαk|ρ(2)

0 〉 and 〈1S|β†kβk|ρ(2)
0 〉 can be expressed as

〈1S|α†kαk|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ 〈1S|〈1R|α†kαkĤSR(−τ)ĤSR(−τ1)|ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

,

=
S

2

∫ ∞
0

dτ1

∫ τ1

0

dτ
∑

ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
(〈1R|Ra†

kν(τ)Ra
kν |ρR〉〈1S|αkα†k|ρS〉 − 〈1R|Ra

kνRa†
kν(τ)|ρR〉〈1S|α†kαk|ρS〉) cosh2 θk exp(− i ε+k τ)

− (〈1R|Ra
kν(τ)Ra†

kν |ρR〉〈1S|α†kαk|ρS〉 − 〈1R|Ra†
kνRa

kν(τ)|ρR〉〈1S|αkα†k|ρS〉) cosh2 θk exp(i ε+k τ)

+ (〈1R|Rb
kν(τ)Rb†

kν |ρR〉〈1S|αkα†k|ρS〉 − 〈1R|Rb†
kνRb

kν(τ)|ρR〉〈1S|α†kαk|ρS〉) sinh2 θk exp(− i ε+k τ)

− (〈1R|Rb†
kν(τ)Rb

kν |ρR〉〈1S|α†kαk|ρS〉 − 〈1R|Rb
kνRb†

kν(τ)|ρR〉〈1S|αkα†k|ρS〉) sinh2 θk exp(i ε+k τ)
}

+
∫ ∞

0

dτ1

∫ τ1

0

dτ
∑

ν

g2
2ν exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(Ra†
kν(τ)Ra

kν (τ))∆(Ra†
kνRa

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Rb†
kν(τ)Rb

kν (τ))∆(Rb†
kνRb

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Ra†
kνRa

kν)∆(Ra†
kν(τ)Ra

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Rb†
kνRb

kν)∆(Rb†
kν(τ)Rb

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})}, (D.4)

〈1S|β†kβk|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ2〈1S|〈1R|β†kβkĤSR(−τ2)ĤSR(−τ1)|ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

,

=
S

2

∫ ∞
0

dτ1

∫ τ1

0

dτ
∑

ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
(〈1R|Ra

kν(τ)Ra†
kν |ρR〉〈1S|βkβ†k|ρS〉 − 〈1R|Ra†

kνRa
kν(τ)|ρR〉〈1S|β†kβk|ρS〉) sinh2 θk exp(− i ε−k τ)

− (〈1R|Ra†
kν(τ)Ra

kν |ρR〉〈1S|β†kβk|ρS〉 − 〈1R|Ra
kνRa†

kν(τ)|ρR〉〈1S|βkβ†k|ρS〉) sinh2 θk exp(i ε−k τ)

+ (〈1R|Rb†
kν(τ)Rb

kν |ρR〉〈1S|βkβ†k|ρS〉 − 〈1R|Rb
kνRb†

kν(τ)|ρR〉〈1S|β†kβk|ρS〉) cosh2 θk exp(− i ε−k τ)

− (〈1R|Rb
kν(τ)Rb†

kν |ρR〉〈1S|β†kβk|ρS〉 − 〈1R|Rb†
kνRb

kν(τ)|ρR〉〈1S|βkβ†k|ρS〉) cosh2 θk exp(i ε−k τ)
}
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+
∫ ∞

0

dτ1

∫ τ1

0

dτ
∑

ν

g2
2ν exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(Ra†
kν(τ)Ra

kν(τ))∆(Ra†
kνRa

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Rb†
kν(τ)Rb

kν(τ))∆(Rb†
kνRb

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Ra†
kνRa

kν)∆(Ra†
kν(τ)Ra

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ}
+

〈
1R

∣∣∆(Rb†
kνRb

kν)∆(Rb†
kν(τ)Rb

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})}, (D.5)

from which we can obtain the forms of nα
k (0) and nβ

k (0) up to the second order in powers of the spin-phonon interaction
by using the Bose operators Rkν and R†kν defined by the assumptions (2.17) and (2.24a)− (2.24c), as follows

nα
k (0) = 〈1S|α†kαk|ρ0〉 = 〈1S|α†kαk|ρS〉 + 〈1S|α†kαk|ρ(2)

0 〉, (D.6)

= n̄(ε+k )

+
S

4

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
(cosh 2θk + 1) 〈1S|αkα†k|ρS〉 {〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε+k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(i ε+k τ)}

− (cosh 2θk + 1) 〈1S|α†kαk|ρS〉 {〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε+k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(− i ε+k τ)}
+ (cosh 2θk − 1) 〈1S|αkα†k|ρS〉 {〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε+k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(i ε+k τ)}
− (cosh 2θk − 1) 〈1S|α†kαk|ρS〉 {〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε+k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(− i ε+k τ)}}

+
1
2

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

g2
2ν sinh2 2θk exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{−i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{i (ε+k + ε−k )τ}

+
〈
1R

∣∣∆(R†kνRkν)∆(R†kν(τ)Rkν (τ))
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{− i (ε+k + ε−k )τ})}, (D.7)

= n̄(ε+k ) − S

2

∫ ∞
0

dτ · τ
∑

ν

| g1ν |2 exp(−µ τ)
∣∣
µ→+0

× {
(cosh 2θk + 1)(n̄(ε+k ) + 1) Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε+k τ)

− (cosh 2θk + 1) n̄(ε+k )Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε+k τ)

+ (cosh 2θk − 1)(n̄(ε+k ) + 1) Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε+k τ)

− (cosh 2θk − 1) n̄(ε+k )Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε+k τ)
}

−
∫ ∞

0

dτ · τ sinh2 2θk

{
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) − n̄(ε+k ) n̄(ε−k )

}
exp(−µ τ)

∣∣
µ→+0

× Re
∑

ν

g2
2ν

〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp{i (ε+k + ε−k )τ}, (D.8)

= n̄(ε+k ) − S (cosh 2θk + 1)
{
(n̄(ε+k ) + 1) Re i

∂

∂ε+k
φ+−

k (ε+k ) + n̄(ε+k )Re i
∂

∂ε+k
φ−+

k (ε+k )
}

− S (cosh 2θk − 1)
{
(n̄(ε+k ) + 1) Re i

∂

∂ε+k
φ−+

k (− ε+k ) + n̄(ε+k )Re i
∂

∂ε+k
φ+−

k (− ε+k )
}

+ sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )
φzz

k (ε+k + ε−k ), (D.9)
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= n̄(ε+k ) − g2
1 S (cosh 2θk + 1)(n̄(ε+k ) + 1) Re

i

2
· ∂

∂ε+k

( n̄(ωRk)
i (ε+k − ωRk) + γRk

− g2
1 S (cosh 2θk + 1) n̄(ε+k )Re

i

2
· ∂

∂ε+k

( n̄(ωRk) + 1
− i (ε+k − ωRk) + γRk

− g2
1 S (cosh 2θk − 1)(n̄(ε+k ) + 1) Re

i

2
· ∂

∂ε+k

( n̄(ωRk) + 1
i (ε+k + ωRk) + γRk

− g2
1 S (cosh 2θk − 1) n̄(ε+k )Re

i

2
· ∂

∂ε+k

( n̄(ωRk)
− i (ε+k + ωRk) + γRk

+ g2
2 sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )

( n̄(ωRk) (n̄(ωRk) + 1)
− i (ε+k + ε−k ) + 2 γRk

, (D.10)

= n̄(ε+k ) + g2
1 S (cosh 2θk + 1) {n̄(ωRk) − n̄(ε+k )} (ε+k − ωRk)2 − (γRk)2

2 {(ε+k − ωRk)2 + (γRk)2}2

+ g2
1 S (cosh 2θk − 1) {n̄(ε+k ) + n̄(ωRk) + 1} (ε+k + ωRk)2 − (γRk)2

2 {(ε+k + ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
, (D.11)

nβ
k(0) = 〈1S|β†kβk|ρ0〉 = 〈1S|β†kβk|ρS〉 + 〈1S|β†kβk|ρ(2)

0 〉, (D.12)

= n̄(ε−k )

+
S

4

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
(cosh 2θk − 1) 〈1S|βkβ†k|ρ0〉 {〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε−k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(i ε−k τ)}

− (cosh 2θk − 1) 〈1S|β†kβk|ρ0〉 {〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε−k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(− i ε−k τ)}
+ (cosh 2θk + 1) 〈1S|βkβ†k|ρ0〉 {〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε−k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(i ε−k τ)}
− (cosh 2θk + 1) 〈1S|β†kβk|ρ0〉 {〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε−k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(− i ε−k τ)}}

+
1
2

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

g2
2ν sinh2 2θk exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{−i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{i (ε+k + ε−k )τ}

+
〈
1R

∣∣∆(R†kνRkν)∆(R†kν(τ)Rkν (τ))
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{− i (ε+k + ε−k )τ})}, (D.13)

= n̄(ε−k ) − S

2

∫ ∞
0

dτ · τ
∑

ν

| g1ν |2 exp(−µ τ)
∣∣
µ→+0

× {
(cosh 2θk − 1)(n̄(ε−k ) + 1) Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε−k τ)

− (cosh 2θk − 1) n̄(ε−k )Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε−k τ)

+ (cosh 2θk + 1)(n̄(ε−k ) + 1) Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε−k τ)

− (cosh 2θk + 1) n̄(ε−k )Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε−k τ)
}

−
∫ ∞

0

dτ · τ sinh2 2θk

{
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) − n̄(ε+k ) n̄(ε−k )

}
exp(−µ τ)

∣∣
µ→+0

× Re
∑

ν

g2
2ν

〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp{i (ε+k + ε−k )τ}, (D.14)

= n̄(ε−k ) − S (cosh 2θk − 1)
{
(n̄(ε−k ) + 1) Re i

∂

∂ε−k
φ−+

k (− ε−k ) + n̄(ε−k )Re i
∂

∂ε−k
φ+−

k (− ε−k )
}

− S (cosh 2θk + 1)
{
(n̄(ε−k ) + 1) Re i

∂

∂ε−k
φ+−

k (ε−k ) + n̄(ε−k )Re i
∂

∂ε−k
φ−+

k (ε−k )
}

+ sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )
φzz

k (ε+k + ε−k ), (D.15)
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= n̄(ε−k ) − g2
1 S (cosh 2θk − 1) (n̄(ε−k ) + 1) Re

i

2
· ∂

∂ε−k

( n̄(ωRk) + 1
i (ε−k + ωRk) + γRk

− g2
1 S (cosh 2θk − 1) n̄(ε−k )Re

i

2
· ∂

∂ε−k

( n̄(ωRk)
− i (ε−k + ωRk) + γRk

− g2
1 S (cosh 2θk + 1) (n̄(ε−k ) + 1) Re

i

2
· ∂

∂ε−k

( n̄(ωRk)
i (ε−k − ωRk) + γRk

− g2
1 S (cosh 2θk + 1) n̄(ε−k )Re

i

2
· ∂

∂ε−k

( n̄(ωRk) + 1
− i (ε−k − ωRk) + γRk

+ g2
2 sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i· ∂

∂(ε+k + ε−k )

( n̄(ωRk) (n̄(ωRk) + 1)
− i (ε+k + ε−k ) + 2 γRk

, (D.16)

= n̄(ε−k ) + g2
1 S (cosh 2θk − 1)

{
n̄(ε−k ) + n̄(ωRk) + 1

} (ε−k + ωRk)2 − (γRk)2

2 {(ε−k + ωRk)2 + (γRk)2}2

+ g2
1 S (cosh 2θk + 1)

{
n̄(ωRk) − n̄(ε−k )

} (ε−k − ωRk)2 − (γRk)2

2 {(ε−k − ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
, (D.17)

where we have used the assumption that the phonon correlation function (2.24c) is real. Here, n̄(ε) is given by (A.41).

E Investigation of the region valid for the lowest spin-wave approxima-
tion

In this Appendix, we investigate numerically the region valid for the lowest spin-wave approximation in the anti-
ferromagnetic system of one-dimensional infinite spins. When the expectation values of the second terms nl/(4S)
[ = a†l al/(4S)] and nm/(4S) [ = b†mbm/(4S)] in the expansions (2.3) and (2.5) respectively, are much smaller than 1 or
are smaller than about 0.01, the lowest spin-wave approximation becomes valid. In order to investigate the region valid
for the lowest spin-wave approximation, we consider the expectation values na(t) and nb(t) of the up-spin deviation
number a†l al [ =nl] and down-spin deviation number b†mbm [ =nm], which are, respectively, referred to as “the up-spin
deviation number” and “the down-spin deviation number”, and define na(t) and nb(t) by

na(t) =
2
N

〈1S|
∑

l

a†l al |ρ(t)〉 =
2
N

∑
k

〈1S| a†kak U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (E.1a)

nb(t) =
2
N

〈1S|
∑
m

b†mbm |ρ(t)〉 =
2
N

∑
k

〈1S| b†kbk U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (E.1b)

with |ρ0〉= 〈1R|ρTE〉, where we have performed the Fourier transformations (2.7a) and (2.7b). Here, ρTE is the thermal
equilibrium density operator for the spin system and phonon reservoir and is given by (A.3). In the lowest spin-
wave approximation, the expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
number can be expressed using nα

k (t) and nβ
k (t) defined by (A.32), as

na(t) =
2
N

∑
k

〈1S| a†kak U(t) |ρ0〉 =
1
N

∑
k

{cosh 2θk

(
nα

k (t) + nβ
k (t) + 1 + nα

k (t) − nβ
k (t) − 1}, (E.2a)

nb(t) =
2
N

∑
k

〈1S| b†kbk U(t) |ρ0〉 =
1
N

∑
k

{cosh 2θk

(
nα

k (t) + nβ
k(t) + 1 − nα

k (t) + nβ
k (t) − 1}, (E.2b)

where we have transformed according to the transformations (2.11) and their Hermite conjugates, and have considered
the axioms (A.26). The expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
number, given by (E.2a) and (E.2b) respectively, can be calculated by substituting (A.48a), (A.48b), (4.12a) and
(4.12b) into (E.2a) and (E.2b), and by replacing the wave-number summations with the numerical integration (4.14).

In Figs. 21 and 22, the expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
number, respectively, are displayed varying the time t scaled by 1/J1 from 0 to 6000 for the cases of anisotropy energies
h̄K given by A=K/J1 =1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitude S =5/2 and the temperature T given by
kBT/(h̄J1)=1.0, with ζ [ =J2/J1] =1.0 and ωz/J1 =1.0. The anisotropy energy is denoted as “A” [ = K/J1] in the
figures. Figs. 21 and 22 show that as the time t becomes large, the expectation values na(t) and nb(t), increase and
approach to the finite values, and that as the anisotropy energy h̄K increases, the expectation values na(t) and nb(t)
decrease. Thus, the expectation values na(t) and nb(t) given by (E.2a) and (E.2b) are the increase functions of the
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Figure 21: Up-spin-deviation number na(t) given by (E.2a) are displayed varying the time t scaled by 1/J1 from 0
to 6000 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitude
S =5/2 and the temperature T given by kBT/(h̄J1)=1.0, with J2/J1 =1.0 and ωz/J1 =1.0.

Figure 22: Down-spin-deviation number nb(t) given by (E.2b) are displayed varying the time t scaled by 1/J1 from 0
to 6000 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitude
S =5/2 and the temperature T given by kBT/(h̄J1)=1.0, with J2/J1 =1.0 and ωz/J1 =1.0.

time t and the decrease functions of the anisotropy energy h̄K, and approach the expectation values na(∞) and nb(∞)
in the infinite time limit, respectively, as time t becomes infinite (t→∞) in no external driving magnetic field. In order
to confirm the region valid for the lowest spin-wave approximation, we investigate numerically the expectation values
na [ = na(∞)] and nb [ = nb(∞)] of the up-spin deviation number and down-spin deviation number in the infinite time
limit (t→∞) :

na = na(∞) =
1
N

∑
k

{cosh 2θk

(
nα

k (∞) + nβ
k (∞) + 1 + nα

k (∞) − nβ
k (∞) − 1}, (E.3a)

nb = nb(∞) =
1
N

∑
k

{cosh 2θk

(
nα

k (∞) + nβ
k (∞) + 1 − nα

k (∞) + nβ
k (∞) − 1}, (E.3b)

with nα
k (∞) and nβ

k (∞) given by (A.49a) and (A.49b), where na(∞) and nb(∞) are the expectation values in the sta-
tionary state at which the thermal equilibrium state arrives being driven by the evolution operator U(t)= exp{− i (ĤS0+
i C(2)) t}. In Figs. 23 and 24, the expectation values na [ =na(∞)] and nb [= nb(∞)] of the up-spin deviation number
and down-spin deviation number in the infinite time limit (t→∞), respectively, are displayed varying the temperatures
T scaled by h̄J1/kB from 0 to 1.5 for the cases of anisotropy energies h̄K given by A =K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0,
and for the spin-magnitude S =5/2, with ζ [ = J2/J1] =1.0, ωz/J1 =1.0. The anisotropy energy is denoted as “A”
[ =K/J1] in the figures. Figures 23 and 24 show that the expectation values na [ =na(∞)] and nb [ = nb(∞)] of the
up-spin deviation number and down-spin deviation number, are smaller than about 0.1 in the regions of the temper-
ature T and anisotropy energy h̄K given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0.
Therefore, when S ≥ 5/2, ζ [ =J2/J1]= 1.0 and ωz/J1 =1.0, Figs. 23 and 24 show that na/(4S) [ = 〈nl〉/(4S)] and
nb/(4S) [ = 〈nm〉/(4S)], which correspond to the expectation values of the second terms in the expansions given by
Eqs. (2.3) and (2.5) respectively, are smaller than about 0.01 in the regions of the temperature T and anisotropy
energy h̄K given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0. In such a region, the
lowest spin-wave approximation is valid. In Figs. 25 and 26, the expectation values na and nb of the up-spin-deviation
number and down-spin deviation-number in the infinite time limit (t→∞), respectively, are displayed varying the
anisotropy energy h̄K scaled by h̄J1 from 1.0 to 4.0 for the cases of spin-magnitudes S =2, 5/2, 3, 4, 5, and for the
temperature T given by kBT/(h̄J1)=1.0, with ζ [ = J2/J1] = 1.0, ωz/J1 =1.0. The anisotropy energy is denoted as “A”
[ =K/J1] in the figures. In the Figs. 25 and 26, we can confirm the region of the spin-magnitudes S and anisotropy
energy h̄K in which na/(4S) [= 〈nl〉/(4S)] and nb/(4S) [ = 〈nm〉/(4S)], which correspond to the expectation values of
the second terms in the expansions given by Eqs. (2.3) and (2.5) respectively, are smaller than about 0.01 in the region
of the temperature T given by kBT/(h̄J1)≤ 1.0. When the temperature T is in the region given by kBT/(h̄J1)≤ 1.0,
we can confirm the region valid for the lowest spin-wave approximation in Figs. 25 and 26.
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Figure 23: Up-spin-deviation number na [ =na(∞)] is displayed varying the temperatures T scaled by h̄J1/kB from
0 to 1.5 for the cases of anisotropy energies h̄K given by A=K/J1 =1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitude
S =5/2, with J2/J1 = 1.0 and ωz/J1 = 1.0.

Figure 24: Down-spin-deviation number nb [ = nb(∞)] is displayed varying the temperatures T scaled by h̄J1/kB from
0 to 1.5 for the cases of anisotropy energies h̄K given by A=K/J1 =1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitude
S =5/2, with J2/J1 = 1.0 and ωz/J1 = 1.0.
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Figure 25: Up-spin-deviation number na [ = na(∞)] is displayed varying the anisotropy energy h̄K scaled by h̄J1 from
1.0 to 4.0, i.e., A =K/J1 = 1.0∼ 4.0 for the cases of spin-magnitudes S = 2, 5/2, 3, 4, 5, and for the temperature T given
by kBT/(h̄J1)= 1.0, with J2/J1 =1.0 and ωz/J1 =1.0.

Figure 26: Down-spin-deviation number nb [ =nb(∞)] is displayed varying the anisotropy energy h̄K scaled by h̄J1

from 1.0 to 4.0, i.e., A= K/J1 =1.0∼ 4.0 for the cases of spin-magnitudes S =2, 5/2, 3, 4, 5, and for the temperature
T given by kBT/(h̄J1)=1.0, with J2/J1 = 1.0 and ωz/J1 = 1.0.

-82-



F The forms of C(2) and |D(2)
S−k

[ω]〉 for HSR taken in Refs. [21, 22]

In this Appendix, the forms of the collision operator C(2) and the interference thermal state |D(2)

S−
k

[ω]〉 are given for the

interaction HSR between the anti-ferromagnetic system and phonon reservoir, taken in the previous papers [21, 22],
which was taken to point all of the spins to the “down” direction by the phonon-reservoir field, and thus the spin-
phonon interaction HSR taken in the previous papers [21, 22] does not reflect the energy transfer between the spin
system and phonon reservoir at the “down” spin sites. In the previous papers [21, 22], the spin-phonon interaction
HSR was taken as

HSR = − h̄

2

{ ∑
l, ν

(
g∗1ν S+

l Ra†
lν + g1ν S−l Ra

lν +
∑
m, ν

(
g∗1ν S+

m Rb†
mν + g1ν S−m Rb

mν

}

− h̄
{∑

l, ν

g2ν Sz
l Ra†

lν Ra
lν +

∑
m, ν

g2ν Sz
m Rb†

mν Rb
mν

}
, (F.1a)

= − h̄

2

∑
k, ν

{√
2 S (g∗1ν akRa†

kν + g1ν a†kRa
kν) +

√
2 S (g∗1ν b†kRb†

kν + g1ν bkRb
kν)

}
+ · · ·

− h̄
∑
k, ν

g2ν

(
S − 2

N

∑
k′

a†k′ak′ Ra†
kνRa

kν − h̄
∑
k, ν

g2ν

( 2
N

∑
k′

b†k′bk′ − S Rb†
kνRb

kν + · · · , (F.1b)

where the first “ · · · ” of (F.1b) denotes the higher-order parts of the first term of (F.1a) in the spin-wave approximation,
and the second “ · · · ” of (F.1b) denotes the off-diagonal parts in the Fourier transformation of the second term of
(F.1a). Assuming that same as the x and y components of the spin, the z component of the spin is coupled only with
the phonon operators of the same wave-number as the spin, and renormalizing the free spin-wave Hamiltonian, the
free spin-wave energies and the spin-phonon interaction as done in (2.19)−(2.21), the spin-phonon interaction takes
the form

HSR = − h̄ S/2
∑
k, ν

{
g∗1ν (akRa†

kν + b†kRb†
kν) + g1ν (a†kRa

kν + bkRb
kν)

}

− h̄
∑
k, ν

g2ν

{
(S − a†kak)(Ra†

kνRa
kν − 〈1R|Ra†

kνRa
kν |ρR〉) + (b†kbk − S)(Rb†

kνRb
kν − 〈1R|Rb†

kνRb
kν |ρR〉)

}
, (F.2)

where the higher-order parts in the spin-wave approximation and the off-diagonal parts and wave-number mixing in
HSR, have been ignored. Substituting (F.2) into (A.19) and by using the basic requirements (A.8) and their tilde
conjugates, the collision operator C(2) takes the form [21, 22]

C(2) = −S
∑

k

{{
φ+−

k (ε+k ){(αk − α̃†k)α†k cosh 2θk − (β†k − β̃k)α†k sinh 2θk}

+ φ+−
k (−ε−k ){(β†k − β̃k)βk cosh 2θk − (αk − α̃†k)βk sinh 2θk}

}
− {

φ−+
k (ε+k )∗{(αk − α̃†k) α̃k cosh 2θk − (β†k − β̃k) α̃k sinh 2θk}
+ φ−+

k (−ε−k )∗{(β†k − β̃k) β̃†k cosh 2θk − (αk − α̃†k) β̃†k sinh 2θk}
}

+
{
φ−+

k (ε+k ){(α†k − α̃k)αk cosh 2θk − (βk − β̃†k)αk sinh 2θk}
+ φ−+

k (−ε−k ){(βk − β̃†k)β†k cosh 2θk − (α†k − α̃k)β†k sinh 2θk}
}

− {
φ+−

k (ε+k )∗{(α†k − α̃k) α̃†k cosh 2θk − (βk − β̃†k) α̃†k sinh 2θk}
+ φ+−

k (−ε−k )∗{(βk − β̃†k) β̃k cosh 2θk − (α†k − α̃k) β̃k sinh 2θk}
}}

− 1
2

∑
k

{{(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk − (αkβk + α†kβ†k − α̃†kβ̃†k − α̃kβ̃k) sinh 2θk}

× {(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk φzz
k (0)

− ((αkβk − α̃†kβ̃†k)φzz
k (ε+k + ε−k ) + (α†kβ†k − α̃kβ̃k)φzz

k (ε+k + ε−k )∗) sinh 2θk}
+ {α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}{α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}φzz

k (0)
}
, (F.3)

with the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by (A.25a)− (A.25c), where the higher-order parts

in the spin-wave approximation have been ignored, and the assumption that the phonon correlation function given by
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(2.24c) is real, have been used. Then, nα
k (t) and nβ

k(t) defined by (A.32) satisfy the equations of motion

(d/dt)nα
k (t) = 〈1S|U−1(t) [ i ĤS0 − C(2), α†k αk ] U(t) |ρ0〉,

= −{2 S Φ+
k (ε+k )′ cosh 2θk − Ψ′k sinh2 2θk}nα

k (t) + Ψ′k sinh2 2θk nβ
k (t)

+ 2 S Φ+
k (ε+k )′ cosh 2θk n̄(ε+k ) + Ψ′k sinh2 2θk, (F.4a)

(d/dt)nβ
k (t) = 〈1S|U−1(t) [ i ĤS0 − C(2), β†k βk ] U(t) |ρ0〉,

= −{2 S Φ−k (ε−k )′ cosh 2θk − Ψ′k sinh2 2θk}nβ
k(t) + Ψ′k sinh2 2θk nα

k (t)

+ 2 S Φ−k (ε−k )′ cosh 2θk n̄(ε−k ) + Ψ′k sinh2 2θk, (F.4b)

with n̄(ε±k ) defined by (A.41), where Φ±k (ε±k )′ and Ψ′k are the real parts of Φ±k (ε±k ) and Ψk defined by (A.42)− (A.44),
respectively. The quasi-particle operators λk(t) and ξk(t) satisfy the equations of motion

(d/dt)Zα
k (t)1/2〈1S|λk(t) = (d/dt) 〈1S|αk(t) = 〈1S|U−1(t) [ i ĤS0 − C(2), αk ] U(t),

= {− i ε+k − S Φ+
k (ε+k ) cosh 2θk − (Ψ0

k/2)(cosh2 2θk + 1) + (Ψk/2) sinh2 2θk}Zα
k (t)1/2 〈1S|λk(t)

− {S Φ−k (ε−k )∗ sinh 2θk + ((Ψ0
k − Ψ∗k)/2) sinh 2θk cosh 2θk}Zβ

k (t)1/2 〈1S| ξ̃k(t), (F.5a)

(d/dt)Zβ
k (t)1/2〈1S| ξ̃k(t) = (d/dt) 〈1S|β††k (t) = 〈1S|U−1(t) [ i ĤS0 − C(2), β†k ] U(t),

= {i ε−k − S Φ−k (ε−k )∗ cosh 2θk − (Ψ0
k/2)(cosh2 2θk + 1) + (Ψ∗k/2) sinh2 2θk}Zβ

k (t)1/2 〈1S| ξ̃k(t)

− {S Φ+
k (ε+k ) sinh 2θk + (Ψ0

k − Ψk)/2) sinh 2θk cosh 2θk}Zα
k (t)1/2 〈1S|λk(t), (F.5b)

which correspond to (A.52a) and (A.52b) with Γk± and ∆k± given by

Γk± = S Φ±k (ε±k ) cosh 2θk − Ψk sinh2 2θk/2 + Ψ0
k ·(cosh2 2θk + 1)/2, (F.6a)

∆k± = S Φ±k (ε±k ) sinh 2θk + (Ψ0
k − Ψk) sinh 2θk cosh 2θk/2, (F.6b)

where Φ0
k is defined by (A.54).

The form of interference thermal state |D(2)

S−
k

[ω]〉 given by (3.8) can be expressed by substituting (F.2) into (3.8)

and by using the axioms (A.2), (A.8) and their tilde conjugates, as

|D(2)

S−
k

[ω]〉 = γ S S/2 (cosh θk − sinh θk)

× {{cosh 2θk (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉
× {(φ−+

k (ω) − φ+−
k (ω)∗) − (φ−+

k (ε+k ) − φ+−
k (ε+k )∗)}/(ω − ε+k )

+ {sinh 2θk (α†k − α̃k) − cosh 2θk (βk − β̃†k)}|ρ0〉
× {(φ−+

k (ω) − φ+−
k (ω)∗) − (φ−+

k (−ε−k ) − φ+−
k (−ε−k )∗)}/(ω + ε−k )

}

+
γ
√

S

2
√

2
(cosh θk − sinh θk)

× {{(cosh2 2θk + 1) (α†k − α̃k)|ρ0〉{φzz
k (ω − ε+k ) − φzz

k (0)}
+ sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉{φzz

k (ω + ε−k ) − φzz
k (ε+k + ε−k )}}/(ω − ε+k )

+ {sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉{φzz
k (ω − ε+k ) − φzz

k (ε+k + ε−k )∗}
+ (cosh2 2θk + 1) (βk − β̃†k)|ρ0〉{φzz

k (ω + ε−k ) − φzz
k (0)}}/(ω + ε−k )

+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {{sinh 2θk (βk − β̃†k)|ρ0〉{φzz
k (ω + ε−k ) − φzz

k (ε+k + ε−k )}
− cosh 2θk (α†k − α̃k)|ρ0〉{φzz

k (ω − ε+k ) − φzz
k (0)}}/(ω − ε+k )

+ {cosh 2θk (βk − β̃†k)|ρ0〉{φzz
k (ω + ε−k ) − φzz

k (0)}
− sinh 2θk (α†k − α̃k)|ρ0〉{φzz

k (ω − ε+k ) − φzz
k (ε+k + ε−k )∗}}/(ω + ε−k )

}}
, (F.7)

with the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by (A.25a)− (A.25c), where the higher-order parts

in the spin-wave approximation have been ignored, and the assumption that the phonon correlation function given by
(2.24c) is real, have been used. The above expression of the interference thermal state |D(2)

S−
k

[ω]〉 can be rewritten, by

using Φ±k (ε±k ), Ψk, Ψ0
k and Ψk(ε) defined by (A.42)− (A.44), (A.54) and (3.12), respectively, as

|D(2)

S−
k

[ω]〉 = γ S/2 (cosh θk − sinh θk){|D(2)
k1 [ω]〉/(2 (ω − ε+k )) + |D(2)

k2 [ω]〉/(2 (ω + ε−k ))}, (F.8)
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with |D(2)
k1 [ω]〉 and |D(2)

k2 [ω]〉 given by

|D(2)
k1 [ω]〉 = 2 S {cosh 2θk (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉{Φ+

k (ω) − Φ+
k (ε+k )}

+ sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉{Ψk(ω + ε−k ) − Ψk}
+ (cosh2 2θk + 1) (α†k − α̃k)|ρ0〉{Ψk(ω − ε+k ) − Ψ0

k}
+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {
sinh 2θk (βk − β̃†k)|ρ0〉{Ψk(ω + ε−k ) − Ψk}

− cosh 2θk (α†k − α̃k)|ρ0〉{Ψk(ω − ε+k ) − Ψ0
k}

}
, (F.9a)

|D(2)
k2 [ω]〉 = 2 S {sinh 2θk (α†k − α̃k) − cosh 2θk (βk − β̃†k)}|ρ0〉{Φ+

k (ω) − Φ+
k (− ε−k )}

+ sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉{Ψk(ω − ε+k ) − Ψ∗k}
+ (cosh2 2θk + 1) (βk − β̃†k)|ρ0〉{Ψk(ω + ε−k ) − Ψ0

k}
+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {
cosh 2θk (βk − β̃†k)|ρ0〉{Ψk(ω + ε−k ) − Ψ0

k}
− sinh 2θk (α†k − α̃k)|ρ0〉{Ψk(ω − ε+k ) − Ψ∗k}

}
. (F.9b)

The corresponding interference terms Xα
k1(ω), Xα

k2(ω), Xβ
k1(ω) and Xβ

k2(ω), are derived using (C.1), (C.2) and
(4.5)− (4.7), and take the following forms :

Xα
k1(ω) = 〈1S|αk |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xα
k1(ω)′ + i Xα

k1(ω)′′, (F.10a)

=
{
2 S cosh 2θk {Φ+

k (ω) − Φ+
k (ε+k )} + (cosh2 2θk + 1){Ψk(ω − ε+k ) − Ψ0

k}
− sinh2 2θk {Ψk(ω + ε−k ) − Ψk}

}
/{2 (ω − ε+k )}, (F.10b)

= g2
1 S

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
2 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} cosh 2θk

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk{(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1) , (F.10c)

Xα
k2(ω) = 〈1S|αk |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xα
k2(ω)′ + i Xα

k2(ω)′′, (F.11a)

=
{
2 S sinh 2θk {Φ+

k (ω) − Φ+
k (− ε−k )} + sinh 2θk cosh 2θk {Ψk(ω − ε+k ) − Ψ∗k}

− sinh 2θk cosh 2θk {Ψk(ω + ε−k ) − Ψ0
k}

}
/{2 (ω + ε−k )}, (F.11b)

= g2
1 S

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
2 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk {(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (F.11c)

Xβ
k1(ω) = 〈1S|β†k |D(2)

k1 [ω]〉/(2 (ω − ε+k )) = Xβ
k1(ω)′ + i Xβ

k1(ω)′′, (F.12a)

=
{
2 S sinh 2θk{Φ+

k (ω) − Φ+
k (ε+k )} − sinh 2θk cosh 2θk{Ψk(ω + ε−k ) − Ψk}

+ sinh 2θk cosh 2θk{Ψk(ω − ε+k ) − Ψ0
k}

}
/{2 (ω − ε+k )}, (F.12b)

= g2
1 S

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
2 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk {(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (F.12c)
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Xβ
k2(ω) = 〈1S|β†k |D(2)

k2 [ω]〉/(2 (ω + ε−k )) = Xβ
k2(ω)′ + i Xβ

k2(ω)′′, (F.13a)

=
{
2 S cosh 2θk {Φ+

k (ω) − Φ+
k (− ε−k )} − (cosh2 2θk + 1){Ψk(ω + ε−k ) − Ψ0

k}
+ sinh2 2θk {Ψk(ω − ε+k ) − Ψ∗k}

}
/{2 (ω + ε−k )}, (F.13b)

= g2
1 S

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
2 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} cosh 2θk

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk{(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1) . (F.13c)
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