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Abstract: A form of the transverse magnetic susceptibility is derived and the resonance absorption and transverse magnetization
are studied for an anti-ferromagnetic spin system interacting with a phonon reservoir in the spin-wave region, employing the TCLE
method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the revised
spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir. Here, the TCLE method
of linear response is a method in which the admittance of a physical system is directly derived from time-convolutionless equations
with external driving terms. The approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and the amplitude of the expectation value of the transverse magnetization,
which is referred as “the magnetization-amplitude”, are derived for the anti-ferromagnetic system in a transversely rotating
magnetic-field. For an anti-ferromagnetic system of one-dimensional infinite spins in the transversely rotating magnetic-field, the
power absorption and magnetization-amplitude are investigated numerically in the region valid for the lowest spin-wave
approximation. The approximate formulas of the resonance frequencies, peak-heights and line half-widths, are shown to coincide
well with the results investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude
in the resonance region, and also are shown to satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the
peak-heights increase and the line half-widths decrease, and thus are verified numerically. In the resonance region of the power
absorption and magnetization-amplitude, it is shown that as the temperature T becomes high, the resonance frequencies increase
slightly, the peak-heights decrease and the line half-widths increase, and that as the wave number k becomes large, the resonance
frequencies and peak-heights increase, and the line half-widths decrease, and also that as the spin-magnitude S becomes large, the
resonance frequencies and peak-heights of the power absorption and magnetization-amplitude become large. The effects of the
memory and initial correlation for the spin system and phonon reservoir, which are represented by the interference terms in the
TCLE method and are referred as “the interference effects”, are confirmed to increase the power absorption and magnetization-
amplitude in the resonance region, and are shown to produce effects that cannot be disregarded for the high temperature, for the
non-quickly damped reservoir or for the small wave number k.
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1 Introduction

The theories of anti-ferromagnetic resonance were macroscopically treated by Nagamiya [1], Kittel and Keffer [2, 3], and
were microscopically developed using the spin-wave method [4] by Nakamura [5], Ziman [6], Kubo [7], Akhiezer et al. [8,
9] and Oguchi and Honma [10]. The anti-ferromagnetic resonance was also discussed using the method of the collective
motion of spins by Mori and Kawasaki [11], and was studied numerically using the method of calculating the dynamical
susceptibility directly by Miyashita et al. [12, 13, 14, 15], and besides its theories were developed by the quantum field
theoretical approach of Oshikawa and Affleck to the electron spin resonance in spin-1/2 chains [16, 17, 18]. However,
these theories for anti-ferromagnetic resonance do not deal with the effects of the phonon reservoir interacting with the
spin systems, and therefore those theories cannot elucidate the damping mechanism of the spin for the case that the spin-
spin interactions or the spin-wave interactions are small. In such a case, it is necessary to consider the anti-ferromagnetic
spin systems interacting with the phonon reservoirs and to study the effects of the phonon reservoir. Uchiyama et al. [19]
proposed a method in which the Kubo formula [20] is calculated using the time-convolution (T'C) master equation to
study effects of the heat reservoir, and applied it to a two-spin system and a three-spin system. Also, the author and
Miyashita [21] formulated the non-equilibrium thermo-field dynamics (NETFD) for an anti-ferromagnetic system of
many spins interacting with a phonon reservoir, using the spin-wave method [4, 7]. Recently in Ref. [22], the author
derived a form of the transverse magnetic susceptibility and has discussed the resonance absorption for an anti-
ferromagnetic system of many spins interacting with a phonon reservoir, using the spin-wave method [4, 7]. It may be an
interesting problem to study furthermore the resonance absorption for the anti-ferromagnetic system of many spins
interacting with a phonon reservoir.

In the previous paper [22], the author derived a form of the transverse magnetic susceptibility and discussed
the resonance absorption for an anti-ferromagnetic system of many spins interacting with a phonon reservoir in the



spin-wave region, employing the TCLE method of linear response [23, 24, 25] in terms of the non-equilibrium thermo-
field dynamics (NETFD) [26, 27, 28, 29, 30]. Here, the TCLE method of linear response is a method in which the
admittance of a physical system is directly derived from time-convolutionless equations with external driving terms
[23, 24, 25, 31, 32, 33, 34, 35, 36]. In the previous papers [21, 22], the interaction between the spin system and
phonon reservoir was taken to point all of the spins to the “down” direction by the phonon-reservoir field, and thus
the spin-phonon interaction does not reflect the energy transfer between the spin system and phonon reservoir at the
“down” spin sites. In the problem of collision of the anti-ferromagnetic spin system with the phonon reservoir, it may
be necessary to take the spin-phonon interaction to reflect the energy transer between the spin system and phonon
reservoir not only at the “up” spin sites but also at the “down” spin sites.

In the present paper, we consider an anti-ferromagnetic spin system with a uniaxial anisotropy energy and an
anisotropic exchange interaction under an external static magnetic-field in the spin-wave region, interacting with
a phonon reservoir and with an external driving magnetic-field which is a transversely rotating classical field, and
study microscopically the power absorption and the transverse magnetization in the resonance region, including the
effects of the memory and initial correlation for the spin system and phonon reservoir. We derive a form of the
transverse magnetic susceptibility of the anti-ferromagnetic system by employing the TCLE method of linear response
[23, 24, 25, 29, 30] in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the
spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir not only
at the “up” spin sites but also at the “down” spin sites, in the spin-wave approximation employing the spin-wave
method of Kubo [7]. We examine analytically the power absorption and the amplitude of the expectation values
of the transverse magnetizations, which is referred as “the magnetization-amplitude”, in the resonance region of the
anti-ferromagnetic system in the spin-wave region, derive the approximate formulas of the resonance frequencies, peak-
heights (heights of peak) and line half-widths in the resonance region, and investigate numerically the line shapes for an
anti-ferromagnetic system of one-dimensional infinite spins. We also investigate numerically the effects of the memory
and initial correlation for the spin system and phonon reservoir, i.e., the interference effects. We use the same symbols
and notations as in Refs. [21, 22], and provide the same basic requirements (axioms) as in Refs. [21, 22].

Here, we mention the validity and usefulness of the TCLE method of linear response. In Refs. [34, 35, 36],
the relation between the TCLE method and relaxation method for the problem of linear response was analytically
examined in the second-order approximation for the interaction between the physical system and heat reservoir, where
the relaxation method is the one in which the Kubo formula [20] is calculated for the physical system interacting
with the heat reservoir. The admittances derived employing each method were shown to have the same second-order
terms and mutually different higher-order terms. The admittances derived employing each method were numerically
investigated and were shown to agree well in the resonance region, for a quantum oscillator interacting with a heat
reservoir [34] and for a quantum spin interacting with a heat reservoir [35, 37, 38]. This shows that the TCLE method
is coincident with the relaxation method in the second-order approximation for the system-reservoir interaction,
and that the second-order TCLE method is valid in this approximation. In Refs. [23, 24, 25], the TCLE method
and relaxation method were formulated in terms of the NETFD, and the relation between the admittances derived
employing each method was analytically examined in the second-order approximation for the interaction between the
physical system and heat reservoir [25]. When the relaxation method is employed in the van Hove limit [39] or in
the narrowing limit [40], in which the heat reservoir is damped quickly, that is to say, the correlation time 7. of the
heat reservoir is much less than the relaxation time 7, of the physical system, i.e., 7. << 7, or 7. —0, as done in
the formulation of the NETFD [26, 27, 28], the obtained admittance is valid only in that limit and coincides with
the one without the interference terms in the admittance derived employing the TCLE method [25, 34, 35]. In the
TCLE method, the interference terms are included in the time-convolutionless (TCL) equations with external driving
terms [23, 24, 25, 31, 32, 33, 34, 35, 36|, represent the effects of the memory and initial correlation for the physical
system and heat reservoir, and give the effects of the deviation from the van Hove limit [39] or the narrowing limit
[40]. When the TCLE method is employed, the complex admittance of the physical system can be calculated by
inserting the interference terms into the results obtained in the van Hove limit [39] or in the narrowing limit [40],
in which the NETFD has been formulated [21, 26, 27, 28, 29, 30]. Thus, by employing the NETFD and the TCLE
method [23, 24, 25, 29, 30] as done in Refs. [22, 41, 42], the complex admittance of the physical system can be derived
including the effects of the memory and initial correlation for the physical system and heat reservoir, i.e., the effects
of the motion of the heat reservoir which influence the physical system. As discussed in Ref. [22], one can discuss
variations of the peak-heights and line half-widths in the resonance regions of the power-absorption, etc. employing
the TCLE method theoretically, because the admittance derived emloying the second-order TCLE method is valid
even if the heat reservoir is damped slowly, in the region valid for the second-order perturbation approximation.

In Section 2, we give the Hamiltonian for an anti-ferromagnetic spin system interacting with a phonon reservoir
under an external static magnetic-field in the spin-wave region. In Section 3, we derive forms of the transverse magnetic
susceptibility and magnetization-amplitude for the anti-ferromagnetic system by employing the TCLE method of linear
response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is reformulated for the spin-phonon
interaction taken to reflect the energy transfer between the spin system and phonon reservoir in Appendix A, and
derive the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths in
the resonance region of the power absorption and magnetization-amplitude. In Section 4, we investigate numerically
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the power absorption and magnetization-amplitude in the resonance region of an anti-ferromagnetic system of one-
dimensional infinite spins. In Section 5, we give a short summary and some concluding remarks.

2 Model and Hamiltonian of anti-ferromagnetic spin system

We consider an anti-ferromagnetic spin system with a uniaxial anisotropy energy and with an anisotropic exchange
interaction under an external static magnetic-field H . in the z direction, in interaction with a phonon reservoir. The
anti-ferromagnetic spin system is in the spin-wave region, and we proceed in the spin-wave approximation by employing
the spin-wave method of Kubo [7]. We consider a bipartite lattice and denote the sites of sublattices by { and m,
where [ denote the sites of “up” spins, and m denote the sites of “down” spins. We take the principal axis of the
uniaxial anisotropy energy and anisotropic exchange interaction as the z axis, and describe the Hamiltonian Hg of the
anti-ferromagnetic spin system under the external static magnetic-field H. as

N/2 N/2 N/2 N/2

Hs=n S {Ji(S/ S, + S, Sh) +22 5755} — mz{ Yosi+ Y an} - hK{ 3 (57)% + Z(an)?}, (2.1)
l m l m

(1,m)

with Sji =57+ iSj-’ (j =1, m), where w, is the Zeeman frequency w, =~ H, with the magnetomechanical ratio ~. In
the above Hamiltonian Hs, hJ; and hJy are the exchange energies, h K is the anisotropy energy, N is the total number
of spins, and the summation ) (1, m) is taken over all nearest-neighbor pairs. Here, the spin operators S; denote “up”

spins of spin magnitude S at sites [, and the spin operators §m denote “down” spins of spin magnitude S at sites m.
As done by Kubo [7], we introduce the two kinds of the creation and annihilation operators for the spin deviation.
The spin operators \S; at up-spin sites [ are expressed as

St =v2Spia, S, =V2Sa]p, Si=S-aja, (2.2)
with the Bose operators a; and a} introduced in Ref. [4], where the operators p; are defined by
i 1/2 1/2
a; a ny ny T
— (1= 2 :(1__ =1 — — ... = . 2.
P ( 25 29 45 ’ (e = ay o) (23)

The spin operators S,,, at down-spin sites m are expressed as

St =V2Sbl, pm, S = V2S5 P b, Sz = —S+bl by, (2.4)
with the Bose operators b, and b introduced in Ref. [4], where the operators p,, are defined by
bt b,, 1/2 Ny, 1/2 Nom
— (1 = 2m’m —(1_Im S R = ) 2.
pm = ( 25 ( 29 1S ’ (Ron = b7 bm) (2:5)

The Bose operators a}L and a; are the creation and annihilation operators of spin deviation of “up” spins at sites [,

respectively, and the Bose operators bjn and b,, are the creation and annihilation operators of spin deviation of “down”
spins at sites m, respectively. These Bose operators satisfy the commutation relations
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lar, al] =6, (b, b1 ] = G, (2.6)

while the other commutators vanish. The Fourier transformations for the Bose operators a; and b,, are performed as

2 o _ 2 o
a; = Nzk:akexp(—zk-m), ap = Nzl:alexp(z ), (2.7a)

T 7
by = Nzk:bkexp(zk-rm), by = N;bmeXP(_Zk'rm)’ (2.7b)

where the transformed operators a; and by are the Bose operators and satisfy the commutation relations
[Elk, @L,] = Opis, [Bk , 62,] = i, (2.8)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit the
overbar “~” unless the meaning is confusing. By substituting (2.2) and (2.4) into Hamiltonian Hg given by (2.1), by
expanding it in accordance with (2.3) and (2.5), and by performing the Fourier transformations (2.7a) and (2.7b),
the Hamiltonian Hg given by (2.1) for the spin system can be divided as Hs=Hgo + Hs1 with the free spin-wave
Hamiltonian Hgg, which was derived in Ref. [21] in the wave-number representation as

Mso = 2zhJ1S Y {m(arb + afbl) + (C+ K+ he) ajar + (¢ + & — h) blbe} — 2hJaNS? — RENS?, (2.9)
k
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with ng, ¢, kK and h, defined by

LS (i Ty K(25-1) w. _ 1K
_ - If ——— = hz = = ’ 2.1
z (i), ¢ Ji’ " 2218 2218 2z2i8 210

where Hs; is parts of the higher-order in the spin-wave approximation [21] and represents the interaction among the
spin-waves. Here, ¢ denotes the vectors to the nearest-neighbour site from each site, and z is the number of the
vectors. In order to diagonalize the free spin-wave Hamiltonian Hgo given by (2.9), the operators ay, aL, bx, and bl
are transformed according to Refs. [7, 10], as

ay = oy cosh ), — ﬁ,: sinh 6, , b = — aL sinh 6 + B cosh 6y, (2.11)

and their Hermite conjugates, where the operators ay, aL, Bk, and ﬂ,i are the Bose operators and satisfy the commu-
tation relations

[, al, ] = Ok, [Br, BL 1= O, (2.12)

while the other commutators vanish. Taking the choice of 8 as

sinh20, =/ ((+ k)2 —n7, cosh20, = ((+k)/ ((+rK)?Z2—n2, (2.13)

the free spin-wave Hamiltonian Hsg given by (2.9) takes the diagonal form given by Refs. [21, 22].

We next consider the interaction between the anti-ferromagnetic spin system and phonon reservoir. We assume
that each spin interacts only with the reservoir field at the same site as the spin, and thus neglect the spin-phonon
interactions among the different sites. We also assume that the phonon reservoir is composed of many phonon which
are represented by the Bose operators R}, and Rb , of mode v at sites [ and m, respectively, and their Hermite
conjugates. We perform the Fourier transformations for the phonon operators R}, and RY,, at the up-spin sites [ and
down-spin sites m separately, as

2« 5 - . 2 o

Ry, = N zk: Ry, exp(—ik-77), = N Z R}, exp(i k-77), (2.14a)
92— - o _

Rb = N %:RZV exp(i k-7 ), R, = = ZR L exp(— i k), (2.14b)

and their Hermite conjugates, where the transformed operators ng, Riu and their Hermite conjugates are the Bose
operators and satisfy the commutation relations

[RE,, R ] = GO, [RY,, RY 1= Ok, (2.15)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “~”
unless the meaning is confusing. The interaction Hamiltonian Hsg between the spin system and phonon reservoir is
taken as

HSR:_g{Z(gTVSlJrRlT—FglVS Rll/ +Z glVSm my+g1VSmerJ7r,V }
lLv m,v
—h{ZgzquR?jR;LJrZgQVS;R’;,LR” } (2.16a)
m,v

h / a a / *
= 5 Z { 28 (grl’ akRkI + 910 a’};‘RkV) +v2 S (glu bLRZV + J1v kaZTu)} +

k,v

2 ot a 2 b
- h292u (S - N Z G,L,ak/ RkIRky - h Zg2l/<ﬁ Z bL/bk/ - S RkT/Rzu -+ . 5 (216b)
k,v k' k,v k'

where g1, and g9, are the coupling constants between the spin and the phonon of mode v. In the derivation of
(2.16b), we have substituted (2.2) and (2.4) into (2.16a) and have expanded it according to (2.3) and (2.5). In (2.16b),
the first “--.” denotes the higher-order parts of the first term of (2.16a) in the spin-wave approximation, and the
second “---” denotes the off-diagonal parts in the Fourier transformation of the second term of (2.16a). The above
spin-phonon interaction Hamiltonian Hgp reflects the energy transfer between the spin system and phonon reservoir,
and is different from the spin-phonon interaction taken in Refs. [21, 22], which does not reflect the energy transfer
between the spin system and phonon reservoir at the sites m of “down” spins, because the spin-phonon interaction
taken in Refs. [21, 22] was taken to point all of the spins to the “down” direction by the phonon-reservoir field.
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In the spin-phonon interaction Hgg given by (2.16), we assume that same as the x and y components of the spin,
the z component of the spin is coupled only with the phonon operators of the same wave-number as the spin. We also
assume that the thermal equilibrium value of the phonon number of the wave number & at the up-spin sites [ coincides
with that of the wave number k at the down-spin sites m in the phonon reservoir, and put

> gou (IR RE o) = > 920 (1| R RY, lor) = > 920 (1a| RE, Riw | on), (2.17)

with the Bose operators Ry, and RLV, where (1g]---|pr) =trr - - pr is the notaion of thermo-field dynamics. Here, pg
is the normalized, time-independent density operator for the phonon reservoir with the Hamiltonian Hg, and is given
by

pr = exp(— BHg)/{1z| exp(— B Hg) |1z) = exp(— B Hg)/ trg exp(— 8 Hz), (2.18)

which is the thermal equilibrium density operator at temperature T = (kg3) !, where notation try denotes the trace
operation in the space of the phonon reservoir. We do not specify the Hamiltonian Hy of the phonon reservoir explicitly.
For the later convenience, we renormalize the free spin-wave Hamiltonian Hgg, the free spin-wave energies heki and
the spin-phonon interaction Hgg, as follows

Hso :nz{e;aLak+e,;5,§/3k+%(eme;)} —2hJINS(C+k)—2hJaNS2—hKNS2, (2.19)
k

hef =22h i S{\/(C+r)2—nE£h.} £7 g (1a| R), Riw |pr), (2.20)

Ho=—h /2% {gi, (aRE +bR) + g, (af RE, +BLRY)}
k,v

—7”32921/ S —alay) (R RE, — (18| RERE, |pn)) + (bhbs — S)(REDRY, — (1a|RY RY, |os))},  (2.21)

where we have ignored the higher-order parts in the spin-wave approximation, the off-diagonal parts and the wave-
number mixing in Hsz. Hereafter, we use Hgo, heki and Hgg given by (2.19) — (2.21), respectively, for the free spin-
wave Hamiltonian, the free spin-wave energies and the spin-phonon interaction. We besides assume that the thermal

equilibrium values of the phonon operators vanish, i.e., <1R|Ra(b lpr) = (18| R}, b)T|pR> 0. Then, we have

(1r[Hsr|pr) = 0, (1a|Hsalpr) = 0, [Hsn = (Hsn — Hiz) /B, (2.22)

where Hsg are the renormalized hat-Hamiltonian defined by Hgr = (Hsr — 7:{;}1) /h [25]. The renormalized free spin-
wave energies hef given by (2.20) include the thermal equilibrium values of the phonon number, which depend on
temperature 7" in general. We assume that the phonon operators for each wave number and each mode are mutually
independent and assume that

(La|RE, ()R, |on) = (Wl R (DR |on) = (el BY, (D RY, or) = (1a|RY (1) Ry, og) = 0, (2:23a)
(In|Ry, ()RE, |n) = (1n| Ril (8) Ryt o) = (1al RE, (H)RY, lon) = (1| Ry (6) R | on) = 0, (2.23b)
with the Heisenberg operators Ra( )( t) = exp(iHat) Ry R )exp(—ZHRt) a( )( t) = exp(iHat) Ry, R )exp( iHgt), and their
Hermite conjugates, which are the Heisenberg operators in the space of the phonon reserv01r We also assume that
the phonon operators at the up-spin sites [ are independent of the phonon operators at the down-spin sites m, e.g.,
(1g|RE, (1R, | o) = <1R|R T(t)RY,|pr) =0. We besides assume that the correlation function for the phonon operator

with the wave number k£ at the up-spin sites [ coincides with the correlation function for the phonon operator with
the wave number k at the down-spin sites m, and put

Z|gly| (1a| R} ()R, |pn) = me (1a| Ry ()R, |pn) = Z|glu| (1a| R}, (t)Rev | ow), (2.24a)
Z|91v| (1n|RE, (t) Ryt om) = Zlglul (1a|R}, (R, | pr) = Z|glu| (1z|Riw ()R, | pr), (2.24b)
S g3, (lAEE @) ,wos))A(RziR )pr) = Zggy (1r]A(RY (H)RE, (1) AR RY,)|pr)

=" 63, (1a|A(R], () R (£) A(RL, Ry | ow), (2.24¢)

where we have put, for example, as A(RLV(t)Rk,,(t)) :R;Ly(t)Rk,,(t) — <1R|RLVRkV|pR) and A(RLVR;W) :R,TWR;W -
(1a| Rl Riy|pn). As done in Refs. [21, 22], we assume that the phonon correlation function given by (2.24c) is real.
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In Appendix A, we reformulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon interaction
(2.21) taken to reflect the energy transfer between the spin system and phonon reservoir.

In the last of this section, we check the ground state of the anti-ferromagnetic spin system. In the lowest spin-wave
approximation, the Hamiltonian Hgo of the spin system, which is given by (2.19) and (2.20), can be rewritten as

Mso = 2zhJ1S (C+ ) > {y/1—tanh®(20;) — 1} + > {ef afon + e LB} — 2hJaNS?* — hKNS?, (2.25)
k k

which we have put tanh(26y) =nx /(¢ + k) according to (2.13). Then, the ground state energy ES, of the spin system
in the lowest spin-wave approximation is given by

ESy = —2hJoaNS? — hKNS? + 22518 (C+ 1) Y {y/1 — tanh®(26,) — 1}, (2.26)
k

which is smaller than the energy —zh.Jo N S2—hK N S? of the Neel ordered state with the anisotropy energy hK, because

the third term of ES, given by (2.26) is negative according to { 1 — tanh?(26;) —1} <0. Thus, the ground state of
the spin system in the lowest spin-wave approximation is lower than the Neel ordered state with the anisotropy energy
[43]. In the case of an anti-ferromagnetic spin system with the isotropic exchange interaction and without anisotropy
energy, i.e., (=1, K =0, k=0, the ground state energy of the spin system in the lowest spin-wave approximation
becomes

Egy = —zhJNS* +2zhJ8 Y {1/1—n2 —1}, (J=J1=Jy; K=0), (2.27)
k

which is smaller than the energy —zhJNS? of the Neel ordered state [43], where we have put J =J; = J2, and thus
the ground state of the spin system is lower than the Neel ordered state.

3 Resonance absorption and transverse magnetization

In this section, we derive forms of the transverse magnetic susceptibility, the expectation value of the transverse
magnetization and its amplitude for the anti-ferromagnetic spin system interacting with the phonon reservoir, by
employing the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD)
reformulated in Appendix A. The TCLE method of linear response was formulated in terms of the NETFD in Refs.
[23, 24, 25], and it was surveyed in Appendix A of Ref. [22]. We consider the case that the external driving magnetic-
field H ;(t) at site j is a transversely rotating classical field :

H;(t) = (Hj coswt, —Hj sinwt , 0), (Hy = Hj; j=1,m), (3.1)
and take the interaction Heq(t) of the spin system with the external driving field as

Hea(t) = =Ny 3 S5+ Hy(t) == (1/2) iy D _{S] Hy (t) + S5 H (1)}, (j =1.m),
=— h%{ zl: H {S] exp(iwt) + S exp(—iwt)} + %:Hm{S;{L exp(iwt) + S, exp(—iwt)}},

=—hy S/2 { ZH; {ajexp(iwt) + aj exp(—iwt)} + ZHm{bIn exp(iwt) + by, exp(—iwt)}}
l m
+o-n, (3.2)

with Hji(t) = Hj(t) £ i H(t) = Hjexp(Fiwt), where we have performed the transformations (2.2) and (2.4) and
the expansions (2.3) and (2.5). Here, “ --” denotes the higher-order parts in the spin-wave approximation, and we
neglect the higher-order parts in the following. By performing the Fourier transformations (2.7a) and (2.7b), the above
interaction Heq(f) can be rewritten in the wave-number representation as

Hea(t) = —hy S/2 Z {(ar + bz) Hypexp(iwt) + (a;r€ + by) Hi exp(—iwt)}, (3.3)
k
where H}, is the Fourier transformation of H; [= Hj*] :
H, = 2/N2Hk exp(i EF]), Hy = 2/N2Hj exp(—iE-Fj), (j=1,m). (3.4)
k J
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Hereafter, we mainly use the Fourier transformed variables and we omit “~” unless the meaning is confusing. When the
external driving magnetic-field H;(t) is uniform in space, i.e., H; = H, we have Hy = Hy 0o and Ho=Hj= N/2H,
and the form of the interaction Heq(t) becomes
Hea(t) = — (1/2) hy HVN S {(ao + b)) exp(iwt) + (af + bo) exp(—iwt)}. (3.5)
The transverse magnetic susceptibility X5t s, (w) for the anti-ferromagnetic spin system specified in Section 2, is
given by employing the TCLE method formulated in terms of the NETFD [22, 23, 24, 25], as

Xsi s / dt (1| yh S;F U(t) exp,_ —z/ dTHsl( )}
x {i(v/2)(Sy — S5 po) + |D wl) }exp(iwt), (3.6)

in the the second-order approximation for the spin—phonon interaction, where U(t) and 7:{51(t) are defined by (A.21)
and (A.22), respectively, and |po) is defined by |po) = (1a|pre) for pre given by (A.3). Here, Si are the Fourier
transformations of the sin operators S i le.,

SF= 2/NY Sifexp(Fik 7)), St= 2/NY Sfexp(xik7), (j=1,m), (3.7)
k J
with S’ff = S,:f, i.e.,, “77 is omitted hereafter unless the meaning is confusing. The above transverse susceptibility

Xsts: (w) is valid even if the spin system is interacting with a non-quickly damped phonon-reservoir. Here, the
interference thermal state |D(SQ_) [w]) represents the effects of the memory and initial correlation for the spin system
k

and phonon reservoir, and can be written as [22, 23, 24, 25|
|Dé2k_) [w]) =i~y S—/Q/ dT/ ds {<1R|7:lsn exp{— i Ho 7} Hsp exp{i Ho(T — s)}
0 0

x (af = @ + by — B |po)|pw) exp(iws)
— <1R|7:{sg exp{—i’}:lo s}(al —ap + by — 62
x exp{i Ho- (s — 7)Y Hsn|po) | pn) exp(iw s) }, (3.8)

with Ho=Hso + Hr, where we have neglected the higher-order parts in the spin-wave approximation. The above
interference thermal state |DfS,2,) [w]) is calculated by substituting (2.21) into (3.8) in Appendix B, can be expressed as
k

(B.2) by using the correlation functions ¢}~ (€), ¢, T (€) and ¢7*(e) defined by (A.25a) — (A.25¢), and can be rewritten
as

D)) =7 572 (cosh b — sinh 6){| DY)/ (2 (w — &) + DI [w]) /(2 (w + 6 )}, (3.9)

with |D,i21) [w]) and |D,i22) [w]) defined by
DY w]) = S (cosh 205 + 1) (af, — Gi)|po) {2 (w) — B ()}
+ 5 (cosh 26, — 1) (o, — ax)[po) {®;, (w) — B ()}
— Ssinh20; (B — B])[po) {(®F (w) — F (6])) + (B (w) — @, (¢0))}
+ sinh 26y, cosh 26, (B — B£)|PO> {Urp(w+e,)— Y}
+ (cosh® 205 + 1) (af, — G |po) {Wr(w — €f) — ¥R}
+ (arfBr + Oékﬁk — apf — a;ﬁk) sinh 20,
x { sinh 26, (ﬁk = BD)lpo) {¥r(w + ) — Ui}
—cosh29k( — au)|po) {Un(w —€f) — T}, (3.10)
D [w]) = S'sinh 26 (], — &)l po) (@) () — B (= €)) + (@ () — By (—€;))}
— S (cosh 26), — 1) (B — B})|po) { @5 (w) — @F (— )}
— S (cosh 26y, + 1) (B — B]) o) {P5, () — D (— )}
+ sinh 26, cosh 20y, (o). — @ )|po) {Wk(w — &) — Wi}
+ (cosh? 265, + 1) (Bx — B)lpo) {Tk(w + ¢ ) — TP}
+ (aw By, + ol B — anBy, — aLBL) sinh 260,
x { cosh 20y, (5k — BD)p0) {(w + ;) — U9}

—sinh29k( — ag)lpo) {\I/k(w—ek k}} (3.11)
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Here, ®F(¢) are defined by (A.42) and (A.43), and ¥y (e) is defined by
Uy(e) = 67 (e) = /0 dr > g3, (1a|A(RL, (T) Rk (7)) A(R], Re ) | pr) explieT), (3.12)

with Ui(€ef + €)=, and ¥;(0) = V), which are defined by (A.44) and (A.54). The lowest-order part X(SOJZS—(W)
k~k

of the transverse magnetic susceptibility X5 s, (w) given by (3.6) in the sin-wave approximation, takes the following

forms
(g @) = 7”225 /OOO dt (Ls|(ax + b)) U (1) exp(iw t){i {af, — dx + b — bi}Ipo)
+ (cosh y — sinh 05) {| DD/ 2 (@ — ) + IDE W) /@ (@ + )} ). (3.139)
_M?s /OOO dt (cosh 6y, — sinh 6x)* (15| {a () + B} (1)} exp(iwt) {i {af, — @k + B — Bl}]po)
+{IDP W)/ (w— ) + IDZ W)/ (w+ e )} (3.13b)

where we have used the axioms (A.26), the Heisenberg operators (A.27a), (A.27b) and their tilde conjugates. According
to the transformations (A.33a), (A.33b), (A.37a), (A.37b) and their tilde conjugates, the thermal-state conditions
(A.36) and their tilde conjugates, the relations (A.34a) and (A.34b), the axioms (A.7) and their tilde conjugates, the
forms (A.57a) and (A.57b) of the quasi-particle operators, we have

(5] cu(t) = Z ()2 (16| Mult) = 2 (0)/2 exp{(— i f — Thes) ¢ }(Ls| A
exp{(—i¢f —Tuy)t} —expf(ig — T} )t}

+ Z2(0)2A; 15| & ,
B50)1/2A7 CETES v (1s] &x
= exp{(—ief —Try)t}(1s| o
— Tp )t} — I )t
LAr exp{(—ief —Thy)t} —exp{(ie;, )t} <1s|5;1; (3.14a)

i(e +e )+ e — T
(1s| BIT(8) = 2} (1) /2 (15| & (t) = Z%)“Q exp{(ie; — 5 )t }1s|&
exp{(—ief — Tup)t} —exp{(iey — I )t}

+ Z2(0)12A s Ak s
R (0) 5 Apy i +e) +Trr — 7 (Is| Ak
=exp{(ie, — I} )t}<1s|5};
_ T )t} — Iy )t
A exp{(=ief —Tpy)t} —exp{(ieg —T5 )t} (1s] vk - (3.14b)

(ek +e )+ Dy — 15

By virtue of the commutation relations (A.5), the axioms (A.7) and their tilde conjugates, we obtain

Xy () = (1s| a D [W]) /(2 (w — ) = X1 (@) +i Xf1 ()",
= {5 {(cosh 20}, + 1)(®} (w) — @} (€})) + (cosh 20, — 1)(®;, (w) — D, ()}
+ (cosh® 20y, 4+ 1) (¥, (w — ) — W) — sinh? 20 (¥, (w + €, U}/ {2(w—€¢h)}, (3.15a)
Xin(w) = (1s ax |Dk2 W)/ 2w+ e)) = Xia(w) +1 Xpp(w)"”,
= {Ssinh 20, {(®}] (w) — D7 (=€) + (@) () — Dy (— )}
+ sinh 20, cosh 20, {(Vy(w — ) — UF) — (Vp(w + € ) — TP} /{2 (w+€,)} (3.15b)

X (@) = (15 B DI /2 (@ = ) = X ) +i X} (@),
— {Ssinh 20,{(0} (@) — O} () + (¥ () — ¥ ()
+ sinh 20, cosh 20, {(Vy(w — ) — UR) — (Up(w + € ) — Ui)}}/{2 (w—€0)}, (3.16a)
Xy(w) = (15| BLIDE D)/ 2 (w + ) = Xy (w) +i Xy (w)”,
= (5 (bt~ Y(O30) 87 0 cod0, + DEE) - B5(-7)
— (cosh® 20, + 1)(Tk(w + €, ) — UY) + sinh® 20, (Vp(w — € ) — U5) /{2 (w+€;) ], (3.16b)

where we have defined X (w), X5 (w), X 51 (w) and X 52 (w), which correspond to the interference terms, are referred

as “the corresponding interference terms” and represent the effects of the memory and initial correlation for the
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spin system and phonon reservoir. Here, X (B ))( ) and X (6 )( )" are the real and imaginary parts of X

k1(2 k1(2)

(8)
1?1(2) (@),

respectively. By substituting (3.14a) and (3.14b) into (3.13b), and by performing the integration in (3.13b) considering

that '}, are positive for positive ekjE according to (A.60), the transverse susceptibility Xg))
k

approximation can be expressed as

XA(S?I‘C*)'S;( w) = (h'YQS/Q)(COShek—&nth) {x 0)1( )+X(O)2( )+ (0)3 3,3,

01, - i Xa) — AL Xp ()

ket iw—€)—Ter {ilw—€)—TerH{i(w+e )T}

02,y — i_lez(w) —Apy Xih(w)

M W ) T T e ) T Hiw ) T

O3, = — = Xip) — X () +—Ak+{l+Xz?1( W)} + Af_{i — X))
= iw=el)=Thp  ilwteg)-Tio  {ilw—el) —TrpHiw+e)—Ti_}

(0)

which lead to the real parts x;}"(w)" and the imaginary parts of X,(coi (w)" of X(O) (w) (n=1,2,3), as

Oy X;?1<w>'r;+—<+1+xs L (@)")w =g =7
(w—ef =T} >2+<r;+>2
+ {{AL X[ @) + A X (W) Hw —ef —T{)(w+e; +T4) =T, T}
AL X)) (@) = AT X (w )}{(w—ek— T, +<w+ek rz, H}}
J{w—ef =T + (Thy ) H(w + e +T)% + (T4 )%},
02, v Xp@) T+ (1= X)) (w+ e +T5)
Xpt (W) =

<w+q+r~) + (T, )2

+ {{AL Xih(w) = AL XH (W) Hw—¢f —T{ ) (w+e +T5) — T Ty}

+{AL L X (W )” i X (W) Hw —¢f =TY}) k_+(w+62+F§c’_ k+}}
[{H{w =6 =T + (T )P H(w + e +T72)° + (T,0)%}

X @) Thy = Xp@)"(w—ef =Ty | X[ Ty = X2 ()" (w+e +Th)
(w—eg —T7 )2+ ()2 w+§+ﬂ’ﬁ+@’ﬁ

P (W) =

+ {{Ah X3 (W) — ;;+<1+X,za< )" H(w — Pt e + 7)) —Thy Ty}

+{A2+(1+X1?1(W)”)+ Xkl( )}{(W_ek ) k— +(W+€k F” +}}

+H{ALX5(w) - A1 Xéé( ) Hw =& —Ti ) (w+e +TH) — T Iy}

—{A (1= X)) + AL Xh(w) Hw — ¢ - r” O+ (W€, +r;;, m}}
J{w =t —T1)? + (Th )P Hw + e + T+ (0% ),

X;(El (W) = X (W) (w = 5;_: D)+ (T + X (w)")0
(w— e =Ty )2+ (T),)?
+ {2 X (@) = AL X (W) Hw—ef —T{ ) (w+e +T{) =T Th}
— {4, X;ﬁ( )+ A_XH (@) Hw — 6 =TH)The + (w+ e, + P;L) H}}

@ =€l =T + () Hw + 6 + 11" + (M)},
02y = K@) (@ e $T1) — (1~ Xp(w) )0}
s (Wt + 07 )2+ (T} )2

+{AL X @) + AL XS (@) Hw — ¢ T ) (W +e +T7) T Ty}
—{ AL X (w) = A X () H(w —ef —Ti )T, + (Wt e +TZ_) k+}}
J{H{w—el - T” D24 ) Hw + 6 + T + (T},
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o (w) in the lowest spin-wave
k

(3.17)

(3.18a)

(3.18b)

(3.18¢)

(3.19a)

(3.19D)

(3.19¢)

(3.20a)

(3.20b)



(0)3(0.))// o Xl(cl2 (w),(w - 6; - FZ+) + XI?Q(w)//Pk_i_ N lel (w)/(w + 6; + Fz_) " X]fl (w)”I‘%_

e - (w—ef =T+ (T2 (w Te +)?+ ()2
+ {{AL (1 + X5 (@)") + AL XR (W) Hw —¢f =T )(w+e +T) =T Ty}
—{AL X (W) = A (1 4+ X (W) ) H(w — k) Dee + (w6 +F” ) +}
—{AL_(1 = X (w )”) + AL X5 W) Hw — 6 —Ti)(w + 6 +T7) =Ty T}
—{AL X (@) =AY (1= X, (@) H(w —i —T )T+ (w+e, +F§$— k+}}
/{H{w =6l =Ti)? + (i) Hw + e +TE0)* + (D)} - (3.20¢)
Then, the real part Xgoz o (w)" and imaginary part X(SOJZ o (w)" of the transverse susceptibility X(SOJZ o (w) in the lowest
k "k k“k k Pk
spin-wave approximation are given by
Xl g (@) = (1 5/2) (cosh By — sinh 03)* (2" (@) + 32 (@) + X2 (@) ), (3.21a)
X5l g ()" = (17S/2)(cosh 0, — sinh 0)” {2 (@) + 32 (@) + G20 )" ). (3.21b)
Since the second terms of X,(C(zl(w) and X,(C(f (w) given by (3.18a) and (3.18b), and the third term of x,(cof (w) given by

(3.18c), can be considered to give small contribution in the resonance region, the real part X(SOI_} s

part X(s(g s (w)" of the transverse susceptibility in the lowest spin-wave approximation take approximately the forms

(w)" and imaginary

P (@) T~ EEW) @ - ~TE) M) T}~ I(w) (¢ +T))
X(S+)S (w)/ = T{ - = et — 1 : 2 TEEY) ,k 3 b ) (3.22a)
(w—e —T0)2+(T) (W"'% + I )2+ (1)

0oy I (B T+ 0 T | M g TSR

Xsisy T2 (w—e€f =TV 22 (wHe, +T7_ )2+ (I_)2 ’ '
in the resonance region, where we have put as

EX(w) = E2(w) 4+ i EY(w)” = S (cosh B, — sinh 0;,)2{i + X (w) + X5 (w)}, (3.23a)
I (W) = T (w) + i 11 (w)” = S (cosh B, — sinh 6,)?{— i + X7 (W) + X2, (W)}, (3.23D)

with the real parts Z¢ (w)’, Hf (w)" and the imaginary parts Z¢ (w)”, Hﬁ (w)" of E¥(w), Hﬁ (w).
The power loss of the transversely rotating magnetic-field given by (3.1) is given by h~vy|H k|2w)(3,:r o (w)" for the

anti-ferromagnetic spin system with the wave-number k [24]. When the anti-ferromagnetic system with the wave-
number £ is in the periodic motion with the frequency w, the power absorption of the anti-ferromagnetic system is
given by hy|Hy|?wx Sts: (w)”. Hereafter, the power absorption of the anti-ferromagnetic system with the wave-number

k in the periodic motion with the frequency w is referred as “Py(w)”, i.e.,

Pu(w) = hy [ HiPw xgr 5 @), (3.24)
which is expressed in the lowest spin-wave approximation as

0 0

PO (w) = hy|Hi wx§ls @) (3.25)
The line shape of the power absorption P,EO)( ) has two peaks at frequencies w 2 ek +IY 4y — € — I'//_ according to the
approximate form (3.22b) for the imaginary part X(Sl S,( w)" of the transverse susceptibility in the lowest spin-wave

kE Yk

approximation. For positive frequency w (>0), the resonance frequency wf, and the peak-height (height of peak) H,
in the resonance region of the power absorption P}go) (w) are approximately given by

wr = 6 + Ty, (3.26)
Hyy, = B2 % [ Hy | wpg, 27 (i) /(2 T4, (3.27)

with I, and T}/, given by (A.59a) and (A.59b), according to (3.22b). In order to obtain the approximate formula of

the line half-width Awg, in the resonance region of the power absorption P}go) (w), we put as Awg, /2=z1T, 4 for the
first-step approximation of Awf,, which satisfies

ka + F’
2 (2% +1)r’
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—x

E (wrp)” + 21 27 (wie)' | (3.28)

P
HRk —h273 |H |24rfilk :g(w )//Nh273|H |2
k+



where we have approximated Zf (wg, + 211, ) with Zf(wg,) in the right-hand side of the above equation. Equation
(3.28) can be rewritten as

{ng Ek (Wak) - 2T +:(1§ (Wak) } x% —2 {ng :g(wkk) + F%+EE(W1§1€)”} T1— ng Ek (ng)// =0. (3.29)

By obtaining the positive solution of the above second-order equation for z1, the first-step approximation of the line
half-width Awf, can be derived as

2211, = 2T, {wi ER (i) + Dis ZR (i) + {(win)* {ER (win))? + B (win)")?}
1/2 ,—a —a
+ ( k+)2( Sk Wak )") } }/{ng Sk Wak) 2F/+'~k (Wak)} (3.30)

Then, by putting as Awg, /2 =2, 4, the approximate formula of the line half-width Awf, for the power absorption

P,EO) (w), can be derived from the equation

9 ka+ka+

p
Wl o - _
h? 43 | Hy|? 4FR,k 20 (wh)" = h% 43 | Hy IS Ef (whp + 105 )" + 2 Ef (why +$1F;€+)I}, (3.31)
which can be rewritten as
{wir ER (wpp)” — 2T, BR (wiy, + 21T%,)' } a? -2 {wir B (wpg + 21T
+ Dy Bf (wpg + xleJr)H} z — wip {257 (wpp + 2110, )" — B¢ (wig)" T 2 0. (3.32)

By obtaining the positive solution of the above second-order equation for x, the approximate formula of the line
half-width Awf, in the resonance region of the power absorption P}go) (w) can be derived as

Awgy =2 Fk+{wnpk Zk( ka + 1Ty ) + F%+E?(W§k + :clI‘;H_)”
+ { Wri) :g(“’gk + $1F2+)/)2 + ( ;H—)Q (Z5 (war + $1F2+)H)2
+ 2 wry, 27 (Wri) (T Z0 (Wre + 21T54)" + wpp E7 (Wpe +21154)"}
— 2w, Ty B iy + 21001 ) SR (Wi + 1107p)” — (Whe)? (E?(wgk)”)Q}l/z}
/{Wnpk Eg(WRPk) —2 F;wr:% (WRk + xlF;ch)/} (3.33)

We consider the dynamics of the transverse magnetization with the wave-number & in the stationary state of the
anti-ferromagnetic spin system. In the stationay state, (1s/hS;"|p1(t)) have the form

(shSE o1 (1) = (2/7) X s (@) Hiexp(— iwt), (t — o0), (3.34)

with |p1(t)) = (1r|pr1(t)) = [trrp11(t)), where pri(t) is the first-order part of the density operator pr(t) for the total
system in powers of the external driving magnetic-field. The expectation value M (t) of the z-component of the
magnetization with the wave-number k, can be expressed as

M) = {((1shS7 o1 (1)) + (16lS; o1 (1) }/2 = Re (15| 1 (1), (3.350)
= (2/7){ (Xs,js,: (W)Hy) cos(wt) + (Xs,js,: (w)Hy)" sin(wt)}, (3.35Db)
= 2/t o (@) il sinfet + 6] (3.350

where the phase 0 (w) is defined by
sin6,(@) = (X 5. @)HR) /It s (@) H, 008 81(0) = (X5 (@VHL)"/IXsr s (@) Hal. (3.36)

The expectation value M}/ (t) of the y-component of the magnetization with wave-number k, can be expressed as

M(t) = {(1s|hS; |p1(8)) — (Ls|RSy; |pa (1))} /(2) = Tm (1s[ Sy [ o1 (1)), (3.37a)
= (2/’7){(Xs,js,: (W)Hg)" cos(wt) — (XSZ’SE (w)Hy) sin(wt)}. (3.37b)
= (2 s () Hi cosfiot + 64()). (3.370)

Thus, the expectation values M} (t) and M} (t) of the z-component and y-component of the magnetization with the
wave-number k oscillate with the frequency w and the amplitude A} (w) given by

A(w) = @/ s @Hl = IHl sz s @) = @/DIH (s s @)+ (xsrs- @2 (338)
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which is expressed in the lowest spin-wave approximation as

AOW) = @I (G g @)+ (G @))2: (3.59)

According to the approximate forms (3.22a) and (3.22b) of the real and imaginary parts in the resonance region of the
(0)

S¢Sy
values of the transverse magnetization, which is referred as “the magnetization-amplitude”, has two peaks at frequen-
cles w2 ek + T}, —€, —I'}_. Thus, the expectation values M (t) amd M/ (t) of the z-component and y-component

transverse susceptibility y (w) in the lowest spin-wave approximation, the amplitude AM(O (w) of the expectation

of the magnetization with the wave-number k oscillate with the large amplitude AZ(O) (why) at the resonance frequency

why., which coincides with the resonance frequency wgy, of the power absorption P(O)( ) approximately. For positive fre-
quency w (>0), the resonance frequency wh, and the peak-height (height of peak) Hp, of the magnetization-amplitude

Aﬁ(o)(w) with the wave-number k are approximately given by

ka = Gk + Fk—i—’ (340)
3.4

HY, = by |Hel {E2@5))? + R @)}/ Ty (3.41)

with T and T}/, given by (A.59a) and (A.59b). These approximate formulas can be derived by substituting (3.22a)
and (3.22b) into (3.39) in the lowest spin-wave approximation. In order to obtain the approximate formula of the line

half-width Awjl, in the resonance region of the magnetization-amplitude Az(o) (w) with the wave-number k, we put as
Awly /2=y1T, 4 for the first-step approximation of Awp, , which satisfies

|Hi| ¢ —a —a 1/2
fﬂw;—>h 5T {ERwr))? + ER )2,
ket
SPMUAYIEE NESTE (& e E AESTE (B Rl 12
Y vi+1 vi+1 ’

where we have approximated Zf (wy, + 11, ) with Z¢ (wy,) in the right-hand side of the above equation. Equation

(3.42) gives the positive solution y; = /3. By putting as Aw!, /2=yT, ., the approximate formula of the line half-width
Awy, in the resonance region of the magnetization-amplitude, can be derived from the equation

|Hk| { (=2 (_a(wM )//)2}1/2 = fiy |Hk| { (E%(WEI@ + \/§F;9+)/ - yE%(“’gk + \/§F;c+)// 2
21’\/ k Rk k+ y2 T 1
S (i + VBT +yER (wpy + V3T ) 2172
+( _ P )
y 41
which can be rewritten as

—a(, M \/\2 —a/, M 1/\./4 \/_F —a(, M \/gl-\l 1m1\2 3.44
{(ER (wrr))? + (B0 (why)" ')? }(y + {(E (whp + )+ G (e + w)")? ) (3.44)

By obtaining the positive solution of the above equation for y, the approximate formula of the line half-width Awl,
in the resonance region of the magnetization-amplitude, can be derived as

{E¢ (wh +VBLL) Y + {ER (Wi + VBT 1}1/2
SR (wpe)}? + {27 (wre)"}? '

If the relaxation method, in which the Kubo formula [20] is calculated for the physical system interacting with the
heat reservoir, is employed [25] in the van Hove limit [39] or in the narrowing limit [40], in which the correlation time
7. of the heat reservoir is much less than the relaxation time 7, of the physical system (7. < 7, or 7. —0), i.e., the
Kubo formula [20] is calculated from the second-order TCL equations with no external driving terms in this limit, one
obtains the transverse susceptibility [25]

AL, = 2r;+{4 (3.45)

g / dt (1s| v h SF U(t) exp_ —z/ dr Fisa(r) } 7 (S5 — ) oo) expliwo ), (3.46)

which coincides with the ones without the interference thermal state |D [ ]) in the transverse susceptibility x Sts: (w)

given by (3.6) derived employing the TCLE method. That limit neglects the effects of the memory and initial

correlation for the spin system and phonon reservoir. Therefore, the above susceptibility x* g (w) is valid for a quickly
kE Yk

damped reservoir (the reservoir correlation time 7. — 0), but not for a non-quickly damped reservoir, because the

influence of motion of the phonon reservoir on the motoin of the spin system is neglected in that limit. The transverse
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susceptibility x SESr (w) derived employing the TCLE method includes the interference thermal state |D(SQ_) [w]), which

represents the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e., the effects
of deviation from the van Hove limit [39] or the narrowing limit [40], and is valid even if the spin system is interacting
with a non-quickly damped phonon-reservoir in the region valid for the second-order perturbation approximation. The
coincidence of the TCLE method and relaxation method in the second-order approximation for the system-reservoir
interaction [25, 34, 35, 36, 37, 38|, means that the interference effects, i.e., the effects of the interference terms or
the interference thermal state, which are included in the susceptibility derived employing the TCLE method, are the
effects of motion of the phonon reservoir which influence the motoin of the spin system. Therefore, the interference
effects are considered to increase the power absorption and magnetization-amplitude in the resonance region to excite
the phonon reservoir for a non-quickly damped reservoir, because the external driving field excites not only the spin
system but also the phonon reservoir for a non-quickly damped reservoir. These are investigated numerically in the
following section.

4 Numerical investigation

In the present section, we assume a damped phonon-reservoir model and numerically investigate the power absorption
and the magnetization-amplitude (the amplitude of the expectation value of the transverse magnetization) for the
anti-ferromagnetic spin system, which is interacting with the phonon reservoir and with the transversely rotating
magnetic-field given by (3.1), under an external static magnetic-field in the spin-wave region. We assume that the
phonon reservoir consists of a phonon system coupled directly to the spin system and of a reservoir subsystem coupled
to the phonon system, where the reservoir subsystem (R-subsystem) is damped quickly, as done in Refs. [21, 22, 41, 42].
Then, the correlation functions of the phonon operators can be derived using the relaxation theory for the phonon
system [44, 45, 46], and are assumed to take the forms

> g P(1al BL, () Riw lpr) = g7 wni) exp(i war t — Yok ), (4.1a)
Z | g1 [*(1a] R (1) R, |or) = g7 {Pwni) + 1} exp(— i wn t — yax ), (4.1b)
> 63, (Rl AR], (1) Riw () ARE, Rio)lor) = > 93, (1l A(R], R ) A(R], () Ri (1)) | o8,

= g5 n(wai) {7(wnr) + 1} exp(—29me ), (4.1c)

with the coupling constants g; and go between the spin and phonon, where wgy and g (> 0) are, respectively, the
characteristic frequency and damping constant of the phonon reservoir. Here, 7i(wgg) is given by

n(wrr) = {exp(Bhwar) — 1} 1 = {exp(hwar/(ksT) — 1} L. (4.2)

The phonon correlation function (4.1¢) is real as assumed in Section 2. By using the above correlation functions,
@i (¢) defined by (A.42) and (A.43) can be expressed as [21].

@;(6) = @;(6)/ +Z'<I);(€)N = %{1 — exp (;thf ) } /OOO dTZ |g1y|2<1R|Rku(7)R;2y|pR> exp(ieT),

— %{1 — exp (;thf )} g f(ﬁ::));:_lﬁk {'yRk +i(e— ka)}, (4.3)
D (€) =@, () +iDy ()" = %{1 — exp (;thf )}/OOO dr > g1 (1| RE, (T) Riw | pa) explic ),

- %{1 —exp (;thf)} (e+2i:;§)+ = (e + (e wn)), (4.4)

where <I>kjE (¢) and @f(e)’ " are, respectively, the real part and imaginary part of (IDki (e). We also have for ¥y (e) defined
by (3.12), the forms

\I/k(G) = \I/k(G)I +1 \Ilk(e)” = gg ﬁ(ka){ﬁ(ka) + 1} — 92 ’ﬁ(ka){’ﬁ(ka) + 1}627Rk +ie

- -5 4.5
— 1€+ 2YRi 2_,_(27%)2 ( )

where Wy, (e)’ and ¥y (e)” are, respectively, the real part and imaginary part of ¥y (e). For ¥y, [=Uy(ef +¢; )] and U9
[= U (0)] defined by (A.44) and (A.54), respectively, we have

2y +i (e +€)
(ef +e )+ (2m)?
W) = W5(0) = g5 awnr) {7(wrr) + 1}/ (2 ymr)- (4.7)
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The above expressions given by (4.3) — (4.7) show that @ki(eki)’ is positive for positive ef and that U9 > W,. Then,
the forms of I} |, '/, A}, and A}, given by (A.59a) — (A.59d) can be written as

+

2
, giS —he; B 1 1Y Ymk-(cosh260, +1)
ket 4 { xp ( kBT )}{n(WRk) * 2 2} (Ef F ka)2 + ’yl%k

I o (TR Y ) + 5 3} e leosh 2 D

4 ksT 2 720 (fF £wm)? +13
" 93 n(wrp) {7 (wre) + 1} {1 n (eg + 6—{?)2 C?S}j 20, ;l— 47§k }7 (4.82)
4Rk (6 +€,)% + 472,
2 —her 1, 1y (&8 h26; + 1
o= S50 e (S Y + § 4 S} L Tl o 20 2 )
4 ks T 2 2 (ex Fwri)?® + Yy,
2 + +
915{ —he, _ 1 _ 1y (e T wrr)(cosh20, F1)
1 (o 7 1)
4 ks T W)+ 5 3 (€ £ wmn)? + 12,
2 ) () + 1?9y (4.5)
— go MWk )\ N\ WRE — Sin k .
i 2{(ef + 2 + 41}
, g%S{l . (—heki)}{ﬁ(w )+1:I:1} ~rk sinh 26},
= — —_ X u— —
ket 4 P kJBT RR 2 2 (Ei F ka)Q + ’yl%k
2 + .
ng{ (—hek)}{f 1 1} ek sinh 26y,
+ A2 0 toFs
U o U U 5 T o G g
_ _ (5 + €5 )? sinh 26}, cosh 26,
+ g3 (wnk) {7 (wrr) + 1} — : (4.8¢)
’ Dye{ (€ + €)% + 473, }
2 + + .
1 _915{ (—hek )}{_ 1 1}(€k:Fka)smh29k
=<1l —-ex n(wek) + = £ =
o P\ ke T ) g I (e T+ 2,
2 + + .
ng{ (—hek )}{_ 1 1}(6,c + wpy;) sinh 26,
+ A2 +oFs
U e S S
2 e+ e
— g5 (wrk ) {7 (wrk) + 1} k k sinh 20, cosh 20, . (4.8d)

2{(ef + )2 + 473}

In Appendix C, we give the forms of the corresponding interference terms X 21((@) (w) defined by (3.15a) — (3.16b). We

consider the case that the phonon reservoir consists of a phonon system of lattice vibration, which has the frequency
proportional to the magnitude |k| of the wave number k, and of a reservoir subsystem coupled to the phonon system,
where the reservoir subsystem (R-subsystem) is damped quickly. We assume that the characteristic frequency of the
phonon reservoir is given by

wpr = V |k| + wro, (4.9)

where wgq is the characteristic frequency of the phonon reservoir with the wave number k£ =0 and is the frequency shift
of the phonon system, which is generated by the motion of the reservoir subsystem coupled to the phonon system. We
also assume for consistency with assumptions (4.1a) — (4.1c) that

> gou (1a| R}, R |or) = g2 7(wni). (4.10)

Then, the free spin-wave energies ef given by (2.20) can be written as

hew =220 Ji S{\/(C+r)2 —nE +h.} £ hgani(wm), (4.11)

with g, ¢, k and h, defined by (2.10). We consider the case that the spin system and phonon reservoir are in the

thermal equilibrium state at the initial time ¢ =0. The initial values n$(0) and nf (0) are derived in Appendix D and
take the following forms

€ — wpi)? — (Yar )2
ng(0) = ﬁ(e;) + 9% S (cosh 20, + 1) {7i(wnr) — ﬁ(eg)} 5 {((eli — ’;))2 - (’; Z))z}z
k R R.
(ef +wrr)® — (ymn)?
2{(e; + war)? + (yar)?}2
(f + )% =4 ()
{(ef + )2 +4 ()2}

+ g7 S (cosh 20y, — 1) {a(€}) + n(wrk) + 1}

+ g3 sinh® 20 {n(e}) + nley, ) + 1} n(war) {A(war) + 1} (4.12a)
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nf(O) = (e, ) + g1 S (cosh 20, — 1){n(e;; ) + n(wrk) + 1}

(€ + wak)? — (ak)?
2{(ep + wrk)* + (i) }?

(e —war)® — (ymn)®
2{(e, — war)? + (1ax)?}?

(ef +ex)® —4(m)?
{(ef +e)?+4(me)?}?

+ g7 S (cosh 20y, + 1){n(wri) — 7i(e;, ) }

+ g3 sinh? 20, {7i(e;) + 7i(ey, ) + 1} (war) {72 (war) + 1} (4.12b)

We consider an anti-ferromagnetic system of one-dimensional infinite spins interacting with the phonon reservoir.
For the case of a regular-interval ranked spin chain, we have

z2=2, M = cosk, (4.13)

where k is the wave number multiplied by the sublattice constant and is referred to as “the wave number” hereafter.
We perform the numerical calculations for the case of g1/J1 =0.25, go/J1 =0.25, wro/J1 =0.5 and V/J; =0.5. The
damping constant ~g of the phonon reservoir, which is equal to the inverse of its correlation time 7., is assumed to
be independent of the wave number k and is taken as g/J1 =0.5. The wave-number summation is replaced with the
integral as

2 1 T
NE}; = %/4 dk, (N — 0), (4.14)

for N — 0o, where the wave-number summation goes over (N/2) wave-numbers. The wave-number summation is
performed by the numerical integration for N — oo. In Appendix E, we investigate numerically the region valid for
the lowest spin-wave approximation in the anti-ferromagnetic system of one-dimensional infinite spins. In Appendix
E, the lowest spin-wave approximation is shown to be valid in the regions of the temperature T" and anisotropy energy
RK given by kgT'/(hJ1) <1.0 and K/J; > 1.5, or by kgT'/(hJ1) <1.5 and K/J; > 2.0, for the spin-magnitude S >5/2,
¢ [=J2/J1]=1.0 and w,/J;1 =1.0, in the meaning that n®/(45) [=(n;)/(45)] and n®/(4S) [= (n,)/(4S)], which
correspond to the expectation values of the second terms in the expansions given by Egs. (2.3) and (2.5), respectively,
are smaller than about 0.01, where the expectation values n® [=n%(oc)] and n® [=n’(cc)] are, respectively, the
expectation values of the up-spin deviation number and down-spin deviation number in the infinite time limit (¢ — c0).

We next investigate numerically the power absorption and the amplitude of the expectation value of the transverse
magnetization, which is referred as “the magnetization-amplitude”, for the anti-ferromagnetic spin system in the
region valid for the lowest spin-wave approximation, meaning that n®/(45) [= (n;)/(4S)] and n®/(4S) [= (n,,)/(45)],
which correspond to the expectation values of the second terms in the expansions given by Egs. (2.3) and (2.5),
respectively, are smaller than about 0.01. In Appendix F, we give the forms of the collision operator C?) and the
interference thermal state |D(SQ_) [w]) for the the spin-phonon interaction Hggp taken in the previous papers [21, 22],

which does not reflect the energy transfer between the spin system and phonon reservoir at the sites m of “down”
spins. In Fig. 1, the power absorptions P}go) (w) given by (3.25), scaled by h%~®|Hy|?, are displayed varying the
frequency w scaled by J; from 15.5 to 20.0 for the cases of wave numbers k=0, 7/6,7/4,7/3,7/2, respectively, and
for the spin-magnitudes S=5/2, the temperature T' given by kgT'/(hJ;)=1.0 and the anisotropy energy hK given
by K/J1=2.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. In Fig. 2, the magnetization-amplitudes Az(o) (w) given by
(3.39), scaled by hvy|Hy|/Jy1, are displayed varying the frequency w scaled by J; from 15.5 to 20.0 for the cases of
wave numbers k=0, 7/6,7/4,7/3,7/2, respectively, and for the spin-magnitudes S =5/2, the temperature T given by
kgT/(hJ1)=1.0 and the anisotropy energy hK given by K/Jy =2.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. In Figs.
1 and 2, the results derived according to the spin-phonon interaction given by (2.21), which reflect the energy transfer
between the spin system and phonon reservoir, are displayed by the solid lines, and the results derived according to the
spin-phonon interaction given by (F.2), which is taken in the previous papers [21, 22] and does not reflect the energy
transfer between the spin system and phonon reservoir at the sites m of “down” spins, are displayed by the dots. The
latter results coincide well with the former results. Figures 1 and 2 show that the power absorption and magnetization-
amplitude have a peak for each wave-number, and that in the resonance regions, as the wave number k& becomes large,
the resonance frequencies become large, the peak-heights (heights of peak) increase, and the line half-widths decrease.
When the external driving magnetic-field is uniform in space, the power absorption and magnetization-amplitude of
the spin system in the stationary state are given by P(O)( ) and AM(O)( ) with the wave number k=0 in the lowest

spin-wave approximation. In Fig. 3, the power absorptions P( )( ) given by (3.25), scaled by h2y3 | Hy|?, are displayed
varying the frequency w scaled by J; from 14.0 to 33.0 for the cases of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and
for the wave-number k=0, the temperature T given by kgT'/(hJ;)=1.0 and the anisotropy energy hK given by
K/Jy =2.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. In Fig. 4, the magnetization-amplitudes Az(o) (w) given by (3.39),
scaled by h~y|Hy|/J1, are displayed varying the frequency w scaled by Ji from 14.0 to 33.0 for the cases of spin-
magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave-number k=0, the temperature T given by ksT'/(hJ1) =1.0 and
the anisotropy energy h K given by K/J; = 2.0, with ¢ [= J2/J1] = 1.0 and w,/J; = 1.0. In Figs. 3 and 4, the results
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Figure 1: The power absorptions P( )( ) given by (3.25), scaled by h%~® |Hy|?, are displayed varying the frequency
w scaled by J; from 15.5 to 20.0 for the cases of wave numbers k=0, 7/6,7/4,7/3,7/2, and for the spin-magnitudes
S=5/2, the temperature T given by kgT'/(hJ;)=1.0 and the anisotropy energy hK given by K/J; =2.0, with ¢
[=J2/J1]=1.0 and w,/J; =1.0. The results derived according to the spin-phonon interaction given by (2.21) are
displayed by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are
displayed by the dots.

Figure 2: The magnetization-amplitudes AZ(O) (w) given by (3.39), scaled by hiy|Hy|/J1, are displayed varying the
frequency w scaled by J; from 15.5 to 20.0 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-
magnitudes S =5/2, the temperature T given by kgT'/(hJ1) =1.0 and the anisotropy energy hK given by K/J; = 2.0,
with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The results derived according to the spin-phonon interaction given by (2.21)
are displayed by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are
displayed by the dots.

derived according to the spin-phonon interaction given by (2.21), which reflect the energy transfer between the spin
system and phonon reservoir, are displayed by the solid lines, and the results derived according to the spin-phonon
interaction given by (F.2), which is taken in the previous papers [21, 22] and does not reflect the energy transfer
between the spin system and phonon reservoir at the sites m of “down” spins, are displayed by the dots. The latter
results coincide well with the former results. Figures 3 and 4 show that in the resonance regions of the power absorption
and magnetization-amplitude, as the spin-magnitude S becomes large, the resonance frequencies become large, and
the peak-heights increase. As seen in Figs. 1—4, the facts that the results derived according to the spin-phonon
interaction given by (F.2) coincide well with the results derived according to the spin-phonon interaction given by
(2.21), show that the energy transfer between the spin system and phonon reservoir at the sites m of “down” spins
has few influence on the power absorptions and magnetization-amplitudes. Figs. 1 — 4 also show that each peak of the
line shapes of magnetization-amplitude Aﬁ(o)(w) has the hemline longer than that of the power absorption P,EO) (w).
Let us see temperature dependence of the line shapes in the resonance regions of the power absorption P,EO) (w) and
magnetization-amplitudes Aﬁ(o)(w). In Fig. 5, we display the resonance frequency wf, scaled by J; in the resonance

region of the power absorption P,EO) (w) varying the temperature T' scaled by hJy/kg from 0.1 to 1.1 for the cases
of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave number k=0 and the anisotropy energy hK given by
K/Jy=2.0, with ¢ [=J2/J1]=1.0 and w,/J; = 1.0. The resonance frequency wy, investigated calculating numerically
the power absorption P}go) (w) given by (3.25), are displayed by the solid lines, and the approximate formula given by
(3.26) for the resonance frequency wg, are displayed by the dots. In Fig. 6, we display the resonance frequency wy,,
scaled by Ji in the resonance region of the magnetization-amplitude Aﬁ(o)(w) varying the temperature T scaled by
hJy/ks from 0.1 to 1.1 for the cases of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave number k=0 and
the anisotropy energy hK given by K/J; =2.0, with { [=J>/J1])=1.0 and w,/J; =1.0. The resonance frequency wy,
investigated calculating numerically the magnetization-amplitude Aﬁ(o)(w) given by (3.39), are displayed by the solid
lines, and the approximate formula given by (3.40) for the resonance frequency wy, are displayed by the dots. Figures
5 and 6 show in the resonance region that as the temperature 7' becomes high, the resonance frequencies wf, and
why. become large slightly, that as the spin-magnitude S becomes large, the resonance frequencies wg, and wh, become
large, and that the approximate formulas given by (3.26) and (3.40) for the resonance frequencies wf, and why, coincide
well with the results investigated calculating numerically the power absorption P(O)( ) and magnetization-amplitude
AM(O)( ) given by (3.25) and (3.39) for the temperature T given by kgT/(hJ1) <1.1. In Fig. 7, we display the natural
logarithm log(HE,) of the peak-height HE, (height of peak) scaled by i~ |H}|? in the resonance region of the power
absorption P,g )( ) varying the temperature T scaled by AJ;/kg from 0.1 to 1.1 for the cases of spin-magnitudes
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Figure 3: The power absorptions P,EO) (w) given by (3.25), scaled by h*~® |Hy|?, are displayed varying the frequency w
scaled by Jy from 14.0 to 33.0 for the cases of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave-number k=0,
the temperature T given by kg7'/(hJ1) =1.0 and the anisotropy energy hK given by K/J; =2.0, with J3/J; =1.0 and
w/J1 =1.0. The results derived according to the spin-phonon interaction given by (2.21) are displayed by the solid
lines, and the results derived according to the spin-phonon interaction given by (F.2) are displayed by the dots.

Figure 4: The magnetization-amplitudes Az(o) (w) given by (3.39), scaled by hvy|Hy|/J1, are displayed varying the
frequency w scaled by J; from 14.0 to 33.0 for the cases of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave-
number k=0, the temperature T given by kg7/(h.J;) =1.0 and the anisotropy energy hK given by K/J; =2.0, with
Ja/J1 =1.0 and w,/J; =1.0. The results derived according to the spin-phonon interaction given by (2.21) are displayed
by the solid lines, and the results derived according to the spin-phonon interaction given by (F.2) are displayed by the
dots.
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Figure 5: The resonance frequency wf, scaled by J; for the power absorption P}go) (w), are displayed by the solid lines
varying the temperature T scaled by Ai.J;/kg from 0.1 to 1.1 for the cases of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2,
and for the wave-number k£ =0 and the anisotropy energy hK given by K/J; =2.0, with J3/J; =1.0 and w,/J; =1.0.
The dots denote the approximate formula given by (3.26) for the resonance frequency wf, .

Figure 6: The resonance frequency wpy, scaled by Ji for the magnetization-amplitudes AZ(O) (w), are displayed
by the solid lines varying the temperature T scaled by hJ;/kg from 0.1 to 1.1 for the cases of spin-magnitudes
S5=5/2,3,7/2,4,9/2, and for the wave number k=0 and the anisotropy energy hK given by K/J; =2.0, with
J2/J1=1.0 and w./J; =1.0. The dots denote the approximate formula given by (3.40) for the resonance frequency
Wiy -
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S=5/2,3,7/2,4,9/2, and for the wave number k=0 and the anisotropy energy AK given by K/J; =2.0, with ¢
[=J2/J1]=1.0 and w./J; =1.0. The natural logarithm log(Hf,) of the peak-height HF, investigated calculating
numerically the power absorption P}go) (w) given by (3.25), are displayed by the solid lines, and the natural logarithm
of the approximate formula given by (3.27) for the peak-height Hf, are displayed by the dots. In Fig. 8, we display the
natural logarithm log(Hy,) of the peak-height Hy, scaled by hvy|Hy|/Ji in the resonance region of the magnetization-

amplitude Aﬁ(o)(w) varying the temperature T scaled by hJy/kg from 0.1 to 1.1 for the cases of spin-magnitudes
S=5/2,3,7/2,4,9/2, and for the wave number k=0 and the anisotropy energy hK given by K/J3 =2.0, with ¢
[=J2/J1]=1.0 and w./J; =1.0. The natural logarithm log(Hy,) of the peak-height Hy, investigated calculating
numerically the magnetization-amplitude Aﬁ(o)(w) given by (3.39), are displayed by the solid lines, and the natural
logarithm of the approximate formula given by (3.41) for the peak-height Hy, are displayed by the dots. Figures 7 and
8 show in the resonance region that as the temperature 7" becomes high, the peak-heights Hf, and Hy, decrease, that
as the spin-magnitude S becomes large, the peak-heights HE, and Hy, increases, and that the approximate formulas
given by (3.27) and (3.41) for the peak-height HE, and H},, coincide well with the results investigated calculating

numerically the power absorption P}go) (w) and magnetization-amplitude AZ(O) (w) given by (3.25) and (3.39) for the
temperature T" given by kgT'/(h.J;) <1.1. In Fig. 9, we display the line half-width Awf, scaled by .J; in the resonance
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Figure 7: The natural logarithm log(Hp,) of the peak-height Hf, scaled by h?~3 |Hy|? for the power absorption

P,EO) (w), are displayed by the solid lines varying the temperature T scaled by hJi/kg from 0.1 to 1.1 for the cases
of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave-number k=0 and the anisotropy energy hK given by
K/J; =2.0, with Jo/J; =1.0 and w,/J; =1.0. The dots denote the natural logarithm of the approximate formula
given by (3.27) for the peak-height H, .

Figure 8: The natural logarithm log(Hy,) of the peak-height Hye scaled by hy|Hy|/Jy for the magnetization-amplitudes

Aﬁ(o)(w), are displayed by the solid lines varying the temperature T' scaled by hJy/kg from 0.1 to 1.1 for the cases
of spin-magnitudes S=5/2, 3, 7/2, 4, 9/2, and for the wave number k=0 and the anisotropy energy hK given by
K/J;y =2.0, with Jo/J; =1.0 and w,/J; =1.0. The dots denote the natural logarithm of the approximate formula
given by (3.41) for the peak-height HY, .

region of the power absorption P}go) (w) varying the temperature T scaled by %.J;/ks from 0.1 to 1.1 for the cases of
spin-magnitudes S=5/2, 9/2, and for the wave number k=0 and the anisotropy energy LK given by K/J; =2.0,
with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The line half-width Awf, investigated calculating numerically the power

absorption P}go) (w) given by (3.25), are displayed by the solid lines, and the approximate formula given by (3.33) for
the line half-width Awg, are displayed by the dots. In Fig. 10, we display the line half-width Aw}, scaled by J; in

the resonance region of the magnetization-amplitude Az(o)(w) varying the temperature T scaled by hJ; /kg from 0.1 to
1.1 for the cases of spin-magnitudes S=5/2, 9/2, and for the wave number k =0 and the anisotropy energy AK given
by K/Jy =2.0, with ¢ [=J5/J1] =1.0 and w,/J; = 1.0. The line half-width Awy, investigated calculating numerically
the magnetization-amplitude Aﬁ(o)(w) given by (3.39), are displayed by the solid lines, and the approximate formula
given by (3.45) for the line half-width Aw}, are displayed by the dots. Figures 9 and 10 show in the resonance region
that as the temperature T' becomes high, the line half-widths Awf, and Awj, increase, that as the spin-magnitude
S becomes large, the line half-widths Awf, and Awy, decrease slightly, and that the approximate formulas given
by (3.33) and (3.45) for the line half-width Awf, and Aw,, coincide well with the results investigated calculating
numerically the power absorption P,EO) (w) and magnetization-amplitude Az(o) (w) given by (3.25) and (3.39) for the
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temperature T given by kgT'/(hJ;) <1.1. Figures 9 and 10 also show that the line half-widths in the resonance region
of the magnetization-amplitude are larger than those of the power absorption.
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Figure 9: The line half-width Awf, scaled by J; for the power absorption P]go) (w), are displayed by the solid lines
varying the temperature T scaled by %i.J; /kg from 0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 9/2, and for the
wave-number k=0 and the anisotropy energy hK given by K/Jy =2.0, with Jo/J; =1.0 and w,/J; =1.0. The dots
denote the approximate formula given by (3.33) for the line half-width Awf,.

Figure 10: The line half-width Aw}, scaled by J; for the magnetization-amplitudes Az(o) (w), are displayed by the
solid lines varying the temperature T scaled by h.J; /kg from 0.1 to 1.1 for the cases of spin-magnitudes S=5/2, 9/2,
and for the wave number k=0 and the anisotropy energy AK given by K/J; = 2.0, with J3/J; =1.0 and w,/J; =1.0.
The dots denote the approximate formula given by (3.45) for the line half-width Awy,.

In the last of this section, we investigate the effects of the memory and initial correlation for the anti-ferromagnetic
spin system and phonon reservoir numerically. Those effects are represented by the interference terms in the TCLE

method and are referred as “the interference effects”. In Fig. 11, the power absorption P}go) (w) scaled by h2y3 |Hy|?
are displayed varying the frequency w scaled by J; from 15.0 to 17.5 in comparison with P;V(O) (w) scaled by h?~3 |Hy|?,

where P;V(O)(w) is the power absorption derived employing the relaxation method [25] in the van Hove limit [39] or in
the narrowing limit [40], and is given by

PO ) = hy P xS (@) (415)

rv(0)

in the lowest spin-wave approximation. Here, x otg- (w)” is the imaginary part of the transverse susceptibility
k Yk

XT;’-E(;)— (w) derived employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40]
k Yk

;,Vf(;), (w) coincides with the one without the

e (0)

Sy S

by (3.13) or (3.17), which has been derived employing the TCLE method in the lowest spin-wave approximation.

in the lowest spin-wave approximation. The transverse susceptibility x

a(B)

corresponding interference terms X, (w) given by (3.15) and (3.16) in the transverse susceptibility x (w) given

In Fig. 11, the power absorptions P}go) (w) and P;V(O) (w) are displayed for the cases of temperatures T' given by
kgT/(hJ1)=0.5,0.7,1.0, and for the spin-magnitude S =>5/2, the wave number k=0 and the anisotropy energy hK

given by K/Jy =2.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The power absorption P]go) (w) is displayed by the solid
lines and the power absorption P,:V(O) (w) is displayed by the short dash lines, in Fig. 11. The power absorption
P}go) (w) given by (3.25), which have been derived employing the TCLE method, includes the interference effects which
are the effects of the memory and initial correlation for the spin system and phonon reservoir [25], and are neglected
in the power absorption P;V(O) (w) derived employing the relaxation method [25] in the van Hove limit [39] or in the

narrowing limit [40] in the lowest spin-wave approximation. In Fig. 12, the magnetization-amplitude Az(o) (w) scaled

by hvy|Hg|/J1, are displayed varying the frequency w scaled by Ji from 15.0 to 17.5 in comparison with Ab,irv(o) (w)

scaled by hiy|Hy|/J1, where AIZW(O) (w) is the magnetization-amplitude derived employing the relaxation method [25]
in the van Hove limit [39] or in the narrowing limit [40], and is given by

A0 w) = IH (G- @)+ (G- @), (4.16)
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TVJEO)_ (w)’ is the real part of the transverse susceptibility erio)_ (w)
sts; Sty

derived employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40] in the lowest

in the lowest spin-wave approximation. Here, x

spin-wave approximation. In Fig. 12, the magnetization-amplitudes Aﬁ(o) (w) and A[;irv(o) (w) are displayed for the cases
of temperatures T given by kgT'/(hJ1)=0.5,0.7,1.0, and for the spin-magnitude S =5/2, the wave number k=0 and
the anisotropy energy hK given by K/.J; =2.0, with ¢ [=J3/J1]=1.0 and w,/J; =1.0. The magnetization-amplitude

Az(o)(w) is displayed by the solid lines and the magnetization-amplitude Azrv(o) (w) are displayed by the short dash

lines, in Fig. 12. The magnetization-amplitudes AZ(O) (w) given by (3.39), which have been derived employing the
TCLE method, includes the interference effects which are the effects of the memory and initial correlation for the spin
system and phonon reservoir [25], and are neglected in the magnetization-amplitude Aﬁrv(o) (w) derived employing the
relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40] in the lowest spin-wave approximation.
Figures 11 and 12 show that the interference effects increase the power absorptions and magnetization-amplitude in the
resonance region and produce effects that cannot be disregarded, and that as the temperature T' becomes high, those

effects become large comparatively. In Fig. 13, the rate (Hf, — HEY)/Hg, of the interference effects (HE, — HE;Y) for

the peak-height HE, of the power absorption P]go) (w), are displayed varying the temperature T scaled by h.J; /kg from
0.1 to 1.1 for the cases of spin-magnitudes S =5/2, 9/2, and for the anisotropy energy hK given by K/J; =2.0, the
wave-number k=0 and the daming constant g given by ypr/J1 =0.5, with ¢ [=J2/J1]=1.0 and w,/J1 =1.0. Here,

Hp, is the peak-height of the power absorption P,EO) (w), the approximate formula given by (3.27) is used for Hf,, and

HEY is the one without the corresponding interference terms X ,‘:1(2) (w) in the approximate formula (3.27). In Fig.

14, the rate (Hy, — Hixv)/HY. of the interference effects (Hpy, — HEFV) for the peak-height Hp, of the magnetization-

amplitudes AZ(O) (w), are displayed varying the temperature T scaled by %.J;/ks from 0.1 to 1.1 for the cases of
spin-magnitudes S =5/2, 9/2, and for the anisotropy energy hK given by K/.J; =2.0, the wave-number k=0 and the
daming constant Y, given by yax/J1 =0.5, with ¢ [=J2/J1]=1.0 and w./J; =1.0. Here, HY, is the peak-height of
the magnetization-amplitudes AZ(O)(w), the approximate formula given by (3.41) is used for Hy,, and Ha' is the one
without the corresponding interference terms X,‘jl@)(w) in the approximate formula (3.41). Figures 13 and 14 show
in the resonance region that as the temperature T becomes high, the interference effects for the power absorption
P}go) (w) and the magnetization-amplitudes AZ(O)(w), become large. As the spin-magnitude S becomes large, those
effects become small slightly. In Fig. 15, the rate (Hf, — HEY)/HE, of the interference effects (Hf, — HEY) for the

peak-height HE, of the power absorption P}go) (w), are displayed varying the daming constant g scaled by J; from 0.5
to 3.5 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitude S =15/2, the temperature T
given by kgT'/(hJ1) =1.0 and the anisotropy energy hK given by K/Jy =2.0, with ¢ [=J2/J;]=1.0 and w,/J; =1.0.
Here, the peak-height Hf, is the peak-height of the power absorption P,go) (w), the approximate formula given by

(3.27) is used for HE,, and HEY is the one without the corresponding interference terms X ¥ ) (w) in the approximate

formula (3.27). In Fig. 16, the rate (Hy, — Hyy')/HY, of the interference effects (Hy, — HM¥V) for the peak-height HY,

of the magnetization-amplitudes Aﬁ(o)(w), are displayed varying the daming constant g scaled by J; from 0.5 to 3.5

for the cases of wave numbers k=0, 7/6,7/4,7/3,7/2, and for the spin-magnitudes S =5/2, the temperature T given
by kgT'/(hJ1) =1.0 and the anisotropy energy A K given by K/J; =2.0, with ¢ [=J2/J1]=1.0 and w,/J; = 1.0. Here,
H}Y, is the peak-height of the magnetization-amplitudes Az(o) (w), the approximate formula given by (3.41) is used for
HY. . and HpV is the one without the corresponding interference terms X} (2)(w) in the approximate formula (3.41).
Figures 15 and 16 show in the resonance region that as the damping constant gy of the phonon reservoir becomes
small, the interference effects for the power absorption P]go) (w) and the magnetization-amplitude Az(o)(w), become
large, and also that as the wave number k£ becomes small, those effects become large. Since the damping constant gy
of the phonon reservoir is equal to the inverse of its correlation time 7., the interference effects become large as the
phonon reservoir is damped slowly. Thus, the interference effects produce effects that cannot be disregarded for the
high temperature, for the non-quickly damped reservoir or for the small wave-number.

5 Summary and concluding remarks

We have considered an anti-ferromagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange
interaction under an external static magnetic-field in the spin-wave region, interacting with a phonon reservoir, and
have derived a form of the transverse magnetic susceptibility for such a spin system interacting with an external
driving magnetic-field, which is a transversely rotating classical field, in the spin-wave approximation by employing
the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which have been
reformulated for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon
reservoir. We have analytically examined the power absorption and the amplitude of the expectation value of the
transverse magnetization, which is referred as “the magnetization-amplitude”, for the anti-ferromagnetic spin system,
and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and magnetization-amplitude. We have numerically investigated
the power absorption and magnetization-amplitude for an anti-ferromagnetic system of one-dimensional infinite spins
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Figure 11: The power absorptions P( (w) and Prv( (w), scaled by h*y3|Hy|?, are displayed varying the frequency w
scaled by J; from 15.0 to 17.5, for the cases of temperatures T given by kgT/(hJ1)=0.5,0.7,1.0, and for the wave-
number k=0, the spin-magnitude S =15/2 and the anisotropy energy hK given by K/J3 =2.0, with Jo/J; =1.0 and
w,/J1 =1.0. The power absorption P,io)( ) is displayed by the solid lines, and Prv( )( ) is displayed by the short dash
lines and coincides with the one without the corresponding interference terms in the power absorption P,EO) (w) derived
employing the TCLE method in the lowest spin-wave approximation.

Figure 12: The magnetization-amplitudes Az(o) (w) and A[;irv(o) (w), scaled by hvy|H|/J1, are displayed varying the
frequency w scaled by J; from 15.0 to 17.5 for the cases of temperatures T given by kg7 /(hJ1)=0.5,0.7,1.0, and
for the wave-number k=0, the spin-magnitude S=5/2 and the anisotropy energy AK given by K/J; =2.0, with
Jz/J1=1.0 and w,/J; =1.0. The magnetization-amplitude AZ(O)(w) is displayed by the solid lines, and AMW(O)( )
is displayed by the short dash lines and coincides with the one without the corresponding interference terms in the

magnetization-amplitude Ai(o)

Interference Effect for Power Absorptlon

(w) derived employing the TCLE method in the lowest spin-wave approximation.
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Figure 13: The rate (Hf, — HiiV)/Hg, of the interference effects (Hg, — HEyY) for the peak-height Hf, of the power

absorption P,EO) (w), are displayed varying the temperature T' scaled by hJy/kg from 0.1 to 1.1 for the cases of spin-
magnitudes S=5/2, 9/2, and for the wave-number k 0 and the anisotropy energy AK given by K/J; =2.0, with
Jz/J1 =1.0 and wz/Jl =1.0. Here, the peak-height HE, is the approximate formula given by (3.27), and HEY is the
one without the corresponding interference terms X (2)( w) in the approximate formula (3.27).

Figure 14: The rate (HY, —HiY)/HY H®V) for the peak-height HY of the

magnetization-amplitudes Ak( )( ), are displayed varying the temperature T scaled by %.J;/kg from 0.1 to 1.1 for
the cases of spin-magnitudes S=5/2, 9/2, and for the wave-number k 0 and the anisotropy energy hK given by
K/Jy =2.0, with Jo/J; =1.0 and wz/Jl =1.0. Here, the peak-height Hy, is the approximate formula given by (3.41),
and H}V is the one without the corresponding interference terms X1?1(2)( w) in the approximate formula (3.41).
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by assuming a damped phonon-reservoir model in the region valid for the lowest spin-wave approximation. Here,
the valid region means that n®/(4S) [= (n;)/(49)] and n®/(4S) [= (n.,)/(45)], which correspond to the expectation
values of the second terms in the expansions given by Egs. (2.3) and (2.5) respectively, are smaller than about 0.01 in
that region, where the expectation values n® [=n%(oc)] and n® [=n’(00)] are the expectation values of the up-spin
deviation number and down-spin deviation number, respectively, in the infinite time limit (¢t — 00). We have mainly

Interference Effect for Power Absorption Interference Effect for Magne—Amplitude
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Figure 15: The rate (Hf, — Hii¥)/Hg, of the interference effects (Hg, — HE}Y) for the peak-height Hf, of the power

absorption P,EO) (w), are displayed varying the daming constant ~g; of the phonon reservoir, scaled by Ji, from 0.5
to 3.5 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitude S =>5/2, the temperature
T given by kgT/(%J1) =1.0 and the anisotropy energy hK given by K/J; =2.0, with Jo/J; =1.0 and w,/J; =1.0.
Here, the peak-height HY, is the approximate formula given by (3.27), and HE;Y is the one without the corresponding

interference terms X, , (w) in the approximate formula (3.27).

Figure 16: The rate (Hy, — HpY)/Hy, of the interference effects (Hpy, — Hpr') for the peak-height Hy, of the

magnetization-amplitudes Az(o) (w), are displayed varying the daming constant 7y, of the phonon reservoir, scaled by
J1, for the phonon reservoir from 0.5 to 3.5 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-
magnitude S =5/2, the temperature T given by kgT'/(hJ1)=1.0 and the anisotropy energy hK given by K/J; = 2.0,
with Jo/J; =1.0 and w./J; =1.0. Here, the peak-height Hy, is the approximate formula given by (3.41), and HyrY is
the one without the corresponding interference terms X @) (w) in the approximate formula (3.41).

obtained the following results by the numerical investigations for the power absorption and magnetization-amplitude.
1. The power absorption P]go) (w) and magnetization-amplitude AZ(O) (w) with the wave number k have a peak for each
wave-number. As the wave number & becomes large, the resonance frequencies and peak-heights (heights of peak)
increase, and the line half-widths decrease in the resonance region. Thus, as the wave number k& becomes large, the
line shapes of the power absorption and magnetization-amplitude show “the narrowing” in the resonance region.
2. In the resonance region of the power absorption and magnetization-amplitude, as the spin-magnitude S becomes
large, the resonance frequencies become large, the peak-heights increase and the line half-widths decrease slightly.
3. In the resonance region of the power absorption and magnetization-amplitude, as the temperature 7" becomes
high, the resonance frequencies increase slightly, the peak-heights decrease and the line half-widths increase. The
approximate formulas of the resonance frequencies, peak-heights and line half-widths, which have been derived in the
resonance region of the power absorption and magnetization-amplitude, coincide well with the results investigated
calculating numerically the analytic results of the power absorption and magnetization-amplitude.
4. The effects of the memory and initial correlation for the spin system and phonon reservoir, which are represented by
the interference terms in the TCLE method and are referred as “the interference effects”, increase the power absorption
and magnetization-amplitude in the resonance region, and become large as the temperature 7" becomes high, as the
phonon reservoir is damped slowly or as the wave number k£ becomes small. Thus, the interference effects produce
effects that cannot be neglected for the high temperature, for the non-quickly damped reservoir or for the small wave
number k. Those effects become small slightly as the spin-magnitude .S becomes large.
5. Each peak of the line shapes of magnetization-amplitude has the hemline longer than that of the power absorption.
Also, the line half-widths in the resonance region of the magnetization-amplitude are larger than those of the power
absorption.
6. The energy transfer between the anti-ferromagnetic spin system and phonon reservoir at the “down”spin sites has
few influence on the power absorptions and magnetization-amplitudes of the spin system, i.e., the numerical results
derived according to the spin-phonon interaction given by (F.2) coincide almost with those derived according to the
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spin-phonon interaction given by (2.21).

We have analytically examined the power absorption and magnetization-amplitude for the anti-ferromagnetic spin
system, and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line
half-widths in the resonance region. The approximate formulas of the resonance frequencies for the power absorption
and magnetization-amplitude are given by (3.26) and (3.40), respectively, i.e.

P + " M + 7
wpe e+, wre =€, + Ty, (5.1)

with I'),_ given by (A.59b) or (4.8b). As shown in Figs. 5 and 6, the approximate formulas of the resonance frequencies
wpy, and wy, coincide well with the results investigated calculating numerically the analytic results of the power

absorption P,EO) (w) and magnetization-amplitude Aﬁ(o)(w) in the lowest spin-wave approximation, respectively, for the
temperature T given by kg7'/(hJ1) <1.1. The approximate formulas of the peak-heights for the power absorption and
magnetization-amplitude are given by (3.27) and (3.41), respectively, i.e.

Hy 22 02 [Hel? wiy Z7 (win)” /(2T ), (5.2)
o 1/2
Hyy, = by [ Hy| { (E5 (why,)’ )* + (7 (whx)"”) } /Thts (5.3)

with I}, given by (A.59a) or (4.8a), where =}(w)" and Zf(w)” are the real and imaginary parts of Z}(w) given by
(3.23a), respectively, i.e.

E¢(w)" = S (cosh 20y — sinh 20;)* { X (w) + X5 (w)'}, (5.4a)

Y(w)" = S (cosh 20y — sinh 205)* {1 + X2 (w)" + X (w)"}. (5.4b)
The approximate formulas of the peak-heights H, and Hp, include the real and imaginary parts of the corresponding
interference terms X7 (w) and Xp,(w) given by (C.3b) and (C.4b) at the resonance frequencies. The interference
terms produce the effects that increase the peak-heights of the power absorption and magnetization-amplitude in the

resonance region, as seen in Figs. 11 and 12. As shown in Figs. 7 and 8, the approximate formulas of the peak-heights
HE and HY, coincide well with the results investigated calculating numerically the analytic results of the power

absorption P,EO) (w) and magnetization-amplitude Aﬁ(o)(w) in the lowest spin-wave approximation, respectively, for the
temperature T' given by kg7 /(hiJ1) <1.1. The approximate formulas derived for the line half-widths in the resonance
region of the power absorption and magnetization-amplitude are given by (3.33) and (3.45), respectively, i.e.,

Awgy, 22T {wpe E2(why + 21054 + T S (wig + 21T5,)”
+{(wm)? ER (Wi +1T%1)')? + (Tp)? (E7 (wip + 21074)")°
+ 2wy, Z7 (Wri) {Ths E0 (wre + 21 T54)" + e E7 (wree +211754)"}
— 2wi Tt ER (Wi + 21T04) B (Wi + 210%4)" — (wie)? (Eg(wnpk)”)Q}l/Q}
Hwnk Z8 (win)” = 2Tk 5 (whp + 21T%4)' ) (5.5)
{Ek (ka + \/_Fk-i-)/}Q +1{= (ka + \/_F ) } _ 1}1/2
Ef (wre)' 12 + {7 (wrp)"}? ’

Aul, =2 F;+{4
where 1 is given by

T = {WRk Ep(wpe) + A (Wnpk 4 { (wie)® {EX (wre))? + (B (wi)")?}
+ (The)? (ER @l 2 Hwk B2 (W) — 2T Z(wh)'}- (5.7)

As shown in Figs. 9 and 10, the approximate formulas of the line half-widths Awf, and Awj, coincide well with the
results investigated calculating numerically the analytic results of the power absorption P]go) (w) and magnetization-

amplitude AZ(O) (w) in the lowest spin-wave approximation, respectively, for the temperature given by kgT'/(hJ1) < 1.1.

The above approximate formulas derived for the resonance frequencies, peak-heights and line half-widths in the
resonance region of the power absorption and magnetization-amplitude, are useful for investigating dependence of the
line shapes on variation of various physical quantities. As examples, we investigate dependence of the peak-heights
and line half-widths in the resonance region of the power absorption and magnetization-amplitude on the anisotropy
energy and the damping constant of the phonon reservoir. In Fig. 17, the approximate formula (3.27) or (5.2) of the
peak-height HE, in the resonance region of the power absorption P]go) (w), scaled by h2y3 |Hy|?, is displayed varying
the daming constant ~g; of the phonon reservoir, scaled by Jp, from 0.5 to 5.5 for the cases of anisotropy energies A K
given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T given by kgT'/(hJ;) =1.0 and the spin-magnitude
S=5/2, with ( [=J2/J1]=1.0 and w,/J; =1.0. In Fig. 18, the approximate formula (3.41) or (5.3) of peak-height
H}Y, in the resonance region of the magnetization-amplitudes Ai(o) (w), scaled by h~y|Hg|/J1, is displayed varying the

daming constant gy of the phonon reservoir, scaled by Ji, from 0.5 to 5.5 for the cases of anisotropy energies i K
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given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T given by kgT'/(h.J1) =1.0 and the spin-magnitude
S=5/2, with ( [=J2/J1]=1.0 and w,/J; =1.0. The anisotropy energy is denoted as “A” [=K/J;] in Figs. 17 and
18. Figures 17 and 18 show in the resonance region of the power absorption and magnetization-amplitude that as the
damping constant gy of the phonon reservoir becomes large, the peak-heights Hf, and Hp, increase, and also that as
the anisotropy energy hK increases, the peak-heights Hf, and Hy, increase. In Fig. 19, the approximate formula (3.33)

or (5.5) of the line half-width Awg, in the resonance region of the power absorption P}go) (w), scaled by Jy, is displayed
varying the daming constant g of the phonon reservoir, scaled by Ji, from 0.5 to 5.5 for the cases of anisotropy
energies hK given by A=K/J; =1.5,2.0,3.0,5.0, and for the temperature T given by kgT/(h.J;) =1.0 and the spin-
magnitude S=5/2, with ¢ [=J3/J1]=1.0 and w,/J1 =1.0. In Fig. 20, the approximate formula (3.45) or (5.6) of
the line half-width Aw}l, in the resonance region of the magnetization-amplitudes Aﬁ(o)(w), scaled by Ji, is displayed
varying the daming constant -y of the phonon reservoir, scaled by Jy, from 0.5 to 5.5 for the cases of anisotropy
energies hK given by A=K/J; =1.5,2.0,3.0,5.0, and for the temperature T given by kgT/(h.J;) =1.0 and the spin-
magnitude S=5/2, with ¢ [=J2/J1]=1.0 and w,/J1 =1.0. The anisotropy energy is denoted as “A” [=K/Ji] in
Figs. 19 and 20. Figures 19 and 20 show in the resonance region of the power absorption and magnetization-amplitude
that as the damping constant 4 of the phonon reservoir becomes large, the line half-widths Awf, and Awy, decrease,
and that as the anisotropy energy hK increases, the line half-widths Awf, and Awjl, decrease slightly. Figures 17 — 20
show in the resonance region of the power absorption and magnetization-amplitude that as the damping constant g
of the phonon reservoir becomes large, the peak-heights Hf, and H}Y, increase and the line half-widths Awg, and Awy,
decrease. Since the damping constant g; of the phonon reservoir is equal to the inverse of its correlation time 7., the
phonon reservoir is damped quickly as the damping constant become large. Thus, as the phonon reservoir is damped
quickly, the line shapes of the power absorption and magnetization-amplitude show “the narrowing”, in the resonance
region.
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Figure 17: The approximate formula (3.27) for the peak-height Hf, in the resonance region of the power absorption

P,EO) (w), scaled by h?*y3 |Hy|?, is displayed varying the daming constant g of the phonon reservoir, scaled by .J;, from
0.5 to 5.5 for the cases of anisotropy energies AiK given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T'
given by kgT'/(hJ1) =1.0 and the spin-magnitude S =5/2, with J»/J; =1.0 and w,/J; =1.0.

Figure 18: The approximate formula (3.41) for the peak-height HY, in the resonance region of the magnetization-

amplitudes Az(o) (w), scaled by hvy|Hg|/J1, is displayed varying the daming constant ~gx of the phonon reservoir,
scaled by Ji, from 0.5 to 5.5 for the cases of anisotropy energies hK given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for
the temperature T' given by ksT'/(hJ;)=1.0 and the spin-magnitude S =5/2, with J;/J; =1.0 and w,/J; =1.0.

We have discussed the linear response of an anti-ferromagnetic spin system interacting with a phonon reservoir to
an external driving magnetic-field, which is a transversely rotating classical field, by employing the TCLE method in
the second-order approximation for the system-reservoir interaction, including the effects of the memory and initial
correlation for the spin system and phonon reservoir, i.e., the interference effects (the effects of interference between
the external driving field and the phonon reservoir), which are represented by the interference terms or the interference
thermal state in the TCLE method, give the effects of the deviation from the van Hove limit [39] or the narrowing limit
[40]. The interference effects are the effects of collision of the spin system excited by the external driving field with
the phonon reservoir, and influence the motoin of the spin system according to the motion of the phonon reservoir,
and therefore those effects increases the power absorption and magnetization-amplitude in the resonance region for a
non-quickly damped phonon-reservoir as seen in Figs. 11 and 12, because the external driving field excites not only

the spin system but also the phonon reservoir in that region. The interference effects become large as the temperature
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Figure 19: The approximate formula (3.33) for the line half-width Awf,, in the resonance region of the power absorption

P,EO) (w), scaled by Jp, is displayed varying the daming constant 7y of the phonon reservoir, scaled by Jq, from 0.5 to
5.5 for the cases of anisotropy energies hK given by A=K/J; =1.5,2.0,3.0,5.0, and for the temperature T' given by
kgT/(hJ1)=1.0 and the spin-magnitude S =5/2, with Jo/J; =1.0 and w,/J; =1.0.

Figure 20: The approximate formula (3.45) for the line half-width Awy, in the resonance region of the magnetization-

amplitudes AZ(O) (w), scaled by Jy, is displayed varying the daming constant ~gs of the phonon reservoir, scaled by Ji,
from 0.5 to 5.5 for the cases of anisotropy energies hK given by A= K/J; =1.5,2.0,3.0,5.0, and for the temperature
T given by kgT'/(hJ1) =1.0 and the spin-magnitude S =5/2, with J3/J; =1.0 and w,/J; =1.0.

becomes high as seen in Figs. 13 and 14, and also become large as the phonon reservoir is damped slowly or as the wave
number k£ becomes small as seen in Figs. 15 and 16, and thus those effects produce effects that cannot be neglected for
the high temperature, for the non-quickly damped reservoir or for the small wave number k. If the phonon reservoir
is damped quickly, that is to say, the relaxation time 7. of the spin system is much greater than the correlation time
7. of the phonon reservoir, i.e., 7. > 7., as being discussed in Ref. [25], one obtains the transverse susceptibility

Xg+ g (w) given by (3.46) without the interference thermal state |D;2_) [w]) in the transverse susceptibility Xstsp (w)
k" k k d
[(3.6)] derived employing the TCLE method [25]. The susceptibility Xgr g- (w) is derived employing the relaxation
k Yk

method [25] in the van Hove limit [39] or in the narrowing limit [40], and is valid only in the limit in which the
phonon reservoir is damped quickly [25]. Since the transverse relaxation times of the anti-ferromagnetic spin system
are equal to (I'})~! according to (A.57a) and (A.57b), where I'}, is given by (A.59a) or (4.8a), and the transverse
correlation time of the phonon reservoir is equal to (yax) " according to (4.1a) or (4.1b), we have (I, )~ > (var) ™,
ie., I, <7rk, or (the transverse correlation time (yg;) ™' =77 of the phonon reservoir) — 0 in the van Hove limit

[39] or in the narrowing limit [40]. In this limit, since the corresponding interference terms X ,‘:1(’5 )(w) and X ;:2(6 )(w)
vanish according to (C.3) — (C.6) as seen in Figs. 15 and 16, the transverse susceptibility becomes X‘g: s- (w) given
by (3.46), and therefore one cannot discuss theoretically variations of the peak-heights and line half-widths in the
resonance region of the power-absorption and magnetization-amplitude, because the peak-heights approach to oo and
the line half-widths approach to 0 in that limit as seen in Figs. 17 —20. The transverse magnetic susceptibility
Xs; s (w) derived employing the second-order TCLE method is valid even if the phonon reservoir is damped slowly,
in the region valid for the second-order perturbation approximation. Thus, the TCLE method is available for a spin
system interacting with a non-quickly damped phonon-reservoir as well, and one can discuss theoretically variations
of the peak-heights and line half-widths in the resonance region of the power-absorption and magnetization-amplitude
derived employing the TCLE method, whereas one cannot discuss theoretically variations of the peak-heights and line
half-widths employing the relaxation method [25] in the van Hove limit [39] or in the narrowing limit [40], in which
the phonon reservoir is damped quickly [25].

We have analytically examined the power absorption and magnetization-amplitude in the resonance region of an
anti-ferromagnetic spin system interacting with a phonon reservoir using the spin-wave method [4, 7], and have derived
the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths in the lowest
spin-wave approximation. We have numerically investigated an anti-ferromagnetic system of one-dimensional ininite
spins in the region valid for the lowest spin-wave approximation, and have shown that the approximate formulas of
the resonance frequencies, peak-heights and line half-widths in the resonance region, coincide well with the results
investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude, and
satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-heights increase and the line
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half-widths decrease, and thus we have numerically verified the approximate formulas. The approximate formulas
obtained for the resonance frequencies, peak-heights and line half-widths in the resonance region, may have to be
verified for the various cases both experimentally and by the other theoretical method, e.g. the simulation method.
We have also shown numerically that the energy transfer between the spin system and phonon reservoir at the “down”
spin sites has few influence on the power absorptions and magnetization-amplitudes. We have besides investigated
numerically the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e., the
interference effects (the effects of interference between the external driving field and the phonon reservoir), and have
shown that those effects produce effects that cannot be neglected for the high temperature, for the non-quickly
damped reservoir or for the small wave-number. Although the numerical investigation have been performed for an
anti-ferromagnetic system of one-dimensional infinite spins, the analytic results obtained in the present paper are
available for two- and three-dimensional spin systems as well.

Appendix

A NETFD for anti-ferromagnetic spin system

In this Appendix, we consider the anti-ferromagnetic spin system interacting with the phonon reservoir, which has
been modeled in Section 2, and reformulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon
interaction (2.21) taken to reflect the energy transfer between the spin system and phonon reservoir.

A.1 Basic formulation

We first provide the time-convolutionless (TCL) equation of motion for the anti-ferromagnetic spin system and phonon
reservoir. We take the Hamiltonian H of the anti-ferromagnetic system and phonon reservoir under an external static
magnetic-field, as

H ="Hs + Hg + Hsg = Ho + Hsr, (Ho = Hs + Ha), (A1)
and provide the basic requirements (axioms)

H |pre) =0, Hs |ps) =0, Ha |ps) =0, (A.2)
as in Ref. [28], where prg and ps are the normalized, time-independent density operators given by

pre = exp(—BH) /(1| exp(—=BH)) = exp(—SH)/ Trexp(—BH), (A.3)
ps = exp(—BHs)/(1s| exp(—BHs)) = exp(—FHs)/ trexp(—FHs), (A4)
which are the thermal equilibrium density operators at temperature 7' = (kgB3)~t, where Tr = tr trg. Here, ’}:[, Hs and

Hp, are the renormalized hat-Hamiltonians defined by, for example, H = (H — H1) /A [25]. The spin deviation operators
ag, Bk, the phonon operators Ry, Rgu and their tilde conjugates satisfy the commutation relations

[an, of] = [, &) = [Be, BY] = [Br. BL] = Sk, (A.5)

[ ZV’ sz‘u’] = [~ZV’ RZTV} = [Rzl/’ RZTV/} = [R2V7 RZ]’LV’] = Ok 5””/’ (A6)
while the other commutators vanish. As done in Refs. [21, 22, 28], we provide the basic requirements

(Islox = (1slaf, (15l = (1|5} , (A7)

(1a|Rf, = (1a| R}, (1a| R, = (1a| R}, (A.8)

and their tilde conjugates.
In the thermal-Liouville space of the spin system and phonon reservoir, the time-evolution of the thermal state
lpr(t)) [= pr(t)|1)] for the density operator pr(t) of the total system is given by the Schrédinger equation [26, 27, 28]

(d/dt) |pr(t)) = — i H|pr (1)) (A.9)

The spin system and phonon reservoir are assumed to be in the thermal state |pr(0)) at the initial time ¢ =0 as an
initial condition. In order to eliminate the irrelevant part associated with the phonon reservoir, we introduce the
time-independent projection operators P and Q defined by [27]

Proceeding in the same way as in Ref. [47], the time-convolutionless (T'CL) equation of motion for the reduced thermal
state |p(t)) [= (1z|pr(t))] can be obtained as [29, 30]

(d/dt) |p(t)) = —iHs|p()) + C(1) |p(t)) + 1(2)), (A.11)
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where the collision operator C(t) and the thermal state |I(¢)) are given by
O(t) = —i {1a| Hsa {O(1) — 1} |pw), (A.12)
| 1(1)) = — i (La] Hen O(t) exp(—i QH Q1) Q|p2(0)), (A.13)

with ©(t) defined by
t _
@(t):{1+i/ dTexp(—iQﬂQT)Qﬂpexp(iﬂT)} B (A.14)
0

Here, we have adopted the first order renormalization given by (2.19) — (2.21) for the free spin-wave Hamiltonian, the
free spin-wave energies and the spin-phonon interaction. The thermal state |I(t)) depends on the initial condition
of the spin system and phonon reservoir, and represents the effects of the initial correlation for the spin system and
phonon reservoir.

We now consider the case that the spin system is interacting so weakly with the phonon reservoir that we can
use the second-order approximation, and expand Eq. (A.11) up to the second order in powers of the spin-phonon
interaction. When we assume the initial condition that the spin system and phonon reservoir are in the thermal
equilibrium state at the initial time ¢t =0, i.e., |pr(0)) =|p1e), Eq. (A.11) reduces to

(d/dt) |p(t)) = — i Hs |p(t)) + CP(t) |p(t)) + 1P (2)), (A.15)

where C®)(t) and |I(?)(t)) are given by [29, 30]
¢
CA(t) = - / dr (1p| Hsr exp(— i Ho 7) Hsr exp(i Ho T) | pr ), (A.16)
0

. . s .
T3 (t)) = i (1| Hsp exp(—i Hot) / dpB’ ps prexp(B3'hHo) |Hsr),
0

= — lirgo d’T<1R‘ Hsr exp(—z’ﬂo T) Hsr Ps Pr ‘1>e*’”. (A.17)
= ¢

If the relaxation time 7, of the spin system is much greater than the correlation time 7, of the phonon reservoir, i.e.,
7, >> 7., the thermal state |[I(?)(¢)) becomes small negligibly [25, 29, 30, 48]. Thus, in the case that the relaxation
time 7, of the spin system is much larger than the correlation time 7. of the phonon reservoir, i.e., 7> 7., which
corresponds to the van Hove limit [39] or the narrowing limit [40], the phonon reservoir is damped quickly, and we
have O (t) = C® (c0) and |I?)(t)) =0. In this Appendix, we consider such a case. Then, the reduced thermal state
lp(t)) [= (1r]pr(t))] satisfies the following equation and initial condition

(d/dt) |p(t)) = — i Hs [p(t) + C |p(1)) ; p(0)) = (1rlpr(0)) = (1alprE), (A.18)

for 7, >> 7., where the collision operator C'?) is defined by

c®@ = @) (c0) = — / dr <1R‘ Hp exp(—1i Ho T) Hsn exp(i Ho T) ‘pR>. (A.19)
0

Equation (A.18) is can be formally solved as

10(1)) = exp{—i Hst + CP t}|po) = U(t) exp._ {— i /O dr 7:(51(7')}|p0>, (1> 72), (A.20)

with po = p(0) =trg prg, i-€., |po) = |p(0)) = (1z|pre). Here, we have divided the Hamiltonian Hs of the spin system into
the unperturbed part Hgo and the perturbed part Hg1, i.e., Hs = Hso + Hs1, and have defined

U(t) = exp{— (i Hso — CP)t} = exp{—i (Hso +i CP) ¢}, (A.21)
He1(t) = U~ (t) Ha1 U (1), [Hs1 = (Hs1 — HL,)/R). (A.22)

Then, the expectation value of a physical quantity A of the spin system can be described as

(1 Alpr(0)) = (15| Alp(1)) = (15| AU () exp_{ — i / dr Fisa(7) } o). (A.23)

This expression is convenient for the expansion in powers of the spin-wave interaction Hgj.
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A.2 Collision operator and thermal-state conditions

By substituting (2.21) into (A.19) and by using the basic requirements (A.8) and their tilde conjugates, we can derive
the concrete expression of the collision operator C?) given by (A.19), as

c® - =5 > {(ed () + ¢ T (=6 ) {(an — &) af cosh 26, — (B] — Bi) o sinh 26, }

k

— (65 ()" + 6 (—60) ) { (o — @) G cosh 26y, — (8] — Br) G sinh 20, }
+ () + ¢ () {(al — ar) ay cosh 20, — (Br — B1) c sinh 26}

— (7 (D) + o5 T (=) ) { (o) — Gx) & cosh 26, — (B — B]) &f, sinh 20, }
+(of (=€) + ¢ (e NA(BL = Br) Br cosh 20, — (e, — &) B sinh 20, }

— (85 (=) + & (e ) (BL — Br) B cosh 26;, — (o, — &) B sinh 26 }
+ (¢ T (—e) + & (e (B — BL) Bf cosh 264 — (af, — ) Bf sinh 26}

— (¢:7(—6;)* + ¢;+(e;)*){( e — 6k) (31 cosh 20, — (ak — ay,) P sinh 29k}}

> el () — o (=) (o — af)af — (0p T (6)) — ¢ (D)) (o — &)
+(0n T (6h) — ¢ (—eD)) (o — an)aw — (8 ()" — o T (—60) ) (o, — aw)af,
— (¢f (=€) — 5 () (BL = Bi)Bre + (05 T (=)™ — i~ (e1)") (B — Br) Bl
— (¢ (=€) — & () (B — BLBL + (6 (—ex)* — b T er)) (B — BD) B}
Z {{(a)ay, — aLax + BB — B} Br) cosh 20 — (cBx + o} Bl — &} Bl — & k) sinh 205}
k
X {(aLak - &Lo?k + 5,:51@ - B;LB;C) cosh 26, 977 (0)
— (B — &}, 50) 637 (e + &) + (@l B — @) 657 (e + ;)" sinh 20, }
+{afon — afar — (B8 — BLBe) Hajan — alar — (BL 8k — BLBk)} 672(0)}, (A.24)

where ¢~ (€), ¢;, T (€) and ¢7*(e) are given by

6@ =5 Sl [ dr (al Bl (1) R o) expl— i) (A.252)
= % Z | glu|2 /Oo dr <1R| RkV(T) RITW |pR> exp(z’ 67—)7 (A25b)
Z 921//0 dr(1a| A(R}, (7) Riw (T ))A(RLVRIQV)‘[)R> exp(ieT). (A.25¢)

In the derivation of the above form for the collision operator C'® | we have ignored the correlation between the first
term and second term in the spin-phonon interaction (2.21), and have neglected the spin-wave interaction Hg; in the
Hamiltonian Hg of the spin system. The basic requirements (A.7) and their tilde conjugates lead to

(15]Cc® =0, (15| U(t) = (1s| U1 () = (1g], (A.26)

for U(t) defined by (A.21). The evolution operator U(t) is non-unitary in general, i.e., UT(¢) # U~(t), because the
collision operator C'® is non-Hermitian though Hso [= (Hso — 7:{;[0) /h] is Hermitian. Therefore, for ¢ # 0, we have
(U)oU) # U (#)afU(t) and (U~ (t)axU (1)) # U~ (t)aLU(t) and so for 3, 3. Considering this, as done in
Refs. [21, 22, 27, 28], we define the Heisenberg operators as

ap(t) = U t) oar U(2), all(ty =U"tt)al U®), (A.27a)

Bi(t) = UM (t) Br U (1), o =v'wslue, (A.27b)
and their tilde conjugates, which satisfy the canonical commutation relations

La(t), afl(®)] = [ax(t), aff (1)] = [Bk(t), B ®)] = [Br(t), B (#)] =, (A.28)

while the other commutators vanish. According to the axioms (A.7), (A.26) and their tilde conjugates, we have

(Ls|ow (t) = (1@ (1), (1|84 (t) = (1|3} (1), (A.29)
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and their tilde conjugates, which are the thermal-state conditions at time ¢ for the bra-vector (1| of the spin system.
By proceeding as in Refs. [24, 28], the thermal-state conditions at time t for the ket-vector |po) [= polls) = (1r|p1E)]
of the spin system, can be obtained as

(1) [po) = hi () &l (t) [ po), Bi(t) [po) = 1 (8) B (2) o). (A.30)
and their tilde conjugates, where the c-number functions A% (t) and hi(t) are given by
B (t) = ng (O{1 +ng (0} B (1) = ({1 + (0} (A.31)

with the quantities nf(t) and nf (t) defined by

ng (t) = (1slof ()ar(t)]po), n () = (15181 (£) B (1) | o). (A.32)

Here, the bra-vector (1g| and ket-vector |pg) are normalized, i.e., (1s|po) =tr po =1, and py is given by pg = trg prz.
We now introduce the annihilation and creation quasi-particle operators defined by [21, 22]

Mi(t) = Z2 ()Y {aw(t) — b (8) &L (1)}, NL(t) = ZR () {aff (1) — ax(t)}, (A.33a)

&r(t) = ZJ ()2 {Bk(t) — B (1) B ()}, gty = 202 {Bl1(t) - Br(t)}, (A.33D)
and their tilde conjugates, where the normalization factor Zg (t) and Z,f (t) are given by

Zp() = {1-hg(H)} " =1+np), h(t) =1-Zg(t) (A.34a)

Z7) ={1—=hl®)}t =1+n(1), Rty =1-2Z2 ()~ (A.34b)
These lead to the canonical commutation relations of the quasi-particle operators :

[Ae(t), AL ()] = [Ae(®), AL ()] = [& (1), & (1)) = [&(t), ()] = dkw, (A.35)
while the other commutators vanish. The thermal state conditions (A.29) and (A.30) and their tilde conjugates give

(1s]\L (1) =0, (1s|&f(t) = 0; k() |po) = 0, &k (t)|po) =0, (A.36)

and their tilde conjugates. According to Egs. (A.36) and their tilde conjugates, (1s| and |po) are, respectively, called
the thermal vacuum bra-vector and the thermal vacuum ket-vector for the spin system [27, 28]. Performing the
inverse transformation of (A.33a), (A.33b), and their tilde conjugates, we have

ar(t) = ZE)Y2 {(t) + hg () AL ()}, aff(t) = ZE() 2 (L) + A1)}, (A.37a)
Br(t) = Z ()2 {&r(t) + b () EL(1)}, 1T(t) = Z) ()2 {&] (1) + & (1)}, (A.37b)

and their tilde conjugates. The free spin-wave hat-Hamiltonian Hso takes the diagonal forms

Hgo = Z {ef (042 ay — @L Qi) + €, (ﬁl Br — 5;: Bk)} = Z {ef (/\i Ak — ;\i ) + € (fi §k — é;i ék)}, (A.38)
k

k

with Ag = A, (0), A =A% (0), & =& (0) and & =&/(0).

A.3 Forms of the quasi-particle operators

We next derive the forms of the quasi-particle operators. The equations of motion for nf(¢) and nﬁ (t) defined by
(A.32) can be obtained, by using the thermal-state conditions (A.29) and (A.30), as

jt () = (151 (5 aff (5 an(r) 1) = (161 U1(6) [iHs0 — O, af o ] U (1) o), (A.399)
— (S/2) {8 M) = 6 (€))" + (8T () = 68 ()}
+ {(d)k (—€ k) - ¢k+( 6:)*) (¢’k (_5;) - ¢1§+(_5z)*)}} cosh 26, ny ()
+(5/2) {(¢x () + 5 (6)) + 528, T (=) + b (—ef))} cosh 20
— (S/2) {485 () — & (1)) + (6 T () — & (6))}
B (=) = o T (=) + (T (=) — o T (=) ni ()
+(8/2) {(¢ () + ¢ (60)) — (8, (=) + o T (=)™}
+ (L/2{77 (6 + e ) + 67 (6 + e )7} sinh® 20 (nf () + 3 (1) + 1), (A-39b)
= —{S(®f () + Py (&F)) cosh 20, + S (B () — By (¢)) — W), sinh? 20, } ng (t)
+{S (@F () + By (6])) cosh 260, + S (@ () — D (6))} (e
+ W), sinh? 26, nk( ) + W) sinh? 26y, (A.39¢)
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%ni(t) = <1s|(% (1) Br(t) |po) = (15| U™ () [iHso — C), B3] U (E) |po), (A.40a)
= —(8/2) {{(o) (=€) = b (=) ) + (¢ (—ep) — & T(—e))}
+{(0r T (er) = o (6)7) + (6 T (6) — 81 (€))7} cosh 20, ) (1)
+(5/2) {(d, " (=€) + ¢ T (—€)") + (6 (e ) + &4~ (e)*)} cosh 26,
+(5/2) {6~ (=e) = 6 T (=6)") + (&~ (—ex) — ¢ T (—)")*}
—{(85 (&) = (B (e)") + (8, (&) — S (e0)) I m ()
—(8/2){(¢5 T (—e) + & T (—e)) — (& (&) + o (1))}
+ (124677 (6f + €) + 077 (6 + € )"} sinh® 265 (nf: () + nj () + 1), (A.40b)
= —{S (D} (e) + B} (€1,)) cosh 20, — S (@5, (e,) — ) (e1,)) — W), sinh? 26, } nf (¢)
+{S (P (e) + P (e)') cosh 20, — S (B () — @ (e))} 7aley,)
+ W), sinh? 260, n$ (t) + W}, sinh? 20y, (A.40c)
with 7i(e) defined by
n(e) = {exp(Bhe) — 1} = {exp(he/(ksT)) — 1} 1, (A41)

where @f (¢)" and W), are the real parts of @f (e) [= @f (e) +1i @f(e)”] and Uy [=W) +¢ ¥} ], which are defined by

() =¢p () =gy (o) = % /O N dr > |g1u|* (1a| R (7), RE, | pn) expli€T), (A.42)
() =¢f (—e) = (- = %/OOO dr> " 11> (1l [R], (7), Riw]|pn) exp(ieT), (A.43)
Uy = o7 (ef +6) = /O h dr > g3, (1a|A(RL, () Rk (7)) A(RL, Re ) pw) expfi (6] + ;) 7} (A.44)

In the derivations of Eqs. (A.39¢) and (A.40c), we have used the relations [21]
Op (€) + ¢ ()" =27(e) D (€)', Op T(=6) + o T (=) =27(e) @y (), (A.45)
which were derived in Appendix A of Ref. [21]. According to the assumption that the phonon correlation function

(2.24c) is real, we have W} = (¢7* () + €, ) + ¢ () +€,)*)/2= (07 (&) + €, ) +¢7*(— € — €, ))/2. The solutions of
Egs. (A.39¢) and (A.40c) can be written as

i) = [ dr {{S(BF () + O () cosh 200 + SO () = 97 () )b ale))

+ W, sinh® 205, m) (7) + ¥}, sinh? 260, } exp{— Tk, -(t — 7)} + nf(0) exp(— T} 1), (A.46a)
t
n) = [ dr {S@F () + 0 () cosh 206 = SO () = B (6))} )
+ W), sinh® 20, nf (1) + W}, sinh® 260, } exp{—T}_-(t — 7)} + n’g(O) exp(—T}_1), (A.46b)

with ng(0) = <1s|a};ak|p0> and nf(O) = <1s|ﬁ};ﬁk|po), where we have put for brevity as
Thy =S (PF () + F (¢f)) cosh 20y, £ S (DF (eiF) — DF (¢f)') — V), sinh® 26 (A.47)
By substituting each of the above forms for n{(¢) and nf (t) into the other, we obtain the approximate solutions as
exp(—T;_t) —exp(—T7, 1)
Fi+ -
T+ {{S @ () + 5 () coshi 20, + 8 (0F (7)) — D7 ()} )
+ ) sinh® 20 }{1 — exp(— Tk, t)}/ T, + O(g*), (A.48a)
exp(— Ty t) —exp(—T;_1)
T
+ {{S (P} (e ) + P (€,)) cosh 20, — S (P, (e ) — ®F (e ))} Auley,)
+ W} sinh? 20, }{1 — exp(—T;_t)}/T;_ + O(g"), (A.48b)
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where O(g*) denotes the fourth-order parts in powers of the spin-phonon interaction. Owing to stability of the anti-
ferromagnetic spin system, we assume that I‘ n4+ are positive for positive ef, ie. I‘z + >0 for ek > (0. Then, as time ¢

becomes infinite (t — 00), nf(t) and nk( ) approach the finite values

n(00) = Ay TE(T%, + W) sinh®20;) + (7, + 1)(1?%744— W), sinh? 260 ) ¥} sinh? 29k7 (A.49)
I T — (P},)2sinh” 20y,

ny, TL (% + W) sinh® 260;) + () + 1)(T'%, + P/ sinh® 26),) ¥}, sinh® 20,
It TE  — (W))2sinh* 20,

n’g(oo) = ) (A.49b)

which are derived from Eqgs. (A.39c) and (A.40c) in the infinite limit (¢ — 00), where we have put T_Lf = ﬁ(ef)

The equations of motion for the quasi-particle operators A, (t) and &x(t) can be derived, by performing the trans-
formations (A.33), (A.37) and their tilde conjugates, by using the thermal-state conditions (A.29) and their tilde
conjugates, and by considering the assumption that the phonon correlation function (2.24c) is real, as follows,

(d/dt) Zg(£)/? (15| Ax () = (d/dt) (15| ax (t) = (1s| U (1) [i Hso — C, i ] U (),

= (Is{ —ief an(t) — an(){S(d; T (&) — & (60)") = S (o~ (=€) — & T (=€) )}/2
—a(O{S (0 T(6) = of T (60)") + S (95~ (=€) — & T (=€ )")} cosh 26, /2
=B OLS (6 (=) = & T (=e)")" + S (6 T () — 8 (e)")" } sinh 26,2
— ¢7%(0) o (t) cosh? 260, /2 — ¢7%(0) o (£) /2 + O (e + €5 ) an(t) sinh? 20y, /2

72 (0) H( t) sinh 20y, cosh 20y, /2 + ¢i7 (e + €,.)* };T(t) sinh 26, cosh 26, /2}, (A.50a)
={—ief —{S(®](¢]) + SP; (€])) cosh 26, + S (<I>+(cg) — @, (61))}/2 — U cosh® 20, /2
— U0 /2 + Wy, sinh® 20, /2} Z2(8)Y/2 (1| M (t) — {S(@4; (e)* + S (e;,)*) sinh 265, /2
+ (U9 — W) sinh 20 cosh 260, /2} Z; (t)*/? <1S| &(t), (A.50D)

(d/dt) Z) (#)'/? (1] & (t) = (d/dt) (15| Br(t) = (1s| U (t) [iHso — CP), B ] U (8),
= (Is{{ i€y, Brlt) + LIS (=) — o1 T (—e))") = S (6, () — &~ (e))}/2
= B8 (6~ (=€) = & " (=€)") + S (& T (e) — &~ (e,)")} cosh 20 /2
—all ({8 (657 (6) = &~ (60)")" + S (¢ (=€) — & T (=€/)")"} sinh 26, /2
— 077 (0) Br(t) cosh® 20, /2 — 77 (0) Br.(t)/2 + ¢77 (e + € ) Bi(t) sinh? 20 /2
22(0) H( t) sinh 20y, cosh 20, /2 + ¢77 (e} +€;,)* 04}:[(15) sinh 26, cosh 26y, /2}, (A.51a)
={—ieg —{S(®} (e5) + P} (¢)) cosh 20, — S(®; (e, ) — D} (e))}/2 — LY, cosh? 26,,/2
— U0 /2 + Wy sinh? 260, /2} Z) (8)'/% (15| €1.(t) — {S (B} () + @ (¢ )*) sinh 26, /2
+ (W) — W}) sinh 20, cosh 205 /2} Zg (£)*/2 (15| M (t), (A.51b)

where @} (€), @, (¢) and ¥}, are given by (A.42) — (A.44). The above equations can be rewritten as

(d/d)Z{ () (Ls M (8) = {=i 6 — Tus }ZR(6) (sl Ak () — Af_Z)(6)'/? (15w (1), (A.52a)
(d/dt) Z(t) /2 (1] & () = {i 6 —Ti 32 (0)"*(1s] € (1) — Ay ZR(8)"/* (1| Ni (1) (A.52b)

where we have put for brevity as

Dre = {S (D5 () + @ () cosh 205 £ 5 (05 () — @ (¢7))}/2
— Wy sinh? 260, /2 + U9 (cosh? 26, + 1) /2, (A.53a)
Ay = S (B () + F (¢f)) sinh 205,/2 + (U] — Uy) sinh 260, cosh 205, /2, (A.53b)

with @ (), ®; (¢) and Uy, defined by (A.42), (A.43) and (A.44), respectively. Here, we have put

¥ =070 = [ T dr S 62, (| ACRL, (1) Ria (1) A(RL i) |ow). (A.54)
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which is real according to the assumption that the phonon correlation function (2.24c) is real. The solutions of Eqs.
(A.52a) and (A.52b) can be written as

Z ("2 (1| Me(t) = Z (1) (s|Au(r) exp{(= i ef = Tws)(t = 1)}

/ L, exp{(—ief — D)t —t1)} Ap_ Z} (1) (1] & (tr), (A.55a)
ZPOY? (1] E(t) = ZP (7)Y (15| Eu(7) exp{(i e, — Th_)(t — 1)}
—/ dtyexp{(ieg — T )(t —t1)} Ay Z2(t1)Y? (1s| Ak (t1), (A.55b)

from which we can obtain the approximate solutions as in Ref. [21]. Thus, we can obtain the forms of the quasi-particle
operators, which are valid up to second order in powers of the spin-phonon interaction, as

(1s| e (t) = Zg(8) "2 Zg (1) exp{(— i ff — Ty )(t = 7) }{1s[ e (7)

L ae ZUDVE epl(Cig~ Tt = 7)) —esplie T )= 7))
AIORE i(ef +e) +Thy —Th
(1 & (t) = Z}) ()72 2]} ()2 exp{(i e, — T5_)(t — 7)}(1s| € (7)
Ze(r)V/? exp{(—iek Lpp)(t—7)} —exp{(ie, —T;_)(t—7)}
Zy (1)1 i(ef +e) +Thy —Th

(1] & (7), (A.56a)

+ Apy

(1) \n (7). (A.56b)

Rewriting the quasi-particle forms (A.56a) and (A.56b) for 7=0 by putting A\ = At (0) and & =&, (0), we have

(Ls| e (t) = Zg(8) /% 2 (0)'/2 exp{(—i €ff — Thy) t H{1s| M
Z,f( Y1/2 exp{(—zek Lpy)t} —exp{(ie, —T;_)t}

+ Ak Za( )1/2 (6k +e; ) +Fk+ — in <1S|£ka (A57a)
(1] & (1) = Z{ ()7 2] (0)'/ expf(i e — Do)t }{1s] &
Zg(0)1/2 exp{(—ief —Txy)t} —exp{(ie, — sz)t}ﬂsl/\k . (A57h)

WO i(ef +e)+Thy —Th
These formulas are useful for the perturbation calculations of correlation functions, susceptibilities, et al.
From the above quasi-particle forms (A.57a) and (A.57b), we can obtain the quasi-particle correlation forms as
(elMe(t) A o) = Z:(6) 772 Z(0) 2 exp{—i (e} + T4, )t — T, 1}, (A.58)
(1s| k() &t loo) = Z/ ()12 Z(0) exp{—i (e, + T} )t~ T} t}, (A.58b)
Lo+ " ’ s — " ’
- exp{—i(e, + T/ )t—T5_ t}—expli(e, +TY )t —T}_t
i(eg +e, +10, +T7_ )+, —T)_
x ZP(t)7V? Z2(0)1/? ( o AL, (A.58¢)
exp{—i(e, + T} _)t—T)_t}—expli(ef + T, )t T}, t}
i(gf +ep +0) +D7_ )+ —T,
x ZE() V2 ZP0)Y2 (A +iAY), (A.58d)

(1s| Mk (t) €41 po) =

with )\i = )\,iC (0) and {;i :fi( ), where I, ,, A}, and I, A}, are the real parts and the imaginary parts of I'y+ and
A+, which are defined by (A.53a) and (A.53b), respectively, and are given by

e = S @i () (cosh 20y, + 1) /2 + S ®F (&) (cosh 20y, F 1) /2

— (W},/2) sinh? 260, 4+ (9 /2)(cosh® 20 + 1), (A.59a)
1 =S & (f)" (cosh 20y £ 1)/2 + S ®F ()" (cosh 20y, F 1)/2 — (¥} /2) sinh? 20y, (A.59D)
e = S (BE(eF) + OF(6F)) sinh 20, /2 + (W) — W),) sinh 26}, cosh 26}, /2, (A.59c¢)
= S(OF(eF) + 7 (ef)) sinh 203, /2 — W}, sinh 26y, cosh 265 /2. (A.59d)

Considering that ®7 (i)’ is positive for posmve €, ie., ®F(e) > 0 for ¢ > 0, as shown in Appendix A of Ref.
[21], and that ¥9 is non-negative, i.e., U9 >0, as shown in Ref [29, 30], we notice from (A.44) and (A.54) that I'
are positive for positive eki, i.e.,

Ty > S®E(ef) (cosh 20y, £1)/2 4+ SOF () (cosh 20, F1)/2+ ¥ >0,  for  &f >0. (A.60)
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The quasi-particle correlation forms (A.58a) and (A.58b) for the semi-free field show that the A quasi-particle with
the wave-number k has the energy TL(GZ" +T',) and decays exponentially with the life-time ('}, +)’1, that the & quasi-

particle with the wave-number k has the energy fi(e; + I'}_) and decays exponentially with the life-time (I',_)~'.
The quasi-particle correlation forms (A.58c) and (A.58d) for the semi-free field show that the A quasi-particle and
the £ quasi-particle change to the £ quasi-particle and the A quasi-particle, respectively, through the spin-phonon
interaction.

B Form of the interference thermal state |DL(92,) [w])
k

In this Appendix, a form of the interference thermal state |Dé2,) [w]) given by (3.8) is derived. The interference thermal
k
state |D(82,§) [w]) given by (3.8) can be expressed by substituting the spin-phonon interaction (2.21) into (3.8) and by

using the free spin-wave Hamiltonian (2.19), the axioms (A.2), (A.8) and their tilde conjugates, and the assumptions
(2.23a), (2.23b) and (2.24a) — (2.24c), as

@ _msf/ /
D = d v h@, — sinh 6
| Sk[ 82|g1| cosh 6, — sinh 6y,)

x {((1n| Reo (7 >RLV|pR> — (1al RE, Ry (7) | m)) expliw s)
x {{(cosh 26 + 1) (ak — ay) — sinh 26y, (B — ﬁk)}|p0> xp(ief 7 — i€ s)
+ {sinh 26}, (ak —ay) — (cosh 20, — 1) (Br — Bk)}|p0> exp(—ie, T+ieg s)}
(IR, (1) Raw ow) — (1l Re B, (7)) expliw s)
x {{(cosh 26, — 1) (ak — ay) — sinh 26y, (B — ﬁk)}|p0> xp(ief 7 — i€ s)
+ {sinh 26}, (ak —ay) — (cosh 260, + 1) (Br, — Bk)}|p0> exp(—iey T+ie, s)}}
+ % h dr /OT ds Zy: g3, (cosh 6 — sinh Hk)<1R|A(R};V (T)Rky (T))A(RL,RIW)MO exp(iw s)
x { sinh 26y, cosh 20, (B — B;L)|p0> exp{i(ef +e;)T—iel s}
+ sinh 26, cosh 20}, (oz;r€ — ay)|po)exp{—i(e} +€,) T +ie, s}
+ (cosh? 26, + 1) (ozk — ag)|po) exp(—i e s) + (cosh? 20, 4 1) (Bx — B};)|po> exp(i€; s)
+ (kB + akﬂk — apfr — akﬂk) sinh 26,
x { sinh 20y, (Br. — B)|po) exp{i (6f +e5) T —ief s}
— sinh 20, (aL — ay)|poyexp{—i (e +e€, )T +ie, s}
— cosh 20y, (a}i — du)|po) exp(—i € s) + cosh 20 (Bx — 6k)\p0) exp(ie; s)}}, (B.1)
with A(R! (£)Riy (1)) = RL, () Rk (t) — (1a| R}, Ry |pr) and A(RL, Ry,) =Rl Ry, — (1a|R}, Ry |pr), where we have
ignored the higher-order parts in the spin-wave approximation, and have used the assumption that the phonon corre-

lation function given by (2.24c) is real. Here, we have used the relations alaﬂpo) = d;dﬂpo) and 5;15k|ﬂ0> = B;L-BHPO%
which are led from the thermal-state conditions (A.30) and their tilde conjugates. The above form of interference

thermal state |D(SQ_) [w]) can be written by using the correlation functions ¢, ~(e), ¢, "(e) and ¢7*(e) defined by
k
(A.25a) — (A.25¢), as

vfg{(mgh 61 — sinh 6,){ (cosh 265, + 1) (af. — ) — sinh 20, (B, — 1)} |oo)
x (¢ T (w) = o (@)) = (b (&) — & ()} (w — )
+ (cosh @), — sinh 6;,) {sinh 26}, (o}, — @) — (cosh 20, — 1) (Bx — B])}po)
<&y (W) = b (@)) = (8 T (— ) =& ()N (w+ )
+ (cosh 0y, — sinh 6 ){(cosh 20;, — 1) (ak — ay,) — sinh 20y, (B — ﬁk)}|p0>
@) (—w) =& T (=w)) = (8 (=) — o (= 60))} (w =€)
+ (cosh 0y, — sinh 6, ){sinh 20, (ozL —ay) — (cosh 20, + 1) (Br, — ﬁk)}|p0>

< {(d (—w) = gy T (—w)*) = (&f (&) — d T(e))H (w+e)}

IDZw]) =
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VS
2v2
x {{(cosh® 20, + 1) (e, — @) lpo) {7 (w — &) — 6°(0)}
+ sinh 205 cosh 20, (B — B)po) {677 (w + €)= 67 (e + e )1/ (0 = &)
+ {sinh 26}, cosh 26y, (ak —ag)|po){i(w —€f) — ¢i7 (—ef — €}
+ (cosh 205 + 1) (8 — BDIpo) (6w + ) — 65 O}/ (@ + ;)
+ (B + al B — @By — &l 6}) sinh 20,
x {{sinh 20% (Br = B lpo) {677 (@ + €) — 9 (e + €;,)}
— cosh 20y (af, — @)lpo){¢7" (w — &) = 677 (0} }/ (w — )
+ {cosh 20, (B — B1)po) {657 (w + ;) — (0)}
— sinh 20y (o], — @) o) {67 (w — ) — 67 (— & — x)}H/ (@ + )} ) (B.2)

C Calculation of corresponding interference terms X ]?1((@) (w)

+

(cosh @) — sinh 6y,)

In this Appendix, the forms of the corresponding interference terms X ;51((’; (w) defined by (3.15a) — (3.16b), are derived.

In order to deal with the fractions in the calculations of Xkl(@)( ) defined by (3.15a) — (3.16b), we use the following

forms for @ (e) defined by (A.42) and (A.43) with the phonon correlation functions given by (4.1a) and (4.1b):

0 2
B =5 [ dr S el (alRunlr), R low) extier) = — 25— (©1)
B =3 [ dr S lonl? (l(RL (), Ruollp explien) = — L2 ©2)

The forms of the corresponding interference terms X kl@)( w) defined by (3.15a) — (3.16b), are derived using (C.1),
(C.2) and (4.5) — (4.7) as follows,

X1 (@) = (sl ar IDF W)/ (2 (@ = €)) = Xy (W)’ +i Xy ()",
i(g2/4) S (cosh 20 + 1) B i(g?/4) S (cosh20; — 1)}
{—i(w—wnp) +7mu{—7 (EZ_ —wri) + k) {9 (Wt wrk) e t{—1 (EZ_ + wak) + YRk}
i (wri ) {7 (wri) + 1}
2{—i(w+e )+ 2mH—i(ef +e)+ 27}
i n(wek ) {M(wrk) + 1}

D= (@ — )+ 2] (€3
— e (W + € — 2wr) + i {(9rr)? — (W — wrk) (6] — wai)}
A{(w = wrr)? + (va)2H (6 — wrk)? + (vax)?}

Yok (w + & + 2war) — i {(9r)? — (W + war) (6 + wrr)}
A{(w + wrr)? + (e) 2 H (€ + wrr)? + (4re)?}
2k (wHef +26,) —i{d(me)? — (w+ep )(ef +e,)}

2{(w+ e )2 +4 ()2 H(eg + )2 + 4 (r)?}

—(w—€) + ik _ - )
i 92 4 yri{(w — ez ) + 4 (vae)?} 7(wek){7(wrk) + 1} (cosh® 26; + 1), (C.3Db)

— g2 sinh? 26,

+ g2 (cosh? 26, + 1)

=g S (cosh 20y, + 1)

+97S (cosh 260, — 1)

7(wgi) {7 (wrk) + 1} sinh? 26,

+93
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Xia(w) = (1s] ax DI W] /(2 (@ + &) = Xy () +i Xy ()",
i(g3/4) S sinh 26, n —1i(g?/4) Ssinh 20y
{—i(w—wre) +meH{—i(—ep —wre) + e} {— 1 (w+wre) + e H{— i (—€ + wre) + et
i i(wrk){M(wrk) + 1} sinh 260}, cosh 26},
2{—i(w—¢) +2mH—i(—ef =€)+ 2}
o in(wrk){N(wrk) + 1} sinh 26 cosh 26y,
2 Ay {—i (W+er) + 29 }
— ek (W — € — 2wrk) T {(7mr)* + (W — wrr) (e +war)}
4{(w — wrk)? + ()2 H (e +wrr)? + (i)}
2 g Mok (W — € + 2wnk) — 1 {(v) + (W + war) (6, — war)}
+(
)

+93

(C4a)

=g S sinh 26y,

sinh 26},

4{(w+wrk)? + (k)2 H (e, — wrr)? + (7re)?}

+g2_2’YRk(W_2€k ek)+z{4(’YRk) (W_Gk (ek +e)}
2

2= P A G (e e P A} o tnloms) & 1) sinb 20 cosh 20,

(W€ ) — 20
e {(w + € )? + 4 (7e)?}

+ g2 7i(wrk ) {7 (wrk) + 1} sinh 26, cosh 26, , (C.4b)

X (@) = (sl B DY)/ 2 (w = ) = X (@) +i X[ (w)",
i g2 S sinh 20y, —ig? Ssinh 26y
4{—z(w wak) + ek H— 7 (6 — wak) + 7ax} 4{—i(w+ka) + ke H— i (6 + wrr) + e}
9 i i(wrk ) {7 (wrk) + 1} sinh 26}, cosh 20,
Pof{—i(wrer)+ 2 t{—i (e +ep) + 2vmn)

i 1w ) {n(wrk) + 1}
dope {— i (w =€) + 27mi}
— 228 — k(W + 6 = 20m) + i {(vmr)® — (W — war) (&f —

4{(w — wrk)? + (mr) 2 H (e — wn)? + (9mr)? }
2 29 ek (W + Ek + 2wpy) — Z{(’YRk) (w+ wak)( + wri)}
A{(w + wrk)? + (yar)2H (e + wrk)? + (9rr)?}
2 29k (Wt ef +2¢,) =i {4 (9mr)® — (Wt e )(ef +¢)}
2{(w+ e )? +4(me)? H(e +ep)? + 4 ()}
— (W =€) +2im
Ayan {(w — 60)? +4 ()%}

+ g2 sinh 20y, cosh 26, , (C.5a)

wri )} sinh 26,

sinh 26,

7i(wgk ) {7 (wrk) + 1} sinh 260}, cosh 26},

+ g2 7i(wgg ) {7 (wrk) + 1} sinh 26}, cosh 26y, (C.5b)

Xy () = (1s| B IDZ W]/ (2 (0 + ) = Xp(w) +i Xgy(w)”,
i S(cosh 20 — 1)
4{—i(w—wrr) + meH{— 7 (— € —war) +me}
— i S(cosh 26, + 1) o in(wek) {7 (wek) + 1}(cosh® 26, + 1)

=g}

+9% ; - — 9o - —
4{—i(w+wrr) + e H{— 7 (=€, + wrr) + Vae} dymp{—1(w+ ;) + 29k}

9 i (wre ) {7 (wrr) + 1} sinh? 26y, .
T S i)+ i (- ) 2w (C.62)
ook (W — €6 — 2wre) +i {(7ar)® + (w — wr) (e +whr)} cos _
SIS T o o+ )P H (e T + () T

2 o Mk (W — € +2wri) — i {(7rr)? + (w4 wrr) (6 — war)} cos
TS T o T o) + ) H (e o) + () 2D

2_2’7Rk(w_2€k_ek)+z{4(’YRk> +(W_€k)(€k +€k)}7w Ailw sinh2
T G P A H (e e 2+ Ay ) Tlom) 4 L sinh20
pgp—wre) =2 71 (wre) {7 (wrie) + 1} (cosh? 260, + 1). (C.6b)

dyi{(w + €)% + 4 (rr)?}
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D Derivation of forms of n{(0) and ng(O)

In this Appendix, we consider the case that the anti-ferromagnetic spin system and phonon reservoir are in the
thermal equilibrium state at the initial time ¢ =0, i.e., pr(0) = prg, and derive forms of n¢(0) [=(1s |a£ak |po)] and nf (0)
[=(1s] 6}; Bk|po)] up to the second order in powers of the spin-phonon interaction in the lowest spin-wave approximation.

The thermal state |po) [=|p(0)) = (1z|pr(0)) = (1z|p1Ee)] can be expanded in powers of the spin-phonon interaction, as
[36]
— @)y 4. D.1
[po) = lps) + lpg ) + -+, (D.1)

with ps given by (A.4), where | p82)> is the second-order part of |pg) [ = (1g|prE)] in powers of the spin-phonon interaction
and is given by

B B
=/ dﬁl/ B <1R‘{HSR(_ihﬁl)HSR(_ih62)
0 0
— (1| Hsr(—ihB1)Hsn(—iTB2)|pr)|ps) } |pr) |ps)- (D.2)

The above form for | p(()2)> can be expressed with time-integrals alone by transforming inverse-temperature-integrals
into time-integrals, as done in Ref. [36], as

) == [ an [ dr (a] Renl ) a0 o) o) expl- ) |, - (D.3)

Here, Hgr(t) and ﬂsa(t) are defined by Hgg (t) = exp(iHot/h)Hsg exp(—iHot/h) and ﬂsn(t) = exp(i’):(ot)’}:lsn exp(—z"):{ot),
where Ho =Hs + Hg. By substituting (2.21) into (D.3), <ls|a£ak|p(()2)> and <1S|B,16k|p(()2)> can be expressed as

(sladanlof®) = = [ dn [ dr (1el{1alafarHas(~r) () o) ps) exp(- 7)o
0 0

S o0 T1 9
— 5/0 dﬁ/0 dTZ | 910 | exp(—,url)|“_)+0

(U2 )1l ) — {15, REL () sl s st B x— 1)
((1al B, (7) Ry low){1slofonlps) — (1al Ry Ri, () pe) (slawal|ps)) cosh® O exp(i € 7)
+ ({1al R} <T>RZZ|pR><1s|akaL|ps>—<1R|RZLR o (7)lpr) (Is|aak |ps)) sinh? O exp(— i € 7)
((1al B (r) RE, low)(1slaanlps) — (1al 3, B (7)]pa){1slonal |ps) sinb® 0 exp(i e )}

o0
2
—I—/O dTl/O deV:QQVeXp(_HTl)|p—>+O
< {(1a| AR (1) RE, (1) AR RE,) | pr) cosh® 6, sinh? 6,

x ({1s|awBral BLlps) exp{=i (¢} + e )7} — (1s|af BlarBilps) expi (¢f + )}
<1R‘A RZJL (T)RY (T ))A(RZZR ‘pR> cosh? 0, sinh? 0,
x ((1s]cv B B |ps) exp{~ <ek + 6,7} — (1s|of B Belps) expli (¢ + )7}
+ (1a| A( ZZR,W)A(R‘IJr (T)R%,(7))| pr) cosh? 6, sinh? 6y,
x ({Ls|axBrar, 8L ps) expli (Ek + e, )7} — (Is|of BlawBelps) exp{—i (] + )}
+ <1R‘ A(RZZR%V)A(RZZ (T)RL, (7)) ‘ Pr) cosh? 0, sinh? 0,
x ((1s|awBral Bl |ps) exp{i (6f + ex )7} — (1s|af BlawBrlps) exp{—i (&f +e; )}, (D.4)

(il = [ dm [ dra(1sl (]8T (2 (o) plos) xpl= )], -

:5/0 dﬁ/ dTZ | 910 | exp(—un)|“_)+0

x {((1a| RE,, (T)RZZIPR><1sIﬁkﬁl|ps> (1a|RyS B2, (7)|ow) (1] 3] Bk |ps)) sinh® Oy, exp(—i ¢, 7)
—<<1R|RZZ<T> o1or) (1] 31 Bk | ps) — (1n|RY, Rzl<f>|pﬂ><1 1816L | ps)) sinh® O exp(i ¢, 7)
+ (1| RYL(T)RY, lon) (15[ 818L ps) — (1| RY, R (7) ] pn) (15181 Bl ps)) cosh? O exp(— i e 7)
— (1| Ry, (7) R [ om) (15| 8L B |ps) — <1R|RZLR o (7)|pr) (1s1Bk 3L |ps)) cosh® O exp(i e, )}
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o0 T1
—l—/ dTl/ dTZg%l,eXp(—,uﬁHuHJrO
0 0 »

x {{1a|A(R aT (1) gV(T))A(RgIR“ )| &) cosh? 6, sinh® 6,
« ({Lslan kb ALy exp{oi (6 + e)r) — (Ll BlawSiloshexpli (e + )7}

+ (1r|A( Rﬂl T)Rk,,(T))A(RZJLRkV )|or) cosh? 6, sinh? 6y,
< ({15l e B os) exp{—i <e: o)) — (slal Bl By ps) expli (6 + )7}

+ <1R|A(RZIR2V)A(R‘IJr (T)R{,(7))| pr) cosh? 6, sinh? 6y,
% ((1sleBear B lps) expli <ek + 6007} = (lslaf Bl elos) exp{—i (¢ +¢)7}
+ <1R|A(RZLRZV)A(RUT (T)R: )| px) cosh? 6y, sinh? 6,
x ((1s|oBral Bl 1ps) expi (Ek + )7} — (1slaf BlarBelps) exp{—i (¢ + )73}, (D.5)

from which we can obtain the forms of n¢ (0) and nf (0) up to the second order in powers of the spin-phonon interaction
by using the Bose operators Ry, and R};V defined by the assumptions (2.17) and (2.24a) — (2.24c), as follows

ng(0) = (Is|afarlpo) = (s|afar|ps) + (Ls|afarlps?), (D.6)
= ()
S oo o0
+ Z/o dT/T dm Z | g1, |2 exp(— p 1) ‘uﬂ+0

X {(Cosh 20, +1 1s|akaz|ps

La|R}, (7) Ruw pw) exp(— i €f 7) + (1a| RE, Riw (7) | pr) exp(i €f 7)}

) ) ) exp(—
— (cosh 26, + 1) (Ls|afuelps) {{La| Ruo ()R], pn) expli e} > (Lal R R, (7)) pw) exp(— i f 7)}
+ (cosh 26, — 1) { >{<1R|Rku<T>RLV|pR>exp< P65 7) + (Lal Ru B, ()| ow) exp(i € 7)}

) {(Lal R}, (7) Rio | n) expli € ) )

— (cosh 26, — 1) <1s|a;2ak|ps |

1 - 2 12
+§/0 dT/T dmy ZQQV&nh 29kexp(—u71)|MH+O

x { (18| A(R],, () R (7)) A(RL, Rio) | ow)
x ((a(ef) + 1)(nley) + 1) exp{—i (e + e )7} —n(ef) ey ) expi (ef + )7}
+ (1a|A(RL, Riw )A(RL, (7) Ry (7)) | pn)
x ((a(ef) + D(ale;) + )exp{z (e + e )T} —nle) (e ) exp{—i(ef + )7}, (D.7)

:ﬁ(e;)—g/ dT'TZ |gll/ |2€Xp(_u7—)‘uﬂ+0

x {(cosh 20y + 1)(n(e)) + 1) Re <1R|R};V(T)Rky|pR> exp(—ief T)
— (cosh 265 + 1) (&) Re (1a| R (T) R, | om) exp(i € 7)
( )
— ( )

1s|04ka2|ﬂs

7) Ry | ) exp(i € 7) + <1R|RkVRk,,(T lpr) exp(—ief 7)}}

+ (cosh 26y — 1)(7i(ef ) + 1) Re <1R|R;W(7')R£V|pa> exp(—ie€) T)
A6} ) Re (1| RL, () Riw |pn) exp(if 7)}

—/O dr - 7sinh® 20,{ (i(e}) + 1)(A(e)) + 1) = iled) Alep)} exp(— 7]

x Re > " g3, (1a| AR, (7) Riw (1)) A(R],, Ri) | pr) exp{i (ef + )7}, (D.8)

cosh 20, — 1

= 7i(€)) — S (cosh 20), + 1){(n(e} )—l—l)Rez—ngk (ex )—l—n(ek)Rez—d)k ()}
— S (cosh 20), — 1){(n(e} )—l—l)Rez—ngk (—ek)—i—n(ek)Rez qﬁk (—ei)}

+ sinh® 20, {n(e}) + n(e;, ) + 1} Rei Zlef +e), (D.9)

L
ey + ;)
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2.9 (cosh 20, + 1)(7(e] ) + 1) Re = - — e
91 S (cosh 20y + 1) (n(ef) + 1) b 852‘(”&(;—(«0%)"‘7%
. 0 (wrk) + 1
— g% S (cosh 20, + 1) (e} ) Re = - ——
g7 S ( k ) n(ey) 2 agz —i(sZ—WRk)""YRk
B ; o ﬁ(ka)+1
— g% S (cosh 20, — 1)(7i(e -
S ( r = 1)(n(e) +1) 2 86:< (e + wr) + Yok
i d 7 (wek)
— g2 5 (cosh 20, — 1) n(eh L.
g7 S ( k= 1) n(ey) 2 (‘)62(—1'(624‘&1}116)"'7”“
( (ka)( (UJRk)+1)
I\ =il )+ 27

= () —

(D.10)

+ g3 sinh® 20, {n(e}) + ey ) + 1} Rei T
15 b8+ o) D) =
S ) ) ) G

— At
= n(e}

(D.11)

(D.12)

1 (0) = (s[8} Bklpo) = (1518} Brlps) + (1s|8] Bilps?).

n(ey )

S/ dT/ dﬁz |91V| exp(— 1”—1)‘,1%+0
<1R|RkV(T) |
(1 | T)Rg
(
(

){ )

— (cosh 20, — 1) (1s|3{ Bkl po) { ,(7)
( ) { ) {(1a|R], () Ry,

) { ()R]

—iey )+ (Ia|Raw RE, (7)] pn) expli e, 7)
i€y 7) + (x| RL, R (7) | pn) exp(— i€, 7)
(1| RL, Ry (7)|pw) exp(i e 7)

7)|pr) exp(—ie;, )

x {(cosh 26 — 1 1s|5k5k|P0 g) exp(
vlpr) exp(
+ (cosh 20}, + 1 1s|ﬂkﬂ;£|po v|pr) exp(—ie, T) +
vlor) explieg 7) +

— (cosh 26, + 1) <1S|ﬂ};ﬂk|l)0 1g| R (T
1 [ e .
+ 3 /0 dT/T dmy Z g2, sinh? 20y, exp(— pu 1) |HéJrO

x {(1r] A(R],, (7) Riw (7)) A(R],, Ry | o2
x (((ef) + D)(Ale) + 1) exp{—i (] + 6 )7} —nley) nlex ) exp{i (ef + )7}

+ (1a| A(R], R ) AR (T) R (7)) o2
x((( D)+ D) + >exp{z<ek+ek>T} a(ef) aley) exp{—i(ef +e)7h 1,

n / dr - TZ|91V| exp(— '“T)|MH+O

{(cosmek—1)(-(6,;)+1)Re<1R|RkV( VR |pr) exp(—ieg T)
— (cosh 20, — 1) n(e;; ) Re <1R|R (T) Ry | pr) explie, )
( )
= ( )

(1a|Riw Y, (7

(D.13)

+ (cosh 20, + 1 (ﬁ(ek)+1)Re<1R|R (T)Riw|pr) exp(—i€;, 7)

cosh 20y, + 1) a(e;; ) Re (1a| Ry ()R] | on) exp(i € )}

—/ dr - T sinh? 20:{((ef) + 1) (n(ey ) + 1) — 7€) ey ) } exp(— ”T)|NH+0
0

X Rez 92V<1R|A(RkV(T)RkV(T))A(RkVRkV)\ pr)expli (e + €))7},
=7i(e;;) — S (cosh 26, — 1){(7i(e; ) + 1) Rei 5‘— or T (=€) + nle;, ) Rei 8% o (—ep)}
k k
— S (cosh 26y, + 1){(n(e;, ) + 1) Rei (’9? ¢ (e) + (e, ) Rei E)éi_ o ()}
k k
O (el + ), (D.15)

(D.14)

+ sinh® 20, {n(e}) + n(ey ) + 1} Rei ————
sin p{n(ef) +nley)+1} ez(‘)(e}l‘—i—e;)
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i 0
:ﬁ(cg)_gfs(cosh%gk—l) (ﬁ(elg)—'_l)ReZ 3%( (

_(ka) —+ 1
€, + wrk) + ek

8 (ka)
— g% S (cosh 26, — 1 Re— —
g% S (cosh 20 — 1) (e, ) Re £ 3€k(—i(6;§+wak)+%k

B) 1 (wek)
— g2 S (cosh 20y + 1 +1Re— e
97 S ( k+1)(n(e) +1) 2 e, ( i (€, — wak) + Yak

0 (_( n(wpi) +1

) i
— g7 S (cosh20; +1)n(e, )Re = - — —
15 ( FUT2 e r — Wak) + e

2 sinh? (et (e ei- ni(wrk) (M(wre) +1)

+ g sinh® 20 {n(e]) + n(e;) + 1} R a(egﬂm(_z(ekﬂk)wm (D.16)
€ war)? — (a2

= n(e) + 91 5 (cosh 26 — D{n(ey ) + nlwni) + 1} 2{@1%2)) +((1R]Z))2}2

2 - - (6, —wrk)? — (mk)?
918 (cosh 200+ D{nems) =)} 5ree—7 e e
eF a2 - an)?
+ g3 sinh? 20, {7i(e}) + 7i(ey, ) + 1} (war) {(war) + 1} (6 + )" =4 0me) (D.17)

{(6f +€)2 +4 ()22’

where we have used the assumption that the phonon correlation function (2.24c) is real. Here, 7i(€) is given by (A.41).

E Investigation of the region valid for the lowest spin-wave approxima-
tion

In this Appendix, we investigate numerically the region valid for the lowest spin-wave approximation in the anti-
ferromagnetic system of one-dimensional infinite spins. When the expectation values of the second terms n;/(45)

[:ajal/(llS)] and n,,/(4S) [= b} b,/ (4S5)] in the expansions (2.3) and (2.5) respectively, are much smaller than 1 or
are smaller than about 0.01, the lowest spin-wave approximation becomes valid. In order to investigate the region valid
for the lowest spin-wave approximation, we consider the expectation values n®(t) and n®(t) of the up-spin deviation
number a}L a; [=mni] and down-spin deviation number b b,, [=n,,], which are, respectively, referred to as “the up-spin
deviation number” and “the down-spin deviation number”, and define n®(t) and n®(t) by

:% 1S|Zazal [p(t) Z<15|azakU(t)exp&{—i/ dT7:l51(T)}|p0), (E.1a)

k

:3 15|Zb b |p(t) Z(ls|b br U(t) exp_ —z/ dr Hg: (T )}|p0>, (E.1b)
k

with |po) = (1g|pre), where we have performed the Fourier transformations (2.7a) and (2.7b). Here, prg is the thermal
equilibrium density operator for the spin system and phonon reservoir and is given by (A.3). In the lowest spin-
wave approximation, the expectation values n?(t) and n®°(t) of the up- Spin deviation number and down-spin deviation
number can be expressed using ng(t) and nk( ) defined by (A.32), a

2

n(t) = = > (lsl afar U(t) |po) = Z{coshm (nf () + () +1 +nfi(t) —nf(t) — 1, (E.2a)
k
n®(t) NZ 1s| blby U(t) |po) = NZ{COShZQk ng(t) +nb(t) +1 —nd(t) +np () — 1}, (E.2b)

where we have transformed according to the transformations (2.11) and their Hermite conjugates, and have considered
the axioms (A.26). The expectation values n®(t) and n®(t) of the up-spin deviation number and down-spin deviation
number, given by (E.2a) and (E.2b) respectively, can be calculated by substituting (A.48a), (A.48b), (4.12a) and
(4.12b) into (E.2a) and (E.2b), and by replacing the wave-number summations with the numerical integration (4.14).

In Figs. 21 and 22, the expectation values n?(t) and n®(t) of the up-spin deviation number and down-spin deviation
number, respectively, are displayed varying the time ¢ scaled by 1/.J; from 0 to 6000 for the cases of anisotropy energies
hK given by A=K/J;=1.0,1.5,2.0,3.0,4.0, and for the spin-magnitude S=5/2 and the temperature T given by
kgT/(hJ1)=1.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The anisotropy energy is denoted as “A” [=K/Ji] in the
figures. Figs. 21 and 22 show that as the time ¢ becomes large, the expectation values n®(t) and n®(t), increase and
approach to the finite values, and that as the anisotropy energy hJK increases, the expectation values n®(t) and n®(t)
decrease. Thus, the expectation values n?(t) and n®(t) given by (E.2a) and (E.2b) are the increase functions of the
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Figure 21: Up-spin-deviation number n®(t) given by (E.2a) are displayed varying the time ¢ scaled by 1/J; from 0
to 6000 for the cases of anisotropy energies hK given by A=K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitude
S=5/2 and the temperature T' given by kgT'/(hJ1)=1.0, with Jo/J; =1.0 and w./J; =1.0.

Figure 22: Down-spin-deviation number n°(¢) given by (E.2b) are displayed varying the time ¢ scaled by 1/.J; from 0
to 6000 for the cases of anisotropy energies K given by A=K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitude
S=5/2 and the temperature T' given by kgT'/(hJ1)=1.0, with Jo/J; =1.0 and w./J; =1.0.

time ¢ and the decrease functions of the anisotropy energy 7K, and approach the expectation values n®(co) and n®(co)
in the infinite time limit, respectively, as time ¢ becomes infinite (¢t — 00) in no external driving magnetic field. In order
to confirm the region valid for the lowest spin-wave approximation, we investigate numerically the expectation values
n® [=n%(oo0)] and n® [=n’(00)] of the up-spin deviation number and down-spin deviation number in the infinite time
limit (¢t — 00):

n% = n(00) = % S {cosh 26, (nf(00) +nfl(00) + 1 +ng(o0) — nf(o0) — 1}, (E.3a)
k

nb = nb(c0) = % S feosh 26, (nfi(0c) +nf(00) + 1 — nfi(o0) +nf(s0) — 1}, (E.3D)
k

with n¢(co0) and nf(oo) given by (A.49a) and (A.49b), where n%(co) and n®(co) are the expectation values in the sta-
tionary state at which the thermal equilibrium state arrives being driven by the evolution operator U (t) = exp{— ¢ (’}:[so—l—
iC?)t}. In Figs. 23 and 24, the expectation values n® [=n%(co)] and n® [=n®(c0)] of the up-spin deviation number
and down-spin deviation number in the infinite time limit (¢t — 00), respectively, are displayed varying the temperatures
T scaled by hJi/kg from 0 to 1.5 for the cases of anisotropy energies hK given by A=K/J, =1.0,1.5,2.0, 3.0,4.0,
and for the spin-magnitude S=5/2, with ¢ [=J2/J1]=1.0, w./J1 =1.0. The anisotropy energy is denoted as “A”
[=K/Ji] in the figures. Figures 23 and 24 show that the expectation values n® [=n?(00)] and n® [=n®(c0)] of the
up-spin deviation number and down-spin deviation number, are smaller than about 0.1 in the regions of the temper-
ature T' and anisotropy energy hK given by kgT'/(hJ;) <1.0 and K/Jy > 1.5, or by kgT'/(hJ1) <1.5 and K/J; > 2.0.
Therefore, when S >5/2, ( [=J2/J1]=1.0 and w,/J; =1.0, Figs. 23 and 24 show that n®/(4S) [=(n;)/(4S5)] and
n®/(4S) [= (nm)/(4S)], which correspond to the expectation values of the second terms in the expansions given by
Egs. (2.3) and (2.5) respectively, are smaller than about 0.01 in the regions of the temperature T' and anisotropy
energy hK given by kgT/(hJ1) <1.0 and K/J; > 1.5, or by kgT/(hJ1) <1.5 and K/J; >2.0. In such a region, the
lowest spin-wave approximation is valid. In Figs. 25 and 26, the expectation values n® and n® of the up-spin-deviation
number and down-spin deviation-number in the infinite time limit (¢ — 00), respectively, are displayed varying the
anisotropy energy LK scaled by hJ; from 1.0 to 4.0 for the cases of spin-magnitudes S=2,5/2,3,4,5, and for the
temperature T given by kgT'/(hJ1) =1.0, with ¢ [= J2/J1] =1.0, w,/J; =1.0. The anisotropy energy is denoted as “A”
[=K/J1] in the figures. In the Figs. 25 and 26, we can confirm the region of the spin-magnitudes S and anisotropy
energy hK in which n/(49) [= (n;)/(4S)] and n®/(4S) [= (n,,)/(4S)], which correspond to the expectation values of
the second terms in the expansions given by Egs. (2.3) and (2.5) respectively, are smaller than about 0.01 in the region
of the temperature T given by kgT'/(hJ1) <1.0. When the temperature T is in the region given by kgT'/(hJ1) < 1.0,
we can confirm the region valid for the lowest spin-wave approximation in Figs. 25 and 26.
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Figure 23: Up-spin-deviation number n® [=n%(c0)] is displayed varying the temperatures T scaled by f.J;/kg from
0 to 1.5 for the cases of anisotropy energies hK given by A=K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitude
S=5/2, with Jo/J; =1.0 and w,/J, =1.0.

Figure 24: Down-spin-deviation number n® [=n’(cc)] is displayed varying the temperatures 7" scaled by h.J; /kg from
0 to 1.5 for the cases of anisotropy energies h K given by A=K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitude
S=5/2, with Jo/J; =1.0 and w,/J, =1.0.
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Figure 25: Up-spin-deviation number n® [=n%(c0)] is displayed varying the anisotropy energy hK scaled by fi.J; from
1.0 to 4.0, i.e., A= K/J; =1.0~4.0 for the cases of spin-magnitudes S =2,5/2, 3,4, 5, and for the temperature T given
by ksT'/(hJ1)=1.0, with Jo/J; =1.0 and w,/J; =1.0.

Figure 26: Down-spin-deviation number n® [=n®(00)] is displayed varying the anisotropy energy hK scaled by h.J;

from 1.0 to 4.0, i.e., A=K/J; =1.0~4.0 for the cases of spin-magnitudes S=2,5/2,3,4,5, and for the temperature
T given by kgT/(hJ1) =1.0, with Jo/J; =1.0 and w,/J; = 1.0.

-82-



F The forms of C®® and ]D [w]) for Hsp taken in Refs. [21, 22]

In this Appendix, the forms of the collision operator C?) and the interference thermal state |Dé2,) [w]) are given for the

interaction Hgg between the anti-ferromagnetic system and phonon reservoir, taken in the previous papers [21, 22],
which was taken to point all of the spins to the “down” direction by the phonon-reservoir field, and thus the spin-
phonon interaction Hsg taken in the previous papers [21, 22] does not reflect the energy transfer between the spin
system and phonon reservoir at the “down” spin sites. In the previous papers [21, 22|, the spin-phonon interaction
Hsr was taken as

HSR: _g{Z(QTV SZJr R;lj—’—glvsf R?y +Z (glu STTLRfVIV—’—glVSmRmV }
lv m, v
— {3 g2 S RYI RE, + Z 920 S5y B, Bl | (F.1a)

l,v

= - 5 Z { \ 28 (gTI/ a‘kRZI + giv GJLRZV) + v 28 (gTI/ bLRZL + giv kazu)} +

k,v

2 a 2 b
- h292u (S - N Z G:L/ak’ RZley - hzgﬁ/(N Zb;bk/ -5 RkT/Rzu + - 5 (F].b)
k,v K’ k,v K’

where the first “---” of (F.1b) denotes the higher-order parts of the first term of (F.1a) in the spin-wave approximation,
and the second “---” of (F.1b) denotes the off-diagonal parts in the Fourier transformation of the second term of
(F.1a). Assuming that same as the z and y components of the spin, the z component of the spin is coupled only with
the phonon operators of the same wave-number as the spin, and renormalizing the free spin-wave Hamiltonian, the
free spin-wave energies and the spin-phonon interaction as done in (2.19)—(2.21), the spin-phonon interaction takes
the form

Msn=—h S/2Y {gi, (axRj} +bLRY) + g1 (af RE, + bieRE,)}
k,v

—h}jmu S — alar)(R{IRE, — (1a|RETRE, |or)) + (bfbr — S)(RY RY, — (1a| R RY, o)} (F.2)

where the higher-order parts in the spin-wave approximation and the off-diagonal parts and wave-number mixing in
Hsr, have been ignored. Substituting (F.2) into (A.19) and by using the basic requirements (A.8) and their tilde
conjugates, the collision operator C'®) takes the form [21, 22]

C® =—8> {6 (6){(ar — a}) af cosh 26, — (8] — Bi) o sinh 26, }
k

+ ¢y (e ){( — ) Br cosh 20, — (ay — ak) By, sinh 26} }
—{o " ( )*{(ak_‘ak)akCOSh29k‘—(5k B1.) @y, sinh 26, }

+ ¢p (=€) {( — Br) Bk cosh 20y, — (ay —ak)ﬁk smh29k}}
+ {0 T ( ){(a — ay,) o, cosh 205, — (Br, — Bk) oy, sinh 26, }
+ ¢k (=€ H{(Br — ﬂk) ﬂk cosh 26, — (ak — ak) b’k sinh 20k}}
—{o (e Jr)*{(oz;rc —ag) & ak cosh 20;, — (B — ﬁk) ozk sinh 26}
+ o (—e ) {(Bx — BL) By cosh 20, — (] — Gx) By sinh 205} }}
- % Z {{(O‘LO"C - &k&k + 5k5k - @ﬂk) cosh 20y — (ax Bk + akﬂk - &kﬁk — @) sinh 26}

k
x {(efax — afdn + BBk — BLAk) cosh 20, ¢ (0)
— (B = @B 7 (e + ) + (B — @) 677 (6 + ¢;,)") sinh 26}
+{afon — afan — (BLBk — BlB) Hafaw — alar — (818 — BB} ¢77(0)}, (F.3)

with the correlation functions ¢}~ (€), ¢, T (€) and ¢;*(e) defined by (A.25a) — (A.25¢c), where the higher-order parts
in the spin-wave approximation have been ignored, and the assumption that the phonon correlation function given by
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(2.24c¢) is real, have been used. Then, ny(¢) and nf(t) defined by (A.32) satisfy the equations of motion

(d/dt) n(t) = (1s| U1 (8) [i Hso — C), of ax ] U(1) |po),
= — {25®] (¢f) cosh 260, — W) sinh? 20, } ng () + U}, sinh? 26, n} (¢)
+28 @ () cosh 20, (e ) + W), sinh® 26y, (F.4a)
(d/dt) n(t) = (15| U™ (1) [i Flso = C, BL A ]U(®) |po),
= —{25®, (¢ ) cosh 20), — ¥}, sinh” 20, } n’g(t) + W), sinh? 26, n$ (t)
+285®, (¢ ) cosh 20y, (e ) + W), sinh? 26y, (F.4b)
with 7(e) defined by (A.41), where ®F (i) and ¥/, are the real parts of ®F (¢) and ¥y, defined by (A.42) — (A.44),
k k \€k k k \€k
respectively. The quasi-particle operators A (t) and &(t) satisfy the equations of motion
(d/dt) Zg (8)/*(Ls| Ai(t) = (d/dt) (Ls| ar(t) = (1s| U™ () [i Hgo — CP, i ] U (8),
={—ief — SO} (&) cosh 20y — (W9 /2)(cosh? 20y, + 1) + (U} /2) sinh? 20, } Z2(¢)/ (1s| Ai(t)
—{S®; (€,)" sinh 20, + (¥} — ¥})/2) sinh 26y, cosh 26, } Z,’f( )2 (1] € (2), (F.5a)
(d/dt) 2 ()" (1s| k() = (d/dt) (1| BT (8) = (1s| U (1) [ Hso — C), 8L U (1),
= {ie;, — S (e )* cosh 20, — (U9/2)(cosh? 20, + 1) + (¥} /2) sinh? 26} Z7 (£)'/2 (15] &, (¢)
—{S® (&) sinh 260, + (V) — Wy)/2) sinh 20, cosh 205 } Z2 (£)/? (1s] A (1), (F.5b)
which correspond to (A.52a) and (A.52b) with T'y+ and Akt given by
Fpt = S@f(ef) cosh 26, — Wy, sinh? 26, /2 + WY - (cosh® 26, + 1)/2, (F.6a)
Apr =8 ‘I)ki (eki) sinh 20}, + (\Ilg — Uy,) sinh 26, cosh 26, /2, (F.6b)
where @9 is defined by (A.54).

The form of interference thermal state |D;2_) [w]) given by (3.8) can be expressed by substituting (F.2) into (3.8)
k
and by using the axioms (A.2), (A.8) and their tilde conjugates, as

|Df5,2,) W) =785 S/2(cosh@ — sinh6by)
k

x {{cosh 20y (af, — ax) — sinh 20, (B, — G})}|po)
< {(dp T(W) — & (W)") = (& (&) — (@) )H (w =€)
+ {sinh 26y (o} — Gx) — cosh 205 (B, — B)}|po)
X (T (W) = ol (W)) = (& T (—e) — & (=) (w+ )}
+ % (cosh @), — sinh 6y,)
x {{(cosh® 205 + 1) (], — a) |po) {677 (w — €f) — 677 (0)}
+ sinh 26 cosh 20 (8 — 3] oo} (07 ( + ) — 07 (e + &)1}/ — )
+ {sinh 26, cosh 20}, (ak — )| po) {77 (w — &) — d77 (ef +€,)*}
T (cosh? 205 + 1) (B — A1) lpol 67 (@ + ) — 62O}/ (w + )
+ (akBr + akﬁk — Bk — akﬁk) sinh 20,
x {{sinh 260 (B — BH)|po){ 07" (w + €,) — 7 (ef + )}
— cosh 26y, (o], — ax)lpo) {6 (w — ) = 677 (0)}}/(w — )
+ {cosh 20, (B — ) po){¢7* (w + €) — 677 (0)}
— sinh 205 (o, — o) {07 (@ — &) — G (¢ + ) P+ )} (F.7)

with the correlation functions ¢}~ (€), ¢, () and ¢;*(e) defined by (A.25a) — (A.25¢), where the higher-order parts
in the spin-wave approximation have been ignored, and the assumption that the phonon correlation function given by

(2.24c) is real, have been used. The above expression of the interference thermal state |Dé2_) [w]) can be rewritten, by
k

using ®F (), Ui, U) and Ui (e) defined by (A.42) — (A.44), (A.54) and (3.12), respectively, as

|ngi,)[w]) =7 S—/Q(COShgk—Sinth)ﬂD(Q)[ ]>/(2 (w ))+|D(2)[ ]>/(2 (W-f—e,;))}, (F8)
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with [D?[w]) and [ D) [w]) given by

DY [w]) = 2.5 {cosh 20k (o], — ax) — sinh 20, (B — B1)}Hpo){®F (w) — @} ()}
+ sinh 20y, cosh 205, (B — B]) o) {Un(w + €, ) — ¥}
+ (cosh® 205 + 1) (o], — G) |po) {Wr(w — € ) — ¥R}
+ (B + b B — @By — al B}) sinh 20,
x { sinh 20y (Bx — B)|po) {Wr(w + €,
— cosh 26y, (al, — ax)|po) (Wi (w — &) — ¥}, (F.9a)
D [w]) = 25 {sinh 260, (o, — @) — cosh 20 (B — B Moo @ () — @ (— )}
+ sinh 26y, cosh 26, (ozL —ag)|po){¥r(w — ) — Ui}
+ (cosh? 20), + 1) (Bx — BD)|po){ Uk (w + &) — T2}
+ (aBr + a;iﬂ,i — apf — 64};5’};) sinh 20
x { cosh 20k (B, — B)po){Tr(w + € ) — TP}
— sinh 26y, (o, — @x)|po) { Wi (w — &) — Wi} }. (F.9b)

) — W}
+
k

)
)

The corresponding interference terms X (w), X% (w), X£1 (w) and X,fQ(w), are derived using (C.1), (C.2) and
(4.5) — (4.7), and take the following forms:

X{(w) = (5| an |DE W] /(2 (w — ) = X (W) + i X ()", (F.10a)
= {25 cosh 20, {®} (w) — @ (¢f)} + (cosh? 20, + 1){Vp(w — &) — TY}
— sinh? 20, { Uy (w + ;) — Ui} } /{2 (w — )}, (F.10b)

— ek (w + €f —2wni) + i {(7r)? — (w — wrr)(ef —wrr)}
2{(w — war)? + (x)2H(ef — war)? + (x)?}
5 27k (W + ez +2¢,)—i{4 (vax)? — (w+ e;)(e; +e€.)} 7

— g% S cosh 20,

T (P Yy ey ER TtA e
+os 4’7111«{& : Zz )) +_|_241 (Wk 7} 7i(war ) {7(wrk) + 1} (cosh? 20y, 4 1), (F.10¢)
Xio(w) = (1s] ar D))/ (2 (@ + ) = Xip(w)' +i X ()", (F.11a)
= {2 9sinh 20; { @} (w) — @F (— €)} + sinh 205 cosh 20, { Vs (w — €F) — ¥j}
— sinh 260, cosh 20, { Uy (w + ;) — VDI } /{2 (w+€;,)}, (F.11b)
_ g2 o w6 = 2wm) +i{0m) + (@ — w6 Feml o

2 {(w — wrr)? + (me)? H (e +wrr)? + (me)?}
2 =27k (W =26 =) +i{4 () + (w— ) (el +€,)}

+ 95 2 {(w = Ek) 4 ()2 }{(Ek o) 4 7 (wrk ) {7 (wrk) + 1} sinh 26, cosh 26},
(w+e) =20 _ _ .
PO (o 7 4 ) " n T ne) 4 1 2 cosh 20 (1)
X () = (15| B IDT W /(2 (w — ) = X (W) +i X ()", (F.12a)
= {29sinh 20, {®} (w) — @/ ()} — sinh 20y, cosh 20, { ¥y, (w + €;,) — Uy}
+ sinh 26, cosh 20, { Uy (w — € ) — UL} }/{2 (w— )}, (F.12b)
_ g2 g Rk (w+ef —2wr) +i{(9mr)* — (W — war)(ef — wan)} sinh 20,

2{(w — wrk)? + (mr)2H (e — war)? + (9r)?}
e 29k (W€ +26,) —i{d(van)? — (wHe )(ef +e,)}
2 2w 2+ 40m)2H( + )2 +4 ()}
—(w—ek)—|—2@'yRk
Ayp {(w =€) + 4 ()2}

7i(wg ) {7 (wrk) + 1} sinh 260}, cosh 26},

+ g2 7i(wrk ) {7 (wrk) + 1} sinh 26y, cosh 26y, , (F.12¢)
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Xih(w) = (15| BL DI W]/ 2 (w+ &) = Xy (@) +1i Xy (w)", (F.13a)
= {28 cosh 20 {® (w) — @ (—€;,)} — (cosh? 205 + 1){Wp(w + € ) — ¥9}

+ sinh?® 20 {Wy(w — ) — Ui} } /{2 (w+€;)}, (F.13b)

— ek (W — € — 2wri) + i {(me)? + (W — wrk) (6 + wrk)}
2 {(w —wnk)? + (mr)* H(e, + wrn)?® + (mk)?}

2k (w =26 — e ) +i{d(vme)? + (w—€e)(ef +e)} B o

+ 95 2 {(w — 65)2 +Z (ka)g}{((eg + e;)Q + I(’iR:)Q} 9); n(wek){n(wrk) + 1} sinh” 20y,
2 (W+e) = 2im

Ay (W + €)% +4 ()}

=g 9

cosh 20y,

+g 7i(war ) {7(war) + 1}(cosh? 20, +1).. (F.13c)
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