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Abstract

A form of the transverse magnetic susceptibility is derived and the resonance absorption and transverse magne-tization are
discussed for a ferrimagnetic spin system interacting with a phonon reservoir in the spin-wave region, employing the TCLE method
of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated for the spin-phonon
interaction taken to reflect the energy transfer between the ferrimagnetic system and phonon reservoir. Here, the TCLE method of
linear response is a method in which the admittance of a physical system is directly derived from time-convolutionless equations
with external driving terms. The approx-imate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and the amplitude of the expectation value of the transverse magnetization,
which is referred as “the magnetization-amplitude”, are derived for the ferrimagnetic system in a transversely rotating magnetic-
field. For an ferrimagnetic system of one-dimensional infinite spins in the transversely rotating magnetic-field, the power
absorption and magnetization-amplitude are investigated numerically in the region valid for the lowest spin-wave approximation.
The approximate formulas of the resonance frequencies, peak-heights and line half-widths, are shown to coincide well with the
results investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude in the
resonance region, and also are shown to satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-
heights increase and the line half-widths decrease, and thus are verified numerically. In the resonance region of the power
absorption and magnetization-amplitude, it is shown that as the temperature 7' becomes high, the resonance frequencies increase
slightly, the peak-heights decrease and the line half-widths increase, and that as the wave number k becomes large, the resonance
frequencies and peak-heights increase, and the line half-widths decrease. It is also shown that as the spin-magnitude S or Ss
becomes large, the resonance frequencies of the power absorption and magnetization-amplitude become large, that as S1 (> S2)
becomes large, the peak-heights of the power absorption and magnetization-amplitude increases, and that as S2 (< .S1) becomes
large, the peak-height of the magnetization-amplitude decreases though the one of the power absorption is mostly unchanged.
Here, S71 and S3 are the magnitudes of spins at the up-spin sites and down-spin sites, respectively. The effects of the memory and
initial correlation for the spin system and phonon reservoir, which are represented by the interference terms in the TCLE method
and are referred as “the interference effects”, are confirmed to increase the power absorption and magnetization-amplitude in the
resonance region, and are shown to produce effects that cannot be disregarded for the high temperature, for the non-quickly
damped reservoir or for the small wave number k.

Keywords: Ferrimagnetic spin system; Resonance absorption; Transverse magnetization; Non-equilibrium thermo-field dynamics;
The TCLE method of linear response; Spin-wave method

1 Introduction

The theories of ferromagnetic and anti-ferromagnetic resonances were macroscopically treated by Kittel [1], Van Vleck
[2], Nagamiya [3], Kittel and Keffer [4, 5], and were microscopically developed using the spin-wave method [6] by
Nakamura [7], Ziman [8], Kubo [9], Akhiezer et al. [10] and Oguchi and Honma [11]. The ferromagnetic and anti-
ferromagnetic resonances were also discussed using the method of the collective motion of spins by Mori and Kawasaki
[12, 13]. The anti-ferromagnetic resonance was besides studied numerically using the method of calculating the
dynamical susceptibility directly by Miyashita et al. [14, 15, 16, 17], and its theories were developed by the quantum field
theoretical approach of Oshikawa and Affleck to the electron spin resonance in spin-1/2 chains [18, 19]. However, these
theories for ferromagnetic and anti-ferromagnetic resonances do not deal with the effects of the phonon reservoir
interacting with the spin systems, and therefore those theories cannot elucidate the damping mechanism of the spin for
the case that the spin-spin interactions or the spin-wave interactions are small. In such a case, it is necessary to consider
the spin systems interacting with the phonon reservoirs and to study the effects of the phonon reservoir.

In Refs. [20, 21, 22], the author studied the transverse susceptibility, the resonance absorption and the transverse
magnetization for a ferromagnetic spin system interacting with a phonon reservoir by the spin-wave method [6], by
employing the TCLE method of linear response [23, 24, 25, 26, 27] in terms of the non-equilibrium thermo-field dynamics
(NETFD) [28, 29, 30]. Here, the TCLE method is a method in which the admittance of a physical system is directly
derived from time-convolutionless (TCL) equations with external driving terms in the problem of linear response [23, 24,
25, 31, 32, 33, 34, 35, 36]. Uchiyama et al. [37] proposed a method in which the Kubo formula [38] is calculated using the
time-convolution (TC) master equation to study effects of the heat reservoir, and applied it to a two-spin system and a
three-spin system. The author and Miyashita [39] formulate% ghe non-equilibrium thermo-field



dynamics (NETFD) for an anti-ferromagnetic system of many spins interacting with a phonon reservoir, using the
spin-wave method [6, 9]. Recently, the author [40, 41] studied the transverse suscetibility, the resonance absorption
and the transverse magnetization for an anti-ferromagnetic system of many spins interacting with a phonon reservoir,
using the spin-wave method [6, 9], by employing the TCLE method of linear response [23, 24, 25, 26, 27] in terms of
the non-equilibrium thermo-field dynamics (NETFD) [28, 29, 30, 39, 41].

The non-equilibrium thermo-field dynamics (NETFD) has been formulated in the van Hove limit [42] or in the
narrowing limit [43], and therefore its direct application is limited to that limit. If the correlation function derived by
the NETFD is substituted into the Kubo formula [38], the obtained admittance or susceptibility is valid only in that
limit. When one discusses the effects of the deviation from the van Hove limit [42] or the narrowing limit [43], it is
necessary to employ one of the three methods [36] that are the TCLE method, the RTC (or TCE) method and the
RTCL method, in order to derive the complex admittance. When the TCLE method is employed [23, 24, 25, 31, 32,
33, 34, 35, 36], the complex admittance of the physical system can be calculated by inserting the interference terms
included in time-convolutionless (TCL) equations with external driving terms, into the results obtained in the van
Hove limit [42] or in the narrowing limit [43], in which the NETFD has been formulated, where the interference terms
represent the effects of the memory and initial correlation for the physical system and heat reservoir, and give the
effects of the deviation from the van Hove limit [42] or the narrowing limit [43]. Thus, by employing the NETFD and
the TCLE method [23, 24, 25, 26, 27] as done in Refs. [20, 21, 40, 22, 41], the complex admittance of the physical
system can be derived including the effects of the memory and initial correlation for the physical system and heat
reservoir. The relation between the TCLE method and relaxation method was analytically examined in the second-
order approximation for the system-reservoir interaction in Refs. [34, 35, 36], where the relaxation method is the one in
which the Kubo formula [38] is calculated including the heat reservoir. The admittances derived employing each method
have the same second-order terms and mutually different higher-order terms. The admittances derived employing each
method were numerically investigated and were shown to agree well in the resonance region, for a quantum oscillator
interacting with the heat reservoir [34] and for a quantum spin interacting with the heat reservoir [35, 44, 45]. This
shows that the TCLE method is coincident with the relaxation method in the second-order approximation for the
system-reservoir interaction, and that the second-order TCLE method is valid in this approximation. The TCLE
method and relaxation method were formulated in terms of the NETFD in Refs. [23, 24, 25], and the relation between
the admittances derived employing each method was analytically examined in the second-order approximation for the
system-reservoir interaction [25]. If the relaxation method is employed in the van Hove limit [42] or the narrowing
limit [43], i.e., the Kubo formula [38] is calculated from the second-order TCL equations with no external driving
terms in this limit, the results coincide with the ones without the interference terms or the interference thermal state
in the results obtained employing the TCLE method. That limit is valid for a quickly damped reservoir (the reservoir
correlation time — 0), but not for a non-quickly damped reservoir, because the influence of motion of the heat reservoir
on the motoin of the physical system is neglected in that limit. The coincidence of the TCLE method and relaxation
method in the second-order approximation for the system-reservoir interaction, means that the interference effects,
i.e., the effects of the interference terms or the interference thermal state in the TCLE method, are the effects of
motion of the heat reservoir which influence the motoin of the physical system. Because, when the Kubo formula [38]
is calculated for the physical system interacting with the heat reservoir, the obtained admittance includes the effects
of collision of the physical system with the heat reservoir. Therefore, the interference effects are the effects of motion
of the heat reservoir which influence the motoin of the physical system, and are considered to increase the power
absorption to excite the heat reservoir for a non-quickly damped reservoir.

Recently, a ferrimagnetic spin system was studied by the spin-wave method [46, 47, 48, 49]. It may be an interesting
problem to study a ferrimagnetic spin system interacting with a phonon reservoir. In the present paper, we consider
a ferrimagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange interaction under an
external static magnetic-field in the spin-wave region, interacting with a phonon reservoir and with an external driving
magnetic-field which is a transversely rotating classical field, and study microscopically the power absorption, the
transverse magnetization and its amplitude, which is referred as “the magnetization-amplitude”, in the resonance
region, including the effects of the memory and initial correlation for the spin system and phonon reservoir. We derive
a form of the transverse magnetic susceptibility of the ferrimagnetic system by employing the TCLE method of linear
response [23, 24, 25, 26, 27] in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated
for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir,
in the spin-wave approximation modifying the spin-wave method of Kubo [9, 46, 47]. The interaction between the
spin and phonon is modified to reflect the energy transfer between the spin system and phonon reservoir, because the
spin-phonon interaction taken in Refs. [39, 40] does not reflect the energy transfer between the spin system and phonon
reservoir at the “down” spin-sites. We examine analytically the power absorption and magnetization-amplitude in
the resonance region of the ferrimagnetic spin system in the spin-wave region, derive the approximate formulas of
the resonance frequencies, peak-heights (heights of peak) and half-widths of the line shapes in the resonance regions,
and investigate numerically the line shapes for a ferrimagnetic system of one-dimensional infinite spins. We also
investigate numerically the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e.,
the interference effects. We use the same symbols and notations as in Refs. [39, 40, 41].

In Section 2, we give the Hamiltonian for a ferrimagnetic spin system interacting with a phonon reservoir under

-89-



an external static magnetic field in the spin-wave region. In Section 3, we derive forms of the transverse magnetic
susceptibility and magnetization-amplitude for the ferrimagnetic system by employing the TCLE method of linear
response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated in Appendix B for
the modified spin-phonon interaction, and derive the approximate formulas of the resonance frequencies, peak-heights
(heights of peak) and line half-widths in the resonance region of the power absorption and magnetization-amplitude.
In Section 4, we investigate numerically the power absorption and magnetization-amplitude in the resonance region of
a ferrimagnetic system of one-dimensional infinite spins. In Section 5, we give a short summary and some concluding
remarks.

2 Model and Hamiltonian of ferrimagnetic spin system

We consider a ferrimagnetic spin system with a uniaxial anisotropy energy and with an anisotropic exchange interaction
under an external static magnetic-field H, in the z direction, in interaction with a phonon reservoir. The ferrimagnetic
spin system is in the spin-wave region, and we proceed in the spin-wave approximation by modifying the spin-wave
method of Kubo [9, 46, 47]. We consider a bipartite lattice and denote the sites of sublattices by [ and m, where [ denotes
the sites of “up” spins, and m denotes the sites of “down” spins. We take the principal axis of the uniaxial anisotropy
energy and anisotropic exchange interaction as the z axis, and describe the Hamiltonian Hg of the ferrimagnetic spin
system under the external static magnetic-field H, as

N/2 N/2
Hs =1 > {J1(ST) o+ S1y Sih) + 20255 55} — heo{ D85+ 5.}
<l1m> l m
N/2 N/2

—nE{ (8507 + (8502 (2.1)

l

with Slil =57, £145}, and SQiszQ‘”m +45y,., where §1l is the spin operator of magnitude S; at the up-spin site [,
ggm is the spin operator of magnitude S at the down-spin site m, and w, is the Zeeman frequency w,=+vH, with
the magnetomechanical ratio . In the above Hamiltonian Hs, hJ; and hJy; are the exchange energies, K is the
anisotropy energy, N is the total number of spins and the summation Z(l, m) is taken over all nearest-neighbor pairs.
We assume S; > S3. As done by Kubo [9] for an anti-ferromagnetic spin system, the two kinds of the creation and
annihilation operators for the spin deviation are introduced. The spin operator §1l at the up-spin site [ is expressed
as

Sfiz 281 prayg, ﬁ:\/QSla;rpl, Sfl:Sl—ajal, (2.2)

with the Bose operators a; and a} of Holstein and Primakoff [6], where the operator p; is defined by

T 1/2 1/2
a; ap ny ny t
b 25, 251> 15, ’ (e =ag ) (2:3)
The spin operator ggm at the down-spin site m is expressed as
S =1/282b8, pm S = /252 P b S5 =—S2+ b, by, (2.4)

with the Bose operators b, and bin of Holstein and Primakoff [6], where the operator p,, is defined by

1/2
D = 1_binbm 1/2: 1_n_m /: _n_m_...
m 2.5, 2.5, 45 '

The Bose operators a;r and a; are the creation and annihilation operators of spin deviation at the up-spin site [,

respectively, and the Bose operators bl and b,, are the creation and annihilation operators of spin deviation at the
down-spin site m, respectively. These Bose operators satisfy the commutation relations

lar, al,] =6, (b, b1 ] = G, (2.6)

while the other commutators vanish. The Fourier transformations for the Bose operators ay and bm are performed as
a Qg ex TR-T), a apexpletr-ry), (a
l N - k l k N l 1 Y l

9 . 2 7
by = ~ Xk:bk exp(i k-7m), by = N %:bm exp(—ik-7m), (2.7b)
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where the transformed operators a; and by are the Bose operators and satisfy the commutation relations
[Elk, @L,] = Opis, [Bk, BL,] = Opir, (2.8)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “~”
unless the meaning is confusing. By substituting (2.2) and (2.4) into Hamiltonian Hs given by (2.1), by expanding it in
accordance with (2.3) and (2.5), and by performing the Fourier transformations (2.7a) and (2.7b), the Hamiltonian Hsg
given by (2.1) for the ferrimagnetic spin system can be divided as Hs = Hgso + Hs1 with the free spin-wave Hamiltonian
‘Hso, which is derived in Appendix A in the wave-number representation and is expressed as

Hso=235']12{%\/3132(%%4-@25) (¢ S+ w1+ hs) afax + (CS1 + ko — h.) blbx }
%

—2hJy NS1So —hw,N (S1 — S9)/2—h KN (S? +52)/2, (2.9)

where Hg; is parts of the higher-order in the spin-wave approximation, represents the interaction among the spin-waves
and is given by (A.5) in the wave-number representation. Here, ng, ¢, h., k1 and ko are defined by

1 R Jo Wy v H,
i k-&), == h, = = , 2.10
z zg:exp(z J) C J1 22J1 22J1 ( a)
_K(251—1) _K(QSQ_].)
K1 = PR Ko = A (2.10Db)

where & denotes the vectors to the nearest-neighbour site from each site and z is the number of the vectors.
In order to diagonalize the free spin-wave Hamiltonian Hgg given by (2.9), the operators ay, aL, br, and bl are
transformed according to Refs. [9] and [11], as

ay = oy cosh 8, — 6}; sinh 6 , b = — az sinh 0y, + By cosh 6y , (2.11)

and their Hermite conjugates, where the operators «y, ozL, Bk, and B,i are the Bose operators and satisfy the commu-
tation relations

[, ol ] = Ok, [Br, BL 1= O, (2.12)

while the other commutators vanish. Taking the choice of 6 as (A.7b), which leads to

sinh 20, = 20K/ 3132/ {Hl + Ko + C: (Sl + 52)}2 — 477]% 515, (2.13&)
cosh 20, = {Hl + Ko + C: (Sl =+ SQ)}/ {Kl + Ko + C (Sl =+ SQ)}2 — 4’17]3 5152, (2.13b)

the free spin-wave Hamiltonian Hgg given by (A.6c) takes the diagonal form
1
Hsgo = FLZ {5;r ozlozk +e€;, ﬁ};ﬁk + 3 (ez + e,;)} —zh JIN{Kk1+ K2+ ((S1+52)}/2
k

—2hJy NS1So —hw,N (S1 — S9)/2—h KN (S? +52)/2, (2.14)

+ . . .
where he;, - are the free spin-wave energies given by

FL€% = ZFLJl{\/{Kl + Ko +C:(Sl +Sg)}2 —477]% 5155 + {I{l — K9 —C(Sl — 52) +2hz}}. (2.15)

If 51 =152, Hso and heki coincide with, respectively, the free spin-wave Hamiltonian and the free spin-wave energies of
the anti-ferromagnetic spin system [39, 40, 41].

We next consider the interaction between the ferrimagnetic spin system and phonon reservoir. We assume that
each spin interacts only with the reservoir field at the same site as the spin, and thus neglect the spin-reservoir
interactions among the different sites. We also assume that the phonon reservoir is composed of many phonon which
are represented by the Bose operators Rj,, and R, of mode v at sites [ and m, respectively, and their Hermite

conjugates. We perform the Fourier transformatlons for the phonon operators R}, and RY,, at the up-spin sites [ and
down-spin sites m separately, as

a 2 Da - Da 7 a S
Ry =~ Ek Ry, exp(—ik-1), Ry, = & Zz Ry, exp(ik-17), (2.16a)
2 = 2 L7
Rl;rw = N Ek Z Xp m)v RIIZ}V = N Em Rl;ny eXp(— ? k'?"m), (216b)
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and their Hermite conjugates, where the transformed operators R, R? and their Hermite conjugates are the Bose
operators and satisfy the commutation relations

(R}, Ryl ] = Okwr G, [RY,, Ry, ] = b, (2.17)
while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “~”
unless the meaning is confusing. The interaction Hamiltonian Hsg between the spin system and phonon reservoir is
taken as

h — pa * —
HSR = — 5{ Z (QTV Si‘? RlaT + giv Sll Rl ) + Z (gll/ S;_m Rl:nu + glu SQm Rl:lu)}
lLv m,v
~ 0 {3 02 SH R R+ Y g S R B (2.18a)
lLv m, v

h N %
- 5 Z { V 2 Sl (glu akRZi + g1v aLRzu) + 2 SQ (gll/ bLRzu + 91v kalef/)} +
k,v

2
—hy g { (81— 5 D alaw) R R, + Z bl by — So)RU R Y 4 (2.18b)
kl

where g1, and g9, are the coupling constants between the spin and the phonon of mode v. In the derivation of (2.18b),
we have substituted (2.2) and (2.4) into (2.18a) and have expanded it according to (2.3) and (2.5). In (2.18b), the first
-+” denotes the higher-order parts of the first term of (2.18a) in the spin-wave approximation, and the second - --”
denotes the off-diagonal parts in the Fourier transformation of the second term of (2.18a). The above spin-phonon
interaction Hamiltonian Hgg reflects the energy transfer between the spin system and phonon reservoir, and is different
from the one taken in Refs. [39, 40], because the spin-phonon interaction taken in Refs. [39, 40] does not reflect the
energy transfer between the spin system and phonon reservoir at the sites m of “down” spins.

In the spin-phonon interaction Hgg given by (2.18), we assume that same as the x and y components of the spin,
the z component of the spin is coupled only with the phonon operators of the same wave-number as the spin. We also
assume that the thermal equilibrium value of the phonon number of the wave number & at the up-spin sites [ coincides
with that of the wave number k at the down-spin sites m in the phonon reservoir, and put

Zgzu<1RIRZIR%V|pR> = Zgzu<1R|RZLRzu|PR> = Zg2u<1R|RLVRkV|PR>» (2.19)

“

with the Bose operators Ry, and R;rw, where (1g]---|pr) =trg - - - pr is the notaion of thermo-field dynamics, and py is
the normalized, time-independent density operator for the phonon reservoir with the Hamiltonian Hg, and is given by

pr = exp(— BHg)/{1z| exp(— B Hg) |1z) = exp(— B Hg)/ trg exp(— 8 Hz), (2.20)

which is the thermal equilibrium density operator at temperature T'= (kg3)~!. Here, notation trg denotes the trace
operation in the space of the phonon reservoir. We do not specify the Hamiltonian Hg of the phonon reservoir explicitly.
For the later convenience, we renormalize the free spin-wave Hamiltonian Hgg, the free spin-wave energies ﬁeki and
the spin-phonon interaction Hgg, as follows

1
Heo=hY {e; afar + e B+ 5 (e +e,;)} 2R JiN (81 + ko + C (St + S2))/ 2
k

—2h Ja NS Sy — hw.N (S1 — S2)/2— h KN (S +52)/2 =1 (81— S2) > _ g2u (1a| R}, Riw|pw), (2.21)
k,v

hg%:zhjl{ {K1+K2+C(51+52)} 477k5152i{;‘€1—Iig—C(Sl—SQ)—FQhZ}}
+ thz,, (1| R}, Riw|pr), (2.22)

Hep = — h/\/_ > gt (VSrarRy + V/S2 bR + g1 (VS al Ry, + /S2 bLRE,) }
k,v

— 1Y g2, {(S1 — afar) (R Re, — (1| R RE, [os)) + (bhbe — S2) (R R, — (1a|RYRE, s)) ), (2.23)
k,v

where we have ignored the higher-order parts in the spin-wave approximation, the off-diagonal parts and the wave-
number mixing in Hsz. Hereafter, we use Hgo, heki and Hgg given by (2.21) — (2.23), respectively, for the free spin-
wave Hamiltonian, the free spin-wave energies and the spin-phonon interaction. We besides assume that the thermal

equilibrium values of the phonon operators vanish, i.e., <1R|Ra(b)|pR) <1R|Ra(b)T|pR> =0. Then, we have

(1a|Hsrlpr) = 0, (1a|Hslpr) = 0, [Hsp = (Hsn — Hiz) /1], (2.24)
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where Hgg are the renormalized hat-Hamiltonian defined by Hsg = (Hsn — Higz)/h [25]. The renormalized free spin-
wave energies hef given by (2.22) include not only the free sin-wave energies given by (2.15) but also the thermal
equilibrium values of the phonon number, which depend on temperature 7' in general. We assume that the phonon
operators for each wave number and each mode are mutually independent and assume that

(1alRE, (1) RE, |or) = (La| Ry (DR |pr) = (1a|RY, (t)RY, |or) = (1| Ry, ()R} pr) = 0, (2.25a)
(1| RS, ()R, |pr) = (La| R (O RYT |on) = (1a|RY, ()RY, o) = (1r| BT (H)RY |or) = 0, (2.25b)

with the Heisenberg operators Rzl(,b)( t)= eXp(zHRt) (b) L exp(— z"):{Rt), Rzl(jb) (t)= exp(z'HRt) )exp( iﬂRt), and their
Hermite conjugates, which are the Heisenberg operators in the space of the phonon reserv01r We also assume that
the phonon operators at the up-spin sites [ are independent of the phonon operators at the down-spin sites m, e.g.,
(1r|RE, (H)R}, | pr) = <1R|R2i(t)R2V|pR) =0. We besides assume that the correlation function for the phonon operator
with the wave number k& at the up-spin sites [ coincides with the correlation function for the phonon operator with
the wave number k at the down-spin sites m, and put

Z|91v|2<1R|RZZ( VR |pr) = Z|91V| 1R|RZJ,[, R}, |pr) = Zlglu| 1R|R (O Riy|pr), (2.26a)
> 19w (1| BE, () Ry | on) = Z|gly| (1a| R}, (t) Ryl | ow) = Z|glu| (1| Riw () RL | pm), (2.26b)
> g3, (| A(RL () m(t))A(RziR )om) = Zggu 1R|A<RZL< t) Ry, () AR, RY,) | pw)

= 93, (1n|A(RL, () Rio (£)) A(RL, Rio ) pn), (2.26¢)

where we have put, for example, as A(Rly(t)Rkl,(t)) zR};V(t)Rkl,(t) - <1R|R};,,Rky|pa> and A(R;VR;W) :R};VR;W -
(1a| R} Ry |pn). As done in Refs. [39, 40, 41], we assume that the phonon correlation function given by (2.26¢) is real.
In Appendix B, we formulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon interaction
(2.23) taken to reflect the energy transfer between the spin system and phonon reservoir.

In the last of this section, we check the ground state of the ferrimagnetic spin system. In the lowest spin-wave
approximation, the renormalized Hamiltonian Hso of the spin system is given by (2.21), and can be rewritten by
substituting the renormalized free spin-wave energies hef given by (2.22) into it, as

Hso = Zth{Kl +/€2+C(51 —I—SQ)}Z{\/l —tanh2(29k) — 1} —zhJy NS1S2 —hKN(S%—l—S%)/Q

—hw,N (81 — S, /2+7LZ{ek afar + e BB} — 0 (S1—S2) " gau (1a|RE, Riwlpr). (2.27)

k,v

with tanh 20y, = 21,\/S152 /{k1 + k2 + ¢ (S1 + S2)} given by (A.7b). Then, the ground state energy Fg, of the spin
system in the lowest spin-wave approximation is given by

ES) = —2hJy NS Sy —h KN (S?+53)/2 —hw,N (51 —S2)/2—h(S; — S9) Zgzy (1a| R} Riy| o)
k,v

+2hJi{r 4 Ra+C(S1+92)} > {y/1 — tanh®(20;) — 1}, (2.28)
k

which is smaller than the energy —z hJoNS1So —h KN(S? +52)/2 —hw,N (S1 — S2)/ 2 of the ferrimagnetic ordered
state in which the spins at the up-spin sites [ are in the up-direction and the spins at the down-spin sites m are in the
down-direction, corresponding to the Neel ordered state for anti-ferromagnetic spin systems [50], because the fourth

and fifth terms of ES, given by (2.28) are negative according to S; > S and { 1 — tanh?®(26;) —1} <0. Thus, the
ground state of the ferrimagnetic spin system in the lowest spin-wave approximation is lower than the ferrimagnetic
ordered state. The modes of free spin-wave dispersions €; and €, given by (2.15), have the ferromagnetic character
and anti-ferromagnetic character, respectively, in the meaning that the modes of dispersions e}l‘ and ¢, decrease and
increase the magnetization of the ground state, respectively. In the case of an one-dimensional ferrimagnetic system
with the isotropic exchange interaction and without anisotropic energy, i.e., (=1, K =0, under no external static
field, the free spin-wave dispersions eki have the forms

i =21 {V(S1 +52)2 — 481830082k F (S1 — S2)} £ 1Y go (1a| R, Riw|ps),

4818, ., 12
=2J1(S1 — Sg){ (1 + ﬁ sin?k  F 1} £ gou (1| R], Riwlpr), (2.29)
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for the case of a regular-interval ranked spin chain for which we have z=2 and n; =cos k. Considering that in the
low temperature llimit T—0, 2>, gg,,<1R|R£VRk,,|pR> — 0, the free spin-wave dispersions ef behave in the small
wave-number limit £k — 0, as

L 41155,
€6 N —
Si— S,

4J15152

]{)2, EEW4J1(51—SQ) W ,

(k — 0). (2.30)

Thus, in the ferromagnetic mode of dispersion e;, there is no energy gap between the ground state and excited state
in the small wave-number limit £ — 0, and in the anti-ferromagnetic mode of dispersion ¢, , there is the energy gap
4h J1(S1 — S2) between the ground state and excited state in the limit k£ — 0.

3 Resonance absorption and transverse magnetization

In this section, we derive forms of the transverse magnetic susceptibility, the expectation value of the transverse
magnetization and its amplitude for the ferrimagnetic spin system interacting with the phonon reservoir, by employing
the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD) formulated in
Appendix B. The TCLE method of linear response was formulated in terms of the NETFD in Refs. [23, 24, 25], and
it was surveyed in Appendix A of Ref. [40]. We consider the case that the external driving magnetic field H ;(t) at
site j is a transversely rotating classical field :

ﬁj(t) = (Hjcoswt, —Hjsinwt, 0), (Hf = Hj; j=1,m), (3.1)

and take the interaction Heq(t) of the spin system with the external driving field as
t)=— fwz Sy - Hy(t) = - —MZ{S’LH )+ S5 Hf (1)},
= {ZHl {Sexpliwt) + S, exp(—iwt)} + ZH A5 exp(iwt) + S, exp(— iwt)}},
= 7{\/251 zl:Hl {ajexp(iwt) + a}L exp(—iwt)}
+1/25; ZHm{bIn exp(iwt) + by, exp(—z’wt)}} +-- (3.2)

with Hji(t) = H}(t) +iHJ(t) = Hjexp(Fiwt), where we have performed the transformations (2.2) and (2.4) and
the expansions (2.3) and (2.5). Here, “ --” denotes the higher-order parts in the spin-wave approximation, and we
neglect the higher-order parts in the following. By performing the Fourier transformations (2.7a) and (2.7b), the above
interaction Heq(t) can be rewritten in the wave-number representation as

Hed(t)z—%z:{\/7ak+\/S_2b)erszwt (\/_ak+\/5'72bk)erXp—zwt)} (3.3)
k

where Hy, is the Fourier transformation of H; [= H HE

2 - = 2 o .
H; = N ZHk exp(ik-7}), Hy = N ZHj exp(—ik-7j), (=1, m). (3.4)
k J

Hereafter, we mainly use the Fourier transformed variables and we omit “~” unless the meaning is confusing. When the
external driving magnetic field H;(t) is uniform in space, i.e., H; = H, we have Hj = Ho 0o and Ho=Hj=+/N/2H,
and the form of the interaction Heq(t) becomes

Hea(t) = —7 {(\/—ao—k\/S—ng) exp(iwt) (\/S_1a$+\/5_2b0) exp(—iwt)}. (3.5)

The transverse magnetic susceptibility Xs; s (w) for the ferrimagnetic spin system specified in Section 2, is given
by employing the TCLE method formulated in terms of the NETFD [23, 24, 25, 40], as

Xst sz / dt (1| yh S;F U(t) exp._ —z/ dTHsl( )}
x i (v/2)(Sy = 5o >+¢Lﬂ> )} exp(iwt), (3.6)
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in the the second-order approximation for the spin-phonon interaction, where U(¢) and ’}:[sl(t) are defined by (B.21)
and (B.22), respectively, and |po) is defined by |po) = (1a|pre) for pre given by (B.3). Here, S are the Fourier
transformations of the sin operators S, i.e

2 — . o . 2 o :
Sjj-[ = ¥ ZS; exp(Fik-7j), S,f = ¥ ZSJi exp(tik-7j), (j=1,m), (3.7)
k J

with Sff :>Ski, i.e., “7” is omitted hereafter unless the meaning is confusing. The above transverse susceptibility
Xsits: (w) is valid even if the spin system is interacting with a non-quickly damped phonon-reservoir. Here, the

interference thermal state |D( )[ ]) represents the effects of the memory and initial correlation for the spin system

and phonon reservoir, and can be written as

) —i—PyOOTTs 1sn exp{—i Ho 7} Hsg exp{i Ho(T — s
|D5k[w]>\/§/0 d /0 d {<1R|HSR p{—i Ho 7} Hsr exp{i Ho( )}

x (V/S1 (a], = dx) + /S (b — b)) po)|ow) expliw s)
— (1a|Hsn exp{—i Ho 5} (v/S1 (a} — ax) + /S (b — b))

x exp{i Ho-(s — 7)}Hsz|po)|pr) exp(iws)}, (3.8)
with Ho="Hso + Hgr, where we have neglected the higher-order parts in the spin-wave approximation. The above
interference thermal state |D(52;Z) [w]) is calculated by substituting (2.23) into (3.8) in Appendix C, can be expressed as
(C.2) using the correlation functions ¢}~ (€), ¢, *(€) and ¢*(e) defined by (B.25a) — (B.25¢), and can be rewritten as

IDZ L)) = (v/V2){Cia| DY [w]) + Cial D ]}, (3.9)
DY w]) = {(af — ax)lpo) (cosh 26y, + 1) Sy (@] (w) — @ ()
+ (af, — ax)|po) (cosh 205 — 1) Sa (B, (w) — @ (¢])))
— (B — B})lpo) sinh 20, {S1(®5 (w) — @ () + 82 (@5, (w) — @ ()}
+ Bk — T)|p0> sinh 26}, cosh 26, (U, (w + €, ) — \I/k(ek +e€))
+ (al = ag)|po) (cosh? 205 + 1) (U (w — €) — U (0))
+ (apBr + LBl — arfy — aLB) sinh 26,

X {(Bx — B})|po) sinh 205, (Tp(w + €7 ) — (e + )
— (aL — ag)|po) cosh 20y (¥ (w — e;;) - \I/k(o))}}/{2 (w— e;)}, (3.10)

D3 [w]) = {(af, — é&)po) sinh 20, {1 (B (w) — B (= ) + Sa (@ () — B (— )}
— (Br = B})lpo) (cosh 20, — 1) S1 (@} (w) — T (—€;,))
— (B = B)Ipo) (cosh 26 + 1) S5 (D}, () — D (—€;,))
+ (al — ag)|po) sinh 26y, cosh 20, (Ug(w — &) — Ug(— e — €;))
+ (B — B})|po) (cosh® 20y, + 1) (T (w + € ) — Tk (0))
'+(akﬁk4-akﬁk—-akﬁk—-akﬁk)ﬁnhQQk

x {(Br — ﬂk)|p0) cosh 20y, (¥ (w + €, ) — ¥1(0))
— (a}i — ag)|po) sinh 20y, (¥ (w — ek) U (— Ek —€)) }}/{2 (wHe)} (3.11)

where we have defined |D(2 [w]) and |D,(€22) [w]) by the above equations, and have put as

Gr1 = /Sy cosh 0, — /S5 sinh 0y, G2 = \/Ss cosh ), — +/S1 sinh 6. (3.12)

Here, @f(e) are defined by (B.42) and (B.43), and Wx(¢) is defined by
Vi (€) = ¢ (€) =/ dry " g5, (I A(RL, (7) Reu (7)) AR, Rio ) |pa) exp(ie 7). (3.13)
0 v

with Uy (el + €, ) =Ty and ¥y (0) =¥, which are defined by (B.44) and (B.54). The lowest-order part X(S()*)S* (w)
k "~k

of the transverse magnetic susceptibility X5t s, (w) given by (3.6) in the sin-wave approximation, takes the following
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forms

X (@) =" /OOO dt (1s|{v/Sy ax + V/S2 b} U () expliwt) {i {V/5 (a}, — ax)

SQ (bk - 62)}|p0> + le |D](€21) [w]) + Gk2|D](€22) [w]>}, (3.14&)
= %YQ OOO dt (1s{{Griax(t) + Gr2 ﬂy(t)} exp(iwt){i {le.(az — ay)

+ Grz(Bx — B})}po) + Gua DY [w]) + Gra| DR [w]) }, (3.14b)

where we have used the axioms (B.26), the Heisenberg operators (B.27a), (B.27b) and their tilde conjugates. According
to the transformations (B.33a), (B.33b), (B.37a), (B.37b) and their tilde conjugates, the thermal-state conditions
(B.36) and their tilde conjugates, the relations (B.34a) and (B.34b), the axioms (B.7) and their tilde conjugates, the
forms (B.57a) and (B.57b) of the quasi-particle operators, we have

(Ls| o (t) = Zg (8) /2 (1| M (t) = Z£(0)/? exp{(—i 6 — Ty ) t H(1s| A
Lo ne eXp{(—ief —Tip)th —exp{(ie, —T;_)t}

+ Z0(0)/2A; {= k(Ek +e:)}+rk+ E(sz A

= exp{(—iey —Try)t }{1s| ay
exp{(—ief — i)t} —exp{(ie; —T; )t}
i(ef +ep)+Thy — T3

(1s| B () = 2 ()% (15| €(1) = Z‘% >1/2 exp{(ie; —Th )t }1s| &

exp{(—ief —Te)t} —exp{(ieg — 5 )1}

<]-S| gk )

+AL (151 8], (3.150)

+ Z2(0)12A s Ak
K (0)77 Ay i +6) + oy — 7 (1s[Ax
=exp{(ie, —I'; )t}<1s|5};
_ e )t) — Ty )t
A exp{(—ief —Tyy)t} —exp{(ic, —T; )t} (1s| v (3.15b)

(ek +e )+ Dy — 15

By virtue of the commutation relations (B.5), the axioms (B.7) and their tilde conjugates, we obtain

X1 () = (1s] ap | DY [w]) = X1 (@) +i X (@),
= {51 (cosh 26 + 1) {®} (w) — @ ()} + S2 (cosh 26;, — 1) {®; (w) — D (¢ )}
+ (cosh? 20, + 1) { Uy (w — € ) — T} — sinh® 20, { Uy (w + € ) — Ui} } /{2 (w — )}, (3.16a)
Xip(w) = (15| ag |D3 [w]) = Xih(w)' +i Xi(w)",
= { sinh 20), {S1(®} (w) — O} (— €)) + S2 (V) (w) — @1 (—€))}
+ sinh 20, cosh 260, {(Vy(w — ¢ ) — WF) — (Wp(w + ) — U} /{2 (w + )}, (3.16D)

X (@) = (15 BLID w]) = X (@) +i X (@),
— {sinh 20 {S1(8F () — D} () + 5 (B () — By ()}
+ sinh 20, cosh 26 {(Vy(w — ) — UR) — (Vi (w + €, ) — Vi) /{2 (w — )}, (3.17a)
X(w) = (1s] B IDF w]) = Xh(@)' +i Xj5(w)”,
= {51 (cosh 26, — 1) () (w) — @} (—€;)) + Sz (cosh 20y, + 1) (@}, (w) — P; (—€;,))
— (cosh? 26, + 1) (U (w + € ) — ¥9) + sinh? 20, (Wi (w — ) — ¥F) 32w+ e;)} (3.17b)

where we have defined X2 (w), X5 (w), X 51 (w) and X 52 (w), which correspond to the interference terms and represent

the effects of the memory and initial correlation for the spin system and phonon reservoir. Here, X kl((’;))( )’ and
ng(ﬁg)) (w)” are the real and imaginary parts of ng(ﬁg)) (w), respectively. By substituting (3.15a) and (3.15b) into
(3.14b), and by performing the integration in (3.14b) considering that T, are positive for positive ¢ according to
(0)

(B.60), the transverse susceptibility x stg- (w) in the lowest spin-wave approximation can be expressed as
k Yk

X(O+) ( ) 7'L’y2/2 {Gm X;ioi)l( )+Gk2 z(cof( )+Gk1Gk2 ngoi)g(w)}a (3~18)
Stsy
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(0)1 —i— X (w) —Af- lel( )
b ) = ) Ty T e — D) — T it ) T} (3190)
0)2 i~ Xjh(w) — Apy Xp(w)
R e B D (T e o e B v (3190)
3, —Xpipw) — X (w) —Ap i {i + Xg (W)} + A {i — X))
b ) = T Ty T it e) o T fiw—eh) T i@t ) =5} (8:19¢)
which lead to the real parts X,(gn(w)’ and the imaginary parts of X,(coi (w)" of X(O) (w) (n=1,2,3), as
Oy = KB Ty = (14 Xy (@) = f ~T},)
(w—e =T, )2+ (Féﬁ)2
+ {{A4 X @) +A” X (@) H(w - L+ e +T{0) ~ Th Ty}
+{AL_ X (W) = AL X (@) H(w - F” e+ (Wt +F§é7 F2+}}
[{H{w—ef =TY)% + (T)0)? }{(w+6k + )%+ (o)} (3.20a)
02y = Xi2@) T+ (1~ X)) + 6 + T} )
(w+e, +T0 )2+ (T, )2
+ H{AL X W) = A X (W) Hw —ef =T )(w+e +T) — T T}
+ {AL Xk (w )”+Ak+Xk2( wHw - =T )l + (+e +T7 )0
J{{w = =T + (D )*Hw + e +T52)% + (D)} (3.20b)
(O = Kol) Thy ~ X)W =6 ~T) | Xp()'Th X @)l 6 +T1)
(w—ef =T7)2+ (T, )? (w +e, 1)+ ()2
+ {{A X0 (W) = AL (1 4+ X7 (w0)) H(w — i) (w6 +T7) =T, T}
+{A2+(1+X1?1(W)”)+A Xkl( ) }{(W_ek ) oo T (Wt e, +F” +}}
AL X ) = AL_(1 = X5 (@) H(w — ¢ =T )W+ e +T7) = Tj i}
— {8, (1= X)) + AY_ X5 w) Hw — ¢ — F” e+ (wt e +F§£7 F2+}}
JHw =6 =Ti)? + )P Hw + 6 + T + (D)}, (3.20c)
ngl(w)// _ Xp(w) (w - 5; =T+ (T + X (W),
(w—ef =TY )2+ ()2
+ {{AL- X @) = ALXG @) Hw —f =T + e +T70) = Tj, T}
—{AL X @) + ALXP @) H(w —ef =TT+ (e + r;;, H}}
JHw =6 =Ti)? + ) Hw + 6 + T2+ (T0)*, (3.21a)
02y = K@) @+ & +TH) = (1~ Xiglw) )T
(w6 +T5)? + (T},_)?
+{{A;9+XI(:2(W)”+ i X (W) Hw—e =Ty )(w+e +T7_) —T}, Th_}
- {A%+X1?2(W), - ” sz( )" Hiw - 5; - Z+) _+ (W + Ek + F” k+}}
JHw—¢f - F” 22+ ) Hw + 6 + 102+ (D)2, (3.21b)
03y = KB =6 ~Tf) + Xp() Ty, | X @)t e,; ) + X (@) T
(w—e —TP)2+ T,)? (wHe, +T7 )2+ (T,_)2
+ {{AL (T + X7 (w)") + AL XR (w0) H(w - Ek Ty ) w+e +T%) T, Ty}
—{AL X (@) = AL (1 + X (@) ) H(w — k/+) i +(w+6;+F” ) +}
— AL (1= Xy (w )">+A" X;i( ) Hlw - L+ e + ) =T, Ty}
—{AL X W) = AT (1= X (@) H(w— e — F” )F27+(w+6;+F%7 F%+}}
J{H{lw—ef =T})? ( D Hw+ e + 1)+ )*}}- (3.21c)
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Then, the real part X(O) (w)" and imaginary part X(O) (w)" of the transverse susceptibility X(O) (w) in the lowest

stFsy stFsy R
spin-wave approximation are given by
0 0)1 0)2 3
X(S,j)s,;( w)' = (2 /2{CH XL @) + Gl X\ (@) + CraGra Xi L (@), (3.22a)
o 3
Xl @) = (7 /2{Gh i @) + Gla i (@) + GGz i (@)} (3.22b)

Since the second terms of X,(C(zl(w) and X,(C(f (w) given by (3.19a) and (3.19b), and the third term of x,(cof (w) given by

(3.19¢), can be considered to give small contribution in the resonance region, the real part X(Sol 5
k Yk

part X(Sl ,( )" of the transverse susceptibility in the lowest spin-wave approximation take approximately the forms

(w)" and imaginary

VO (o MBI Tl SR e T | IO TR G ST
S+S 2 (w Iw ) (F;€+)2 (w + Ek Iw )2 + (F;c—)2 ) .
O, (o= 1R T SR (0 ) I (ot TSI Ty
Sy Sy 2 (w—ek ry ) +(F§€+)2 (wHe, +T7_ )2+ (T_)2 ’ ’
in the resonance region, where we have put as
E¢(w) = E¢(w) +iZ¢ (W) = G2 -{i 4+ X (W)} + GriGra X5 (W), (3.24a)
I (W) = T (w) + i 110 (w)" = G2,-{— i + X[ (@)} + GriGra X (w), (3.24b)

with the real parts Z¢ (w)’, Hf (w)" and the imaginary parts Z¢ (w)”, Hﬁ (w)" of E2(w), Hﬁ (w).
The power loss of the transversely rotating magnetic-field given by (3.1) is given by FW|Hk|2wXS;r So (w)" for

the ferrimagnetic spin system with the wave-number & [24]. When the ferrimagnetic system with the wave-number
k is in the periodic motion with the frequency w, the power absorption of the ferrimagnetic system is given by
Fry| Hg 2wy SEs: (w)”. Hereafter, the power absorption of the ferrimagnetic system with the wave-number %k in the

periodic motion with the frequency w is referred as “Py(w)”, i.e.,
Pk(w) = h’Y'HlewXS;rSk*(W)”a (3.25)
which is expressed in the lowest spin-wave approximation as

PO (w) = hy|Hi wx () @) (3.26)

The line shape of the power absorption P,E )( ) has two peaks at frequencies w 2 ek +IY 4 — € — I'//_ according to the
(0)

Stsy
the lowest spin—wave approximation. For positive frequency w (>0), the resonance frequency wf, and the peak-height

approximate form (3.23b) of the imaginary part x (w)” in the resonance region of the transverse susceptibility in

(height of peak) HF, in the resonance region of the power absorption P( )( ) are approximately given by
wr = 6 + Ty, (3.27)
Hgy, = h? |H|* iy 27 (wrge)”' /(2 Thp), (3.28)

with T, | and T}/, given by (B.59a) and (B.59b), according to (3.23b). In order to obtain the approximate formula of

the line half-width Awg, in the resonance region of the power absorption P}go) (w), we put as Awg, /2=z1T, , for the
first-step approximation of Awf,, which satisfies

T 2@y,

- l]a)th 2 ka r—a( Pk)//gh

2 41’\/ —k wR :% (W ) + T1= '_‘k (O‘)Rk)l} (329)

where we have approximated Zf (wg, + 21T, ) with Z¢(wg,) in the right-hand side of the above equation. Equation
(3.29) can be rewritten as

{Wnpk Er (ng) —2 F;H:% (ng)/} x% —2 {WRPk :g(wnk) + Fk+:k (Wak) } T1— ng Er (ng)” =0. (3.30)

By obtaining the positive solution of the above second-order equation for xp, the first-step approximation of the
half-width Awg, can be derived as

2m1 T, =2 2T, {wy E7 (wir) + Thy E7 (wre)” + {(win) 2{ER (wr))? + (ER (win))?}

k
= 1/2 —
+ (D )* (B (wr) )} H{wie E0 (whe)” — 2%, 5 (i)'} (3.31)
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Then, by putting as Awf, /2 =2aT), +» the approximate formula of the line half-width Aw},. in the resonance region of

the power absorption P}go) (w), can be derived from the equation

w —a ~ a)k.+:trk —a
P SRR S S (B + D) + 2 SR + ), (3.82)

which can be rewritten as
{wie BR (wig)"” — 213, ER (why, + 2117} z? -2 {whn 8 (Wi, + 21Ty )
+ Dy Ef (g + 210 )" o — wig {257 (wip + 2115, )” — ER (wig)"”} 2 0. (3.33)

By obtaining the positive solution of the above second-order equation for x, the approximate formula of the line
half-width Awf, in the resonance region of the power absorption P}go) (w) can be derived as

Awgy, =2 2T, {wip B0 ( Wnk + 21T ) + Ty R (wpg + 2115 )”
+ {(Wh)? G (wpge +21T5)")% + (Th)? (B7 (wpye +21T54)")?
+ 2wiy, E7 (wi) "{T ey B0 (wip + 211004 ) + wig B¢ (wig + 210%,)"}
—Q —a —a 1/2
— 2wy Ty BR (why, + 21004 ) BR (wiy, + 21T%4)" — (whi) (En (prk),,)g} }
/{Wapk E?(ng) — 2Ty +:g (Wﬂk + $1F2+),}~ (3.34)

We consider the dynamics of the transverse magnetization with the wave-number & in the stationary state of the
ferrimagnetic spin system. In the stationay state, (1s|AS;|p1(t)) have the form

(shSE o1 (D) = (2/7) X s (@) Hiexp(— iwt), (t — o0), (3.35)

with |p1(t)) = (1z|pr1(t)) = |trrper1()), where pri(t) is the first-order part of the density operator pr(t) for the total
system in powers of the external driving magnetic field. The expectation value M} (t) of the z-component of the
magnetization with the wave-number k, can be expressed as

Mii(t) = {(1s|hSiT o (1) + (Ls|hSy [pr () }/2 = Re (1s[hS) | pa (1)), (3.36a)
= (2/7) { (Xsl:rsg (w)Hy,)' cos(wt) + (Xsl:rsg (w)Hy,)" sin(w t)}7 (3.36b)
= (/) g s () Hilsinfurt + 6}, (3.360)

where the phase 0 (w) is defined by
sin 6k (w) = (Xs,jsk— (W)Hk),/‘Xs,js; (w)Hyl, cos bp(w) = (Xs,js,; (W)Hk)“/\Xs,js; (w) Hp|. (3.37)

The expectation value M} (t) of the y-component of the magnetization with the wave-number %, can be expressed as

MY(®) = {16057 1p1(8) = (slhSF 1ps () }/(21) = I (1s|S} o (1), (3.3%0)
=(2/7) { (Xsl:rsg (w)Hk)" cos(wt) — (Xsljsk* (w)Hy)' sin(wi)}. (3.38Db)
= (2/7)|Xs,js,: (w)Hpg| cos{wt + d(w)}. (3.38¢)

Thus, the expectation values M (t) and M} (t) of the z-component and y-component of the magnetization with the
wave-number k oscillate with the frequency w and the amplitude Af(w) given by

Al(w) = /) xsrs, @)He = /) Hil [xsrs- @) = @/MIH (g5 @)+ (Xgrs, @)% (339)

which is expressed in the lowest spin-wave approximation as

A0 @) = @IER (g @)+ (G (@) (8.40)

According to the approximate forms (3.23a) and (3.23b) of the real and imaginary parts in the resonance region of the

(0)

transverse susceptibility Xg+ _(w) in the lowest spin-wave approximation, the amplitude Az(o) (w) of the expectation
k

values of the transverse magnetlzation7 which is referred as “the magnetization-amplitude”, has two peaks at frequen-
cies w=ef + 7, —e, —T'}_. Thus, the expectation values M} (t) amd M} (t) of the z-component and y-component

of the magnetization with the wave-number k oscillate with the large amplitude Ab,i(o) (why.) at the resonance frequency
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why, which coincides with the resonance frequency wg, of the power absorption P}go) (w) approximately. For positive fre-
quency w (>0), the resonance frequency wy, and the peak-height (height of peak) Hy, of the magnetization-amplitude

Aﬁ(o)(w) with the wave-number k are approximately given by

)

wgk%eg—l— Z+, (3.
3.42)

~ - - 1/2
Hyj, 2= Ty [Hpo| {(ZF (wri))* + (FR (wri) )}/ Ty (3.

with I}, and I'} given by (B.59a) and (B.59b). These approximate formulas can be derived by substituting (3.23a)
and (3.23b) into (3.40) in the lowest spin-wave approximation. In order to obtain the approximate formula of the line

4
4

half-width Awfl, in the resonance region of the magnetization-amplitude Az(o) (w) with the wave-number k, we put as
Awgy/2=yT, . for the first-step approximation of Awy,., which satisfies

1 ~ |Hk| - 1/2
§H1¥k = hy 2I‘§€ {ER(wh))? + (B (whe))? T,
SRUANENE N (5 N R NG .
IV yi+1 yi+1 ’

where we have approximated Zf (wy, + 11, ) with Z2 (wy,) in the right-hand side of the above equation. Equation

(3.43) gives the positive solution y; = v/3. By putting as Auwy). /2=yl , the approximate formula of the line half-width
Awy, in the resonance region of the magnetization-amplitude, can be derived from the equation

o JHk ¢z 2 L (20 (ut)) Y2 2 oy L { (Eg(wgk + VB ) — Y=g (Wl + VBT, )" 2
7Ty, RRE T y?+1
2 (why, + V3D )" + y ER (why + VBT 2}1/2 (3.44)
Y2 +1 ’ '
which can be rewritten as
{ER(whi))? + Cr (i)} W* + 1) = 4 {(EF (why + V3T + (ER (Wi + V3T (3.45)

By obtaining the positive solution of the above equation for y, the approximate formula of the line half-width Awh,
in the resonance region of the magnetization-amplitude, can be derived as

(Ep(ath + VBT + (2
Ef(wre))? + (E

If the relaxation method is employed [25] in the van Hove limit [42] or in the narrowing limit [43], in which the
correlation time 7, of the phonon reservoir is much less than the relaxation time 7, of the spin system (7. < 7, or
Tc — 0), i.e., the Kubo formula [38] is calculated from the second-order TCL equations with no external driving terms
in this limit, one obtains the transverse susceptibility [25]

(Wnk \/§F;c+)”)2 _ 1}1/2

Wm0 k
Awgy, = 2Fk+{4 ?(ka)//)Q

(3.46)

i o) ' t R B B )
X‘g:sk_(w) = Z/0 dt (1s|vh S} U(t)exph{—z/o dTHsl(T)}’y(Sk = S)|po) expliwt), (3.47)

which coincides with the ones without the interference thermal state |D [ ]) in the transverse susceptibility x StSr (w)

given by (3.6) derived employing the TCLE method. That limit neglects the effects of the memory and initial
correlation for the spin system and phonon reservoir, and is valid for a quickly damped reservoir (the reservoir
correlation time 7, — 0), but not for a non-quickly damped reservoir, because the influence of motion of the phonon
reservoir on the motoin of the spin system is neglected in that limit. The transverse susceptibility Xsts: (w) derived

employing the TCLE method includes the interference thermal state |D( [w]), which represents the effects of the

memory and initial correlation for the spin system and phonon reservoir, i. e., the effects of deviation from the van
Hove limit [42] or the narrowing limit [43], and is valid even if the spin system is interacting with a non-quickly
damped phonon-reservoir in the region valid for the second-order perturbation approximation. The coincidence of
the TCLE method and relaxation method in the second-order approximation for the system-reservoir interaction
[25, 34, 35, 36, 44, 45], means that the interference effects, i.e., the effects of the interference terms or the interference
thermal state in the TCLE method, are the effects of motion of the phonon reservoir which influence the motoin of the
spin system. Therefore, the interference effects are considered to increase the power absorption and magnetization-
amplitude in the resonance region to excite the phonon reservoir for a non-quickly damped reservoir, because the
external driving field excites not only the spin system but also the phonon reservoir for a non-quickly damped reservoir.
These are investigated numerically in the following section.
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4 Numerical investigation

In the present section, we assume a damped phonon-reservoir model and numerically investigate the power absorption
and the magnetization-amplitude (the amplitude of the expectation value of the transverse magnetization) for the
ferrimagnetic system, which is interacting with the phonon reservoir and with the transversely rotating magnetic-field
given by (3.1), under an external static magnetic field in the spin-wave region. We assume that the phonon reservoir
consists of a phonon system coupled directly to the spin system and of a reservoir subsystem coupled to the phonon
system, where the reservoir subsystem (R-subsystem) is damped quickly, as done in Refs. [20, 21, 39, 40, 22, 41].
Then, the correlation functions of the phonon operators can be derived using the relaxation theory for the phonon
system [51, 52, 53], and are assumed to take the forms

> g P(1al B, () Riw or) = g7 n(wnr) expli wae t — yai t), (4.1a)
Z | g1 [*(1a] Rie (t) RE, |pn) = g7 {R(wnk) + 1} exp(— i wnr t — i 1), (4.1b)
> 63, (IRl AR], (1) Riw () ARE, Rie)lor) = > 93, (1l A(R], Riu ) A(R], () Ri (1)) | ow),

= g5 n(wai) {7(wnr) + 1} exp(— 29 ), (4.1c)

with the coupling constants g; and go between the spin and phonon, where wgy and g (> 0) are, respectively, the
characteristic frequency and damping constant of the phonon reservoir. Here, ni(wgy) is given by

n(wrr) = {exp(Bhwar) — 1} 1 = {exp(hwar/(ksT) — 1} L. (4.2)

The phonon correlation function (4.1c) is real as assumed in Section 2. By using the above correlation functions,
@i () defined by (B.42) and (B.43) can be expressed as [39]

O (e) = @ (e) +i D (e)”,

1 —he o0 ) : .
=5{1-ew s T )}/0 dTZV:|91V| (In| Riw (T) Ry, |ow) exp(i € 7),
2 _
g1 —he n(wek) + 1 '
A B 4.
9 { exp kBT)} (6 — war)? + 12, {’Yﬂk—i-z(e ka)}, (4.3)
D, (e) = @5, (e) + i Dy (e)”,
=3{1-ew L)} [ dr Sl AL ()Rl exp(icr),
B 0 >
2 _
g1 —he n(ka) '
“2 U 4.4
2{ exp kBT)} (€ + wrn)? + 72, {rme + i (e + wrr) } (4.4)

where @ ()’ and @i () are, respectively, the real part and imaginary part of ®;f(¢). We also have for ¥y(e) defined
by (3.13), the forms

2vpr + i€
€+ 4y

n(wpp){n(wre) £ 1} 5

(€)= Urle) +iUg(e) = g3 et 20 = g5 n(wrk){A(wrr) + 1} (4.5)

where W, (e)’ and ¥y (e)” are, respectively, the real part and imaginary part of Wy (e). For Wy [=Wk(ef + ¢, )] and
U9 [=W,(0)] defined by (B.44) and (B.54), respectively, we have

29k i (6 +€p)
(€ + e )2 + 4,
Wy = 5, (0) = g3 n(wni) {A(wrr) + 1}/ (27a%)- (4.7)

Uy =) +i W) = Up(ef +¢;) = g5 n(wri) {A(wrr) + 1} (4.6)
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The above expressions given by (4.3) — (4.7) show that @ki(eki)’ is positive for positive ef and that U9 > W,. Then,

the forms of I} |, '/, A}, and A}, given by (B.59a) — (B.59d) can be written as

2 +
, 9131{ —he; )}{7 1 1} ek (cosh 20y, £ 1)
= 1—ex n(wpg) + = £ =
e 4 P TheT () 27 20 (& Fuwm)? +13

2 +
9152{ —hek)}{_ 1 1}7Rk~(cosh29k¢1)
+ 1—ex n(wre) + = F =
4 P kBT ( Rk) 2 + 2 (6% + ka)Q + ’ng
. 93 n(wrp){M(wrk) + 1} {1 N (ef + €5 )? cosh?® 20;, + 42, }
A (6 +e;)? + 43, ’

2 + +

” 9151{ —heg )}{_ 1 1} (€% F wrk)(cosh26;, +1)
= 1—ex n(wre) + = £ =

T P T ) s (& F o) + %,

2 2
g%Sg{l_eXp —hef)}{ ( )+%$1}(ekiiwﬂk)(coshZHk:Fl)

+
4 (€5 £ wrk)? + 73

sinh? 26}, ,

= g5 wne) {1 (war) + 1}

2 + .
, 9131{ —hek)}{f 1 1} ek sinh 26y,
= 1 —exp n(wrg) + = £ =
k+ 4 s ( Rk) 2 2 (ezkt ¥ ka)Q + ,y[%k

2 + .
ngg{ —he; )}{7 1 1} ek Sinh 26
+ 1—ex n(wrg) + = F =
4 P (wne) 2 + 2 (eki +wrk)? + 72,
(i + €5 )? sinh 26, cosh 20,
dye{(ef + )2 + 493}
2 + + :
” 9131{ —he, )}{_ 1 1}(ek F wri ) sinh 26,
= 1-e n(wre) + = £ =
T T )t 5 S Fom)? 15,

- hef B 1 1 (eki =+ wri ) sinh 20,
ke T )}{H(WM) T2 _} (e £wme)? +2,

+ g3 (wae) {(wni) + 1}

+

1 —exp

9%52{
4 2 2
ez —l—e,;
2{(ef +¢;) + 4z}

— g2 A(wnp) {7 (wre) + 1} sinh 26}, cosh 20}, .

(4.8a)

(4.8b)

(4.8¢c)

(4.8d)

In Appendix D, we give the forms of the corresponding interference terms X ) (w) defined by (3.16) and (3.17). We

k1(2)

consider the case that the phonon reservoir consists of a phonon system of lattice vibration, which has the frequency
proportional to the magnitude |k| of the wave number k, and of a reservoir subsystem coupled to the phonon system,
where the reservoir subsystem (R-subsystem) is damped quickly. We assume that the characteristic frequency of the

phonon reservoir is given by

wr = V' |k| + wro,

(4.9)

where wgq is the characteristic frequency of the phonon reservoir with the wave number k£ =0 and is the frequency shift
of the phonon system, which is generated by the motion of the reservoir subsystem coupled to the phonon system. We

also assume for consistency with the assumptions (4.1a) — (4.1c) that

> gov (18| R}, Riw | o) = g2 7u(wi).

Then, the free spin-wave energies ef given by (2.22) can be written as

hef = 27LJ1{\/(/€1 + Ko+ C (51 +52))2 —4772,5152
+ (lﬁ — Ky —C(S1—52) + 2hz)} + % g2 fi(wrk ),

(4.10)

(4.11)

with 7k, ¢, h., k1 and ko defined by (2.10a) and (2.10b). We consider the case that the spin system and phonon
reservoir are in the thermal equilibrium state at the initial time ¢ =0. The initial values n{(0) and nf (0) are derived
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in Appendix E and take the following forms

+ _ Wr N
n(0) = A(e)) + g7 Si(cosh 20y, + 1) {A(war) — (e} )} (6 —wre)” — (o k);

> —(
2 {(e5 —war)? + (7ar)?}?
(6 + war)? — (9mr)?
2{(e; +wnr)? + (rr)?}?
(ef +e,)% — 4 ()
{(ef +e0)? + 4 (me)?}?
(e +wri)® = (9mn)?
2{(e, +wrr)? + (me)?}2
(¢ —wrk)® = (mn)?
2{(e;, —wrk)® + (rr)?}?
(ef + ;)% — 4 ()
{(ef + ) +4(m)?}?
We consider a ferrimagnetic system of one-dimensional infinite spins interacting with the phonon reservoir. For
the case of a regular-interval ranked spin chain, we have

+ gf Sa(cosh 26 — 1) {ﬁ(e:) + n(wrk) + 1}

+ g2 sinh® 20 {7(e]) + 7a(ey ) + 1} (war) {A(wnr) + 1} (4.12a)

ny(0) = 7i(ey ) + g7 S1(cosh 20y, — 1){A(ey, ) + (wnr) + 1}

+ g2 Sz (cosh 205 + 1) {A(wnr) — (ey) }

+ g3 sinh® 20 {n(e}) + naley, ) + 1} A(war) {A(war) + 1} (4.12b)

z=2, ng = cosk, (4.13)

where k is the wave number multiplied by the sublattice constant and is referred to as “the wave number” hereafter.
We perform the numerical calculations for the case of g1/J1 =0.25, go/J1 =0.25, wro/J1 =0.5 and V/J; =0.5. The
damping constant g of the phonon reservoir, which is equal to the inverse of its correlation time 7., is assumed to
be independent of the wave number k and is taken as 4pg/J1 =0.5. The wave-number summation is replaced with the
integral as

2 1 f7
— = — N — 4.14
N; o ) (N = o0), (4.14)

for N — 0o, where the wave-number summation goes over (N/2) wave-numbers. The wave-number summation is
performed by the numerical integration for N — co. In Appendix F, we investigate numerically the region valid for
the lowest spin-wave approximation in the ferrimagnetic system of one-dimensional infinite spins. In Appendix F, the
lowest spin-wave approximation is shown to be valid in the regions of the temperature 7" and anisotropy energy A K
given by kgT'/(hJ1) <1.0 and K/Jy > 1.5, or by ksT'/(RJ1) < 1.5 and K/J; > 2.0, for the spin-magnitudes Sq, S2 > 5/2,
¢ [=J2/J1]=1.0 and w,/J1 = 1.0, in the meaning that n®/(451) [= (n;)/(451)] and n®/(4S2) [= (ns)/(4S2)], which
correspond to the expectation values of the second terms in the expansions given by Egs. (2.3) and (2.5), respectively,
are smaller than about 0.01, where n® [=n%(00)] and n® [=n’(c0)] are, respectively, the expectation values of the
up-spin deviation number and down-spin deviation number in the infinite time limit (t — o0).

We next investigate numerically the power absorption and the amplitude of the expectation values of the transverse
magnetizations, which is referred as “the magnetization-amplitude”, for the ferrimagnetic spin system in the region
valid for the lowest spin-wave approximation, meaning that n®/(4S1) [= (n;)/(4S1)] and n®/(4S2) [= (nm)/(452)],
which correspond to the expectation values of the second terms in the expansions given by Egs. (2.3) and (2.5),

respectively, are smaller than about 0.01. In Fig. 1, the power absorption P]go) (w) given by (3.26) in the lowest spin-
wave approximation, scaled by h273 |Hy|?, are displayed varying the frequency w scaled by J; from 14.5 to 19.5 for the
cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitudes (S, S2) = (3, 5/2), the temperature T
given by kgT'/(hJ;) =1.0 and the anisotropy energy hK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w,/J; =1.0.
In Fig. 2, the magnetization-amplitude A};i(o) (w) given by (3.40) in the lowest spin-wave approximation, scaled by scaled
by fiy|Hg|/J1, are displayed varying the frequency w scaled by J; from 14.5 to 19.5 for the cases of wave numbers
k=0,7/6,7/4,7/3,7/2, and for the spin-magnitudes (S1, S2) = (3, 5/2), the temperature T given by kgT'/(hJ1)=1.0
and the anisotropy energy AK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w./J; =1.0. Figures 1 and 2 show
that the power absorption and magnetization-amplitude have a peak for each wave-number, and that as the wave
number k becomes large, the resonance frequencies become large, the peak-heights (heights of peak) increase and the
line half-widths decrease in the resonance regions. When the external driving magnetic-field is uniform in space, the
power absorption in the stationary state is given by Pj(w) with the wave number k=0 [24]. In Fig. 3, the power
absorption P}go) (w) given by (3.26), scaled by h?+3 |H}|?, are displayed varying the frequency w scaled by J; from 14.0
to 22.0 for the cases of spin-magnitudes (S1,52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2),(5,5/2), and for the wave-
number k=0, the temperature T given by kgT'/(hJ1) =1.0 and the anisotropy energy LK given by K/J; =1.5, with
¢ [=J2/J1]=1.0 and w,/J1 =1.0. In Fig. 4, the magnetization-amplitude Az(o) (w) given by (3.40), scaled by scaled

by A7y |Hy|/J1, are displayed varying the frequency w scaled by J; from 14.0 to 22.0 for the cases of spin-magnitudes
(S1,52)=(3,5/2),(7/2,5/2), (4,5/2),(9/2,5/2),(5,5/2), and for the wave-number k=0, the temperature T' given by
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Figure 1: The power absorption P( )( ) given by (3.26), scaled by hi*y3 |Hy|?, are displayed varying the frequency w
scaled by J; from 14.5 to 19.5 for the cases of wave numbers k=0, 7/6,7/4,7/3,7/2, and for the spin-magnitudes
(S1,52) =(3, 5/2), the temperature T' given by kgT'/(hJ1) =1.0 and the anisotropy energy hK given by K/J; =1.5,
with Jy/J1 =1.0 and w,/J; =1.0.

Figure 2: The the magnetization-amplitude AZ(O) (w) given by (3.40), scaled by scaled by vy |Hy|/J1, are displayed
varying the frequency w scaled by J; from 14.5 to 19.5 for the cases of wave numbers k=0, 7 /6,7 /4,7/3,7/2, and for
the spin-magnitudes (S1,.52) = (3, 5/2), the temperature T' given by kg7'/(hJ1)=1.0 and the anisotropy energy AKX
given by K/J; =1.5, with Jy/J; =1.0 and w./J, =1.0.

kgT/(hJ1) =1.0 and the anisotropy energy LK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. Figures 3
and 4 show that in the resonance regions of the power absorption and magnetization-amplitude, as the spin-magnitude
Sy (> S2) becomes large for So =5/2, the resonance frequencies become large, and the peak-heights increase. In Fig.
5, the power absorption P,EO) (w) given by (3.26), scaled by h*y3 |Hy|?, are displayed varying the frequency w scaled
by Ji from 19.0 to 28.0 for the cases of spin-magnitudes (S, 52) = (5,5/2), (5,3), (5,7/2),(5,4),(5,9/2), and for the
wave-number k=0, the temperature T" given by kgT'/(hJ1) =1.0 and the anisotropy energy hK given by K/J; =1.5,
with ¢ [=J2/J1]=1.0 and w,/J; =1.0. In Fig. 6, the magnetization-amplitude Az(o)(w) given by (3.40), scaled by
scaled by fiy|Hyg|/J1, are displayed varying the frequency w scaled by J; from from 19.0 to 28.0 for the cases of
spin-magnitudes (S, 52) =(5,5/2),(5,3), (5,7/2),(5,4), (5,9/2), and for the wave-number k=0, the temperature T
given by kgT'/(hJ;) = 1.0 and the anisotropy energy hK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w./J; =1.0.
Figure 5 shows that in the resonance region of the power absorption, as the spin-magnitude Sy (< .S7) becomes large
for S; =5, the resonance frequency becomes large, and the peak-height and half-width of the line shape are mostly
unchanged. Figures 6 shows that in the resonance region of the magnetization-amplitude, as the spin-magnitude S
(< S1) becomes large for S; =5, the resonance frequency becomes large, but the peak-height decreases, though the
peak-height of the power absorption are mostly unchanged for such a case as seen in Fig. 5. Asseen in Figs. 1— 6, each
peak of the line shapes of magnetization-amplitude AZ(O) (w) has the hemline longer than that of the power absorption
P,EO) (w). Let us see temperature dependence of the line shapes in the resonance regions of the power absorption
P,EO) (w) and magnetization-amplitude AM( )( ). In Fig. 7, we display the resonance frequency wp, scaled by Ji in

the resonance region of the power absorption P}go) (w), varying the temperature T scaled by hJ;/kg from 0.1 to 1.1
for the cases of spin-magnitudes (S1,.52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2),(5,5/2), and for the wave number
k=0 and the anisotropy energy hK given by K/J;=1.5, with ( [=J2/J;]=1.0 and w,/J; =1.0. The resonance
frequency wf, investigated calculating numerically the power absorption P( )( ) given by (3 26), are displayed by
the solid lines, and the approximate formula given by (3.27) for the resonance frequency wg, are denoted by the
dots. In Fig. 8, we display the resonance frequency wh, scaled by J; in the resonance region of the magnetization-

amplitude A},i(o)(w), varying the temperature T scaled by %iJ;/kp from 0.1 to 1.1 for the cases of spin-magnitudes
(S1,52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2), (5,5/2), and for the wave number k£ =0 and the anisotropy energy h K
given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The resonance frequency wy, investigated calculating
numerically the magnetization-amplitude Aﬁ(o) (w) given by (3.40), are displayed by the solid lines, and the approximate
formula given by (3.41) for the resonance frequency wy,, are denoted by the dots. Figures 7 and 8 show in the resonance
region that as the temperature T' becomes high, the resonance frequencies wp, and wp, become large slightly, that as
the spin-magnitude S; (>S2) becomes large for S =5/2, the resonance frequencies wf, and wh, become large, and
that the approximate formulas given by (3.27) and (3.41) for the resonance frequencies wg) and why, coincide well with
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Figure 3: The power absorption P}go) (w) given by (3.26), scaled by h*~3 |H|?, are displayed varying the frequency w
scaled by J; from 14.0 to 22.0 for the cases of spin-magnitudes (51, S2) = (3,5/2),(7/2,5/2), (4,5/2),(9/2,5/2), (5,5/2),
and for the wave-number k=0, the temperature T given by kgT'/(hJ1)=1.0 and the anisotropy energy AK given by
K/Jl = 1.5, with JQ/Jl =1.0 and wz/Jl =1.0.

Figure 4: The magnetization-amplitude Arz(o) (w) given by (3.40), scaled by scaled by h~vy|Hg|/J1, are
displayed varying the frequency w scaled by J; from 14.0 to 22.0 for the cases of spin-magnitudes
(S1,52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2), (5,5/2), and for the wave-number k=0, the temperature T given
by kgT/(hJ1) =1.0 and the anisotropy energy hK given by K/Jy =1.5, with J2/J; =1.0 and w,/J; =1.0.

Power Absorptlon of the Sprn System Amplrtude of Transverse Magnetlzatron
"""""""""""""""""" 2O—M UM B B BLELELEL B BN BRI B
200} P S5 : AW) S5
1500 512 S8 SFTR2 SE4 S92 ] 150 S22 g5

100 10t

50

99 20 21 22 23 24 5 26 27w Q9 20 21 25 23 24 2B 26 27

Figure 5: The power absorption P,SO) (w) given by (3.26), scaled by h*~3 |Hy|?, are displayed varying the frequency w
scaled by J; from 19.0 to 28.0 for the cases of spin-magnitudes (51, 52) =(5,5/2), (5,3), (5,7/2),(5,4), (5,9/2), and
for the wave-number k=0, the temperature T given by kgT'/(hJ;)=1.0 and the anisotropy energy hK given by
K/Jl = 1.5, with JQ/Jl =1.0 and wz/Jl =1.0.

Figure 6: The magnetization-amplitude Az(o)(w) given by (3.40), scaled by scaled by hvy|Hg|/J1, are
displayed varying the frequency w scaled by J; from 19.0 to 28.0 for the cases of spin-magnitudes
(S1,52)=(5,5/2),(5,3),(5,7/2),(5,4),(5,9/2), and for the wave-number k=0, the temperature T given by
kgT/(hJ1) =1.0 and the anisotropy energy hK given by K/Jy =1.5, with J2/J; =1.0 and w,/J; =1.0.
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the results investigated calculating numerically P}go) (w) and Az(o) (w) for the temperature T given by kgT'/(hJ;) <1.1.

Resonance Frequency of Power Absorption Resonance Frequency of Magne—-Amplitude
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Figure 7: The resonance frequency wf, investigated calculating the power absorption P,EO) (w) given by (3.26) numeri-
cally, scaled by Jp, are displayed by the solid lines varying the temperature T" scaled by hJ; /kg from 0.1 to 1.1 for the
cases of spin-magnitudes (51, 52) =(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2), (5,5/2), and for the wave-number k=0 and
the anisotropy energy iK given by K/J; =1.5, with J2/J; =1.0 and w,/J; =1.0. The dots denote the approximate
formula given by (3.27) for the resonance frequency wg, of the power absorption P}go) (w).

Figure 8: The resonance frequency wy, investigated calculating the magnetization-amplitude Aﬁ(o) (w) given by (3.40)
numerically, scaled by Jp, are displayed by the solid lines varying the temperature T" scaled by hJy /kg from 0.1 to 1.1
for the cases of spin-magnitudes (S1,.52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2),(5,5/2), and for the wave number
k=0 and the anisotropy energy hK given by K/J; =1.5, with Jo/J; =1.0 and w,/J; =1.0. The dots denote the

approximate formula given by (3.41) for the resonance frequency wh, of the magnetization-amplitude Az(o)(w).

In Fig. 9, we display the natural logarithm log(Hp, ) of the peak-height Hf, (height of peak) in the resonance region of

the power absorption P,EO) (w), scaled by h?~? | Hy|?, varying the temperature T scaled by f.J; /kg from 0.1 to 1.1 for the
cases of spin-magnitudes (51, 52) =(3,5/2),(7/2,5/2), (4,5/2),(9/2,5/2), (5,5/2), and for the wave number k=0 and
the anisotropy energy hK given by K/J; = 1.5, with ¢ [=J>/J1] =1.0 and w./J; =1.0. The natural logarithm log(Hp, )
of the peak-height HF, investigated calculating numerically the power absorption P,EO) (w) given by (3.26), are displayed
by the solid lines, and the natural logarithm of the approximate formula given by (3.28) for the peak-height Hf,, are
denoted by the dots. In Fig. 10, we display the natural logarithm log(H},) of the peak-height Hp, in the resonance

region of the magnetization-amplitude Aﬁ(o)(w), by scaled by A~y |Hy|/J1, varying the temperature T scaled by hJi/ks
from 0.1 to 1.1 for the cases of spin-magnitudes (S1,S52) =(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2), (5,5/2), and for the
wave number k=0 and the anisotropy energy hK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w,/J; =1.0. The
natural logarithm log(Hy,.) of the peak-height Hy, investigated calculating numerically the magnetization-amplitude

Aﬁ(o)(w) given by (3.40), are displayed by the solid lines, and the natural logarithm of the approximate formula given
by (3.42) for the peak-height Hy,, are denoted by the dots. Figures 9 and 10 show in the resonance region that
as the temperature T' becomes high, the peak-heights HF, and H}, decrease, that as the spin-magnitude S; (> S2)
becomes large for So =5/2, the peak-heights HF, and H}, increases, and that the approximate formulas given by
(3.28) and (3.42) for the peak-height HF, and Hy,, coincide well with the results investigated calculating numerically

P,EO) (w) and Ab,i(o) (w) for the temperature T given by kgT'/(%J1) <1.1. In Fig. 11, we display the line half-width
Awf, in the resonance region of the power absorption P]go) (w), scaled by .Jy, varying the temperature T scaled by
hJi/ks from 0.1 to 1.1 for the cases of spin-magnitudes (S1,52)=(3,5/2),(5,5/2), and for the wave number k=0
and the anisotropy energy hK given by K/J; =1.5, with ( [=J/J1] =1.0 and w,/J; =1.0. The line half-width Awg,
investigated calculating numerically the power absorption P}go) (w) given by (3.26), are displayed by the solid lines, and
the approximate formula given by (3.34) for the line half-width Awf, are denoted by the dots. In Fig. 12, we display

the line half-width Awp, scaled by J; in the resonance region of the magnetization-amplitude Aﬁ(o) (w), varying the

temperature T' scaled by hJy/ks from 0.1 to 1.1 for the cases of spin-magnitudes (51, S2) = (3,5/2), (5,5/2), and for

the wave number k=0 and the anisotropy energy hK given by K/J3 =1.5, with ¢ [=J2/J1]=1.0 and w./J1 =1.0.

The line half-width Awy, investigated calculating numerically the magnetization-amplitude Aﬁ(o)(w) given by (3.40),

are displayed by the solid lines, and the approximate formula given by (3.46) for the line half-width Awy,, are denoted

by the dots. Figures 11 and 12 show in the resonance region that as the temperature T" becomes high, the line
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Figure 9: The natural logarithm log(Hp, ) of the peak-height Hf, investigated calculating the power absorption P}go) (w)
given by (3.26) numerically, scaled by h*y? |H}|?, are displayed by the solid lines varying the temperature T scaled by
hiJ1/ks from 0.1 to 1.1 for the cases of spin-magnitudes (S1,S2) =(3,5/2),(7/2,5/2), (4,5/2),(9/2,5/2), (5,5/2), and
for the wave-number k£ =0 and the anisotropy energy A K given by K/Jy =1.5, with J3/J1 =1.0 and w,/J; =1.0. The
dots denote the natural logarithm of the approximate formula given by (3.28) for the peak-height HE, .

Figure 10: The natural logarithm log(Hy,) of the peak-height H}. investigated calculating the magnetization-
amplitude Az(o) (w) given by (3.40) numerically, by scaled by hy|Hg|/J1, are displayed by the solid
lines varying the temperature T scaled by hJi/ks from 0.1 to 1.1 for the cases of spin-magnitudes
(S1,52)=(3,5/2),(7/2,5/2),(4,5/2),(9/2,5/2), (5,5/2), and for the wave number k=0 and the anisotropy energy
hK given by K/J; =1.5, with Jo/J; =1.0 and w,/J; =1.0. The dots denote the natural logarithm of the approximate
formula given by (3.42) for the peak-height H}, .
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Figure 11: The line half-width Awf, investigated calculating the power absorption P,EO) (w) given by (3.26) numerically,
scaled by Ji, are displayed by the solid lines varying the temperature T scaled by %Jq/kg from 0.1 to 1.1 for the cases
of spin-magnitudes (S1,52) =(3,5/2), (5,5/2), and for the wave-number k=0 and the anisotropy energy K given by
K/Jy =1.5, with J3/J; =1.0 and w,/J; =1.0. The dots denote the approximate formula given by (3.34) for the line
half-width Awg,.

Figure 12: The line half-width Aw}, investigated calculating the magnetization-amplitude Az(o) (w) given by (3.40)
numerically, scaled by Jp, are displayed by the solid lines varying the temperature T scaled by hJy /kg from 0.1 to 1.1
for the cases of spin-magnitudes (S1,S2) =(3,5/2), (5,5/2), and for the wave number k=0 and the anisotropy energy
hK given by K/J; =1.5, with J2/J; =1.0 and w,/J; =1.0. The dots denote the approximate formula given by (3.46)
for the line half-width Awy,.
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half-widths AwRPk and Awgk increase, that as the spin-magnitude S; (> S2) becomes large for S =5/2, the line half-
widths Awf, and Awy, decrease slightly, and that the approximate formulas given by (3.34) and (3.46) for the line

half-width Awf, and Aw},, coincide well with the results investigated calculating numerically P}go) (w) and AZ(O) (w) for
the temperature T' given by kgT'/(hJ1) <1.1. Figures 11 and 12 also show that the line half-widths in the resonance
region of the magnetization-amplitude are larger than those of the power absorption.

In the last of this section, we investigate the effects of the memory and initial correlation for the ferrimagnetic
spin system and phonon reservoir numerically. Those effects are represented by the interference terms in the TCLE
method and are referred as “the interference effects”. In Fig. 13, the power absorption P}go) (w) given by (3.26), scaled
by K43 |Hy|?, are displayed varying the frequency w scaled by J; from 14.0 to 16.0 in comparison with P;V(O) (w)

scaled by h?~y3 |Hy|?, where P;V(O) (w) is the power absorption derived employing the relaxation method [25] in the
van Hove limit [42] or in the narrowing limit [43], and is given by

PO w) = hy [HiPo x5l @), (4.15)

rv(0)

in the lowest spin-wave approximation. Here, x otg- (w)” is the imaginary part of the transverse susceptibility

k Yk

XT;’-E(;)— (w) derived employing the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43]
k "k

rv(0)

in the lowest spin-wave approximation. The transverse susceptibility x otg-
k "k

(w) coincides with the one without

the corresponding interference terms X ;:1((62)) (w) given by (3.16a) — (3.17b) in the transverse susceptibility X(SO+) o (@)
given by (3.18), which has been derived employing the TCLE method in the lowest spin-wave approximatikonk. In
Fig. 13, the power absorptions P,go)(w) and P,iv(o)(w) are displayed for the cases of temperatures T given by
kgT/(hJ1)=0.5,0.7,1.0, and for the spin-magnitudes (S, S2)=(3,5/2), the wave number k=0 and the anisotropy
energy hK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w,/J1 =1.0. The power absorption P]go) (w) is displayed
by the solid lines and the power absorption P,:V(O) (w) is displayed by the short dash lines, in Fig. 13. The power

absorption P]go) (w) given by (3.26), which have been derived employing the TCLE method, includes the interference
effects which are the effects of the memory and initial correlation for the spin system and phonon reservoir [25], and
are neglected in the power absorption P;V(O) (w) derived employing the relaxation method [25] in the van Hove limit
[42] or in the narrowing limit [43] in the lowest spin-wave approximation. In Fig. 14, the magnetization-amplitude
Aﬁ(o)(w) given by (3.40), scaled by scaled by hvy |Hy|/J1, are displayed varying the frequency w scaled by J; from 14.0
to 16.0 in comparison with Airv(o) (w) scaled by hvy |Hy|/J1, where Airv(o) (w) is the magnetization-amplitude derived
employing the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43], and is given by

rv(0 rv(0 rv(0
A Oy = @/)Hl OG0 @))2 + (G (w))?, (4.16)
kE "k k Yk
in the lowest spin-wave approximation. Here, er\;((;), (w)" and er\;(g,), (w)" is the real part and imaginary part of the
k "~k kE Yk

rv(0)

transverse susceptibility y gt
k "~k

(w) derived employing the relaxation method [25] in the van Hove limit [42] or in the

narrowing limit [43], which coincides with the one without the corresponding interference terms X ;:1((62)) (w) given by

(3.16a) — (3.17b) in the transverse susceptibility x(sol o (w) given by (3.18) derived employing the TCLE method in
k "k

the lowest spin-wave approximation. In Fig. 14, the magnetization-amplitudes An}g(o) (w) and Aer(O) (w) are displayed

for the cases of temperatures T given by kgT'/(hJ1)=0.5,0.7,1.0, and for the spin-magnitudes (S, S2)=(3,5/2),

the wave number k=0 and the anisotropy energy hK given by K/J3 =1.5, with ¢ [=J2/J;1]=1.0 and w./J1 =1.0.
Mrv(0)

The magnetization-amplitude A, " (w) coincides with the one without the corresponding interference terms X :1((@) (w)

given by (3.16a) — (3.17b) in the magnetization-amplitudes Az(o) (w) given by (3.40), which has been derived employing

the TCLE method in the lowest spin-wave approximation. The magnetization-amplitude Az(o) (w) is displayed by

the solid lines and the magnetization-amplitude A[;irv(o) (w) are displayed by the short dash lines, in Fig. 14. The

magnetization-amplitudes Az(o) (w) given by (3.40), which have been derived employing the TCLE method, includes
the interference effects which are the effects of the memory and initial correlation for the spin system and phonon
reservoir [25], and are neglected in the magnetization-amplitude Al}irv(o) (w) derived employing the relaxation method
[25] in the van Hove limit [42] or in the narrowing limit [43] in the lowest spin-wave approximation. Figures 13 and 14
show that the effects of the memory and initial correlation increase the power absorptions and magnetization-amplitude
in the resonance region and produce effects that cannot be disregarded, and that as the temperature T becomes high,

those effects become large comparatively. In Fig. 15, the rate (Hf, — HEiY)/Hg, of the interference effects (Hy, — HEY)
for the peak-height HE, of the power absorption P,io)(w), are displayed varying the temperature T scaled by hJi/ks

from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2) = (3,5/2) and (5,5/2), and for the anisotropy energy hK given
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by K/J;=1.5, the wave-number k=0 and the damping constant vgi given by Agi/J1 =0.5, with ¢ [=J3/J1]=1.0
and w,/J; =1.0. Here, Hf, is the peak-height of the power absorption P,EO) (w), the approximate formula given by
(3.28) is used for HY,, and HE;Y is the one without the corresponding interference terms X ¥ ) (w) in the approximate
formula (3.28). In Fig. 16, the rate (Hy, — Hyy')/HY, of the interference effects (Hy, — HM¥V) for the peak-height HY,
of the magnetization-amplitude Aﬁ(o)(w), are displayed varying the temperature 7" scaled by iJy /kg from 0.1 to 1.1 for
the cases of spin-magnitudes (S1,S2) =(3,5/2) and (5,5/2), and for the anisotropy energy AK given by K/J; =1.5,
the wave-number k=0 and the damping constant gy, given by Vi /J1 =0.5, with ¢ [=J2/J1]=1.0 and w,/J; =1.0.
Here, HY, is the peak-height of the magnetization-amplitudes AZ(O)(w), the approximate formula given by (3.42) is
used for Hy,, and H}}V is the one without the corresponding interference terms X ¥ @) (w) in the approximate formula
(3.42). Figures 15 and 16 show in the resonance region of the power absorption and magnetization-amplitude that
as the temperature 1" becomes high, the interference effects for the power absorption P,EO) (w) and the magnetization-

amplitude Aﬁ(o)(w), become large. As the spin-magnitude S; (> S2) becomes large for Sy =5/2, those effects become
small slightly. In Fig. 17, the rate (HE, — HEY)/HE). of the interference effects (HE, — Hi}Y) for the peak-height HE, of

the power absorption P}go) (w), are displayed varying the damping constant ~gx scaled by J; from 0.5 to 3.5 for the cases
of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitudes (S1,52)=(3, 5/2), the temperature T' given
by kgT'/(hJ1) =1.0 and the anisotropy energy AK given by K/Jy =1.5, with ¢ [=J2/J1]=1.0 and w,/J; = 1.0. Here,
the peak-height HE, is the peak-height of the power absorption P}go) (w), the approximate formula given by (3.28) is
used for Hy,, and HE¥ is the one without the corresponding interference terms X2, @) (w) in the approximate formula
(3.28). In Fig. 18, the rate (Hy, — Hpy')/Hyy of the interference effects (Hy, — Hpp') for the peak-height HY, of the

magnetization-amplitude A},i(o)(w), are displayed varying the damping constant gy scaled by J; from 0.5 to 3.5 for the
cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitudes (S, S2) = (3, 5/2), the temperature T
given by kgT'/(hJ;) =1.0 and the anisotropy energy hK given by K/J; =1.5, with ¢ [=J2/J1]=1.0 and w./J; =1.0.
Here, Hy, is the peak-height of the magnetization-amplitudes Aﬁ(o)(w), the approximate formula given by (3.42) is
used for Hy,, and Hy;" is the one without the corresponding interference terms X2, @) (w) in the approximate formula
(3.42). Figures 17 and 18 show in the resonance region of the power absorption and magnetization-amplitude that as the
damping constant gy of the phonon reservoir becomes small, the interference effects for the power absorption P]go) (w)

and the magnetization-amplitude AZ(O) (w), become large, and also that as the wave number k becomes small, those
effects become large. Since the damping constant g of the phonon reservoir is equal to the inverse of its correlation
time 7., the interference effects become large as the phonon reservoir is damped slowly. Thus, the interference effects
produce effects that cannot be disregarded for the high temperature, for the non-quickly damped reservoir or for the
small wave-number.

5 Summary and concluding remarks

We have considered a ferrimagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange in-
teraction under an external static magnetic-field in the spin-wave region, interacting with a phonon reservoir, and
have derived a form of the transverse magnetic susceptibility for such a spin system interacting with an external driv-
ing magnetic-field, which is a transversely rotating classical field, in the spin-wave approximation by employing the
TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which have been
formulated for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon
reservoir. We have analytically examined the power absorption and the amplitude of the expectation value of the
transverse magnetization, which is referred as “the magnetization-amplitude”, for the ferrimagnetic spin system, and
have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths
in the resonance region of the power absorption and magnetization-amplitude. We have also investigated numerically
the power absorption and magnetization-amplitude for a ferrimagnetic system of one-dimensional infinite spins by
assuming a damped phonon-reservoir model in the region valid for the lowest spin-wave approximation. Here, the
valid region means that n®/(451) [= (n;)/(451)] and n®/(4S2) [= (nm)/(4S2)], which correspond to the expectation
values of the second terms in the expansions given by Eqgs. (2.3) and (2.5), respectively, are smaller than about 0.01 in
that region, where n® [=n%(c0)] and n® [=n’(c0)] are, respectively, the expectation values of the up-spin deviation
number and down-spin deviation number in the infinite time limit (¢ — oc). We have mainly obtained the following
results by the numerical investigations for the power absorption and magnetization-amplitude.

1. The power absorption and magnetization-amplitude with the wave number k£ have a peak for each wave-number.
As the wave number k becomes large, the resonance frequencies and peak-heights (heights of peak) increase, and the
line half-widths decrease in the resonance region. Thus, as the wave number k£ becomes large, the line shapes in the
resonance region of the power absorption and magnetization-amplitude show “the narrowing”.

2. As the spin-magnitude S; or Ss becomes large, the resonance frequencies of the power absorption and magnetization-
amplitude become large. As the spin-magnitude S; (> S2) becomes large, the peak-heights of the power absorption
and magnetization-amplitude increases. As Sy (< S1) becomes large, the peak-height of the magnetization-amplitude
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Figure 13: The power absorptions P,EO) (w) and P;V(O) (w) given by (3.26) and (4.15), scaled by h*~? | Hy|?, are displayed
varying the frequency w scaled by Jp from 14.0 to 16.0, for the cases of temperatures T given by kgT'/(hJ1) =0.5,0.7, 1.0,
and for the wave-number k=0, the spin-magnitudes (S1, S2)=(3,5/2) and the anisotropy energy hK given by

K/Jy=1.5, with Jy/J;=1.0 and w,/J; =1.0. The power absorption Péo)(w) is displayed by the solid lines, and
P;V(O)(w) is displayed by the short dash lines and coincides with the one without the corresponding interference terms
in the power absorption P}go) (w) derived employing the TCLE method.

Figure 14: The magnetization-amplitudes Az(o) (w) and Al}irv(o) (w) given by (3.40) and (4.16), scaled by hiy|Hy|/J1,
are displayed varying the frequency w scaled by J; from 14.0 to 16.0 for the cases of temperatures T given by
kgT/(RhJ1)=0.5,0.7,1.0, and for the wave-number k=0, the spin-magnitudes (S1, S2)=(3,5/2) and the anisotropy
energy hK given by K/J;=1.5, with Jy/J; =1.0 and w,/J; =1.0. The magnetization-amplitude Az(o) (w) is dis-

Mrv(0
()( )

played by the solid lines, and A, is displayed by the short dash lines and coincides with the one without the

corresponding interference terms in the magnetization-amplitude A};i(o) (w) derived employing the TCLE method.
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Figure 15: The rate (HE, — HEY)/HE, of the interference effects (HE, — HERY) for the peak-height HE, of the power
absorption P}go) (w), are displayed varying the temperature T scaled by %.J; /kg from 0.1 to 1.1 for the cases of spin-
magnitudes (S1,.52) =(3,5/2) and (5,5/2), and for the wave-number k=0 and the anisotropy energy AK given by
K/Jy=1.5, with Jo/J; =1.0 and w,/J; = 1.0. Here, the peak-height Hf, is the approximate formula given by (3.28),
and HEY is the one without the interference terms in the approximate formula (3.28).

Figure 16: The rate (HY, —Hpv)/Hy, of the interference effects (Hpy, — Hpi') for the peak-height Hpy, of the
magnetization-amplitudes Az(o) (w), are displayed varying the temperature T scaled by %i.J;/ks from 0.1 to 1.1 for
the cases of spin-magnitudes (S1, S2) = (3,5/2) and (5,5/2), and for the wave-number k: 0 and the anisotropy energy
hK given by K/J; =1.5, with J2/J; =1.0 and w,/J; =1.0. Here, the peak-height Hy, is the approximate formula
given by (3.42), and H;f,g" is the one without the interference terms in the approximate formula (3.42).
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Figure 17: The rate (Hf, — HE}Y)/Hg, of the interference effects (Hy, — HEY) for the peak-height HE, of the power

absorption P,go) (w), are displayed varying the damping constant gy of the phonon reservoir, scaled by Ji, from 0.5
to 3.5 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the spin-magnitudes (S, S2)=(3, 5/2), the
temperature T given by kgT'/(hJ;) =1.0 and the anisotropy energy hK given by K/J; =1.5, with Jy/J; =1.0 and
wz/Jl =1.0.

Figure 18: The rate (Hy, — Hpv)/Hy, of the interference effects (Hpy, — Hpr') for the peak-height Hy, of the

magnetization-amplitudes Ak( )( ), are displayed varying the damping constant 7 of the phonon reservoir, scaled
by Ji, for the phonon reservoir from 0.5 to 3.5 for the cases of wave numbers k=0,7/6,7/4,7/3,7/2, and for the
spin-magnitudes (S1, S2) = (3, 5/2), the temperature T given by kgT'/(hJ1) =1.0 and the anisotropy energy hK given
by K/J; =1.5, with Jo/J; =1.0 and w,/J; =1.0.

decreases though the one of the power absorption is mostly unchanged.

3. In the resonance region of the power absorption and magnetization-amplitude, as the temperature T' becomes
high, the resonance frequencies increase slightly, the peak-heights decrease and the line half-widths increase. The
approximate formulas of the resonance frequencies, peak-heights and line half-widths, which have been derived in the
resonance region of the power absorption and magnetization-amplitude, coincide well with the results investigated
calculating numerically the analytic results of the power absorption and magnetization-amplitude.

4. The effects of the memory and initial correlation for the spin system and phonon reservoir, which are represented
by the interference terms in the TCLE method and are referred as “the interference effects”, increase the power
absorption and magnetization-amplitude in the resonance region, and become large as the temperature 7' becomes
high, as the phonon reservoir is damped slowly or as the wave number k£ becomes small. Thus, the interference effects
produce effects that cannot be neglected for the high temperature, for the non-quickly damped reservoir or for the
small wave-number.

5. Each peak of the line shapes of magnetization-amplitude has the hemline longer than that of the power absorption.
Also, the line half-widths in the resonance region of the magnetization-amplitude are larger than those of the power
absorption.

We have analytically examined the power absorption and magnetization-amplitude for the ferrimagnetic spin
system, and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and
line half-widths in the resonance region. The approximate formulas of the resonance frequencies in the resonance
region of the power absorption and magnetization-amplitude are given by (3.27) and (3.41), respectively, i.e.,

P ~ + " M ~ + "
Wpep =€ 1k, wpr =€ T L0, (5.1)

with I}, given by (B.59b) or (4.8b). As shown in Figs. 7 and 8, the approximate formulas of the resonance frequencies
wpy, and wy, coincide well with the results investigated calculating numerically the analytic results of the power

absorption P,EO) (w) and magnetization-amplitude Aﬁ(o)(w) in the lowest spin-wave approximation, respectively, for the
temperature T' given by kgT/(hJ1) <1.1. The approximate formulas of the peak-heights in the resonance region of
the power absorption and magnetization-amplitude are given by (3.28) and (3.42), respectively, i.e.

Hyy, = 0% 5% | Hi | wiy, 25 (why) "/ 2Ty, (5.2)
. 1/2
Hyy, = hy [Hy| { (E7 (wrp)’ )? + (B¢ (ng)”)z} [ Thess (5.3)

with T} |_given by (B.59a) or (4.8a), where Zf(w)"and =% (w)" are, respectively, the real and imaginary parts of =} (w)
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given by (3.24a), and take the forms

E¢(w)" = {(S1 + S2) cosh 20), + (S1 — S2) — 24/.51 52 sinh 20, } X1 (w)' /2

+ {24/5152 cosh 26, — (S1 + Sa) sinh 20, } X% (w)' /2, (5.4a)
E¢(w)” = {(S1 + S2) cosh 20y, + (S1 — S2) — 24/S1S2sinh 260, H{1 + X1 (w)"}/2
+ {24/5152 cosh 20y, — (S1 + S2) sinh 20 } X5 (w)" /2. (5.4b)

The above approximate formulas of the peak-heights HE, and H}, include the real and imaginary parts of the corre-
sponding interference terms X (w) and X, (w) given by (D.3) and (D.4) at the resonance frequencies. The interference
terms produce the effects that increase the peak-heights of the power absorption and magnetization-amplitude in the
resonance region as seen in Figs. 13 and 14. As shown in Figs. 9 and 10, the approximate formulas of the peak-
heights Hf, and H}, coincide well with the results investigated calculating numerically the analytic results of the

power absorption P,E )( ) and magnetization-amplitude Ak( )( ) in the lowest spin-wave approximation, respectively,
for the temperature T' given by kgT/(hJ1) <1.1. The approximate formulas of the line half-widths in the resonance
region of the power absorption and magnetization-amplitude are given by (3.34) and (3.46), respectively, i.e.,

Awgy, 2T +{WRPk :g(wﬁpk + 210y ) + T Ef (wig + 21151)"
+ { WRlc :g (ng + $1F2+),)2 +( ;H—)Q (Ek (ng + $1F2+)N)
+ 2wiy, E7 (wie) "{T ey B0 (wip + 21104 ) + wig B¢ (wig + 210%,)"}
—a —a —a 1/2
— 2wk, Ty ER (wip + 2105 ) Ef (wig + 21T%4)" — (wh)” (B2 (wgk)”)2} }
MHwng Zf (W) = 215 Z7 (wrg + 21T51)'}, (5.5)
(Eg(why + V3T))? + B (why + V3TL,)")? 1/2
e 1} ?
(“k (Wak) )2 (“k( ) ')

2

AL, = 2r;+{4

where z; is given by (3.31), i.e.,
= {wpy, 2 (wig)’ + Dhy En(wig)” + {(win)* {ER (win))* + (En (wie) )}
— 1/2 - -
+ (T )? G (wp)")? 7 {win BR (W) — 215, 27 (win)'}- (5.7)

As shown in Figs. 11 and 12, the approximate formulas of the line half-widths Awf, and Awjf, coincide well with
the results investigated coincide well with the results investigated calculating numerically the analytic results of the
power absorption P}go) (w) and magnetization-amplitude An}g(o) (w) in the lowest spin-wave approximation, respectively,
for the temperature given by kgT'/(hJ1) <1.1.

The above approximate formulas derived for the resonance frequencies, peak-heights and line half-widths in the
resonance region of the power absorption and magnetization-amplitude, are useful for investigating dependence of the
line shapes on variation of various physical quantities. As examples, we investigate dependence of the peak-heights and
line half-widths in the resonance region on the anisotropy energy and the damping constant of the phonon reservoir.
In Fig. 19, the approximate formula of the peak-height Hf, in the resonance region of the power absorption, scaled
by h2'y3 |Hy|?, is displayed varying the daming constant vg; of the phonon reservoir, scaled by J;, from 0.5 to 5.5
for the cases of anisotropy energies hK given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T" given by
kgT/(hJ1)=1.0 and the spin—magnitudes (S1, S2)=(3,5/2), with ¢ [=J2/J1]=1.0 and w,/J; =1.0. In Fig. 20, the
approximate formula of peak-height HY, in the resonance region of the magnetization-amplitude, scaled by A~ |H, k| /J1,
is displayed varying the daming constant g of the phonon reservoir, scaled by Ji, from 0.5 to 5.5 for the cases of
anisotropy energies hK given by A=K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T" given by kgT'/(hJ;) =1.0
and the spin-magnitudes (Sy, S2)=(3,5/2), with ¢ [=J2/J1]=1.0 and w,/J; =1.0. Figures 19 and 20 show in the
resonance region of the power absorption and magnetization—amplitude that as the damping constant <y of the
phonon reservoir becomes large, the peak-heights Hf, and Hy, increase, and also that as the anisotropy energy hK
increases, the peak-heights HE, and HY, increase. In Fig. 21, the approximate formula of line half-width Aw¥, in the
resonance region of the power absorption, scaled by Jy, is displayed varying the daming constant -y of the phonon
reservoir, scaled by Jy, from 0.5 to 5.5 for the cases of anisotropy energies h K given by A= K/J; =1.5,2.0,3.0,5.0, and
for the temperature T' given by kgT'/(hJ1)=1.0 and the spin-magnitudes (S, S2) =(3,5/2), with ¢ [=J2/J1]=1.0
and w./J; =1.0. In Fig. 22, the approximate formula of the line half-width Awj, in the resonance region of the
magnetization-amplitude, scaled by Ji, is displayed varying the daming constant -y of the phonon reservoir, scaled
by Ji, from 0.5 to 5.5 for the cases of anisotropy energies AKX given by A=K/J; =1.5,2.0,3.0,5.0, and for the
temperature T' given by kgT/(hJ1)=1.0 and the spin-magnitudes (S1, S2)=(3,5/2), with ¢ [=J2/J1]=1.0 and
w,/J1 =1.0. Figures 21 and 22 show in the resonance region of the power absorption and magnetization-amplitude
that as the damping constant g, of the phonon reservoir becomes large, the line half-widths Awf, and Awy, decrease,
and that as the anisotropy energy hK increases, the line half-widths Awf, and Awl, decrease slightly. Figures 19 — 22
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show in the resonance region of the power absorption and magnetization-amplitude that as the damping constant gy
of the phonon reservoir becomes large, the peak-heights Hf, and H}, increase and the line half-widths Awf, and Awp,
decrease. Since the damping constant g of the phonon reservoir is equal to the inverse of its correlation time 7., the
phonon reservoir is damped quickly as the damping constant become large. Thus, as the phonon reservoir is damped
quickly, the line shapes of the power absorption and magnetization-amplitude show “the narrowing” in the resonance
region.

Peak—Height of Power Absorption Peak—Height of Magne—Amplitude
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Figure 19: The approximate formula of peak-height HF, in the resonance region of the power absorption, scaled by
B3 |H}|?, is displayed varying the daming constant g; of the phonon reservoir, scaled by Ji, from 0.5 to 5.5 for
the cases of anisotropy energies hK given by A=K/J;3 =1.5,2.0,2.5,3.0,4.0, and for the temperature T given by
kgT'/(hJ1)=1.0 and the spin-magnitudes (S, S2) = (3,5/2), with J5/J; =1.0 and w,/J1 =1.0.

Figure 20: The approximate formula of peak-height HY, in the resonance region of the magnetization-amplitude,
scaled by A~y |Hg|/J1, is displayed varying the daming constant 7y, of the phonon reservoir, scaled by Ji, from 0.5 to
5.5 for the cases of anisotropy energies hK given by A= K/J; =1.5,2.0,2.5,3.0,4.0, and for the temperature T' given
by kgT/(hJ1)=1.0 and the spin-magnitudes (S, Sa2) = (3,5/2), with J5/J; =1.0 and w,/J; =1.0.

We have discussed the linear response of a ferrimagnetic spin system interacting with a phonon reservoir to an
external driving magnetic-field, which is a transversely rotating classical field, by employing the TCLE method in
the second-order approximation for the system-reservoir interaction, including the effects of the memory and initial
correlation for the spin system and phonon reservoir, i.e., the interference effects (the effects of interference between
the external driving field and the phonon reservoir), which are represented by the interference terms or the interference
thermal state in the TCLE method, give the effects of the deviation from the van Hove limit [42] or the narrowing limit
[43]. The interference effects are the effects of collision of the spin system excited by the external driving field with
the phonon reservoir, and influence the motoin of the spin system according to the motion of the phonon reservoir,
and therefore those effects increases the power absorption and magnetization-amplitude in the resonance region for a
non-quickly damped phonon reservoir as seen in Figs. 13 and 14, because the external driving field excites not only
the spin system but also the phonon reservoir in that region. The interference effects become large as the temperature
becomes high as seen in Figs. 15 and 16, and also become large as the phonon reservoir is damped slowly or as the wave
number k£ becomes small as seen in Figs. 17 and 18, and thus those effects produce effects that cannot be neglected for
the high temperature, for the non-quickly damped reservoir or for the small wave number k. If the phonon reservoir
is damped quickly, that is to say, the relaxation time 7. of the spin system is much greater than the correlation time
7. of the phonon reservoir, i.e., 7. >> 7., as being discussed in Ref. [25], one obtains the transverse susceptibility

X+ g (@) [(3.47)] without the interference thermal state |ng2,) [w]) in the transverse susceptibility Xs+s- (w) [(3.6)]
derived employing the TCLE method [25]. The susceptibility Xgr - (w) is derived employing the relaxation method
k~k

[25] in the van Hove limit [42] or in the narrowing limit [43], and is valid only in the limit, in which the phonon
reservoir is damped quickly [25]. Since the transverse relaxation times of the ferrimagnetic spin system are equal to
(I} )~ ! according to (B.57a) and (B.57b), where I} |_ is given by (B.59a) or (4.8a), and the transverse correlation time
of the phonon reservoir is equal to (1gk) ! according to (4.1a) or (4.1b), we have (I} ) ™' > (var) 7, fee., Ty < Yok,

or (the transverse correlation time (ygx) ' =77 of the phonon reservoir) — 0 in the van Hove limit [42] or in the

c
narrowing limit [43]. In this limit, since the corresponding interference terms X,?l(ﬁ )(w) and X ;52@ ) (w) vanish according

to (D.3) — (D.6) as seen in Figs. 17 and 18, the transverse susceptibility becomes Xt g- (w) given by (3.47), and
k "~k
therefore, one cannot discuss theoretically variations of the peak-heights and line half-widths in the resonance region
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Figure 21: The approximate formula of line half-width Awf, in the resonance region of the power absorption, scaled
by Ji, is displayed varying the daming constant ~gj, of the phonon reservoir, scaled by Jy, from 0.5 to 5.5 for the cases
of anisotropy energies i K given by A=K/J; =1.5,2.0,3.0,5.0, and for the temperature T given by kT /(hJ;) =1.0
and the spin-magnitudes (S, S2)=(3,5/2), with J2/J; =1.0 and w,/J; =1.0.

Figure 22: The approximate formula of line half-width Awp, in the resonance region of the magnetization-amplitude,
scaled by Ji, is displayed varying the daming constant 4g; of the phonon reservoir, scaled by Ji, from 0.5 to 5.5
for the cases of anisotropy energies hiK given by A=K/J; =1.5,2.0,3.0,5.0, and for the temperature T given by
kgT'/(hJ1)=1.0 and the spin-magnitudes (51, S2) = (3,5/2), with J>/J; =1.0 and w,/J1 =1.0.

of the power-absorption and magnetization-amplitude, because the peak-heights approach to co and the line half-
widths approach to 0 in that limit as seen in Figs. 19 —22. The transverse magnetic susceptibility x g+ ¢- (w) derived
k k

employing the second-order TCLE method is valid even if the phonon reservoir is damped slowly, in the region valid for
the second-order perturbation approximation. Thus, the TCLE method is available for a spin system interacting with
a non-quickly damped phonon-reservoir as well, and one can discuss theoretically variations of the peak-heights and
line half-widths in the resonance region of the power-absorption and magnetization-amplitude derived employing the
TCLE method, whereas one cannot discuss theoretically variations of the peak-heights and line half-widths employing
the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43], in which the phonon reservoir is
damped quickly [25].

We have analytically examined the power absorption and magnetization-amplitude in the resonance region of a
ferrimagnetic spin system interacting with a phonon reservoir using the spin-wave method [6, 9, 46, 47], and have
derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths
in the lowest spin-wave approximation. We have numerically investigated a ferrimagnetic system of one-dimensional
ininite spins in the region valid for the lowest spin-wave approximation, and have shown that the approximate formulas
of the resonance frequencies, peak-heights and line half-widths in the resonance region coincide well with the results
investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude, and
satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-heights increase and the line
half-widths decrease, and thus we have numerically verified the approximate formulas. The approximate formulas
obtained for the resonance frequencies, peak-heights and line half-widths in the resonance region, may have to be
verified for the various cases both experimentally and by the other theoretical method, e.g. the simulation method.
We have also investigated numerically the effects of the memory and initial correlation for the spin system and phonon
reservoir, i.e., the interference effects (the effects of interference between the external driving field and the phonon
reservoir), and have shown that those effects produce effects that cannot be neglected for the high temperature, for
the non-quickly damped reservoir or for the small wave-number. Although the numerical investigation have been
performed for a ferrimagnetic system of one-dimensional infinite spins, the analytic results obtained in the present
paper are available for two- and three-dimensional spin systems as well, and also are applicable to an anti-ferromagnetic
spin system for S; = Ss.
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Appendix
A Derivation of spin-wave Hamiltonians Hgy and Hg;

In this Appendix, we derive the spin-wave Hamiltonians Hgp and Hs; and the free spin-wave energies hef. Substituting
(2.2) and (2.4) into Hamiltonian Hs given by (2.1) and expanding it in accordance with (2.3) and (2.5), we obtain

Hs =2h Jiv/ 5152 Z {pl a1 Pm bm +Cljpl binpm} +2hJy Z (S1— GI ar)(— Sz + b by)
(I, m) (I, m)

—new{ D81~ af @) + D (= Sp by b}~ R K D081 - af @)+ D782 = b, bu)?
l m m

7
= Hso + Hsi, (A1)

with

Hso = 2h J1\/ 5159 Z {albm-i-a;rbin} +2zhJs {SQZaIal +S1ijnbm}
l m

(1, m)
+hwz{zaj ay —ijnbm} +hK{(251 0> afar+ (28 - 1)ijnbm}

l m l m
—2hJyNS1 S —hw,N (S1 —S2)/2—hKN (S} +53)/2, (A.2)

h S S

Hs1=—5 )1 > S—Q(ajalalbm+ajajalbjn)+ S—l(albinbmbm—kajbfnblnbm)
1 2

(1, m)

—2h 0y Y ajalbjnbm—hK{Zajajalal+ijnbjnbmbm}+--. : (A.3)
(I, m) l m

where Hgg is the parts up to second order in powers of the spin deviation operators, and Hg; consists of the parts
of fourth order in powers of the spin deviation operators and of the higher order parts, which are denoted by “ --”,
and represents the interaction among the spin-waves. The Hamiltonian Hgg is the free spin-wave Hamiltonian and
Hs1 is the spin-wave interaction Hamiltonian. In the expression (A.2) for Hgo, 2z is the number of the vectors to the
nearest-neighbour site from each site. The free spin-wave Hamiltonian Hgo given by (A.2) can be expressed in the
wave-number representation by performing the Fourier transformations (2.7a) and (2.7b), as

Hso =2zhJ1 Z {ﬂk\/ 5155 (akbk + GLbL) + (C Sy + k1 + hz) aLak + (C S1+ ko — hz) bLbk}
k

—2hJy NS S —hw,N(S; — S)/2—-hKN (S +53)/2, (A.4)

where ng, ¢, h., k1 and ko are defined by (2.10a) and (2.10b). The spin-wave interaction Hs; can be expressed in
the wave-number representation as

ZhJy Si Sy
HSl - N Z { (nkl S_Q a}Lﬂ bz2 b;; bk4 + 77]64 S_l a}Lﬂ a’kz a’kS bk4 5k1+k47 ka+k3
ki, k2, k3, ka

S1 S2

o gk bl brg biy + i 5k, ok, o, bl 5k1+k27k3+k4}

4zh JQ + 1
TN E Nks—ky O, Qky bk3 by Oky+ks s k2+ks
k1, k2, k3, ka

2h K
B T Z {a’£1 a’Lz Qks Ok, + b£1 blz bk3 bk4} 6k1+k2 » k3t+ka +oe (A5)
ki, k2, ks, ka

In order to diagonalize the free spin-wave Hamiltonian Hsy given by (A.4), by transforming the operators ay, az,
by, and bL according to (2.11) and their Hermite conjugates, we express Hgo as follows

Hso=2zhJq Z {nk v/ 5152 {(ay, cosh 6, — 6,1 sinh 6,)(— 042 sinh 0, + (B cosh 0y,)
k

+ (O‘L cosh 0, — O sinh 6k ) (— oy, sinh 0y, + 6}; cosh 6y,)
+ (¢S + K1+ hz)(az cosh 0, — B sinh 6 ) (v, cosh 6y, — ﬂ,i sinh 6y,)
+ (¢ S1+ k2 — h)(— g sinh 6, + ﬁ,: cosh 6;)(— ozL sinh 0y, + B34 cosh Qk)}
—2zhJo NS 1Ss — hw.N (S1 — S2)/2 —hKN (5] + 53)/ 2, (A.6a)
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=22hJ1 > {{—2m/S1S, sinh 0 cosh O + (¢ S1 + K2 — h.) sinh® O,
k

+(¢Se + K1+ hy) cosh? 01} alak +{-2 nk\/Esinhek cosh 0y,
+(¢S1+ kK2 —hy) cosh? 0, + (S2 4+ K1+ hs) sinh? 0k} B};ﬂk
+ {nkm (Sinh2 05, + cosh? 0r) — (€ (S1 + S2) + k1 + k2) sinh 0y cosh 0y, } (o Br. + alﬁ};)}
+22zhJ; Z { — ZUkMSinth cosh @y + {C(S1 + S2) + K1 + Iig}Sil’th Gk}
k

—2hJy NS1Sg — hw,N (S1 — S2)/2—hKN (S} +53)/2, (A.6b)
=zhJ; Z {{— 2 M/ 5152 sinh 20 + (Iﬁ:1 + ko +C (51 + SQ)) cosh 20,
k

+ (k1 — K2 — C(S1 = S2) +2h.) Y alag + {— 2nk\/S1 2 sinh 26,

+ (K1 + Ko + C (S + S2)) cosh 20y, — (k1 — k2 — ¢ (S1 — Sa) + 2h.)} Bl G

+{2 nk\/ﬁcosh 20, — (k1 + k2 + ¢ (S1 + S2)) sinh 20 } (. Bk + 04};5);)}
+zhJy Z { = 2m\/S1 82 8inh 20y, + {K1 + K2 + ¢ (S1 + S2)}(cosh 20, — 1)}

i

—2hJy NS1Sy — hw,N (S1 — S2)/2—h KN (5] + 53)/2. (A.6c)

Taking the choice of 6 as
2mk\/S1.55 cosh 20, — (k1 + kg + ¢ (S1 + Sz)) sinh 26, = 0, (A.7a)
tanh 20y, = 21m,\/515% /{k1 + k2 + € (S1 + S2)}, (A.7b)

the free spin-wave Hamiltonian Hsg takes the diagonal form (2.14).

B NETFD for ferrimagnetic spin system

In this Appendix, we consider the ferrimagnetic spin system interacting with the phonon reservoir, which has been
modeled in Section 2, and formulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon inter-
action (2.23) taken to reflect the energy transfer between the spin system and phonon reservoir.

B.1 Basic formulation

We first provide the time-convolutionless (TCL) equation of motion for the ferrimagnetic spin system and phonon
reservoir. We take the Hamiltonian H of the ferrimagnetic system and phonon reservoir under an external static field,
as

H ="Hs + Hr + Hsz = Ho + Hsr , (Ho = Hs + Ms), (B.1)
and provide the basic requirements (axioms)

H|pre) = 0, Hs |ps) = 0, Hr |pr) = 0, (B.2)
as in Ref. [30], where prg and ps are the normalized, time-independent density operators given by

pre = exp(—fH)/ (1| exp(=FH)) = exp(=SH)/ Trexp(—FH), (B.3)

ps = exp(—FHs)/(ls| exp(—F Hs)) = exp(—F Hs)/ trexp(—F Hs), (B.4)
which are the thermal equilibrium density operators at temperature 7'= (k:Bbl)*l, where Tr = trtrg. Here, 7:l, Hs and
Hg are the renormalized hat-Hamiltonians defined by, for example, H = (H —H')/h [25]. The spin deviation operators
oy, B, the phonon operators Rf Rzy and their tilde conjugates satisfy the commutation relations

[ar, af] = [ax, aL] = [Be, BL] = [Br, Bl] = duw, (B.5)

[Re,, R = [Ry,, Ryl = [Rh,, RU,] = [Rh,, RY)] = Okwr G, (B.6)
while the other commutators vanish. As done in Refs. [30, 39, 40], we provide the basic requirements

(Islox = (1slaf , (15l = (1|5} , (B.7)

(1r|RE, = (1R}, (1r|RY, = (1R}, (B.8)
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and their tilde conjugates.
In the thermal-Liouville space of the spin system and phonon reservoir, the time-evolution of the thermal state
lpr(t)) [= pr(t)|1)] for the density operator pr(t) of the total system is given by the Schrédinger equation [28, 29, 30]

(d/dt) |px(t)) = — i H |pr (1)) (B.9)

The spin system and phonon reservoir are assumed to be in the thermal state |pr(0)) at the initial time ¢ =0 as an
initial condition. In order to eliminate the irrelevant part associated with the phonon reservoir, we introduce the
time-independent projection operators P and Q defined by [29]

Proceeding in the same way as in Ref. [54], the time-convolutionless (TCL) equation of motion for the reduced thermal
state |p(t)) [= (1z|pr(t))] can be obtained as [26, 27]

(d/dt) |p(t)) = —iHs|p()) + C(1) |p(1)) + |1(2)), (B.11)
where the collision operator C(¢) and the thermal state |I(¢)) are given by

CO(t) = — i (1a| Hsa {O(t) — 1} |pw), (B.12)

[1(8)) = — i (15] Hen O(t) exp(— QH Q1) Q|pr(0)), (B.13)
with ©(t) defined by

o) = {1 —&—i/()t dTeXp(—iQ'):(QT) Q'):(Pexp(i’}:[T)}il. (B.14)

Here, we have adopted the first order renormalization given by (2.21) — (2.23) for the free spin-wave Hamiltonian Hsy,
the free spin-wave energies hef and the spin-phonon interaction Hgg. The thermal state |I(t)) depends on the initial
condition of the spin system and phonon reservoir, and represents the effects of the initial correlation for the spin
system and phonon reservoir.

We now consider the case that the spin system is interacting so weakly with the phonon reservoir that we can
use the second-order approximation, and expand Eq. (B.11) up to the second order in powers of the spin-phonon
interaction. When we assume the initial condition that the spin system and phonon reservoir are in the thermal
equilibrium state at the initial time t=0, i.e., |pr(0)) = |pe), Eq. (B.11) reduces to

(d/dt) |p(t)) = — i Hs [p(t)) + CP(t) |p(t)) + 1P (2)), (B.15)

where C?)(t) and |I(?)(t)) are given by [26, 27]
t
C’(Q)(t) = — / dr <1R| Hsg exp(— i Ho 7) Hsg exp(i Ho 7) |pR>, (B.16)
0

. . B .
TP (t)) = i (1g| Hsn exp(—i Ho t)/ dB’ ps prexp(B'hHo) |Hsw),
0
= - 11120 dr <1R‘ ﬂsn exp(—i'):(o 7') ﬂsn Ps Pr ‘1>€_”T- (B-17)
H— +

If the relaxation time 7, of the spin system is much greater than the correlation time 7, of the phonon reservoir, i.e.,
7, >> T, the thermal state |[I()(t)) becomes small negligibly [25, 26, 27, 55|. Thus, in the case that the relaxation
time 7, of the spin system is much larger than the correlation time 7. of the phonon reservoir, i.e., 7> 7., which
corresponds to the van Hove limit [42] or the narrowing limit [43], the phonon reservoir is damped quickly, and we
have C®)(t) =C®)(c0) and |I®)(t)) =0. In this section, we consider such a case. Then, the reduced thermal state
lp(t)) [= (1r]pr(t))] satisfies the following equation and initial condition

(d/dt) |p(t)) = —iHs|p()) + C® |o(t)) ; 0(0)) = (1alpz(0)) = (1rlpre), (B.18)

for 7, > 7., where the collision operator C'?) is defined by
oo
c? — oc®) (c0) = — / dr <1R‘ Hsr exp(— i Ho 7) Hsr exp(i Ho T) ‘pR>. (B.19)
0

Equation (B.18) can be formally solved as

t

l6)) = exp{= i Ttgt +C® ) = U exp {=i [ arPa( fmh (oo = Io(0) = (alpre)).  (B20)
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for 7> 7.. Here, we have divided the Hamiltonian Hg of the spin system into the unperturbed part Hgg and the
perturbed part Hs; in accordance with (A.1) — (A.3), i.e., Hs = Hso + Hs1, and have defined

U(t) = exp{— (i Hso — C®)t} = exp {—i (Hgo +i CP)t}, (B.21)
Hs1(t) = U~ (t) Hs1 U (1), [Hs1 = (Hs1 — Hiy)/R]. (B.22)

Then, the expectation value of a physical quantity A of the spin system can be described as
t
(1 Alpr () = (15| Alp(t)) = (15| AU () exp._{ / dr Hi ()} |po). (B.23)
0

This expression is convenient for the expansion in powers of the spin-wave interaction Hss.

B.2 Collision operator and thermal-state conditions

By substituting (2.23) into (B.19) and by using the basic requirements (B.8) and their tilde conjugates, we can derive
the concrete expression of the collision operator C?) given by (B.19), as

c® = ’71 > {(S1¢5 () + Sa ¢y, T (60 ) (aw — &) af cosh 26, — (B] — Bi) o sinh 26, }
k

— (107 T(65)* + S2 ¢ (=65 ) {(ar — @) ay cosh 20, — (B — Br) G sinh 26}
+ (S197 T (68) 4+ Sa 61~ (=) { (e, — an) cu, cosh 20y, — (By, — L) g, sinh 26}
— (S107 ()" + S2 by T (=) ) (af, — &) Gf, cosh 20, — (B, — B}) &} sinh 26,.}
+ (S107 (—€ ) + S2 b (e N{(BL — Br) Br cosh 20y, — (. — &f) By sinh 20}
— (S1¢y, T (=6 )" + S2 8 (e ) ){(BL = Br) Bf cosh 20; — (o — @) B] sinh 26}
+ (S10 T (—€ ) + S2 by (e N{(Br — B}) 8] cosh 20y, — (o], — éu) B] sinh 26, }
— (S10 (—e1)" + S2 by (e ) ) (Br — BY) B cosh 20y, — (af, — ) By sinh 20, }}
—%Z{(Slaﬁ;! (€)= Sa by T (=60 (o — af)af — (Sidy T (6)7 = S2 b~ (—ef) ") — af)dn

(S165 () — Sa of ~(—e >><ak — @)k — (S107 (&))" — S2 b T (—€0) ) (o] — an)al
— (S167 (=) = Sa b T (€0)(BL = Bi)Br + (S10p (=) — Sa b (e5)) (B — Br) Bl
— (Si6y (=) = S2 by (e ) (B — BIBE + (S108 ~ (=€ )™ — S2 b T (e,)) (Br — B1)Br.
Z {{( akak - ozkozk + ﬁkﬁk - ﬁkﬁk) cosh 20y, — (o + akﬁk - akﬁk — @) sinh 26}

k

_|_

l\DI»—l

x {(efax — fdn + BB — BLBk) cosh 20, ¢ (0)
— (B — &, 50) 637 (e + &) + (@l B — @) 657 (e + )" sinh 20, }
+{afax — afar — (B]Bx — Bk Hofar — aLar — (BL8x — BBk} 677(0)}, (B.24)

where ¢~ (€), ¢;, T (€) and ¢7*(e) are given by

o ( Z|91u| / dr ( 1R|Rk,,( ) R |pr) exp(—ieT), (B.25a)
=3 Z |91v|2/ dr (La| Riw (7) R}, |pa) explieT), (B.25b)
ZQQ,,/O dr 1R|A (7)Ry (T ))A(RLVR;C,,)‘;)R> exp(ieT). (B.25¢)

In the derivation of the above form for the collision operator C'®), we have ignored the correlation between the first
term and second term in (2.23), and have neglected the spin-wave interaction Hs; in the Hamiltonian Hs of the spin
system. The basic requirements (B.7) and their tilde conjugates lead to

(1s|c® =0, (1s| U(t) = (1| U (1) = (1s], (B.26)

for U(t) defined by (B.21). The evolution operator U(t) is non-unitary in general, i.e., UT(t) # U~1(¢), because the

collision operator C'?) is non-Hermitian though Hso [= (Hso — ;[0) /h] is Hermitian. Therefore, for ¢ # 0, we have
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U(t) and so for 3, 3. Considering this, as done in

MU W) # U (1),
(B.27a)

(U ()arU (1) # U (t)afU () and (
(B.27h)

Lt t
Refs. [29, 30, 39, 40], we define the Heisenberg operators
allty =U"(t)al U®),

() ar U (1),
N B U(), Ty =vu-t@)slu),

Br(t) =
and their tilde conjugates, which satisfy the canonical commutation relations
3t _

[Be(t), BT = [Bet), B ()] = dkn

Qe (t) =U
(B.28)

[aw(t), all ()] = [ax(t), &l ()] =
while the other commutators vanish. According to the axioms (B.7), (B.26) and their tilde conjugates, we have

(1s]Bk(t) = (15]B]T (1),
= polls) = (1z|prE)]

= (1slaff(®),
and their tilde conjugates, which are the thermal-state conditions at time ¢ for the bra-vector (1g| of the spin system

(B.29)

(Ts|ax(t)
By proceeding as in Refs. [24, 30], the thermal-state conditions at time ¢ for the ket-vector |po) |
(B.30)

of the spin system, can be obtained as
ak(t) Ipo) = hi (1) &1 (1) po), Bi(®) lpo} = P (1) BT (1) o),
and their tilde conjugates, where the c-number functions A (¢) and hg(t) are given by
B = ml ({1 + 0l (0}, (B.31)

hi (1) = nf ({1 +ng (1)}~
(B.32)

with the quantities ng () and nj (¢) defined by
ng(6) = (15181 (1) (8) o).
(1s|po) =tr po =1, and py is given by pg = try pre

n(t) = (1slaff (#)ax (t)|po),
(B.33a)

Here, the bra-vector (1g| and ket-vector |pg) are normalized, i.e
We now introduce the annihilation and creation quasi-particle operators defined by [39, 40]
Me(t) = Z7 ()2 {aw(t) = B (1) G (D)}, N(t) = Zp ()2 {all () - ()},
& (t) = Z7 (02 {Br(t) = h (0 BT (0}, &(6) = 2L {8 (1) - Bu()}, (B.33b)
and their tilde conjugates, where the normalization factor Z(t) and Z/(t) are given by
a( )_15 (B34a)
(B.34b)

ZRt) ={1-hg()} " =1+ng(1)

k
Z(t) = {1 - hJ(H)} ™" =1+nl (1),

B
L) =
These lead to the canonical commutation relations of the quasi-particle operators
3 = ks (B.35)

(), M ()] = D®), A (0] = [6:(8), € (0] = [4(0), & ()] = e

while the other commutators vanish. The thermal state conditions (B.29) and (B.30) and their tilde conjugates give
(Ls|Xj(8) = 0, (Lsl¢i(t) = Ai(t)lpo) =0, &k ()lpo) =0, (B.36)

and their tilde conjugates. According to Egs. (B.36) and their tilde conjugates, (1s| and |po) are, respectively, called

the thermal vacuum bra-vector and the thermal vacuum ket-vector for the spin system [29, 30]. Performing the

inverse transformation of (B.33a), (B.33b), and their tilde conjugates, we have

ar(t) = ZE (0 () + () A (D)} of (1) = ZE 2 40 + M)}, (B.37a)

HG ) =20 {0 + &), (B.37D)

ZE @62 (& (t) + (8 EL(1)},

Pr(t) = Z),
and their tilde conjugates. The free spin-wave hat-Hamiltonian Hgo takes the diagonal forms
(B.38a)

Hso =D {ef (af an —af @) + e (8] B — B On) }
343 (B.38b)

k
= Z {ef b M — X ) + 6 (€& — €L &)}

with Ax = A (0), AL =X%(0), & =&,(0) and & =££(0)
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B.3 Forms of the quasi-particle operators

We next derive the forms of the quasi-particle operators. The equations of motion for nf(¢) and nﬁ (t) defined by
(B.32) can be obtained, by using the thermal-state conditions (B.29) and (B.30), as

%nk (t) = (1s] %a?(t) ar(t) |po) = (1s| U~ () [i Hso — C®), af ai ] U(2) |po), (B.39a)
1/ 2){Si{(é (&) — ¢k ()" )" + (o T (eh) — o~ (6)")}
+52{(¢>Z7( ) = & (=6 )) () (=) — 6 T (—el)")} } cosh 20, (1)
+(1/2){S1(s5( Gk)+¢>k (€)") + 52 (¢ (=€) + ¢ T (—e)") } cosh 20y,
= (1/2){Su{(ey T (ef)) — &~ (el))" + (& " (e )—qﬁ_(i)*)}
— Sa{(¢y~ ( B) = o T (=el)) (0 (=) = o T (=e0) )} nR ()
+ 1/ 2){S1(¢ () + & (6)) = S2 (¢, (=) + 6, (=)}
— 677 (0)(1s| a()B(t) + af (1) B[ (¢) | po) sinh 26, cosh 26,
+ (1/ 2077 (6 + ) + 077 (e + )"} sinh® 205 (nf (1) + 0} (1) + 1), (B.39b)
= —{(S1® () + S2 @, (e])') cosh 20, + S1®; () — S2 @ (&) — W), sinh® 20;,} ng(t)
+{(S197 () + S2 @1 (¢)) cosh 20y + (1D (¢)' — S2 @5 (6f)")} aley))
+ W), sinh? 26, nf) (t) + W), sinh? 26y, (B.39¢)
jt £<>:<1s| L B0 B) o) = (161U 0) [0 — €, 5L 51U (1) oo, (B.40a)

1/ 2){S1{(¢5 " (=ex) = &% T(=e)) + (& (=€) — &, T (=€,)")"}
+Sz{(¢,;+(e,:) — o ()) + (0 Te) — b (e)") *}}cosh%knk()
+ (1/2){S1(¢ (=€) + & (=€ )) + Sa2 (¢ () + ¢~ (ex)") } cosh 26,
+ (/2L (—ex) — o T(=e)*) + (0 (=) — o5 © ( £}
— S5 {6 T(er) = (& (ex)") + (0 () — & (e)") i ()
= (1/2){S1(8 " (=) + 0 T (=1 )) = S2 (5 (e) + &5 (e)")}
— 677 (0)(1s| ax(H)B(t) + ol (£) 8L (¢) |po) sinh 26y, cosh 20
+ (1) 2877 (e + €) + 77 (6 + €))*} sinh® 20, (nf: () + ) (t) + 1), (B.40b)
= — {(81®7 (e5) + S2 ®F (e5)) cosh 20), — S1®5 () + S2 B} (€)' — W) sinh® 265, } nf (¢)
+ {(S19;, () + S2 @ (,)) cosh 20, — (519, (€)' — S2 @ ()} nle)
+ W), sinh? 260, n& (t) + W}, sinh? 20y, (B.40c)
with 7i(e) defined by
ii(e) = {exp(Bhe) — 1} = {exp(he/(ksT)) — 1}, (B.41)

where ®F (¢)’ and W) are the real parts of ®; (¢) [= @ (€)' +i @ (e)”] and ¥y, =W} +i ¥/], which are defined by

B = 0O =0 (@ =5 [ dr S loul? (allRe (), B b explic), (5.42)
B =60 (-0 -0 (9 =5 [ dr Y loul? (allRL (7). R ln) explicn), (8.43)
W= (e ) = [ dr S (AR () R (1) AR Ru)lon) xpli 6]+ ) 7). (B.44)

In the derivations of Eqs. (B.39¢) and (B.40c), we have used the relations [39]

o (€) + ¢ (€)* =2n(e) D (€)', dn (=€) + o, T (—€e)* =2n(e) Dy (e), (B.45)

which were derived in Appendix A of Ref. [39]. According to the assumption that the phonon correlation function
(2.26¢) is real, we have W), = (¢i%(ef +e; )+ 077 (ef +e5)7)/ 2= (07 (&) +€, )+ 07 (—€f — €5 ))/ 2. The solutions of
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Egs. (B.39c) and (B.40c) can be written as

n(t) = / dr {{(S10F (e}) + S2 0y (6)) cosh 26, + ($107 (e} )/ — S2.05 () )} alef)
+ W}, sinh? 26, nf (1) 4+ W} sinh? 20 } exp{— ;- (t — 7)} + np(0) exp(— T}, 1), (B.46a)
ny(t) = /Ot dr {{(S1®; (&) + S2 @ (€;)") cosh 20, — (S1®; (€)' — S2 @[ ())} ney,)
+ W, sinh? 20), g (1) + W}, sinh? 20, } exp{— T _-(t — 7)} +n} (0) exp(— [%_ 1), (B.46b)
with n(0) = <1s|a};ak|po) and nf (0) = <1s|6};6k|p0), where we have put for brevity as
Iy = (S195 (6;0) + S2 ®F (7)) cosh 260, £ (815 () — S2 @ (€;)) — W), sinh? 26, (B.47)
By substituting each of the above forms for nf(¢) and nf (t) into the other, we obtain the approximate solutions as

exp(—T;_t) —exp(—T7 1)

ng(t) = ng(0) exp(— I, t) + U} sinh® 26y, nf (0)

L, — %
+ {{(S1®f (f) + S2 @, (¢ff)') cosh 29k + (S1<I>+(ek) — S @, ()} nlef)
+ W) sinh® 20 }{1 — exp(— Tk, t)}/ T, + O(g*), (B.48a)
nf(t) = n’g(O) exp(—T%_ ) + W) sinh? 26, ng(0) b~ kath) : i}ip(_ =)
k— Lkt
+ {{(S1®), (e)) + S2 @} (¢;,)") cosh 26, — (51 P *( p) = S2 @0 (e) ) ale)
+ W} sinh? 20, }{1 —exp(—=T;_t)}/T;_ O(g"), (B.48b)

where O(g?) denotes the fourth-order parts in powers of the spin-phonon interaction. Owing to stability of the
ferrimagnetic spin system, we assume that Fii are positive for positive eki, ie., Fii >0 for ekjE > (0. Then, as time ¢

becomes infinite (t — 00), n{(t) and nf (t) approach the finite values

af Th_-(T%, + W) sinh® 260;) + (7, + 1)(T%_ + ¥}, sinh® 260,) ¥}, sinh® 26,

ng(oo) = , B.49a
ko) I Th — (W))2sinh? 20, (B.492)
n(o0) = g, TE (T + W) sinh®20)) + (7 + 1)(I'}, + ¥}, sinh® 26,) ¥, sinh® 26, | (B.49b)

It TE — (W))2sinh" 26,
which are derived from Egs. (B.39c) and (B.40c) in the infinite limit (t — oc), where we have put 7 = 7i(e).

The equations of motion for the quasi-particle operators Ag(t) and &k (t) can be derived, by performing the trans-
formation (B.33a), (B.33b) and their tilde conjugates, by using the thermal-state conditions (B.29) and their tilde
conjugates, and by considering the assumption that the phonon correlation function (2.26¢) is real, as follows,

(d/dt) Zi ()" (1| Ak () = (d/dt) (1s| aw(t) = (15| U~ (1) [i Hso — CP, e ] U (1),
= (sl{—ief an(t) — an(){S1(d (&) — ¢ ()) = S2 () (=) — & "(—0))}/ 2
—ap(®){S1(er T (ef) — o T (e)") + S2 (¢ T (—€f) — ¢ T(—€f)*)} cosh 26,/ 2
{160 (—e0) = b (=)' + 82 (65 (6) — & ~(e)")"} sinh 26,/ 2
— $77(0) ay(t) cosh® 205,/ 2 — ¢i7(0) a(t)/ 2 + 977 (& + €5 ) ax(t) sinh? 26,/ 2
— ¢77(0) H( t) sinh 20, cosh 20y, / 2 + 77 (€ + €;,)* ﬁ(t) sinh 26, cosh 260,/ 2}, (B.50a)
={—ief —{(S19} (f) + S2 @, (¢])) cosh 20, + 518} () — S2 @5 () }/ 2 — ¥} cosh? 26,/ 2
— WY/ 2+ Wy sinh® 20,/ 2} Z2 ()2 (1s| \e(t) — {(S1®5 (e5)* + S2 @) (€, )*) sinh 26,/ 2
+ (W9 — W) sinh 26), cosh 260,/ 2} Z7 (1)Y/? (1s] €k (t), (B.50b)
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(d/dt) Z (£)'/% (1] & () = (d/dt) (15| Br(t) = (1s| U () [i Hso — CP), B | U (1),
= (Is{{ e, Brlt) + BrO{S1(0f (=) = T (—6)*) = S2 (o " (e) — &~ (e)")}/ 2
- m( WS (=) — o (= e)) + S2 (67 F (e)) — ¢~ ()")} cosh 20,/ 2
FO{S1(dr T (6) = ¢ (6))" + Sa (¢ (=€) — b T(— €)7)"} sinh 20/ 2
$77(0) B(t) cosh® 201,/ 2 — ¢77(0) Bi(t)/ 2 + 6 (6 + €;,) Br(t) sinh? 26/ 2
Z2(0) ay (t) sinh 20y, cosh 20y, / 2 + ¢;7 (e + €, )" TT( t) sinh 20, cosh 26,/ 2}, (B.51a)

={—iey, —{(S1®} () + S2 @ (¢ )) cosh 20, — S1® (€, ) + S2 @ (e, )}/ 2 — U cosh® 26,/ 2

— W0/ 2+ Wy sinh? 20,/ 2} Z) (1) (1| k(1) — {(S1®F ()" + S @5 (¢)*) sinh 26,/ 2

+ (T} — W) sinh 260 cosh 205,/ 2} Z(8)/? (1s] M (t), (B.51b)

_ak

where @ (¢), @, (¢) and ¥}, are given by (B.42) — (B.44). The above equations can be rewritten as
(d/dt) ZE ()2 (150 (t) = {— i € — Tis FZEWOY2 (1slMu(t) — Ap_ZP 2 (1] En(t), (B.52a)
(d/dt) ZE ()2 (1s] &(t) = {i 6 — T 220" (16l Et) — Dur ZE M2 (M), (B.52b)
where we have put for brevity as
Trs = {(S19F (€;0) + S2 @ (6)) cosh 205, & S B () F S2 F (€5,)}/ 2
— (U 2) sinh® 20, + (U9 / 2)(cosh? 20 + 1), (B.53a)
Ay = (S1® () + So ®F (7)) sinh 20;,/ 2 + (¥ — W) sinh 26, cosh 26,/ 2, (B.53b)

with ® (), ®; (¢) and Uy, defined by (B.42), (B.43) and (B.44), respectively. Here, we have put

W) = 677 (0) = /OOO dr Y g3, (WlA(RY, (1) Ri (1) A(RY, Riw)|pa). (B.54)

which is real according to the assumption that the phonon correlation function (2.26¢) is real. The solutions of Egs.
(B.52a) and (B.52b) can be written as

Zp ("2 (1| Me(t) = Z (1) (s|Au(7) exp{(= i ef = Tws)(t = 1)}

/tdtl exp{(—i€ef — Ty )(t — 1)} Af_ Z2(40)Y2 (15| & (1), (B.55a)
ZPOY? (1] E(t) = ZP (7)Y (15| Eu(7) exp{(i e, — Th_)(t — 1)}
—/ dtyexp{(ieg — T )(t —t1)} Mgy Z2(t1)Y? (1s| Ak (t1), (B.55b)

from which we can obtain the approximate solutions as in Ref. [39]. Thus, we can obtain the forms of the quasi-particle
operators, which are valid up to second order in powers of the spin-phonon interaction, as

(1s| e (t) = 22 ()72 Zp ()2 exp{(— i ff = Thy ) (t — 7)}(1s|Me(7)

L a ZEO el ~Teo)( =)} —espllie ~TE )~ 7))
S AIONE (e +e )+ The T
(s () = 2 ()72 Z] /() ? exp{(i e, — T5_)(t — 7)}{1s| & (7)
20" ep{(—i6k ~Ten)(t =)~ ewllic ~ i) 7))
Z,f( t)1/2 i(6f +ep) + Dy = Th

(1] & (1), (B.56a)

A (1| M (7). (B.56b)

Rewriting the quasi-particle forms (B.56a) and (B.56b) for 7=0 by putting A\ = A, (0) and &, =&, (0), we have

(1s| Ak (t) = Z7 ()% Z7(0)"2 exp{(—i € — Ty )t }(1s| Mk
L AL ZB(O)I/2 exp{(—zek Dpy)t}—exp{(ie, —T5_)t}
Zp(t BN i(ef +e,)+ Ty — 5
(1 &k (t) = 27 (6) /% 2 (0)? exp{(i e, —Tj_)t }(1s| &
2502 espl(— i~ Tue)t) — expiliep ~Tp) 1)
WACRE i(e +e)+ Ty — Tho
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(s Ak - (B.57b)



These formulas are useful for the perturbation calculations of correlation functions and susceptibilities, et al.
From the above quasi-particle forms (B.57a) and (B.57b), we can obtain the quasi-particle correlation forms
(s () A lpo) = Z2 ()72 Z2(0) /2 expf— i (f + Ty )t — Thy t . (B.58)
(1] &k (t) ELlpo) = Z2 ()72 Z2(0) 2 exp{—i (e +T}_)t —T)_t}, (B.58b)
- _ exp —i(ef I‘” t—T% t}—expli(e, +T9/ )t —-TY_t
i(ef +e +T), +0) ) +T, —T_
x ZP(t)~1/? Z;:(O)l/?( LAY, (B.58c)
exp{—i(e +T7_)t—T)_ t}—exp{z(ek—l—Fng)t—F;cht}
i +e +T), +T0 )+, —Tj,
< Zp(0)7V2 ZE0)2 (&) +ia]), (B.58d)

(15| M (t) EE[po) =

with )\i = )\i (0) and {,ﬁ :fi( 0), where I, ., A}, and I}/, A}, are the real parts and the imaginary parts of I'y+ and
A+, which are defined by (B.53a) and (B.53b), respectively, and are given by

fe = S19E () (cosh 20y, £1)/ 2 + S ®F () (cosh 20, F 1)/ 2

— (W}, /2)sinh® 20, + (V9 /2)(cosh? 20 + 1), (B.59a)

T}, = S1®;5 () (cosh 20y, £ 1)/ 2 + Sy ®F ()" (cosh 20y, F 1)/ 2 — (¥} / 2) sinh? 204, (B.59b)
ki = (S$19F(65) + S2 ®F (¢)') sinh 205,/ 2 + (V) — W},) sinh 26y, cosh 26,/ 2, (B.59¢)
Ly = (S1® () + S2 ©F (6)") sinh 26,/ 2 — U} sinh 26}, cosh 20,/ 2. (B.59d)

Considering that @f(ef)’ is positive for positive ef, ie., @f(ef)’ >0 for ef >0, as shown in Appendix A of Ref. [39],
and that U9 is non-negative, i.e., ¥9 >0, as shown in Ref. [26, 27], we notice from (B.44) and (B.54) that I}, are
positive for positive ef, ie.,

e > S197 () (cosh 205 £ 1)/ 2+ So ®F () (cosh 20, F 1)/ 2 + ¥) > 0, for €& >0. (B.60)

The quasi-particle correlation forms (B.58a) and (B.58b) for the semi-free field show that the A quasi-particle with
the wave-number k has the energy h(e; +T'%,) and decays exponentially with the life-time (', +)_1, that the & quasi-
particle with the wave-number k has the energy fi(e, + I'}_) and decays exponentially with the life-time (I',_)~'.
The quasi-particle correlation forms (B.58c) and (B.58d) for the semi-free field show that the A quasi-particle and
the & quasi-particle change to the £ quasi-particle and the A quasi-particle, respectively, through the spin-phonon
interaction.

C Form of the interference thermal state ]D [ )

In this Appendix, we derive a form of the interference thermal state |DfS,2,) [w]) given by (3.8). The interference thermal
k

state |D(SQ_) [w]) can be expressed by substituting (2.23) into (3.8) and by using the free spin-wave Hamiltonian (2.21),
k
the axioms (B.2), (B.8) and their tilde conjugates, and the assumptions (2.25a), (2.25b) and (2.26a) — (2.26¢), as

DR =0 [ ar | i3 lonl? (s (7)) = (1L i ()] )

X {(\/_coshek — /S, sinh 6;,) explief T+iws—ie] s)
x S1{(cosh20; + 1) (ak — d&y,) — sinh 260y, (Bx — Bk)}|p0>
+ (v/S2 cosh B, — /Sy sinh 6;,) Jexp(—ie, T+iws+ie, s)
x Sy {sinh 260y (af, — ax) — (cosh 260, — 1) (Bx — B1)}po)}

175 ) ) s S ol (L () Ras ) = Ol R L )

x {(y/S1coshf), — /Sasinh6) exp(ief T+ iws —iefl s)
x So {(cosh 26 — 1) (ak — ay) — sinh 20y (B — Bk)}|p0)
+ (v/ Sz cosh B, — /Sy sinh ) exp(—ie, T+iws+ie, s)

x Sy {sinh 20y, (af, — éx) — (cosh 20, + 1) (Bx — B) }Hpo) }
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+ ;—7/00 dr /T dszggu (La| A(R], (T) Ry (1) A(R], R ) )

x {(4/S1 cosh 6 — /Sy sinh 0y,) sinh 26}, cosh 20y, (B — Bl)\p@ exp(i (ez +e )THiws — ieZS)

{( )

+ (/S cosh 8y, — /Sy sinh ) sinh 26, cosh 26, (ak — ag)|po) exp(—i(ef + €, )T +iws+ie,s)

+ (v/S cosh 8y, — \/S sinh 6;,) (cosh? 26, + 1) (ak — ay)|po) exp(iw s — i€ s)

+ (v/S3 cosh 8, — /Sy sinh Hk) (cosh® 20, + 1) (B — B;L)|p0) exp(iws +i€s)

+ (ax B + Oék Bk — ay, By, — ak ﬁk) sinh 20,

x {( (\/S cosh 0y, — /'Sy sinh 0,) sinh 26, (B, — )\p0> exp(i (€ + ey )T+iws —ie€)s)

— (v/S5 cosh B — /Sy sinh 6}, ) sinh 26}, (aL ar)|po) exp(—i (ef + e, )T +iws+ie,s)
— (+/S1 cosh B — /S sinh 6}, ) cosh 26,
(\/—cosh 01 — \/—smh 01.) cosh 26

with A(RL (t)Re, (1)) = R) (t) Ry (t) — (18| R] Ry |pr) and A(R] Ry,) =R} Ry, — (1a| Rl Riy|ps), where we have
ignored the higher-order parts in the spin-wave approximation, and have used the assumption that the phonon corre-
lation function given by (2.26¢) is real. Here, we have used the relations azak|po) = &L&k|PO> and ﬂ]iﬂk|ﬂ0> = B;LBMPO%
which are led from the thermal-state conditions (B.30) and their tilde conjugates. The above form of the interfer-

ence thermal state |Dé2,) [w]) can be written by using the correlation functions ¢~ (€), ¢, *(€) and ¢;*(e) defined by
k
(B.25a) — (B.25c¢), as

042 ax)|po) ex (zws—zek)

(
(B — B1)|po) expliws +iey s)}}, (C.1)

|D(2) = f{ (v/Sy cosh 8, — /S sinh 6;,){ (cosh 26, + 1)(a; — &y,) — sinh 260 (Bx — 51)}|po)

x Si{(f (W) — & (W)") = (&, (e) — ¢ (6) ) (w —€f)

+ (v/Sq cosh 6, — /Sy sinh 6;,) {sinh 20}, (O‘L - ak) — (cosh 260y, — 1)(Br — B;L)Hpo}
x S1{(dr (@) — o (W)") = (6 (&) — oL (— &) ) (Wt &)

+ (/51 cosh 0y, — \/Sy sinh 0;){ (cosh 20, — 1)(042 — ay) — sinh 26 (B — B;L)Hpo}
X So{(f 7 (= w) =& T (= w)*) = (& (=€) = b T (= el))}/ (w —€f)

+ (/83 cosh 8, — /S sinh 6 ) {sinh 26}, (aL — ay) — (cosh 260y, + 1)(Br — Bl)}|p0>
X ${(0f 7 (—w) = 6 (= w)") = (6 () — ()N (@ + )}

{ (v/Sy cosh 8y, — \/Sy sinh 0;) /(w — &)

x {(cosh® 201 + 1){¢77 (v — &) = 677 (0)} (o], — ) lpo)
+ sinh 205 cosh 204 {§77 (w + ¢;7) — 67 (6f + &)} (B — Blpo) }
+ (\/572005th — \/Tsmhek )/ (w+€;)
x { sinh 20y, cosh 20, {$7* (w — &) — ¢2% (— & — )} — @x)|po)
<cosh2 205 + 1){g5” (w + ) — o7 (0)H(Br — Bllpo) }
+ (ax Br + Oék ﬁk — Gy B — ak Bk) sinh 20},
x {( (\/'S1 cosh 8y, — /S sinh 6;) /( (w—¢)
x { sinh 205 {¢77 (w + €) — 677 (6 + ) }(Br — BL)Ipo)
— cosh 260, {6 (w — €)= 977 (0)}(oef, — G |po) }
+ (\/Sa cosh 8, — /Sy sinh 0;) /(w + € )
x { cosh 20 { ¢ ( + €, ) = 67 (0)} (B — B}) o)

— sinh 20 (¢ (w — ) — 67 (— e — &)} al — @n)lpo)} 1 }- (€2)
D Calculation of corresponding interference terms X ]?1((@) (w)
In this Appendix, we derive the forms of the corresponding interference terms X kl((@)( ) defined by (3.16a) — (3.17b).
In order to deal with the fractions in the calculations of X 21((’;)) (w) defined by (3.16a) — (3.17b), we use the following
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forms for @ki (€) defined by (B.42) and (B.43) with the phonon correlation functions given by (4.1a) and (4.1b):

oo 2
B =5 [ S lons GallRi (), R Jw) exlien) = — 5 D)
B0 =5 [ S lon P OallRL (7)., R o) extien) = — AL (D.2)

The forms of the corresponding interference terms Xk1(2)( w) defined by (3.16a) — (3.17b), are derived using (D.1),
(D.2) and (4.5) — (4.7) as follows,

X (w) = (15| o | DY [w]) = X3 W)+ X3 (w)",
_ i (g7/4) Si(cosh 265 + 1) B i(g2/4) Sy (cosh 2605, — 1)}
{—i(w—wrk) + e {—i(ef —wre) + e} {—7(W+wa) +Yer {1 (6 +war) + Yo}
i n(wer ) {(wek) + 1}
Ayr{—i(w — ) + 27}
i 7i(wnn) {7 (wrp) + 1}

+ g2 (cosh? 26, + 1)

A 2w ) 2w P
e T

BENAE S e T

p g mG)2IM ) + 1h(cosh? 205 + 1) (D.3b)

Ayar{(w — )2 +4 ()2}

Xip(w) = (15| ag |D3 [w]) = Xih(w)' +i Xi(w)",
i(g3/4) Sy sinh 20y, n —i(g?/4) Sy sinh 20y
{—i(w—wr) +meH{—i (=€, —wre) e} {0 (w+wre) + e H{— i (-6, +wre) + e}
i i(wrk){M(wrk) + 1} sinh 260}, cosh 26},
i — )+ 2w =i (- ef — 1) + 2]
o i7(wek){7(wrk) + 1} sinh 26, cosh 26,
’ Aymp{—i(w+€) + 29 }
— i (W — € — 2wrk) +1 {(9re)? + (W — wri) (6, + wrk)}
A{(w —wrr)? + (mx)?H (e, +wnk)® + (r)?}

Yok (W — €, +2wpp) — i {(wi)? + (w+ wek) (€, — wrk)}
A{(w +wrr)? + (mr)? H (e, — wnk)® + (r)?}
b o2 (e =26) =) i (4w + (0 = (et + )

2{(w— )% + 4 ()2 He + )% + 4 ()2}
(W€ ) — 20
A {0+ )2 + 4 (ar)?}

+93

(D.4a)

= 9% S1 sinh 26},

sinh 26,

+ 91 S

7i(wrg ) {7 (wrk) + 1} sinh 2604, cosh 26},

+ g2 fi(wgk ) {7 (wrk) + 1} sinh 260}, cosh 26y, (D.4b)
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X (w) = (1] Bl DI w]) = X, (@) +i X (w)”,
B i g% Sy sinh 26, — i g? Sy sinh 20y,
4{—i(w—wrr) + e t{—i (e —wrr) + 'YRk} A{—i(w+wer) + e H— 1 (€ + wrr) + Vet
i i i(wgi ) {7 (wrk) + 1} sinh 26}, cosh 20,
2{—i(w+te)+ 2meH{—i (g + )+ 2mi}
i n(wpe) {n(wpe) +1}
+ g2 - sinh 26}, cosh 20 , D.5a
9o 4')/Rk {_Z(W_GZ_)‘FQ’YRk} k k ( )
_ gy = = 20m) i {0 (0 —wwef —wwl} o
4{(w — wrr)? + (me)?H (e — war)? + (1ar)? }
75, Yk (W + 6 + 2wmk) — {(WRk)QJr— (w + war) (6 + wnr)} sinh 20
4{(w+wrk)? + ()2 H(€g + wre)? + (9re)?}
2'7Rk(w+€k +2€k)_1{4(’7Rk) (W+€I;)(€k +6k)} _
n + 1} sinh 20, cosh 20
9 @t e P+ 4 () (e T e 2+ 4 () (wrk ) {7 (wrk) + 1} sinh 26}, cosh 20y
—(w— 2i
+ g2 (w =) +2i7m 7i(wrk ) {7 (wrk) + 1} sinh 26y, cosh 26y, , (D.5b)

Aya {(w — 60)% +4 ()%}

Xph(w) = (1s] B IDF w]) = X(w) +i X, (w)",
_ g i S1(cosh 260, — 1)
! 4{—i(w—wpr) + meH{—7(— €, —wrr) + e}
—1.5 h 26 1
+gf 1S9 (cos k+ 1)

4{—i(w+wer) + e {7 (e +wrr) + e}
5 i A(war){7(wrr) + 1} (cosh? 20), + 1)

2 Aype{—i(w+ ey ) + 27K}

e v o ey e
™ o an, 1)

s (‘z:;(;’itfs‘”ﬁ @i,i”ff?e,ffii;f””ﬁ .

S e e e

L (w + )~ 2im ilwn){A(wni) + 1} (cosh® 20, + 1). (D.6b)

dyi{(w + €)% + 4 (r)?}

E Derivation of forms of n{(0) and n/ (0)

In this Appendix, we consider the case that the ferrimagnetic spin system and phonon reservoir are in the thermal
equilibrium state at the initial time ¢=0, i.e., pr(0)=pre, and derive forms of n{(0) [= <1s|a;2ak|po>} and nf(O)
[=(1s] 6}; Brk|po)] up to the second order in powers of the spin-phonon interaction in the lowest spin-wave approximation.
The thermal state |po) [=|p(0)) = (1g|pr(0)) = (1z|p1Ee)] can be expanded in powers of the spin-phonon interaction, as
[36]

(2)>

lpo) = |ps) + |p " (E.1)

with ps given by (B.4), where | p(()2)> is the second-order part of |pg) [ = (1g|pre)] in powers of the spin-phonon interaction
and is given by

o2 /d&/ 08> (1a|{Hsn(— i 1 ) Hea(— i1 )

— (1 Hsa(— i1 B1) Hsr(— i 12 B2)|pn)|ps) } =) | ps)- (E.2)
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The above form for | péz)) can be expressed with time-integrals alone by transforming inverse-temperature-integrals
into time-integrals, as done in Ref. [36], as

10 = —/ dT1/ drs (1n| Hen(— 72) Hsn(—71) |pr)|ps) exp(— p71) |H—>+0. (E:3)
0 0

Here, Hgr(t) and ﬂsa(t) are defined by Hgg (t) = exp(iHot/h)Hsg exp(—iHot/h) and ﬂsn(t) = exp(i’):{ot)’}:lsn exp(—z"):{ot).
By substituting (2.23) into (E.3), <1s|a2ak|p(()2)> and <1s|ﬁ};ﬁk|p(()2)) can be expressed as

(sladanlof®) = = [ dn [ dra (tsl(1slafon Fan(~ 72) Fsa(= 7)) s exp(- 7)o
0 0

1 (o) T1
:5/0 dﬁ/ drz | g1 |2exp(—u7'1)‘“%+0

x {S1((1a| R ()RS, |pa) (1slakal | ps) — (1aRE, Ry (7)| o) (1s|af okl ps)) cosh? Oy exp(— i ef 7)
— S1({(1alRE, (1) Ryl on) (Lslof e ps) — <1R|Rz1R ,(T)|pa) (1s| e} | ps)) cosh® Oy, exp(i f 7)

+ S5 ((1a] Ry <T>R21|pa><1s|akak|ps> <1R|R22R o (7)|ow) (1s|afak | ps) ) sinh® 0. exp(— i € 7)
— S5 (18| By () RY, | on) (1s|of ok lps) — (1alRE, RYL(7)|ow) (1s]aka|ps)) sinh® Ok exp(i e 7)}

+ /OOO dry /OT1 dr Y g3, exp(—pm) J—
x {{1z|A(R R (T)RE, () AR RE,) )| pr) cosh? 6, sinh? 6,
(<1s|akﬁkakﬁk|ps> exp{—i (¢} + ¢, )7} — <ls|oz;iﬁ;iozkﬁk|ps> exp{i (¢ +€,)7})
<1R‘A RZJL (T)RY, (T ))A(RZT,R ‘pR> cosh? 0, sinh? 0,
x ((1s|axBraf Bl ps) exp{—i (Gk + e, )7} — (Is|af BlaBelps) expli (6f + ¢ )7})
+ (1a| A( ZZR,W)A(R‘IJr (T)Ri, (7)) pr) cosh? 0, sinh? 6,
x ((1slaxBral Bl ps) expli <ek + 6007} = (slal Blailps) exp{—i (¢ +€)7})
+ (1a| AR RY, ) A(RYL (7) Ry, (7)) | pr) cosh® 6y, sinh® 6y
x ((1s|awBral BLlps) expli (6 + € )7} — (IslafBlawBilps) exp{—i (¢f + ;)1 }, (E.4)

(s} = [ dn [ dra (16l{1a]5] 5k Fan(— ) Fan(— ) low)os) exp(— )], .
0 0

1 o0 T1
= 5/ dﬁ/ dTZ | g1 |? exp(— p 1)
0 0

x{&«umzmmzi|pR><1s|wk|ps> <1R|RZZR ,(T)|pr) (1518] B |ps)) sinh? 0 exp(— i e, 7)
— S1((1a| RyS () RE, [pa) (15|81 Bk lps) — (x| Re, Rib (7)|pn) (15|83 |ps)) sinh® O expl(i & 7)

+ S5 ((1a| R} (7) R, | om) (15[ 81BL  ps) — (1alRE, Ry (7)]pa) (15| 3] Belps)) cosh® O exp(— i ¢, 7)
— S5 ((1a| RY, (T) Ry | pm) (15|81 Belps) — <1R|RZTVRZV(T)IpR><1s|ﬁkﬁl|ps>)cosh2 Orexplie, 7)}

o0 T1
—|—/ dﬁ/ dTZggveXp(_“ﬁ”pew
0

x {{1r|A( RZZ ()R}, (T ))A(RZZR“ )|pr) cosh? 0, sinh? 6y,
(<1s|akﬂkakﬂk|/)s> exp{—i (¢f + ¢, )7} — (Is|af BlanBilps) exp{i (¢} +¢;)73)

pn—+0

T

/_\,_\

+ (1a| AR ()R}, (7)) A(RYL RY,,) | pr) cosh® 0 sinh® 6,
(<1s|akﬁkakﬁk|ps> exp{— (ek +e )T — <1s|azﬁ£akﬁk|ps) exp{i (Gz + 6;)7-})
+ (1a| A(RY RE, ) AR} (7) R, (7))] o) cosh® 0, sinh? 0

X (<1S|akﬂkalﬂ£|/’s> eXP{Z (Ek + € )T} <1S|ak5kakﬂk|/’s> exp{ (Gk + € )T})
+ <1R|A(RZZR2V)A(RZZ(T)R2V (T))‘pR> cosh? 6, sinh? 6,
x ((1s]arBral Bl |ps) exp{i (6f + 5 )7} — (1s|af Bl o Brlps) exp{—i (& + ;)71 }, (E.5)
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from which we can obtain the forms of n®(0) and n? (0 up to the second order in powers of the spin-phonon interaction
k k

by using the Bose operators Ry, and R;rw defined by the assumptions (2.19) and (2.26a)

2
ng(0) = (Lslafarlpo) = (Ls|afarlps) + (Lslafarlp),
= a(ef)
n( k

/ dT/ d712|glu|eXp pr) | o

x {S1(cosh 26y, + 1)<1s|akak|ps>{<1R|Rky(7)Rky|pR) exp(

~ S1(cosh 205 + 1){1slal alps) { (1 Rao (7) B, [pw) exp(i f 7) + (1al Bios R (7)) exp(— i 7)}
+sz<cosh2ek—1><1s|akaz|ps>{<1a|Rku(7) L on) exp(—i e ) + (Inl Bio B, (7) on) expli e

— S5 (cosh 265 — 1) (Islaaxlps) { {11 R}, () Rio low) exp(i e 7) + (La B, Bio (7)]pn) exp(— i €f 7

1 oo oo .
+ 5/0 dT/T dm Zg%u sinh? 26, exp(—un)|ué+0

x {(1r| A(R, (7) Riw (7)) A(R],, Riow) | om)

x ((Aef) + D)(Ale,) + 1) exp{—i (e + )7} — alef) e, ) exp{i (¢ +€;)7})

+ (1x| A(R],, Riw) AR, (7) Ry (7)) | )

x ((Aef) + D)(Ale,) + )exp{Z (e + )7t —n(e)) ey ) exp{—i (e +¢;)7}H)

—ateh -5 [ 3 Lo P evl- i,
x {Si(cosh 20y, + 1)(7(e) + 1) Re (1a| R}, (7) Ry | pr) exp(—i € 7)
— 1 (cosh 26y + 1) n(ef) Re (1a|Riw (7) R, ow) exp(i € 7)
+ 8y (cosh 260, — 1)(A(e)) + 1) Re (1a| Riw () RL, | pr) exp(— i € 7)
— S5 (cosh 20, — 1) n(ef) Re(lR|R L(T) Ry |pr) explie) 7)}
/ dr - 7sinh® 20, { (A(ef) +

x Re ZQQV 1R‘A ,w T)Rk,,(T))A(R;QVRk,,)|pR> exp{i (e; +€. )7},

n(
(€

= 7i(e)) — S1(cosh 20 + 1){(7i(e}) + 1) Rei % o (6F) + (el ) Rei % o (D)}
k

k

— S5 (cosh 26, — 1){ (na(e; )+1)Rez—¢k (- eZ)—l—FL(e:)Reia%qb:*(—

k

0
—+ sinh2 29}6{77(62_) —+ ’FL(E;) —+ ].} RGZ 8(7_ ZZ(E;: —+ E;),

Z_"'ek) g
— A(eh) — g2 Sy (cosh 20, + 1) (A(e}) + 1) Re . -2 dC)
2 0 Z( —wnk)‘f"YRk
— g3 S1(cosh 20y, + 1) n(ef )R3 9 n(wne) +
! 2 § —'(g—wﬂk)‘f"mk

Oe
0 n(wek) + 1
—a25 h 20, — 1 Re 3
91 5 (cosh 26, )(n(e; P+ 2 a i(6:+ka)+7Rk
. B n(wrk)
— ¢? S5 (cosh 260), — 1) (et Rei-—
g1 Sz (cosh 26 =) Ml ) Re g - 5 Ty o)
P Ai(wrk) (A(wek) + 1)

+ ¢2sinh? 20, {n(e;) + n(e; ) + 1} Rei -
? {na § } Oef +e) —ile) +e)+2m

= () + g7 Si(cosh 20y, + 1) {nn(war) — 7i(e; )} (e — war)® = (k)
k P2 (6 — wm)? + ()2}

& +war)? — (ymn)?
+ 91 (cosh 26 = D R(E) + Alows) 1} 5 {((eliiw ?)2 + ((1 ?)2}2
k R R

et )2 - k)2
g 200 (1(6) ) + 1) o) ) + 1) S
k k R
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—(2.26¢), as follows

—ielT)+ <1R|R£,,Rku(7_)|pR>eXp(’LE;T)}

(6]:) + 1) - n(e;c‘r ek } eXp ’U’T)|/J,~>+O

(E.6)

(E.7)

(E.9)

(E.10)

(E.11)



nf (0) = (1516 Brlpo) = (1|81 Bklps) + (15181 5lpS),
:ﬁ(ek)

1 [ e 2
+l / dr / dr > lgw Pexp(—pm) |,

x {S1(cosh 205 — 1)(1s|Bx3L|po){ (1a| Res (T) R, | or) exp(—
— Si(cosh 20, — 1)(1s| 8L Bkl po){ (1a| R, (7) Riw | ow) exp(z
+ S5 (cosh 26, + 1)(15|ﬁkﬁ£|ﬁo {(1R|R
— S5 (cosh 20y, + 1) (15|83} Bel po){ (1a| Rew

1 o0 (o) 9 . 9
+§/0 dT/T dm ZgQV&nh 29kexp(—u71)|MH+O

x {(1a| A(RL, () Reo (7)) A(RL, Bio) | )

) o (T) Ry | p) exp(—
) ()R (i€

b lpr) exp

o )+ (el R R, (7)) expli €,
K

) + (1a|R], Riow ()| pr) exp(— i €
i€, 7) + (IR}, Riw ()] pn) exp(ie
7) + (1a|Riw RE, (7) | pr) exp(—ie

x ((a(e) + 1)(Ale) + 1) exp{—i (ef + ¢, )7} —nale)) ley ) exp{i (e + ¢ )T})

+ (1a| A(R], Riw) A(RL (1) Ry (7)) | pn)

x ((Alef) + ) (Aley) + )exp{Z(ek +e )7t — n(gl) ey ) exp{—i (e + ;)7 1,

o 1
:n(ek)—§/0 dT-TZ|91u|26XP(_ﬂT)|H_>+0

x {S1(cosh 26, — 1)(7i(e; ) + 1) Re <1R|Rk,,(T)R£V|pR> exp(—i€, T)
— S1(cosh 26), — 1) a(ex ) Re (1r|RL, (7) Ry |pr) exp(i €, 7)

+ S5 (cosh 20;, + 1
— So (cosh 260, + 1

_/OOOdT 7 sinh? 20c{(i(ef) + 1) (n(ey ) + 1) — niey))

)
)7

(2(e)) + 1) Re (1g| RL, (7) Ry |pr) exp(— i e 7)
(€ ) Re (1n| Riy (1) R, |pn) expli e 7)}

n(ey )} exp(— ‘LLT)|H_>+0

x Re Y g3, (1a| A(R], (7)Riw (7)) AR}, Rio) | pr) expli (ef + €, )7},

=7i(e; ) — S1(cosh 26, — 1){(n (ek)—l—l)Reza—qbk (—e,?)—i—ﬁ(e,;)Reiaei_qb'k"_(—e;)}
k

€k

— S5 (cosh 20 + 1){(7i(e;) + 1) Rei %
€k

0
+ sinh® 20, {n(ef) + A(ey ) + 1} Rei ————
sin k{n(ek) n(e; ) } eza(eg_’_eg)

o (ex) +7(e) Rei 8% 9" ()}

k

e +en),

1o} ﬁ(ka) +1

= (e}, ) — g Si(cosh 20y, — 1) (a(e;; ) + 1) Re LS

2 ¢, (e, +wrk)+ Rk

8 ﬁ(wkk)

— g3 Si(cosh 20, — 1) A(e;, )Re— —

2 aEk —Z(GI; +ka) +’)/Rk

B 1i(wrk)
— g2 8, (cosh 20, + 1 T1Reg - ——
93 S2 (cosh 26y, +1) (n(e; ) + 1) ez O¢;, i(€, — wrk) + mk
0 ew)+1

— g3 So (cosh 20y, + 1) ey, )Re =

2 O  —ile, —wrk) + e

9 n(wnk) (M(wrk) + 1)

+ g3 sinh® 20, {n(e)) + n(e; ) + 1} Rei-

New +ep) —ilef +en)+ 27k
(€ + wri)? — (Vak)?

=n(e; ) + g7 S1(cosh 20, — 1){n(e;, ) + n(wpr) + 1}

2{(e, +war)? + (1k)?}?

(e — wnk)?® = (an)?

+ g% 52 (cosh 20, + 1) {i(war) — 7(e;;)}

+ g3 sinh? 20, {7i(e) + 7i(ey, ) + 1} a(war) {(war) + 1}

2{(e — wrk)? + (7ar)?}?
(e + ) — 4 ()’

{(6f +€)2 +4 ()22’

7)
)

K T)
K T)

}

)}
7)}
7)}

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

with 7n(e) given by (B.41). Here, we have used the assumption that the phonon correlation function (2.26¢) is real.
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F Investigation of the region valid for the lowest spin-wave approxima-
tion

In this Appendix, we investigate numerically the region valid for the lowest spin-wave approximation in the ferrimag-
netic system of one-dimensional infinite spins. When the expectation values of the second terms n;/(451) [= a] a;/(4S1)]
and n,,/(4S2) [=b] bm/(4S2)] in the expansions (2.3) and (2.5) respectively, are much smaller than 1 or are smaller
than about 0.01, the lowest spin-wave approximation becomes valid. In order to investigate the region valid for the
lowest spin-wave approximation, we consider the expectation values n%(t) and n®(t) of the up-spin deviation number
a}al [=ny] and down-spin deviation number b} b,, [ =n,,], which are, respectively, referred to as “the up-spin deviation
number” and “the down-spin deviation number”, and define n®(t) and n®(t) by

2 2 ot
=% ls|2alal lp(t)) = NZ(ls|a2akU(t)eXp_{—z/o dTHsl(T)}|p0>, (F.1a)

= 3 1S|Zb ) Z<1s|b b U(t )exph{—i/o d77:(s1(7)}|/’0>7 (F.1b)

k

with |po) = (1g|pre), where we have performed the Fourier transformations (2.7a) and (2.7b). Here, prg is the thermal
equilibrium density operator for the spin system and phonon reservoir and is given by (B.3). In the lowest spin-
wave approximation, the expectation values n®(t) and n®(t) of the up- spin deviation number and down-spin deviation
number can be expressed using n¢(t) and nk( ) defined by (B.32), a

n®(t) NZ Is| alax U(t) |po) = Z{COShQQk ng(t) +np(t) + 1) +n(t) —np(t) — 1}, (F.2a)
nb(t) = % > " (1s] bl U (t) |po) = % > {cosh 20y (ng () + nj () + 1) — n(t) + ng (1) — 1}, (F.2b)
k k

where we have transformed according to the transformations (2.11) and their Hermite conjugates, and have considered
the axioms (B.26). The expectation values n(t) and n®(t) of the up-spin deviation number and down-spin deviation
number, given by (F.2a) and (F.2b) respectively, can be calculated by substituting (B.48a), (B.48b), (4.12a) and
(4.12b) into (F.2a) and (F.2b), and by replacing the wave-number summations with the numerical integration (4.14).
In Figs. 23 and 24, the expectation values n(t) and n’(t) of the up-spin deviation number and down-spin deviation

Transient Spin-Deviation Number A Transient Spin-Deviation Number B
0.15¢ : 0.15¢
A=1.0 A=10
) n°)
0.1 A-15 : 0.4f g

A=2.0 ﬁ
0.05//_,. 0.05/‘.

A=3.0 A=3.0

— a0 |

GO 2000 4000 t 6000 GO 2000 4000 t 6000

Figure 23: Up-spin-deviation number n®(t) given by (F.2a) are displayed varying the time ¢ scaled by 1/J; from 0
to 6000 for the cases of anisotropy energies AK given by A= K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitudes
(S1,52) =(3,5/2) and the temperature T' given by ksT'/(hJ1)=1.0, with J2/J; =1.0 and w,/J; = 1.0.

Figure 24: Down-spin-deviation number n®(¢) given by (F.2b) are displayed varying the time ¢ scaled by 1/J; from 0
to 6000 for the cases of anisotropy energies AK given by A= K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitudes
(S1, S2) =(3,5/2) and the temperature T given by kgT'/(hJ1) =1.0, with Jo/J; =1.0 and w./J; =1.0.

number, given by (F.2a) and (F.2b) respectively, are displayed varying the time ¢ scaled by 1/J; from 0 to 6000 for the
cases of anisotropy energies hK given by K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitudes (S, S2) =(3,5/2)
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and the temperature T given by kgT/(hJ1) =1.0, with ¢ [=J2/J1]=1.0 and w,/J; =1.0, where the anisotropy energy
is denoted as “A” in the figures. Figs. 23 and 24 show that as the time ¢ becomes large, the expectation values n®(t)
and n®(t) increase and approach to the finite values, and that as the anisotropy energy AK increases, the expectation
values n%(t) and n®(t) decrease. Thus, the expectation values n®(t) and n®(t) given by (F.2a) and (F.2b) are the
increase functions of the time ¢ and the decrease functions of the anisotropy energy hK, and approach the expectation
values n%(o0) and n’(00) in the infinite time limit, respectively, as time ¢ becomes infinite (¢ — oc) in no external
driving magnetic-field. In order to confirm the region valid for the lowest spin-wave approximation, we investigate
numerically the expectation values n® [=n%(o0)] and n® [=nb(c0)] of the up-spin deviation number and down-spin
deviation number in the infinite time limit (t — co):

n% = n%(00) = % S feosh 26, (nf(00) + nf(00) + 1) + n (00) — nf (s0) — 1}, (F.32)
k

n® = nb(c0) = % S {cosh 26 (ng(00) + nf(00) + 1) — ng(00) + nf (s0) — 1}, (F.3b)
k

with ng(co0) and nf (00) given by (B.49a) and (B.49b), where n®(oo) and n®(0o) are the expectation values in the sta-
tionary state at which the thermal equilibrium state arrives being driven by the evolution operator U (t) = exp{— i (ﬂso—l—
iC@)t}. In Figs. 25 and 26, the expectation values n® [=n%(o0)] and n® [=n’(c0)] of the up-spin deviation number

5 Spin—Deviation Number A 0.2 Spin—Deviation Number B
n'(e) n’(e)
A=1.0
A=1.0
0.15- 1 0.15- 1

0.1 0.1

0.05 0.05 A=3.0
A=4.0 //AEZ,E//
% 0.5 1 T 15 % 0.5 1 T 15

Figure 25: Up-spin-deviation number n® [=n®(o0)] is displayed varying the temperatures T scaled by hJ;/kg from 0
to 1.5 for the cases of anisotropy energies iK given by A=K/.J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitudes
(Sl, SQ) = (3, 5/2), with JQ/Jl =1.0 and wz/Jl =1.0.

Figure 26: Down-spin-deviation number n® [=n’(c0)] is displayed varying the temperatures T" scaled by h.J; /ks from
0 to 1.5 for the cases of anisotropy energies hK given by A= K/J; =1.0,1.5,2.0,3.0,4.0, and for the spin-magnitudes
(Sl, SQ) = (3, 5/2), with JQ/Jl =1.0 and wz/Jl =1.0.

and down-spin deviation number in the infinite time limit (¢t — c0), respectively, are displayed varying the temperatures
T scaled by hJy/kg from 0 to 1.5 for the cases of anisotropy energies hK given by K/J; =1.0,1.5,2.0,3.0,4.0, and
for the spin-magnitudes (S1,.52)=(3,5/2), with ¢ [=J2/J1] =1.0, w./J1 =1.0. The anisotropy energy is denoted as
“A” in the figures. Figures 25 and 26 show that the expectation values n® [=n%(c0)] and n® [=n®(00)] of the up-spin
deviation number and down-spin deviation number are smaller than about 0.1 in the regions of the temperature 7" and
anisotropy energy hK given by kgT/(hJ1) <1.0 and K/J; > 1.5, or by kgT/(hJ1) <1.5 and K/J; >2.0. Therefore,
when Sy, 82 >5/2, ¢ [=J2/J1]=1.0 and w,/J; = 1.0, Figs. 25 and 26 show that n®/(4S) [= (n;)/(45)] and n®/(4S)
[= (nm)/(45)], which correspond to the expectation values of the second terms in the expansions given by Eqgs. (2.3)
and (2.5) respectively, are smaller than about 0.01 in the regions of the temperature T and anisotropy energy AKX
given by ksT'/(hJ1) <1.0 and K/Jy > 1.5, or by kgT'/(hJ1) < 1.5 and K/J; > 2.0. In such a region, the lowest spin-wave
approximation is valid. In Figs. 27 and 28, the expectation values n® and n® of the up-spin deviation number and
down-spin deviation number in the infinite time limit (¢ — 00), respectively, are displayed varying the anisotropy energy
hK scaled by hJy from 1.0 to 4.0 for the cases of spin-magnitudes (51, S2) =(2,3/2), (5/2,2),(3,5/2),(7/2,3),(4,7/2),
and for the temperature T given by kzT/(RJ;) = 1.0, with ¢ [= Jy/J;] = 1.0, w,/J; =1.0. The anisotropy energy isdenoted as “A”
in the figures. In the Figs. 27 and 28, we can confirm the region of the spin-magnitudes (S;,S;)and anisotropy energy hK in which na
/(48)) [=(n;)/(4S,)] and n®/(4S,) [=(n,,)/(4S,)], which correspond to the
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Figure 2T: Up-spin-deviation number n®* [=n%(c0)] is displayed varying the anisotropy energy

hK scaled by hJ; from 1.0 to 4.0, ie, A=K/J;=10~4.0 for the cases of spin-magnitudes
(S1,52)=1(2,3/2),(5/2,2),(3,5/2),(7/2,3),(4,7/2), and for the temperature T given by kgT/(hJ1)=1.0, with
Jo/J1=1.0 and w./J1 =1.0.

Figure 28: Down-spin-deviation number n® [=n’(c0)] is displayed varying the anisotropy energy

hK scaled by hJ; from 1.0 to 4.0, ie, A=K/J;=10~4.0 for the cases of spin-magnitudes
(S1,52)=1(2,3/2),(5/2,2),(3,5/2),(7/2,3),(4,7/2), and for the temperature T given by kgT/(hJ1)=1.0, with
Jz/J1=1.0 and w,/J; =1.0.

expectation values of the second terms in the expansions given by Egs. (2.3) and (2.5) respectively, are smaller than
about 0.01 in the region of the temperature T given by kgT/(hJ1) <1.0. When the temperature T is in the region
given by kgT'/(hJ1) < 1.0, we can confirm the region valid for the lowest spin-wave approximation in Figs. 27 and 28.
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