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Abstract

A form of the transverse magnetic susceptibility is derived and the resonance absorption and transverse magne-tization are
discussed for a ferrimagnetic spin system interacting with a phonon reservoir in the spin-wave region, employing the TCLE method
of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated for the spin-phonon
interaction taken to reflect the energy transfer between the ferrimagnetic system and phonon reservoir. Here, the TCLE method of
linear response is a method in which the admittance of a physical system is directly derived from time-convolutionless equations
with external driving terms. The approx-imate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-
widths in the resonance region of the power absorption and the amplitude of the expectation value of the transverse magnetization,
which is referred as “the magnetization-amplitude”, are derived for the ferrimagnetic system in a transversely rotating magnetic-
field. For an ferrimagnetic system of one-dimensional infinite spins in the transversely rotating magnetic-field, the power
absorption and magnetization-amplitude are investigated numerically in the region valid for the lowest spin-wave approximation.
The approximate formulas of the resonance frequencies, peak-heights and line half-widths, are shown to coincide well with the
results investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude in the
resonance region, and also are shown to satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-
heights increase and the line half-widths decrease, and thus are verified numerically. In the resonance region of the power
absorption and magnetization-amplitude, it is shown that as the temperature T becomes high, the resonance frequencies increase
slightly, the peak-heights decrease and the line half-widths increase, and that as the wave number k becomes large, the resonance
frequencies and peak-heights increase, and the line half-widths decrease. It is also shown that as the spin-magnitude S1 or S2 

becomes large, the resonance frequencies of the power absorption and magnetization-amplitude become large, that as S1 (>S2)
becomes large, the peak-heights of the power absorption and magnetization-amplitude increases, and that as S2 (<S1) becomes
large, the peak-height of the magnetization-amplitude decreases though the one of the power absorption is mostly unchanged.
Here, S1 and S2 are the magnitudes of spins at the up-spin sites and down-spin sites, respectively. The effects of the memory and
initial correlation for the spin system and phonon reservoir, which are represented by the interference terms in the TCLE method
and are referred as “the interference effects”, are confirmed to increase the power absorption and magnetization-amplitude in the
resonance region, and are shown to produce effects that cannot be disregarded for the high temperature, for the non-quickly
damped reservoir or for the small wave number k.

Keywords: Ferrimagnetic spin system; Resonance absorption; Transverse magnetization; Non-equilibrium thermo-field dynamics;
The TCLE method of linear response; Spin-wave method

1 Introduction

The theories of ferromagnetic and anti-ferromagnetic resonances were macroscopically treated by Kittel [1], Van Vleck 
[2], Nagamiya [3], Kittel and Keffer [4, 5], and were microscopically developed using the spin-wave method [6] by 
Nakamura [7], Ziman [8], Kubo [9], Akhiezer et al. [10] and Oguchi and Honma [11]. The ferromagnetic and anti-
ferromagnetic resonances were also discussed using the method of the collective motion of spins by Mori and Kawasaki 
[12, 13]. The anti-ferromagnetic resonance was besides studied numerically using the method of calculating the 
dynamical susceptibility directly by Miyashita et al. [14, 15, 16, 17], and its theories were developed by the quantum field 
theoretical approach of Oshikawa and Affleck to the electron spin resonance in spin-1/2 chains [18, 19]. However, these 
theories for ferromagnetic and anti-ferromagnetic resonances do not deal with the effects of the phonon reservoir 
interacting with the spin systems, and therefore those theories cannot elucidate the damping mechanism of the spin for 
the case that the spin-spin interactions or the spin-wave interactions are small. In such a case, it is necessary to consider 
the spin systems interacting with the phonon reservoirs and to study the effects of the phonon reservoir.

In Refs. [20, 21, 22], the author studied the transverse susceptibility, the resonance absorption and the transverse 
magnetization for a ferromagnetic spin system interacting with a phonon reservoir by the spin-wave method [6], by 
employing the TCLE method of linear response [23, 24, 25, 26, 27] in terms of the non-equilibrium thermo-field dynamics 
(NETFD) [28, 29, 30]. Here, the TCLE method is a method in which the admittance of a physical system is directly 
derived from time-convolutionless (TCL) equations with external driving terms in the problem of linear response [23, 24, 
25, 31, 32, 33, 34, 35, 36]. Uchiyama et al. [37] proposed a method in which the Kubo formula [38] is calculated using the 
time-convolution (TC) master equation to study effects of the heat reservoir, and applied it to a two-spin system and a 
three-spin system. The author and Miyashita [39] formulated the non-equilibrium thermo-field

-88-

 SCIREA Journal of Physics
            ISSN: 2706-8862

http://www.scirea.org/journal/Physics  
February 7, 2026 

Volume 11, Issue 1, February, 2026 
https://doi.org/10.54647/physics140714



dynamics (NETFD) for an anti-ferromagnetic system of many spins interacting with a phonon reservoir, using the
spin-wave method [6, 9]. Recently, the author [40, 41] studied the transverse suscetibility, the resonance absorption
and the transverse magnetization for an anti-ferromagnetic system of many spins interacting with a phonon reservoir,
using the spin-wave method [6, 9], by employing the TCLE method of linear response [23, 24, 25, 26, 27] in terms of
the non-equilibrium thermo-field dynamics (NETFD) [28, 29, 30, 39, 41].

The non-equilibrium thermo-field dynamics (NETFD) has been formulated in the van Hove limit [42] or in the
narrowing limit [43], and therefore its direct application is limited to that limit. If the correlation function derived by
the NETFD is substituted into the Kubo formula [38], the obtained admittance or susceptibility is valid only in that
limit. When one discusses the effects of the deviation from the van Hove limit [42] or the narrowing limit [43], it is
necessary to employ one of the three methods [36] that are the TCLE method, the RTC (or TCE) method and the
RTCL method, in order to derive the complex admittance. When the TCLE method is employed [23, 24, 25, 31, 32,
33, 34, 35, 36], the complex admittance of the physical system can be calculated by inserting the interference terms
included in time-convolutionless (TCL) equations with external driving terms, into the results obtained in the van
Hove limit [42] or in the narrowing limit [43], in which the NETFD has been formulated, where the interference terms
represent the effects of the memory and initial correlation for the physical system and heat reservoir, and give the
effects of the deviation from the van Hove limit [42] or the narrowing limit [43]. Thus, by employing the NETFD and
the TCLE method [23, 24, 25, 26, 27] as done in Refs. [20, 21, 40, 22, 41], the complex admittance of the physical
system can be derived including the effects of the memory and initial correlation for the physical system and heat
reservoir. The relation between the TCLE method and relaxation method was analytically examined in the second-
order approximation for the system-reservoir interaction in Refs. [34, 35, 36], where the relaxation method is the one in
which the Kubo formula [38] is calculated including the heat reservoir. The admittances derived employing each method
have the same second-order terms and mutually different higher-order terms. The admittances derived employing each
method were numerically investigated and were shown to agree well in the resonance region, for a quantum oscillator
interacting with the heat reservoir [34] and for a quantum spin interacting with the heat reservoir [35, 44, 45]. This
shows that the TCLE method is coincident with the relaxation method in the second-order approximation for the
system-reservoir interaction, and that the second-order TCLE method is valid in this approximation. The TCLE
method and relaxation method were formulated in terms of the NETFD in Refs. [23, 24, 25], and the relation between
the admittances derived employing each method was analytically examined in the second-order approximation for the
system-reservoir interaction [25]. If the relaxation method is employed in the van Hove limit [42] or the narrowing
limit [43], i.e., the Kubo formula [38] is calculated from the second-order TCL equations with no external driving
terms in this limit, the results coincide with the ones without the interference terms or the interference thermal state
in the results obtained employing the TCLE method. That limit is valid for a quickly damped reservoir (the reservoir
correlation time→ 0), but not for a non-quickly damped reservoir, because the influence of motion of the heat reservoir
on the motoin of the physical system is neglected in that limit. The coincidence of the TCLE method and relaxation
method in the second-order approximation for the system-reservoir interaction, means that the interference effects,
i.e., the effects of the interference terms or the interference thermal state in the TCLE method, are the effects of
motion of the heat reservoir which influence the motoin of the physical system. Because, when the Kubo formula [38]
is calculated for the physical system interacting with the heat reservoir, the obtained admittance includes the effects
of collision of the physical system with the heat reservoir. Therefore, the interference effects are the effects of motion
of the heat reservoir which influence the motoin of the physical system, and are considered to increase the power
absorption to excite the heat reservoir for a non-quickly damped reservoir.

Recently, a ferrimagnetic spin system was studied by the spin-wave method [46, 47, 48, 49]. It may be an interesting
problem to study a ferrimagnetic spin system interacting with a phonon reservoir. In the present paper, we consider
a ferrimagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange interaction under an
external static magnetic-field in the spin-wave region, interacting with a phonon reservoir and with an external driving
magnetic-field which is a transversely rotating classical field, and study microscopically the power absorption, the
transverse magnetization and its amplitude, which is referred as “the magnetization-amplitude”, in the resonance
region, including the effects of the memory and initial correlation for the spin system and phonon reservoir. We derive
a form of the transverse magnetic susceptibility of the ferrimagnetic system by employing the TCLE method of linear
response [23, 24, 25, 26, 27] in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated
for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon reservoir,
in the spin-wave approximation modifying the spin-wave method of Kubo [9, 46, 47]. The interaction between the
spin and phonon is modified to reflect the energy transfer between the spin system and phonon reservoir, because the
spin-phonon interaction taken in Refs. [39, 40] does not reflect the energy transfer between the spin system and phonon
reservoir at the “down” spin-sites. We examine analytically the power absorption and magnetization-amplitude in
the resonance region of the ferrimagnetic spin system in the spin-wave region, derive the approximate formulas of
the resonance frequencies, peak-heights (heights of peak) and half-widths of the line shapes in the resonance regions,
and investigate numerically the line shapes for a ferrimagnetic system of one-dimensional infinite spins. We also
investigate numerically the effects of the memory and initial correlation for the spin system and phonon reservoir, i.e.,
the interference effects. We use the same symbols and notations as in Refs. [39, 40, 41].

In Section 2, we give the Hamiltonian for a ferrimagnetic spin system interacting with a phonon reservoir under
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an external static magnetic field in the spin-wave region. In Section 3, we derive forms of the transverse magnetic
susceptibility and magnetization-amplitude for the ferrimagnetic system by employing the TCLE method of linear
response in terms of the non-equilibrium thermo-field dynamics (NETFD), which is formulated in Appendix B for
the modified spin-phonon interaction, and derive the approximate formulas of the resonance frequencies, peak-heights
(heights of peak) and line half-widths in the resonance region of the power absorption and magnetization-amplitude.
In Section 4, we investigate numerically the power absorption and magnetization-amplitude in the resonance region of
a ferrimagnetic system of one-dimensional infinite spins. In Section 5, we give a short summary and some concluding
remarks.

2 Model and Hamiltonian of ferrimagnetic spin system

We consider a ferrimagnetic spin system with a uniaxial anisotropy energy and with an anisotropic exchange interaction
under an external static magnetic-field �Hz in the z direction, in interaction with a phonon reservoir. The ferrimagnetic
spin system is in the spin-wave region, and we proceed in the spin-wave approximation by modifying the spin-wave
method of Kubo [9, 46, 47]. We consider a bipartite lattice and denote the sites of sublattices by l and m, where l denotes
the sites of “up” spins, and m denotes the sites of “down” spins. We take the principal axis of the uniaxial anisotropy
energy and anisotropic exchange interaction as the z axis, and describe the Hamiltonian HS of the ferrimagnetic spin
system under the external static magnetic-field �Hz as

HS = h̄
∑
〈l, m〉

{
J1(S+

1l S−2m + S−1l S+
2m) + 2J2 Sz

1l S
z
2m

} − h̄ ωz

{ N/2∑
l

Sz
1l +

N/2∑
m

Sz
2m

}

− h̄K
{ N/2∑

l

(Sz
1l)

2 +
N/2∑
m

(Sz
2m)2

}
, (2.1)

with S±1l = Sx
1l ± iSy

1l and S±2m = Sx
2m ± iSy

2m, where �S1l is the spin operator of magnitude S1 at the up-spin site l,
�S2m is the spin operator of magnitude S2 at the down-spin site m, and ωz is the Zeeman frequency ωz = γHz with
the magnetomechanical ratio γ. In the above Hamiltonian HS, h̄J1 and h̄J2 are the exchange energies, h̄K is the
anisotropy energy, N is the total number of spins and the summation

∑
〈l, m〉 is taken over all nearest-neighbor pairs.

We assume S1 >S2. As done by Kubo [9] for an anti-ferromagnetic spin system, the two kinds of the creation and
annihilation operators for the spin deviation are introduced. The spin operator �S1l at the up-spin site l is expressed
as

S+
1l =

√
2 S1 pl al , S−1l =

√
2 S1 a†l pl , Sz

1l = S1 − a†l al , (2.2)

with the Bose operators al and a†l of Holstein and Primakoff [6], where the operator pl is defined by

pl = 1 − a†l al

2 S1

1/2

= 1 − nl

2 S1

)1/2

= 1 − nl

4 S1
− · · · , (nl = a†l al). (2.3)

The spin operator �S2m at the down-spin site m is expressed as

S+
2m =

√
2 S2 b†m pm , S−2m =

√
2 S2 pm bm , Sz

2m = −S2 + b†m bm , (2.4)

with the Bose operators bm and b†m of Holstein and Primakoff [6], where the operator pm is defined by

pm = 1 − b†m bm

2 S2

1/2

= 1 − nm

2 S2

)1/2

= 1 − nm

4 S2
− · · · , (nm = b†m bm). (2.5)

The Bose operators a†l and al are the creation and annihilation operators of spin deviation at the up-spin site l,
respectively, and the Bose operators b†m and bm are the creation and annihilation operators of spin deviation at the
down-spin site m, respectively. These Bose operators satisfy the commutation relations

[ al , a†l′ ] = δl l′ , [ bm , b†m′ ] = δm m′ , (2.6)

while the other commutators vanish. The Fourier transformations for the Bose operators al and bm are performed as

al =
2
N

∑
k

āk exp(− i�k·�rl), āk =
2
N

∑
l

al exp(i�k·�rl), (2.7a)

bm =
2
N

∑
k

b̄k exp(i�k ·�rm), b̄k =
2
N

∑
m

bm exp(− i�k·�rm), (2.7b)
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where the transformed operators āk and b̄k are the Bose operators and satisfy the commutation relations

[ āk , ā†k′ ] = δkk′ , [ b̄k , b̄†k′ ] = δkk′ , (2.8)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “¯”
unless the meaning is confusing. By substituting (2.2) and (2.4) into Hamiltonian HS given by (2.1), by expanding it in
accordance with (2.3) and (2.5), and by performing the Fourier transformations (2.7a) and (2.7b), the Hamiltonian HS

given by (2.1) for the ferrimagnetic spin system can be divided as HS =HS0 +HS1 with the free spin-wave Hamiltonian
HS0, which is derived in Appendix A in the wave-number representation and is expressed as

HS0 = 2 z h̄ J1

∑
k

{
ηk

√
S1S2 (akbk + a†kb†k) + (ζ S2 + κ1 + hz) a†kak + (ζ S1 + κ2 − hz) b†kbk

}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄KN (S2
1 + S2

2)/ 2, (2.9)

where HS1 is parts of the higher-order in the spin-wave approximation, represents the interaction among the spin-waves
and is given by (A.5) in the wave-number representation. Here, ηk, ζ, hz, κ1 and κ2 are defined by

ηk =
1
z

∑
σ

exp(i�k·�σ), ζ =
J2

J1
, hz =

ωz

2 zJ1
=

γ Hz

2 zJ1
, (2.10a)

κ1 =
K(2 S1 − 1)

2 zJ1
, κ2 =

K(2 S2 − 1)
2 zJ1

, (2.10b)

where �σ denotes the vectors to the nearest-neighbour site from each site and z is the number of the vectors.
In order to diagonalize the free spin-wave Hamiltonian HS0 given by (2.9), the operators ak, a†k, bk, and b†k are

transformed according to Refs. [9] and [11], as

ak = αk cosh θk − β†k sinh θk , bk = −α†k sinh θk + βk cosh θk , (2.11)

and their Hermite conjugates, where the operators αk, α†k, βk, and β†k are the Bose operators and satisfy the commu-
tation relations

[ αk , α†k′ ] = δkk′ , [ βk , β†k′ ] = δkk′ , (2.12)

while the other commutators vanish. Taking the choice of θk as (A.7b), which leads to

sinh 2θk = 2 ηk

√
S1S2/ {κ1 + κ2 + ζ (S1 + S2)}2 − 4 η2

k S1S2, (2.13a)

cosh 2θk = {κ1 + κ2 + ζ (S1 + S2)}/ {κ1 + κ2 + ζ (S1 + S2)}2 − 4 η2
k S1S2, (2.13b)

the free spin-wave Hamiltonian HS0 given by (A.6c) takes the diagonal form

HS0 = h̄
∑

k

{
ε+k α†kαk + ε−k β†kβk +

1
2

(ε+k + ε−k )
}
− z h̄ J1N{κ1 + κ2 + ζ (S1 + S2)}/2

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄KN (S2
1 + S2

2)/ 2, (2.14)

where h̄ε±k are the free spin-wave energies given by

h̄ ε±k = z h̄ J1

{√
{κ1 + κ2 + ζ (S1 + S2)}2 − 4 η2

k S1S2 ± {κ1 − κ2 − ζ (S1 − S2) + 2 hz}
}
. (2.15)

If S1 =S2, HS0 and h̄ε±k coincide with, respectively, the free spin-wave Hamiltonian and the free spin-wave energies of
the anti-ferromagnetic spin system [39, 40, 41].

We next consider the interaction between the ferrimagnetic spin system and phonon reservoir. We assume that
each spin interacts only with the reservoir field at the same site as the spin, and thus neglect the spin-reservoir
interactions among the different sites. We also assume that the phonon reservoir is composed of many phonon which
are represented by the Bose operators Ra

lν and Rb
mν of mode ν at sites l and m, respectively, and their Hermite

conjugates. We perform the Fourier transformations for the phonon operators Ra
lν and Rb

mν at the up-spin sites l and
down-spin sites m separately, as

Ra
lν =

2
N

∑
k

R̄a
kν exp(− i�k·�rl), R̄a

kν =
2
N

∑
l

Ra
lν exp(i�k·�rl), (2.16a)

Rb
mν =

2
N

∑
k

R̄b
kν exp(i�k·�rm), R̄b

kν =
2
N

∑
m

Rb
mν exp(− i�k·�rm), (2.16b)
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and their Hermite conjugates, where the transformed operators R̄a
kν , R̄b

kν and their Hermite conjugates are the Bose
operators and satisfy the commutation relations

[ R̄a
kν , R̄a†

k′ν′ ] = δkk′δνν′ , [ R̄b
kν , R̄b†

k′ν′ ] = δkk′δνν′ , (2.17)

while the other commutators vanish. Hereafter, we mainly use the Fourier transformed variables and we omit “¯”
unless the meaning is confusing. The interaction Hamiltonian HSR between the spin system and phonon reservoir is
taken as

HSR = − h̄

2

{ ∑
l, ν

(
g∗1ν S+

1l Ra†
l + g1ν S−1l Ra

l

)
+

∑
m, ν

(
g1ν S+

2m Rb
mν + g∗1ν S−2m Rb†

mν

)}

− h̄
{∑

l, ν

g2ν Sz
1l R

a†
lν Ra

lν +
∑
m, ν

g2ν Sz
2m Rb†

mν Rb
mν

}
, (2.18a)

= − h̄

2

∑
k, ν

{√
2 S1 (g∗1ν akRa†

kν + g1ν a†kRa
kν) +

√
2 S2 (g1ν b†kRb

kν + g∗1ν bkRb†
kν)

}
+ · · ·

− h̄
∑
k, ν

g2ν

{(
S1 − 2

N

∑
k′

a†k′ak′
)
Ra†

kνRa
kν +

( 2
N

∑
k′

b†k′bk′ − S2

)
Rb†

kνRb
kν

}
+ · · · , (2.18b)

where g1ν and g2ν are the coupling constants between the spin and the phonon of mode ν. In the derivation of (2.18b),
we have substituted (2.2) and (2.4) into (2.18a) and have expanded it according to (2.3) and (2.5). In (2.18b), the first
“ · · · ” denotes the higher-order parts of the first term of (2.18a) in the spin-wave approximation, and the second “ · · · ”
denotes the off-diagonal parts in the Fourier transformation of the second term of (2.18a). The above spin-phonon
interaction Hamiltonian HSR reflects the energy transfer between the spin system and phonon reservoir, and is different
from the one taken in Refs. [39, 40], because the spin-phonon interaction taken in Refs. [39, 40] does not reflect the
energy transfer between the spin system and phonon reservoir at the sites m of “down” spins.

In the spin-phonon interaction HSR given by (2.18), we assume that same as the x and y components of the spin,
the z component of the spin is coupled only with the phonon operators of the same wave-number as the spin. We also
assume that the thermal equilibrium value of the phonon number of the wave number k at the up-spin sites l coincides
with that of the wave number k at the down-spin sites m in the phonon reservoir, and put∑

ν

g2ν〈1R|Ra†
kνRa

kν |ρR〉 =
∑

ν

g2ν〈1R|Rb†
kνRb

kν |ρR〉 =
∑

ν

g2ν〈1R|R†kνRkν |ρR〉, (2.19)

with the Bose operators Rkν and R†kν , where 〈1R| · · · |ρR〉=trR · · · ρR is the notaion of thermo-field dynamics, and ρR is
the normalized, time-independent density operator for the phonon reservoir with the Hamiltonian HR, and is given by

ρR = exp(− β HR)/〈1R| exp(− β HR) |1R〉 = exp(− β HR)/ trR exp(− β HR), (2.20)

which is the thermal equilibrium density operator at temperature T =(kBβ)−1. Here, notation trR denotes the trace
operation in the space of the phonon reservoir. We do not specify the Hamiltonian HR of the phonon reservoir explicitly.
For the later convenience, we renormalize the free spin-wave Hamiltonian HS0, the free spin-wave energies h̄ε±k and
the spin-phonon interaction HSR, as follows

HS0 = h̄
∑

k

{
ε+k α†kαk + ε−k β†kβk +

1
2

(ε+k + ε−k )
}
− z h̄ J1N (κ1 + κ2 + ζ (S1 + S2))/ 2

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄ KN (S2
1 + S2

2)/ 2 − h̄ (S1 − S2)
∑
k, ν

g2ν 〈1R|R†kνRkν |ρR〉, (2.21)

h̄ ε±k = z h̄ J1

{ {κ1 + κ2 + ζ (S1 + S2)}2 − 4 η2
k S1S2 ± {κ1 − κ2 − ζ (S1 − S2) + 2 hz}

}
± h̄

∑
ν

g2ν 〈1R|R†kνRkν |ρR〉, (2.22)

HSR = − (h̄/
√

2 )
∑
k, ν

{
g∗1ν (

√
S1 akRa†

kν +
√

S2 bkRb†
kν) + g1ν (

√
S1 a†kRa

kν +
√

S2 b†kRb
kν)

}

− h̄
∑
k, ν

g2ν

{
(S1 − a†kak)(Ra†

kνRa
kν − 〈1R|Ra†

kνRa
kν |ρR〉) + (b†kbk − S2)(R

b†
kνRb

kν − 〈1R|Rb†
kνRb

kν |ρR〉)
}
, (2.23)

where we have ignored the higher-order parts in the spin-wave approximation, the off-diagonal parts and the wave-
number mixing in HSR. Hereafter, we use HS0, h̄ε±k and HSR given by (2.21)− (2.23), respectively, for the free spin-
wave Hamiltonian, the free spin-wave energies and the spin-phonon interaction. We besides assume that the thermal
equilibrium values of the phonon operators vanish, i.e., 〈1R|Ra(b)

kν |ρR〉= 〈1R|Ra(b)†
kν |ρR〉= 0. Then, we have

〈1R|HSR|ρR〉 = 0, 〈1R|ĤSR|ρR〉 = 0, [ĤSR = (HSR − H̃†SR)/h̄], (2.24)
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where ĤSR are the renormalized hat-Hamiltonian defined by ĤSR =(HSR − H̃†SR)/h̄ [25]. The renormalized free spin-
wave energies h̄ε±k given by (2.22) include not only the free sin-wave energies given by (2.15) but also the thermal
equilibrium values of the phonon number, which depend on temperature T in general. We assume that the phonon
operators for each wave number and each mode are mutually independent and assume that

〈1R|Ra
kν(t)Ra

kν |ρR〉 = 〈1R|Ra†
kν(t)Ra†

kν |ρR〉 = 〈1R|Rb
kν(t)Rb

kν |ρR〉 = 〈1R|Rb†
kν(t)Rb†

kν |ρR〉 = 0, (2.25a)

〈1R|R̃a
kν(t)R̃a

kν |ρR〉 = 〈1R|R̃a†
kν(t)R̃a†

kν |ρR〉 = 〈1R|R̃b
kν(t)R̃b

kν |ρR〉 = 〈1R|R̃b†
kν(t)R̃b†

kν |ρR〉 = 0, (2.25b)

with the Heisenberg operators R
a(b)
kν (t)= exp(iĤRt)R

a(b)
kν exp(−iĤRt), R̃

a(b)
kν (t)= exp(iĤRt)R̃

a(b)
kν exp(−iĤRt), and their

Hermite conjugates, which are the Heisenberg operators in the space of the phonon reservoir. We also assume that
the phonon operators at the up-spin sites l are independent of the phonon operators at the down-spin sites m, e.g.,
〈1R|Ra

kν(t)Rb
kν |ρR〉= 〈1R|Ra†

kν(t)Rb
kν |ρR〉=0. We besides assume that the correlation function for the phonon operator

with the wave number k at the up-spin sites l coincides with the correlation function for the phonon operator with
the wave number k at the down-spin sites m, and put

∑
ν

|g1ν |2〈1R|Ra†
kν(t)Ra

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rb†
kν(t)Rb

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|R†kν(t)Rkν |ρR〉, (2.26a)

∑
ν

|g1ν |2〈1R|Ra
kν(t)Ra†

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rb
kν(t)Rb†

kν |ρR〉 =
∑

ν

|g1ν |2〈1R|Rkν(t)R†kν |ρR〉, (2.26b)

∑
ν

g2
2ν 〈1R|∆(Ra†

kν(t)Ra
kν(t))∆(Ra†

kνRa
kν)|ρR〉 =

∑
ν

g2
2ν 〈1R|∆(Rb†

kν(t)Rb
kν(t))∆(Rb†

kνRb
kν)|ρR〉

=
∑

ν

g2
2ν 〈1R|∆(R†kν(t)Rkν(t))∆(R†kνRkν)|ρR〉, (2.26c)

where we have put, for example, as ∆(R†kν(t)Rkν(t))= R†kν(t)Rkν(t) − 〈1R|R†kνRkν |ρR〉 and ∆(R†kνRkν) =R†kνRkν −
〈1R|R†kνRkν |ρR〉. As done in Refs. [39, 40, 41], we assume that the phonon correlation function given by (2.26c) is real.
In Appendix B, we formulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon interaction
(2.23) taken to reflect the energy transfer between the spin system and phonon reservoir.

In the last of this section, we check the ground state of the ferrimagnetic spin system. In the lowest spin-wave
approximation, the renormalized Hamiltonian HS0 of the spin system is given by (2.21), and can be rewritten by
substituting the renormalized free spin-wave energies h̄ε±k given by (2.22) into it, as

HS0 = z h̄ J1{κ1 + κ2 + ζ (S1 + S2)}
∑

k

{√
1 − tanh2(2θk) − 1

} − z h̄ J2 NS1S2 − h̄KN (S2
1 + S2

2)/ 2

− h̄ ωzN (S1 − S2)/ 2 + h̄
∑

k

{
ε+k α†kαk + ε−k β†kβk

} − h̄ (S1 − S2)
∑
k, ν

g2ν 〈1R|R†kνRkν |ρR〉, (2.27)

with tanh 2θk = 2 ηk

√
S1S2 /{κ1 + κ2 + ζ (S1 + S2)} given by (A.7b). Then, the ground state energy EG

S0 of the spin
system in the lowest spin-wave approximation is given by

EG
S0 = −z h̄ J2 NS1S2 − h̄KN (S2

1 + S2
2)/ 2 − h̄ ωzN (S1 − S2)/ 2 − h̄ (S1 − S2)

∑
k, ν

g2ν 〈1R|R†kνRkν |ρR〉

+ z h̄ J1{κ1 + κ2 + ζ (S1 + S2)}
∑

k

{√
1 − tanh2(2θk) − 1

}
, (2.28)

which is smaller than the energy −z h̄J2NS1S2 − h̄ KN(S2
1 + S2

2)/ 2− h̄ ωzN (S1 −S2)/ 2 of the ferrimagnetic ordered
state in which the spins at the up-spin sites l are in the up-direction and the spins at the down-spin sites m are in the
down-direction, corresponding to the Neel ordered state for anti-ferromagnetic spin systems [50], because the fourth

and fifth terms of EG
S0 given by (2.28) are negative according to S1 >S2 and { 1 − tanh2(2θk)− 1}< 0. Thus, the

ground state of the ferrimagnetic spin system in the lowest spin-wave approximation is lower than the ferrimagnetic
ordered state. The modes of free spin-wave dispersions ε+k and ε−k given by (2.15), have the ferromagnetic character
and anti-ferromagnetic character, respectively, in the meaning that the modes of dispersions ε+k and ε−k decrease and
increase the magnetization of the ground state, respectively. In the case of an one-dimensional ferrimagnetic system
with the isotropic exchange interaction and without anisotropic energy, i.e., ζ =1, K =0, under no external static
field, the free spin-wave dispersions ε±k have the forms

ε±k = 2 J1

{√
(S1 + S2)2 − 4 S1S2 cos2 k ∓ (S1 − S2)

} ± h̄
∑

ν

g2ν 〈1R|R†kνRkν |ρR〉,

= 2 J1(S1 − S2)
{(

1 +
4 S1S2

(S1 − S2)2
sin2 k

1/2

∓ 1
}
± h̄

∑
ν

g2ν 〈1R|R†kνRkν |ρR〉, (2.29)
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for the case of a regular-interval ranked spin chain for which we have z =2 and ηk = cos k. Considering that in the
low temperature llimit T → 0, h̄

∑
ν g2ν〈1R|R†kνRkν |ρR〉→ 0, the free spin-wave dispersions ε±k behave in the small

wave-number limit k→ 0, as

ε+k ≈ 4 J1S1S2

S1 − S2
k2, ε−k ≈ 4 J1(S1 − S2) +

4 J1S1S2

S1 − S2
k2, (k → 0). (2.30)

Thus, in the ferromagnetic mode of dispersion ε+k , there is no energy gap between the ground state and excited state
in the small wave-number limit k→ 0, and in the anti-ferromagnetic mode of dispersion ε−k , there is the energy gap
4 h̄ J1(S1 − S2) between the ground state and excited state in the limit k→ 0.

3 Resonance absorption and transverse magnetization

In this section, we derive forms of the transverse magnetic susceptibility, the expectation value of the transverse
magnetization and its amplitude for the ferrimagnetic spin system interacting with the phonon reservoir, by employing
the TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD) formulated in
Appendix B. The TCLE method of linear response was formulated in terms of the NETFD in Refs. [23, 24, 25], and
it was surveyed in Appendix A of Ref. [40]. We consider the case that the external driving magnetic field �Hj(t) at
site j is a transversely rotating classical field :

�Hj(t) = (Hj cos ωt , −Hj sinωt , 0), (H∗j = Hj ; j = l, m), (3.1)

and take the interaction Hed(t) of the spin system with the external driving field as

Hed(t) = − h̄ γ
∑

j

�Sj · �Hj(t) = − 1
2

h̄ γ
∑

j

{S+
j H−j (t) + S−j H+

j (t)},

= − h̄ γ

2

{∑
l

Hl {S+
1l exp(i ω t) + S−1l exp(− i ω t)} +

∑
m

Hm{S+
2m exp(i ω t) + S−2m exp(− i ω t)}

}
,

= − h̄ γ

2

{√
2 S1

∑
l

Hl {al exp(i ω t) + a†l exp(− i ω t)}

+
√

2 S2

∑
m

Hm{b†m exp(i ω t) + bm exp(− i ω t)}
}

+ · · · , (3.2)

with H±j (t) = Hx
j (t) ± i Hy

j (t) = Hj exp(∓i ω t), where we have performed the transformations (2.2) and (2.4) and
the expansions (2.3) and (2.5). Here, “· · · ” denotes the higher-order parts in the spin-wave approximation, and we
neglect the higher-order parts in the following. By performing the Fourier transformations (2.7a) and (2.7b), the above
interaction Hed(t) can be rewritten in the wave-number representation as

Hed(t) = − h̄γ√
2

∑
k

{(√
S1 ak +

√
S2 b†k

)
H̄k exp(i ω t) +

(√
S1 a†k +

√
S2 bk

)
H̄∗k exp(− i ω t)

}
, (3.3)

where H̄k is the Fourier transformation of Hj [= H∗j ] :

Hj =
2
N

∑
k

H̄k exp(i�k·�rj), H̄k =
2
N

∑
j

Hj exp(− i�k·�rj), (j = l, m). (3.4)

Hereafter, we mainly use the Fourier transformed variables and we omit “¯” unless the meaning is confusing. When the
external driving magnetic field �Hj(t) is uniform in space, i.e., Hj =H , we have Hk =H0 δk0 and H0 =H∗0 =

√
N/2 H ,

and the form of the interaction Hed(t) becomes

Hed(t) = − h̄γ

2
H
√

N
{(√

S1 a0 +
√

S2 b†0
)
exp(i ω t) +

(√
S1 a†0 +

√
S2 b0

)
exp(− i ω t)

}
. (3.5)

The transverse magnetic susceptibility χS+
k S−

k
(ω) for the ferrimagnetic spin system specified in Section 2, is given

by employing the TCLE method formulated in terms of the NETFD [23, 24, 25, 40], as

χS+
k S−

k
(ω) =

1
2

∫ ∞
0

dt 〈1S| γ h̄ S+
k U(t) exp←

{
− i

∫ t

0

dτ ĤS1(τ)
}

× {
i (γ/2)(S−k − S̃+

k )|ρ0〉 + |D(2)

S−
k

[ω]〉} exp(i ω t), (3.6)
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in the the second-order approximation for the spin-phonon interaction, where U(t) and ĤS1(t) are defined by (B.21)
and (B.22), respectively, and |ρ0〉 is defined by |ρ0〉= 〈1R|ρTE〉 for ρTE given by (B.3). Here, S±k are the Fourier
transformations of the sin operators S±j , i.e.,

S±j =
2
N

∑
k

S̄±k exp(∓ i�k·�rj), S̄±k =
2
N

∑
j

S±j exp(± i�k·�rj), (j = l, m), (3.7)

with S̄±k ⇒S±k , i.e., “¯” is omitted hereafter unless the meaning is confusing. The above transverse susceptibility
χS+

k S−
k

(ω) is valid even if the spin system is interacting with a non-quickly damped phonon-reservoir. Here, the

interference thermal state |D(2)

S−
k

[ω]〉 represents the effects of the memory and initial correlation for the spin system
and phonon reservoir, and can be written as

|D(2)

S−
k

[ω]〉 =
i γ√

2

∫ ∞
0

dτ

∫ τ

0

ds
{〈1R|ĤSR exp{−i Ĥ0 τ}ĤSR exp{i Ĥ0(τ − s)}

× (√
S1 (a†k − ãk) +

√
S2 (bk − b̃†k)

)|ρ0〉|ρR〉 exp(i ω s)

− 〈1R|ĤSR exp{−i Ĥ0 s}(√S1 (a†k − ãk) +
√

S2 (bk − b̃†k)
)

× exp{i Ĥ0 ·(s − τ)}ĤSR|ρ0〉|ρR〉 exp(i ω s)
}
, (3.8)

with H0 =HS0 +HR, where we have neglected the higher-order parts in the spin-wave approximation. The above
interference thermal state |D(2)

S−
k

[ω]〉 is calculated by substituting (2.23) into (3.8) in Appendix C, can be expressed as

(C.2) using the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by (B.25a)− (B.25c), and can be rewritten as

|D(2)

S−
k

[ω]〉 = (γ/
√

2){Gk1|D(2)
k1 [ω]〉 + Gk2|D(2)

k2 [ω]〉}, (3.9)

|D(2)
k1 [ω]〉 =

{
(α†k − α̃k)|ρ0〉 (cosh 2θk + 1) S1(Φ+

k (ω) − Φ+
k (ε+k ))

+ (α†k − α̃k)|ρ0〉 (cosh 2θk − 1) S2 (Φ−k (ω) − Φ−k (ε+k ))

− (βk − β̃†k)|ρ0〉 sinh 2θk {S1(Φ+
k (ω) − Φ+

k (ε+k )) + S2 (Φ−k (ω) − Φ−k (ε+k ))}
+ (βk − β̃†k)|ρ0〉 sinh 2θk cosh 2θk (Ψk(ω + ε−k ) − Ψk(ε+k + ε−k ))

+ (α†k − α̃k)|ρ0〉 (cosh2 2θk + 1) (Ψk(ω − ε+k ) − Ψk(0))

+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {(βk − β̃†k)|ρ0〉 sinh 2θk (Ψk(ω + ε−k ) − Ψk(ε+k + ε−k ))

− (α†k − α̃k)|ρ0〉 cosh 2θk (Ψk(ω − ε+k ) − Ψk(0))}}/{2 (ω − ε+k )}, (3.10)

|D(2)
k2 [ω]〉 =

{
(α†k − α̃k)|ρ0〉 sinh 2θk {S1(Φ+

k (ω) − Φ+
k (− ε−k )) + S2 (Φ−k (ω) − Φ−k (− ε−k ))}

− (βk − β̃†k)|ρ0〉 (cosh 2θk − 1) S1(Φ+
k (ω) − Φ+

k (− ε−k ))

− (βk − β̃†k)|ρ0〉 (cosh 2θk + 1) S2 (Φ−k (ω) − Φ−k (− ε−k ))

+ (α†k − α̃k)|ρ0〉 sinh 2θk cosh 2θk (Ψk(ω − ε+k ) − Ψk(− ε+k − ε−k ))

+ (βk − β̃†k)|ρ0〉 (cosh2 2θk + 1) (Ψk(ω + ε−k ) − Ψk(0))

+ (αkβk + α†kβ†k − α̃kβ̃k − α̃†kβ̃†k) sinh 2θk

× {(βk − β̃†k)|ρ0〉 cosh 2θk (Ψk(ω + ε−k ) − Ψk(0))

− (α†k − α̃k)|ρ0〉 sinh 2θk (Ψk(ω − ε+k ) − Ψk(− ε+k − ε−k ))}}/{2 (ω + ε−k )}, (3.11)

where we have defined |D(2)
k1 [ω]〉 and |D(2)

k2 [ω]〉 by the above equations, and have put as

Gk1 =
√

S1 cosh θk −
√

S2 sinh θk, Gk2 =
√

S2 cosh θk −
√

S1 sinh θk. (3.12)

Here, Φ±k (ε) are defined by (B.42) and (B.43), and Ψk(ε) is defined by

Ψk(ε) = φzz
k (ε) =

∫ ∞
0

dτ
∑

ν

g2
2ν〈1R|∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)|ρR〉 exp(i ε τ), (3.13)

with Ψk(ε+k + ε−k )=Ψk and Ψk(0) =Ψ0
k, which are defined by (B.44) and (B.54). The lowest-order part χ

(0)

S+
k S−

k

(ω)

of the transverse magnetic susceptibility χS+
k S−

k
(ω) given by (3.6) in the sin-wave approximation, takes the following
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forms

χ
(0)

S+
k S−

k

(ω) =
h̄γ2

2

∫ ∞
0

dt 〈1S|{
√

S1 ak +
√

S2 b†k}U(t) exp(i ω t)
{
i {

√
S1 (a†k − ãk)

+
√

S2 (bk − b̃†k)}|ρ0〉 + Gk1|D(2)
k1 [ω]〉 + Gk2|D(2)

k2 [ω]〉}, (3.14a)

=
h̄γ2

2

∫ ∞
0

dt 〈1S|{Gk1αk(t) + Gk2 β††k (t)} exp(i ω t)
{
i {Gk1 ·(α†k − α̃k)

+ Gk2 ·(βk − β̃†k)}|ρ0〉 + Gk1|D(2)
k1 [ω]〉 + Gk2|D(2)

k2 [ω]〉}, (3.14b)

where we have used the axioms (B.26), the Heisenberg operators (B.27a), (B.27b) and their tilde conjugates. According
to the transformations (B.33a), (B.33b), (B.37a), (B.37b) and their tilde conjugates, the thermal-state conditions
(B.36) and their tilde conjugates, the relations (B.34a) and (B.34b), the axioms (B.7) and their tilde conjugates, the
forms (B.57a) and (B.57b) of the quasi-particle operators, we have

〈1S|αk(t) = Zα
k (t)1/2〈1S|λk(t) = Zα

k (0)1/2 exp{(− i ε+k − Γk+) t }〈1S|λk

+ Zβ
k (0)1/2∆∗k−

exp{(− i ε+k − Γk+) t} − exp{(i ε−k − Γ∗k−) t}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k ,

= exp{(− i ε+k − Γk+) t }〈1S|αk

+ ∆∗k−
exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }

i (ε+k + ε−k ) + Γk+ − Γ∗k−
〈1S|β†k , (3.15a)

〈1S|β††k (t) = Zβ
k (t)1/2〈1S| ξ̃k(t) = Zβ

k (0)1/2 exp{(i ε−k − Γ∗k−) t }〈1S| ξ̃k

+ Zα
k (0)1/2∆k+

exp{(− i ε+k − Γk+) t} − exp{(i ε−k − Γ∗k−) t}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk ,

= exp{(i ε−k − Γ∗k−) t }〈1S|β†k
+ ∆k+

exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|αk . (3.15b)

By virtue of the commutation relations (B.5), the axioms (B.7) and their tilde conjugates, we obtain

Xα
k1(ω) = 〈1S|αk |D(2)

k1 [ω]〉 = Xα
k1(ω)′ + i Xα

k1(ω)′′,

=
{
S1(cosh 2θk + 1) {Φ+

k (ω) − Φ+
k (ε+k )} + S2 (cosh 2θk − 1) {Φ−k (ω) − Φ−k (ε+k )}

+ (cosh2 2θk + 1) {Ψk(ω − ε+k ) − Ψ0
k} − sinh2 2θk {Ψk(ω + ε−k ) − Ψk}

}
/{2 (ω − ε+k )}, (3.16a)

Xα
k2(ω) = 〈1S|αk |D(2)

k2 [ω]〉 = Xα
k2(ω)′ + i Xα

k2(ω)′′,

=
{

sinh 2θk {S1(Φ+
k (ω) − Φ+

k (− ε−k )) + S2 (Φ−k (ω) − Φ−k (− ε−k ))}
+ sinh 2θk cosh 2θk {(Ψk(ω − ε+k ) − Ψ∗k) − (Ψk(ω + ε−k ) − Ψ0

k)}}/{2 (ω + ε−k )}, (3.16b)

Xβ
k1(ω) = 〈1S|β†k |D(2)

k1 [ω]〉 = Xβ
k1(ω)′ + i Xβ

k1(ω)′′,

=
{

sinh 2θk {S1(Φ+
k (ω) − Φ+

k (ε+k )) + S2 (Φ−k (ω) − Φ−k (ε+k ))}
+ sinh 2θk cosh 2θk {(Ψk(ω − ε+k ) − Ψ0

k) − (Ψk(ω + ε−k ) − Ψk)}}/{2 (ω − ε+k )}, (3.17a)

Xβ
k2(ω) = 〈1S|β†k |D(2)

k2 [ω]〉 = Xβ
k2(ω)′ + i Xβ

k2(ω)′′,

=
{
S1(cosh 2θk − 1) (Φ+

k (ω) − Φ+
k (− ε−k )) + S2 (cosh 2θk + 1) (Φ−k (ω) − Φ−k (− ε−k ))

− (cosh2 2θk + 1) (Ψk(ω + ε−k ) − Ψ0
k) + sinh2 2θk (Ψk(ω − ε+k ) − Ψ∗k)

}
/{2 (ω + ε−k )}, (3.17b)

where we have defined Xα
k1(ω), Xα

k2(ω), Xβ
k1(ω) and Xβ

k2(ω), which correspond to the interference terms and represent
the effects of the memory and initial correlation for the spin system and phonon reservoir. Here, X

α(β)
k1(2)(ω)′ and

X
α(β)
k1(2)(ω)′′ are the real and imaginary parts of X

α(β)
k1(2)(ω), respectively. By substituting (3.15a) and (3.15b) into

(3.14b), and by performing the integration in (3.14b) considering that Γ′k± are positive for positive ε±k according to
(B.60), the transverse susceptibility χ

(0)

S+
k S−

k

(ω) in the lowest spin-wave approximation can be expressed as

χ
(0)

S+
k S−

k

(ω) = (h̄γ2/2)
{
G2

k1 χ
(0)1
k± (ω) + G2

k2 χ
(0)2
k± (ω) + Gk1Gk2 χ

(0)3
k± (ω)

}
, (3.18)
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where χ
(0)n
k± (ω) (n =1, 2, 3) are defined by

χ
(0)1
k± (ω) =

− i − Xα
k1(ω)

i (ω − ε+k ) − Γk+

+
−∆∗k−Xβ

k1(ω)
{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}

, (3.19a)

χ
(0)2
k± (ω) =

i − Xβ
k2(ω)

i (ω + ε−k ) − Γ∗k−
+

−∆k+ Xα
k2(ω)

{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}
, (3.19b)

χ
(0)3
k± (ω) =

−Xα
k2(ω)

i (ω − ε+k ) − Γk+

+
−Xβ

k1(ω)
i (ω + ε−k ) − Γ∗k−

+
−∆k+{i + Xα

k1(ω)} + ∆∗k−{i − Xβ
k2(ω)}

{i (ω − ε+k ) − Γk+}{i (ω + ε−k ) − Γ∗k−}
, (3.19c)

which lead to the real parts χ
(0)n
k± (ω)′ and the imaginary parts of χ

(0)n
k± (ω)′′ of χ

(0)n
k± (ω) (n =1, 2, 3), as

χ
(0)1
k± (ω)′ =

Xα
k1(ω)′ Γ′k+ − (1 + Xα

k1(ω)′′)(ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
{{∆′k−Xβ

k1(ω)′ + ∆′′k−Xβ
k1(ω)′′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k−Xβ
k1(ω)′′ − ∆′′k−Xβ

k1(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.20a)

χ
(0)2
k± (ω)′ =

Xβ
k2(ω)′ Γ′k− + (1 − Xβ

k2(ω)′′)(ω + ε−k + Γ′′k−)
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k2(ω)′ − ∆′′k+Xα
k2(ω)′′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k+Xα
k2(ω)′′ + ∆′′k+Xα

k2(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.20b)

χ
(0)3
k± (ω)′ =

Xα
k2(ω)′ Γ′k+ − Xα

k2(ω)′′(ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Xβ

k1(ω)′ Γ′k− − Xβ
k1(ω)′′(ω + ε−k + Γ′′k−)

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k1(ω)′ − ∆′′k+(1 + Xα
k1(ω)′′)}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

+ {∆′k+(1 + Xα
k1(ω)′′) + ∆′′k+Xα

k1(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

+ {∆′k−Xβ
k2(ω)′ − ∆′′k−(1 − Xβ

k2(ω)′′)}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}
− {∆′k−(1 − Xβ

k2(ω)′′) + ∆′′k−Xβ
k2(ω)′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}

}
/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.20c)

χ
(0)1
k± (ω)′′ =

Xα
k1(ω)′(ω − ε+k − Γ′′k+) + (1 + Xα

k1(ω)′′)Γ′k+

(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
{{∆′k−Xβ

k1(ω)′′ − ∆′′k−Xβ
k1(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k−Xβ
k1(ω)′ + ∆′′k−Xβ

k1(ω)′′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.21a)

χ
(0)2
k± (ω)′′ =

Xβ
k2(ω)′(ω + ε−k + Γ′′k−) − (1 − Xβ

k2(ω)′′)Γ′k−
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+Xα

k2(ω)′′ + ∆′′k+Xα
k2(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k+Xα
k2(ω)′ − ∆′′k+Xα

k2(ω)′′}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}, (3.21b)

χ
(0)3
k± (ω)′′ =

Xα
k2(ω)′(ω − ε+k − Γ′′k+) + Xα

k2(ω)′′Γ′k+

(ω − ε+k − Γ′′k+)2 + (Γ′k+)2
+

Xβ
k1(ω)′(ω + ε−k + Γ′′k−) + Xβ

k1(ω)′′Γ′k−
(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

+
{{∆′k+(1 + Xα

k1(ω)′′) + ∆′′k+Xα
k1(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k+Xα
k1(ω)′ − ∆′′k+(1 + Xα

k1(ω)′′)}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
− {∆′k−(1 − Xβ

k2(ω)′′) + ∆′′k−Xβ
k2(ω)′}{(ω − ε+k − Γ′′k+)(ω + ε−k + Γ′′k−) − Γ′k+Γ′k−}

− {∆′k−Xβ
k2(ω)′ − ∆′′k−(1 − Xβ

k2(ω)′′)}{(ω − ε+k − Γ′′k+)Γ′k− + (ω + ε−k + Γ′′k−)Γ′k+}
}

/
{{(ω − ε+k − Γ′′k+)2 + (Γ′k+)2}{(ω + ε−k + Γ′′k−)2 + (Γ′k−)2}}. (3.21c)
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Then, the real part χ
(0)

S+
k

S−
k

(ω)′ and imaginary part χ
(0)

S+
k

S−
k

(ω)′′ of the transverse susceptibility χ
(0)

S+
k

S−
k

(ω) in the lowest
spin-wave approximation are given by

χ
(0)

S+
k S−

k

(ω)′ = (h̄γ2/2)
{
G2

k1 χ
(0)1
k± (ω)′ + G2

k2 χ
(0)2
k± (ω)′ + Gk1Gk2 χ

(0)3
k± (ω)′

}
, (3.22a)

χ
(0)

S+
k

S−
k

(ω)′′ = (h̄γ2/2)
{
G2

k1 χ
(0)1
k± (ω)′′ + G2

k2 χ
(0)2
k± (ω)′′ + Gk1Gk2 χ

(0)3
k± (ω)′′

}
. (3.22b)

Since the second terms of χ
(0)1
k± (ω) and χ

(0)2
k± (ω) given by (3.19a) and (3.19b), and the third term of χ

(0)3
k± (ω) given by

(3.19c), can be considered to give small contribution in the resonance region, the real part χ
(0)

S+
k S−

k

(ω)′ and imaginary

part χ
(0)

S+
k

S−
k

(ω)′′ of the transverse susceptibility in the lowest spin-wave approximation take approximately the forms

χ
(0)

S+
k S−

k

(ω)′ ∼= h̄γ2

2

{Ξα
k (ω)′ Γ′k+ − Ξα

k (ω)′′ (ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Πβ

k (ω)′ Γ′k− − Πβ
k (ω)′′ (ω + ε−k + Γ′′k−)

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

}
, (3.23a)

χ
(0)

S+
k S−

k

(ω)′′ ∼= h̄γ2

2

{Ξα
k (ω)′′ Γ′k+ + Ξα

k (ω)′ (ω − ε+k − Γ′′k+)
(ω − ε+k − Γ′′k+)2 + (Γ′k+)2

+
Πβ

k (ω)′ (ω + ε−k + Γ′′k−) + Πβ
k (ω)′′ Γ′k−

(ω + ε−k + Γ′′k−)2 + (Γ′k−)2

}
, (3.23b)

in the resonance region, where we have put as

Ξα
k (ω) = Ξα

k (ω)′ + i Ξα
k (ω)′′ = G2

k1 ·{i + Xα
k1(ω)} + Gk1Gk2X

α
k2(ω), (3.24a)

Πβ
k (ω) = Πβ

k (ω)′ + i Πβ
k(ω)′′ = G2

k2 ·{− i + Xβ
k2(ω)} + Gk1Gk2X

β
k1(ω), (3.24b)

with the real parts Ξα
k (ω)′, Πβ

k (ω)′ and the imaginary parts Ξα
k (ω)′′, Πβ

k (ω)′′ of Ξα
k (ω), Πβ

k (ω).
The power loss of the transversely rotating magnetic-field given by (3.1) is given by h̄γ|Hk|2ωχS+

k
S−

k
(ω)′′ for

the ferrimagnetic spin system with the wave-number k [24]. When the ferrimagnetic system with the wave-number
k is in the periodic motion with the frequency ω, the power absorption of the ferrimagnetic system is given by
h̄γ|Hk|2ωχS+

k S−
k

(ω)′′. Hereafter, the power absorption of the ferrimagnetic system with the wave-number k in the
periodic motion with the frequency ω is referred as “Pk(ω)”, i.e.,

Pk(ω) = h̄ γ |Hk|2 ω χS+
k S−

k
(ω)′′, (3.25)

which is expressed in the lowest spin-wave approximation as

P
(0)
k (ω) = h̄ γ |Hk|2 ω χ

(0)

S+
k S−

k

(ω)′′. (3.26)

The line shape of the power absorption P
(0)
k (ω) has two peaks at frequencies ω ∼= ε+k +Γ′′k+, − ε−k −Γ′′k− according to the

approximate form (3.23b) of the imaginary part χ
(0)

S+
k S−

k

(ω)′′ in the resonance region of the transverse susceptibility in

the lowest spin-wave approximation. For positive frequency ω (>0), the resonance frequency ωP
Rk and the peak-height

(height of peak) HP
Rk in the resonance region of the power absorption P

(0)
k (ω) are approximately given by

ωP
Rk

∼= ε+k + Γ′′k+, (3.27)

HP
Rk

∼= h̄2 γ3 |Hk|2 ωP
Rk Ξα

k (ωP
Rk)′′/(2 Γ′k+), (3.28)

with Γ′k+ and Γ′′k+ given by (B.59a) and (B.59b), according to (3.23b). In order to obtain the approximate formula of
the line half-width ∆ωP

Rk in the resonance region of the power absorption P
(0)
k (ω), we put as ∆ωP

Rk/2 = x1Γ′k+ for the
first-step approximation of ∆ωP

Rk, which satisfies

1
2
HP

Rk
∼= h̄γ2 ωP

Rk

4Γ′k+

Ξα
k (ωP

Rk)′′ ∼= h̄γ2 ωP
Rk + x1 Γ′k+

2 (x2
1 + 1) Γ′k+

{
Ξα

k (ωP
Rk)′′ + x1 Ξα

k (ωP
Rk)′

}
, (3.29)

where we have approximated Ξα
k (ωP

Rk + x1Γ′k+) with Ξα
k (ωP

Rk) in the right-hand side of the above equation. Equation
(3.29) can be rewritten as

{ωP
Rk Ξα

k (ωP
Rk)′′ − 2 Γ′k+Ξα

k (ωP
Rk)′} x2

1 − 2 {ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′} x1 − ωP

Rk Ξα
k (ωP

Rk)′′ ∼= 0. (3.30)

By obtaining the positive solution of the above second-order equation for x1, the first-step approximation of the
half-width ∆ωP

Rk can be derived as

2 x1Γ′k+
∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′ +

{
(ωP

Rk)2 {(Ξα
k (ωP

Rk)′)2 + (Ξα
k (ωP

Rk)′′)2}
+ (Γ′k+)2(Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk)′}. (3.31)
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Then, by putting as ∆ωP
Rk/2 = xΓ′k+, the approximate formula of the line half-width ∆ωP

Rk in the resonance region of
the power absorption P

(0)
k (ω), can be derived from the equation

h̄γ2 ωP
Rk

4Γ′k+

Ξα
k (ωP

Rk)′′ ∼= h̄γ2 ωP
Rk + xΓ′k+

2 (x2 + 1) Γ′k+

{
Ξα

k (ωP
Rk + x1Γ′k+)′′ + xΞα

k (ωP
Rk + x1Γ′k+)′

}
, (3.32)

which can be rewritten as
{
ωP
Rk Ξα

k (ωP
Rk)′′ − 2 Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′

}
x2 − 2

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′

+ Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′′
}

x − ωP
Rk {2 Ξα

k (ωP
Rk + x1Γ′k+)′′ − Ξα

k (ωP
Rk)′′} ∼= 0. (3.33)

By obtaining the positive solution of the above second-order equation for x, the approximate formula of the line
half-width ∆ωP

Rk in the resonance region of the power absorption P
(0)
k (ω) can be derived as

∆ωP
Rk

∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′ + Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′′

+
{
(ωP

Rk)2 (Ξα
k (ωP

Rk + x1Γ′k+)′)2 + (Γ′k+)2 (Ξα
k (ωP

Rk + x1Γ′k+)′′)2

+ 2 ωP
Rk Ξα

k (ωP
Rk)′′{Γ′k+ Ξα

k (ωP
Rk + x1Γ′k+)′ + ωP

Rk Ξα
k (ωP

Rk + x1Γ′k+)′′}
− 2 ωP

Rk Γ′k+ Ξα
k (ωP

Rk + x1Γ′k+)′ Ξα
k (ωP

Rk + x1Γ′k+)′′ − (ωP
Rk)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′}. (3.34)

We consider the dynamics of the transverse magnetization with the wave-number k in the stationary state of the
ferrimagnetic spin system. In the stationay state, 〈1S|h̄S+

k |ρ1(t)〉 have the form

〈1S|h̄S+
k |ρ1(t)〉 = (2/γ)χS+

k S−
k

(ω)Hk exp(− i ω t), (t → ∞), (3.35)

with |ρ1(t)〉= 〈1R|ρT1(t)〉= |trRρT1(t)〉, where ρT1(t) is the first-order part of the density operator ρT(t) for the total
system in powers of the external driving magnetic field. The expectation value Mx

k (t) of the x-component of the
magnetization with the wave-number k, can be expressed as

Mx
k (t) = {〈1S|h̄S+

k |ρ1(t)〉 + 〈1S|h̄S−k |ρ1(t)〉}/2 = Re 〈1S|h̄S+
k |ρ1(t)〉, (3.36a)

= (2/γ)
{
(χS+

k S−
k

(ω)Hk)′ cos(ω t) + (χS+
k S−

k
(ω)Hk)′′ sin(ω t)

}
, (3.36b)

= (2/γ)|χS+
k S−

k
(ω)Hk| sin{ω t + δk(ω)}, (3.36c)

where the phase δk(ω) is defined by

sin δk(ω) = (χS+
k S−

k
(ω)Hk)′/|χS+

k S−
k

(ω)Hk|, cos δk(ω) = (χS+
k S−

k
(ω)Hk)′′/|χS+

k S−
k

(ω)Hk|. (3.37)

The expectation value My
k (t) of the y-component of the magnetization with the wave-number k, can be expressed as

My
k (t) = {〈1S|h̄S+

k |ρ1(t)〉 − 〈1S|h̄S−k |ρ1(t)〉}/(2 i) = Im 〈1S|h̄S+
k |ρ1(t)〉, (3.38a)

= (2/γ)
{
(χS+

k S−
k

(ω)Hk)′′ cos(ω t) − (χS+
k S−

k
(ω)Hk)′ sin(ω t)}. (3.38b)

= (2/γ)|χS+
k S−

k
(ω)Hk| cos{ω t + δk(ω)}. (3.38c)

Thus, the expectation values Mx
k (t) and My

k (t) of the x-component and y-component of the magnetization with the
wave-number k oscillate with the frequency ω and the amplitude AM

k(ω) given by

AM
k(ω) = (2/γ)|χS+

k S−
k

(ω)Hk| = (2/γ)|Hk| |χS+
k S−

k
(ω)| = (2/γ)|Hk| (χS+

k S−
k

(ω)′)2 + (χS+
k S−

k
(ω)′′)2, (3.39)

which is expressed in the lowest spin-wave approximation as

A
M(0)
k (ω) = (2/γ)|Hk| (χ(0)

S+
k S−

k

(ω)′)2 + (χ(0)

S+
k S−

k

(ω)′′)2. (3.40)

According to the approximate forms (3.23a) and (3.23b) of the real and imaginary parts in the resonance region of the
transverse susceptibility χ

(0)

S+
k S−

k

(ω) in the lowest spin-wave approximation, the amplitude A
M(0)
k (ω) of the expectation

values of the transverse magnetization, which is referred as “the magnetization-amplitude”, has two peaks at frequen-
cies ω ∼= ε+k + Γ′′k+, − ε−k −Γ′′k−. Thus, the expectation values Mx

k (t) amd My
k (t) of the x-component and y-component

of the magnetization with the wave-number k oscillate with the large amplitude A
M(0)
k (ωM

Rk) at the resonance frequency

-99-



ωM
Rk, which coincides with the resonance frequency ωP

Rk of the power absorption P
(0)
k (ω) approximately. For positive fre-

quency ω (>0), the resonance frequency ωM
Rk and the peak-height (height of peak) HM

Rk of the magnetization-amplitude
A

M(0)
k (ω) with the wave-number k are approximately given by

ωM
Rk

∼= ε+k + Γ′′k+, (3.41)

HM
Rk

∼= h̄γ |Hk|
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
/ Γ′k+, (3.42)

with Γ′k+ and Γ′′k+ given by (B.59a) and (B.59b). These approximate formulas can be derived by substituting (3.23a)
and (3.23b) into (3.40) in the lowest spin-wave approximation. In order to obtain the approximate formula of the line
half-width ∆ωM

Rk in the resonance region of the magnetization-amplitude A
M(0)
k (ω) with the wave-number k, we put as

∆ωM
Rk/2= y1Γ′k+ for the first-step approximation of ∆ωM

Rk, which satisfies

1
2
HM

Rk
∼= h̄γ

|Hk|
2 Γ′k+

{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
,

∼= h̄γ
|Hk|
Γ′k+

{(Ξα
k (ωM

Rk)′ − y1 Ξα
k (ωM

Rk)′′

y2
1 + 1

2

+
Ξα

k (ωM
Rk)′′ + y1 Ξα

k (ωM
Rk)′

y2
1 + 1

2}1/2

, (3.43)

where we have approximated Ξα
k (ωM

Rk + y1Γ′k+) with Ξα
k (ωM

Rk) in the right-hand side of the above equation. Equation
(3.43) gives the positive solution y1

∼=
√

3. By putting as ∆ωM
Rk/2 = yΓ′k+, the approximate formula of the line half-width

∆ωM
Rk in the resonance region of the magnetization-amplitude, can be derived from the equation

h̄γ
|Hk|
2 Γ′k+

{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2 ∼= h̄γ
|Hk|
Γ′k+

{(Ξα
k (ωM

Rk +
√

3Γ′k+)′ − y Ξα
k (ωM

Rk +
√

3 Γ′k+)′′

y2 + 1

2

+
Ξα

k (ωM
Rk +

√
3 Γ′k+)′′ + y Ξα

k (ωM
Rk +

√
3Γ′k+)′

y2 + 1

2}1/2

, (3.44)

which can be rewritten as
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}
(y2 + 1) ∼= 4

{
(Ξα

k (ωM
Rk +

√
3Γ′k+)′)2 + (Ξα

k (ωM
Rk +

√
3Γ′k+)′′)2

}
. (3.45)

By obtaining the positive solution of the above equation for y, the approximate formula of the line half-width ∆ωM
Rk

in the resonance region of the magnetization-amplitude, can be derived as

∆ωM
Rk

∼= 2 Γ′k+

{
4

(Ξα
k (ωM

Rk +
√

3Γ′k+)′)2 + (Ξα
k (ωM

Rk +
√

3Γ′k+)′′)2

(Ξα
k (ωM

Rk)′)2 + (Ξα
k (ωM

Rk)′′)2
− 1

}1/2

. (3.46)

If the relaxation method is employed [25] in the van Hove limit [42] or in the narrowing limit [43], in which the
correlation time τc of the phonon reservoir is much less than the relaxation time τr of the spin system (τc 
 τr or
τc → 0), i.e., the Kubo formula [38] is calculated from the second-order TCL equations with no external driving terms
in this limit, one obtains the transverse susceptibility [25]

χrv
S+

k S−
k

(ω) =
i

4

∫ ∞
0

dt 〈1S| γ h̄ S+
k U(t) exp←

{
− i

∫ t

0

dτ ĤS1(τ)
}

γ (S−k − S̃+
k )|ρ0〉 exp(i ω t), (3.47)

which coincides with the ones without the interference thermal state |D(2)

S−
k

[ω]〉 in the transverse susceptibility χS+
k S−

k
(ω)

given by (3.6) derived employing the TCLE method. That limit neglects the effects of the memory and initial
correlation for the spin system and phonon reservoir, and is valid for a quickly damped reservoir (the reservoir
correlation time τc → 0), but not for a non-quickly damped reservoir, because the influence of motion of the phonon
reservoir on the motoin of the spin system is neglected in that limit. The transverse susceptibility χS+

k S−
k

(ω) derived

employing the TCLE method includes the interference thermal state |D(2)

S−
k

[ω]〉, which represents the effects of the
memory and initial correlation for the spin system and phonon reservoir, i.e., the effects of deviation from the van
Hove limit [42] or the narrowing limit [43], and is valid even if the spin system is interacting with a non-quickly
damped phonon-reservoir in the region valid for the second-order perturbation approximation. The coincidence of
the TCLE method and relaxation method in the second-order approximation for the system-reservoir interaction
[25, 34, 35, 36, 44, 45], means that the interference effects, i.e., the effects of the interference terms or the interference
thermal state in the TCLE method, are the effects of motion of the phonon reservoir which influence the motoin of the
spin system. Therefore, the interference effects are considered to increase the power absorption and magnetization-
amplitude in the resonance region to excite the phonon reservoir for a non-quickly damped reservoir, because the
external driving field excites not only the spin system but also the phonon reservoir for a non-quickly damped reservoir.
These are investigated numerically in the following section.
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4 Numerical investigation

In the present section, we assume a damped phonon-reservoir model and numerically investigate the power absorption
and the magnetization-amplitude (the amplitude of the expectation value of the transverse magnetization) for the
ferrimagnetic system, which is interacting with the phonon reservoir and with the transversely rotating magnetic-field
given by (3.1), under an external static magnetic field in the spin-wave region. We assume that the phonon reservoir
consists of a phonon system coupled directly to the spin system and of a reservoir subsystem coupled to the phonon
system, where the reservoir subsystem (R-subsystem) is damped quickly, as done in Refs. [20, 21, 39, 40, 22, 41].
Then, the correlation functions of the phonon operators can be derived using the relaxation theory for the phonon
system [51, 52, 53], and are assumed to take the forms

∑
ν

| g1ν |2〈1R|R†kν(t)Rkν |ρR〉 = g2
1 n̄(ωRk) exp(i ωRk t − γRk t), (4.1a)

∑
ν

| g1ν |2〈1R|Rkν(t)R†kν |ρR〉 = g2
1 {n̄(ωRk) + 1} exp(− i ωRk t − γRk t), (4.1b)

∑
ν

g2
2ν〈1R|∆(R†kν(t)Rkν(t))∆(R†kνRkν)|ρR〉 =

∑
ν

g2
2ν〈1R|∆(R†kνRkν)∆(R†kν(t)Rkν(t))|ρR〉,

= g2
2 n̄(ωRk){n̄(ωRk) + 1} exp(− 2 γRk t), (4.1c)

with the coupling constants g1 and g2 between the spin and phonon, where ωRk and γRk (> 0) are, respectively, the
characteristic frequency and damping constant of the phonon reservoir. Here, n̄(ωRk) is given by

n̄(ωRk) = {exp(βh̄ωRk) − 1}−1 = {exp(h̄ωRk/(kBT ) − 1}−1. (4.2)

The phonon correlation function (4.1c) is real as assumed in Section 2. By using the above correlation functions,
Φ±k (ε) defined by (B.42) and (B.43) can be expressed as [39]

Φ+
k (ε) = Φ+

k (ε)′ + i Φ+
k (ε)′′,

=
1
2

{
1 − exp

− h̄ ε

kB T

)} ∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε τ),

=
g2
1

2

{
1 − exp

− h̄ ε

kB T

)} n̄(ωRk) + 1
(ε − ωRk)2 + γ2

Rk

{
γRk + i (ε − ωRk)

}
, (4.3)

Φ−k (ε) = Φ−k (ε)′ + i Φ−k (ε)′′,

=
1
2

{
1 − exp

− h̄ ε

kB T

)} ∫ ∞
0

dτ
∑

ν

|g1ν |2〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε τ),

=
g2
1

2

{
1 − exp

− h̄ ε

kB T

)} n̄(ωRk)
(ε + ωRk)2 + γ2

Rk

{
γRk + i (ε + ωRk)

}
, (4.4)

where Φ±k (ε)′ and Φ±k (ε)′′ are, respectively, the real part and imaginary part of Φ±k (ε). We also have for Ψk(ε) defined
by (3.13), the forms

Ψk(ε) = Ψk(ε)′ + i Ψk(ε)′′ = g2
2

n̄(ωRk){n̄(ωRk) + 1}
− i ε + 2γRk

= g2
2 n̄(ωRk){n̄(ωRk) + 1} 2γRk + i ε

ε2 + 4γ2
Rk

, (4.5)

where Ψk(ε)′ and Ψk(ε)′′ are, respectively, the real part and imaginary part of Ψk(ε). For Ψk [ = Ψk(ε+k + ε−k )] and
Ψ0

k [ =Ψk(0)] defined by (B.44) and (B.54), respectively, we have

Ψk = Ψ′k + i Ψ′′k = Ψk(ε+k + ε−k ) = g2
2 n̄(ωRk){n̄(ωRk) + 1} 2γRk + i (ε+k + ε−k )

(ε+k + ε−k )2 + 4γ2
Rk

, (4.6)

Ψ0
k = Ψk(0) = g2

2 n̄(ωRk){n̄(ωRk) + 1}/(2γRk). (4.7)
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The above expressions given by (4.3)− (4.7) show that Φ±k (ε±k )′ is positive for positive ε±k and that Ψ0
k ≥Ψ′k. Then,

the forms of Γ′k±, Γ′′k±, ∆′k± and ∆′′k± given by (B.59a)− (B.59d) can be written as

Γ′k± =
g2
1S1

4

{
1 − exp

− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
± 1

2

} γRk ·(cosh 2θk ± 1)
(ε±k ∓ ωRk)2 + γ2

Rk

+
g2
1S2

4

{
1 − exp

− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
∓ 1

2

} γRk ·(cosh 2θk ∓ 1)
(ε±k ± ωRk)2 + γ2

Rk

+
g2
2 n̄(ωRk){n̄(ωRk) + 1}

4 γRk

{
1 +

(ε+k + ε−k )2 cosh2 2θk + 4γ2
Rk

(ε+k + ε−k )2 + 4γ2
Rk

}
, (4.8a)

Γ′′k± =
g2
1S1

4

{
1 − exp

− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
± 1

2

} (ε±k ∓ ωRk)(cosh 2θk ± 1)
(ε±k ∓ ωRk)2 + γ2

Rk

+
g2
1S2

4

{
1 − exp

− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
∓ 1

2

} (ε±k ± ωRk)(cosh 2θk ∓ 1)
(ε±k ± ωRk)2 + γ2

Rk

− g2
2 n̄(ωRk){n̄(ωRk) + 1} ε+k + ε−k

2 {(ε+k + ε−k )2 + 4γ2
Rk}

sinh2 2θk , (4.8b)

∆′k± =
g2
1S1

4

{
1 − exp

− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
± 1

2

} γRk sinh 2θk

(ε±k ∓ ωRk)2 + γ2
Rk

+
g2
1S2

4

{
1 − exp

− h̄ ε±k
kBT

)}{
n̄(ωRk) +

1
2
∓ 1

2

} γRk sinh 2θk

(ε±k ± ωRk)2 + γ2
Rk

+ g2
2 n̄(ωRk){n̄(ωRk) + 1} (ε+k + ε−k )2 sinh 2θk cosh 2θk

4γRk{(ε+k + ε−k )2 + 4γ2
Rk}

, (4.8c)

∆′′k± =
g2
1S1

4

{
1 − exp

− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
± 1

2

}(ε±k ∓ ωRk) sinh 2θk

(ε±k ∓ ωRk)2 + γ2
Rk

+
g2
1S2

4

{
1 − exp

− h̄ ε±k
kB T

)}{
n̄(ωRk) +

1
2
∓ 1

2

} (ε±k ± ωRk) sinh 2θk

(ε±k ± ωRk)2 + γ2
Rk

− g2
2 n̄(ωRk){n̄(ωRk) + 1} ε+k + ε−k

2 {(ε+k + ε−k )2 + 4γ2
Rk}

sinh 2θk cosh 2θk . (4.8d)

In Appendix D, we give the forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.16) and (3.17). We

consider the case that the phonon reservoir consists of a phonon system of lattice vibration, which has the frequency
proportional to the magnitude |k| of the wave number k, and of a reservoir subsystem coupled to the phonon system,
where the reservoir subsystem (R-subsystem) is damped quickly. We assume that the characteristic frequency of the
phonon reservoir is given by

ωRk = V |k| + ωR0, (4.9)

where ωR0 is the characteristic frequency of the phonon reservoir with the wave number k =0 and is the frequency shift
of the phonon system, which is generated by the motion of the reservoir subsystem coupled to the phonon system. We
also assume for consistency with the assumptions (4.1a)− (4.1c) that

∑
ν

g2ν 〈1R|R†kνRkν |ρR〉 = g2 n̄(ωRk). (4.10)

Then, the free spin-wave energies ε±k given by (2.22) can be written as

h̄ ε±k = 2 h̄J1

{√(
κ1 + κ2 + ζ (S1 + S2)

)2 − 4 η2
k, S1S2

± (
κ1 − κ2 − ζ (S1 − S2) + 2 hz

)} ± h̄ g2 n̄(ωRk), (4.11)

with ηk, ζ, hz, κ1 and κ2 defined by (2.10a) and (2.10b). We consider the case that the spin system and phonon
reservoir are in the thermal equilibrium state at the initial time t =0. The initial values nα

k (0) and nβ
k (0) are derived
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in Appendix E and take the following forms

nα
k (0) = n̄(ε+k ) + g2

1 S1(cosh 2θk + 1) {n̄(ωRk) − n̄(ε+k )} (ε+k − ωRk)2 − (γRk)2

2 {(ε+k − ωRk)2 + (γRk)2}2

+ g2
1 S2(cosh 2θk − 1) {n̄(ε+k ) + n̄(ωRk) + 1} (ε+k + ωRk)2 − (γRk)2

2 {(ε+k + ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
, (4.12a)

nβ
k (0) = n̄(ε−k ) + g2

1 S1(cosh 2θk − 1)
{
n̄(ε−k ) + n̄(ωRk) + 1

} (ε−k + ωRk)2 − (γRk)2

2 {(ε−k + ωRk)2 + (γRk)2}2

+ g2
1 S2 (cosh 2θk + 1)

{
n̄(ωRk) − n̄(ε−k )

} (ε−k − ωRk)2 − (γRk)2

2 {(ε−k − ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
. (4.12b)

We consider a ferrimagnetic system of one-dimensional infinite spins interacting with the phonon reservoir. For
the case of a regular-interval ranked spin chain, we have

z = 2 , ηk = cos k , (4.13)

where k is the wave number multiplied by the sublattice constant and is referred to as “the wave number” hereafter.
We perform the numerical calculations for the case of g1/J1 =0.25, g2/J1 =0.25, ωR0/J1 =0.5 and V/J1 = 0.5. The
damping constant γRk of the phonon reservoir, which is equal to the inverse of its correlation time τc, is assumed to
be independent of the wave number k and is taken as γRk/J1 =0.5. The wave-number summation is replaced with the
integral as

2
N

∑
k

=
1
2π

∫ π

−π

dk, (N → ∞), (4.14)

for N →∞, where the wave-number summation goes over (N/2) wave-numbers. The wave-number summation is
performed by the numerical integration for N →∞. In Appendix F, we investigate numerically the region valid for
the lowest spin-wave approximation in the ferrimagnetic system of one-dimensional infinite spins. In Appendix F, the
lowest spin-wave approximation is shown to be valid in the regions of the temperature T and anisotropy energy h̄K
given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0, for the spin-magnitudes S1, S2 ≥ 5/2,
ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0, in the meaning that na/(4S1) [ = 〈nl〉/(4S1)] and nb/(4S2) [ = 〈nm〉/(4S2)], which
correspond to the expectation values of the second terms in the expansions given by Eqs. (2.3) and (2.5), respectively,
are smaller than about 0.01, where na [ =na(∞)] and nb [ =nb(∞)] are, respectively, the expectation values of the
up-spin deviation number and down-spin deviation number in the infinite time limit (t→∞).

We next investigate numerically the power absorption and the amplitude of the expectation values of the transverse
magnetizations, which is referred as “the magnetization-amplitude”, for the ferrimagnetic spin system in the region
valid for the lowest spin-wave approximation, meaning that na/(4S1) [ = 〈nl〉/(4S1)] and nb/(4S2) [ = 〈nm〉/(4S2)],
which correspond to the expectation values of the second terms in the expansions given by Eqs. (2.3) and (2.5),
respectively, are smaller than about 0.01. In Fig. 1, the power absorption P

(0)
k (ω) given by (3.26) in the lowest spin-

wave approximation, scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω scaled by J1 from 14.5 to 19.5 for the
cases of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-magnitudes (S1, S2)= (3, 5/2), the temperature T
given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0.
In Fig. 2, the magnetization-amplitude A

M(0)
k (ω) given by (3.40) in the lowest spin-wave approximation, scaled by scaled

by h̄γ |Hk|/J1, are displayed varying the frequency ω scaled by J1 from 14.5 to 19.5 for the cases of wave numbers
k =0, π/6,π/4,π/3,π/2, and for the spin-magnitudes (S1, S2) = (3, 5/2), the temperature T given by kBT/(h̄J1)= 1.0
and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. Figures 1 and 2 show
that the power absorption and magnetization-amplitude have a peak for each wave-number, and that as the wave
number k becomes large, the resonance frequencies become large, the peak-heights (heights of peak) increase and the
line half-widths decrease in the resonance regions. When the external driving magnetic-field is uniform in space, the
power absorption in the stationary state is given by Pk(ω) with the wave number k =0 [24]. In Fig. 3, the power
absorption P

(0)
k (ω) given by (3.26), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω scaled by J1 from 14.0

to 22.0 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave-
number k =0, the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 =1.5, with
ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0. In Fig. 4, the magnetization-amplitude A

M(0)
k (ω) given by (3.40), scaled by scaled

by h̄γ |Hk|/J1, are displayed varying the frequency ω scaled by J1 from 14.0 to 22.0 for the cases of spin-magnitudes 
(S1, S2) = (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave-number k = 0, the temperature T given by 
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Figure 1: The power absorption P
(0)
k (ω) given by (3.26), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω

scaled by J1 from 14.5 to 19.5 for the cases of wave numbers k =0, π/6,π/4,π/3, π/2, and for the spin-magnitudes
(S1, S2) = (3, 5/2), the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 1.5,
with J2/J1 =1.0 and ωz/J1 = 1.0.

Figure 2: The the magnetization-amplitude A
M(0)
k (ω) given by (3.40), scaled by scaled by h̄γ |Hk|/J1, are displayed

varying the frequency ω scaled by J1 from 14.5 to 19.5 for the cases of wave numbers k = 0,π/6,π/4,π/3, π/2, and for
the spin-magnitudes (S1, S2)= (3, 5/2), the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K
given by K/J1 =1.5, with J2/J1 =1.0 and ωz/J1 =1.0.

kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. Figures 3
and 4 show that in the resonance regions of the power absorption and magnetization-amplitude, as the spin-magnitude
S1 (> S2) becomes large for S2 = 5/2, the resonance frequencies become large, and the peak-heights increase. In Fig.
5, the power absorption P

(0)
k (ω) given by (3.26), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω scaled

by J1 from 19.0 to 28.0 for the cases of spin-magnitudes (S1, S2)= (5, 5/2), (5, 3), (5, 7/2), (5, 4), (5, 9/2), and for the
wave-number k = 0, the temperature T given by kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 1.5,
with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. In Fig. 6, the magnetization-amplitude A

M(0)
k (ω) given by (3.40), scaled by

scaled by h̄γ |Hk|/J1, are displayed varying the frequency ω scaled by J1 from from 19.0 to 28.0 for the cases of
spin-magnitudes (S1, S2)= (5, 5/2), (5, 3), (5, 7/2), (5, 4), (5, 9/2), and for the wave-number k =0, the temperature T
given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0.
Figure 5 shows that in the resonance region of the power absorption, as the spin-magnitude S2 (< S1) becomes large
for S1 = 5, the resonance frequency becomes large, and the peak-height and half-width of the line shape are mostly
unchanged. Figures 6 shows that in the resonance region of the magnetization-amplitude, as the spin-magnitude S2

(< S1) becomes large for S1 =5, the resonance frequency becomes large, but the peak-height decreases, though the
peak-height of the power absorption are mostly unchanged for such a case as seen in Fig. 5. As seen in Figs. 1− 6, each
peak of the line shapes of magnetization-amplitude A

M(0)
k (ω) has the hemline longer than that of the power absorption

P
(0)
k (ω). Let us see temperature dependence of the line shapes in the resonance regions of the power absorption

P
(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω). In Fig. 7, we display the resonance frequency ωP

Rk scaled by J1 in
the resonance region of the power absorption P

(0)
k (ω), varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1

for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave number
k =0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0. The resonance
frequency ωP

Rk investigated calculating numerically the power absorption P
(0)
k (ω) given by (3.26), are displayed by

the solid lines, and the approximate formula given by (3.27) for the resonance frequency ωP
Rk are denoted by the

dots. In Fig. 8, we display the resonance frequency ωM
Rk scaled by J1 in the resonance region of the magnetization-

amplitude A
M(0)
k (ω), varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes

(S1, S2) = (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave number k =0 and the anisotropy energy h̄K
given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0. The resonance frequency ωM

Rk investigated calculating
numerically the magnetization-amplitude A

M(0)
k (ω) given by (3.40), are displayed by the solid lines, and the approximate

formula given by (3.41) for the resonance frequency ωM
Rk are denoted by the dots. Figures 7 and 8 show in the resonance

region that as the temperature T becomes high, the resonance frequencies ωP
Rk and ωM

Rk become large slightly, that as
the spin-magnitude S1 (>S2) becomes large for S2 = 5/2, the resonance frequencies ωP

Rk and ωM
Rk become large, and

that the approximate formulas given by (3.27) and (3.41) for the resonance frequencies ωP
Rk and ωM

Rk, coincide well with
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Figure 3: The power absorption P
(0)
k (ω) given by (3.26), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω

scaled by J1 from 14.0 to 22.0 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2),
and for the wave-number k = 0, the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by
K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 =1.0.

Figure 4: The magnetization-amplitude A
M(0)
k (ω) given by (3.40), scaled by scaled by h̄γ |Hk|/J1, are

displayed varying the frequency ω scaled by J1 from 14.0 to 22.0 for the cases of spin-magnitudes
(S1, S2) = (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave-number k =0, the temperature T given
by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 =1.0.
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Figure 5: The power absorption P
(0)
k (ω) given by (3.26), scaled by h̄2γ3 |Hk|2, are displayed varying the frequency ω

scaled by J1 from 19.0 to 28.0 for the cases of spin-magnitudes (S1, S2) = (5, 5/2), (5, 3), (5, 7/2), (5, 4), (5, 9/2), and
for the wave-number k =0, the temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by
K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 =1.0.

Figure 6: The magnetization-amplitude A
M(0)
k (ω) given by (3.40), scaled by scaled by h̄γ |Hk|/J1, are

displayed varying the frequency ω scaled by J1 from 19.0 to 28.0 for the cases of spin-magnitudes
(S1, S2) = (5, 5/2), (5, 3), (5, 7/2), (5, 4), (5, 9/2), and for the wave-number k =0, the temperature T given by
kBT/(h̄J1)=1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with J2/J1 = 1.0 and ωz/J1 =1.0.
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the results investigated calculating numerically P
(0)
k (ω) and A

M(0)
k (ω) for the temperature T given by kBT/(h̄J1)≤ 1.1.
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Figure 7: The resonance frequency ωP
Rk investigated calculating the power absorption P

(0)
k (ω) given by (3.26) numeri-

cally, scaled by J1, are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the
cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave-number k =0 and
the anisotropy energy h̄K given by K/J1 =1.5, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the approximate
formula given by (3.27) for the resonance frequency ωP

Rk of the power absorption P
(0)
k (ω).

Figure 8: The resonance frequency ωM
Rk investigated calculating the magnetization-amplitude A

M(0)
k (ω) given by (3.40)

numerically, scaled by J1, are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1
for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave number
k =0 and the anisotropy energy h̄K given by K/J1 =1.5, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the
approximate formula given by (3.41) for the resonance frequency ωM

Rk of the magnetization-amplitude A
M(0)
k (ω).

In Fig. 9, we display the natural logarithm log(HP
Rk) of the peak-height HP

Rk (height of peak) in the resonance region of
the power absorption P

(0)
k (ω), scaled by h̄2γ3 |Hk|2, varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the

cases of spin-magnitudes (S1, S2) = (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave number k =0 and
the anisotropy energy h̄K given by K/J1 = 1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. The natural logarithm log(HP

Rk)
of the peak-height HP

Rk investigated calculating numerically the power absorption P
(0)
k (ω) given by (3.26), are displayed

by the solid lines, and the natural logarithm of the approximate formula given by (3.28) for the peak-height HP
Rk, are

denoted by the dots. In Fig. 10, we display the natural logarithm log(HM
Rk) of the peak-height HM

Rk in the resonance
region of the magnetization-amplitude A

M(0)
k (ω), by scaled by h̄γ |Hk|/J1, varying the temperature T scaled by h̄J1/kB

from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the
wave number k =0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 =1.0. The
natural logarithm log(HM

Rk) of the peak-height HM
Rk investigated calculating numerically the magnetization-amplitude

A
M(0)
k (ω) given by (3.40), are displayed by the solid lines, and the natural logarithm of the approximate formula given

by (3.42) for the peak-height HM
Rk, are denoted by the dots. Figures 9 and 10 show in the resonance region that

as the temperature T becomes high, the peak-heights HP
Rk and HM

Rk decrease, that as the spin-magnitude S1 (> S2)
becomes large for S2 = 5/2, the peak-heights HP

Rk and HM
Rk increases, and that the approximate formulas given by

(3.28) and (3.42) for the peak-height HP
Rk and HM

Rk, coincide well with the results investigated calculating numerically
P

(0)
k (ω) and A

M(0)
k (ω) for the temperature T given by kBT/(h̄J1)≤ 1.1. In Fig. 11, we display the line half-width

∆ωP
Rk in the resonance region of the power absorption P

(0)
k (ω), scaled by J1, varying the temperature T scaled by

h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (5, 5/2), and for the wave number k =0
and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. The line half-width ∆ωP

Rk

investigated calculating numerically the power absorption P
(0)
k (ω) given by (3.26), are displayed by the solid lines, and

the approximate formula given by (3.34) for the line half-width ∆ωP
Rk are denoted by the dots. In Fig. 12, we display

the line half-width ∆ωM
Rk scaled by J1 in the resonance region of the magnetization-amplitude A

M(0)
k (ω), varying the

temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (5, 5/2), and for
the wave number k = 0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0.
The line half-width ∆ωM

Rk investigated calculating numerically the magnetization-amplitude A
M(0)
k (ω) given by (3.40),

are displayed by the solid lines, and the approximate formula given by (3.46) for the line half-width ∆ωM
Rk, are denoted

by the dots. Figures 11 and 12 show in the resonance region that as the temperature T becomes high, the line
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Figure 9: The natural logarithm log(HP
Rk) of the peak-height HP

Rk investigated calculating the power absorption P
(0)
k (ω)

given by (3.26) numerically, scaled by h̄2γ3 |Hk|2, are displayed by the solid lines varying the temperature T scaled by
h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and
for the wave-number k =0 and the anisotropy energy h̄K given by K/J1 = 1.5, with J2/J1 = 1.0 and ωz/J1 = 1.0. The
dots denote the natural logarithm of the approximate formula given by (3.28) for the peak-height HP

Rk.

Figure 10: The natural logarithm log(HM
Rk) of the peak-height HM

RF investigated calculating the magnetization-
amplitude A

M(0)
k (ω) given by (3.40) numerically, by scaled by h̄γ |Hk|/J1, are displayed by the solid

lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-magnitudes
(S1, S2) = (3, 5/2), (7/2, 5/2), (4, 5/2), (9/2, 5/2), (5, 5/2), and for the wave number k =0 and the anisotropy energy
h̄K given by K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 =1.0. The dots denote the natural logarithm of the approximate
formula given by (3.42) for the peak-height HM

Rk.

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

ω

Line Half−Width of Power Absorption
PΔ

(S ,S )=(3,5/2)1 2

(S ,S )=(5,5/2)1 2

Rk

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

T

ω

Line Half−Width of Magne−Amplitude
MΔ

(S ,S )=(3,5/2)1 2

(S ,S )=(5,5/2)1 2

Rk

Figure 11: The line half-width ∆ωP
Rk investigated calculating the power absorption P

(0)
k (ω) given by (3.26) numerically,

scaled by J1, are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases
of spin-magnitudes (S1, S2)= (3, 5/2), (5, 5/2), and for the wave-number k = 0 and the anisotropy energy h̄K given by
K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the approximate formula given by (3.34) for the line
half-width ∆ωP

Rk.

Figure 12: The line half-width ∆ωM
Rk investigated calculating the magnetization-amplitude A

M(0)
k (ω) given by (3.40)

numerically, scaled by J1, are displayed by the solid lines varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1
for the cases of spin-magnitudes (S1, S2)= (3, 5/2), (5, 5/2), and for the wave number k = 0 and the anisotropy energy
h̄K given by K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 = 1.0. The dots denote the approximate formula given by (3.46)
for the line half-width ∆ωM

Rk.
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half-widths ∆ωP
Rk and ∆ωM

Rk increase, that as the spin-magnitude S1 (> S2) becomes large for S2 =5/2, the line half-
widths ∆ωP

Rk and ∆ωM
Rk decrease slightly, and that the approximate formulas given by (3.34) and (3.46) for the line

half-width ∆ωP
Rk and ∆ωM

Rk, coincide well with the results investigated calculating numerically P
(0)
k (ω) and A

M(0)
k (ω) for

the temperature T given by kBT/(h̄J1)≤ 1.1. Figures 11 and 12 also show that the line half-widths in the resonance
region of the magnetization-amplitude are larger than those of the power absorption.

In the last of this section, we investigate the effects of the memory and initial correlation for the ferrimagnetic
spin system and phonon reservoir numerically. Those effects are represented by the interference terms in the TCLE
method and are referred as “the interference effects”. In Fig. 13, the power absorption P

(0)
k (ω) given by (3.26), scaled

by h̄2γ3 |Hk|2, are displayed varying the frequency ω scaled by J1 from 14.0 to 16.0 in comparison with P
rv(0)
k (ω)

scaled by h̄2γ3 |Hk|2, where P
rv(0)
k (ω) is the power absorption derived employing the relaxation method [25] in the

van Hove limit [42] or in the narrowing limit [43], and is given by

P
rv(0)
k (ω) = h̄ γ |Hk|2 ω χ

rv(0)

S+
k S−

k

(ω)′′, (4.15)

in the lowest spin-wave approximation. Here, χ
rv(0)

S+
k S−

k

(ω)′′ is the imaginary part of the transverse susceptibility

χ
rv(0)

S+
k S−

k

(ω) derived employing the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43]

in the lowest spin-wave approximation. The transverse susceptibility χ
rv(0)

S+
k

S−
k

(ω) coincides with the one without

the corresponding interference terms X
α(β)
k1(2)(ω) given by (3.16a)− (3.17b) in the transverse susceptibility χ

(0)

S+
k S−

k

(ω)

given by (3.18), which has been derived employing the TCLE method in the lowest spin-wave approximation. In
Fig. 13, the power absorptions P

(0)
k (ω) and P

rv(0)
k (ω) are displayed for the cases of temperatures T given by

kBT/(h̄J1)=0.5, 0.7, 1.0, and for the spin-magnitudes (S1, S2)= (3, 5/2), the wave number k =0 and the anisotropy
energy h̄K given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0. The power absorption P

(0)
k (ω) is displayed

by the solid lines and the power absorption P
rv(0)
k (ω) is displayed by the short dash lines, in Fig. 13. The power

absorption P
(0)
k (ω) given by (3.26), which have been derived employing the TCLE method, includes the interference

effects which are the effects of the memory and initial correlation for the spin system and phonon reservoir [25], and
are neglected in the power absorption P

rv(0)
k (ω) derived employing the relaxation method [25] in the van Hove limit

[42] or in the narrowing limit [43] in the lowest spin-wave approximation. In Fig. 14, the magnetization-amplitude
A

M(0)
k (ω) given by (3.40), scaled by scaled by h̄γ |Hk|/J1, are displayed varying the frequency ω scaled by J1 from 14.0

to 16.0 in comparison with A
Mrv(0)
k (ω) scaled by h̄γ |Hk|/J1, where A

Mrv(0)
k (ω) is the magnetization-amplitude derived

employing the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43], and is given by

A
Mrv(0)
k (ω) = (2/γ)|Hk| (χrv(0)

S+
k S−

k

(ω)′)2 + (χrv(0)

S+
k S−

k

(ω)′′)2, (4.16)

in the lowest spin-wave approximation. Here, χ
rv(0)

S+
k S−

k

(ω)′ and χ
rv(0)

S+
k S−

k

(ω)′′ is the real part and imaginary part of the

transverse susceptibility χ
rv(0)

S+
k S−

k

(ω) derived employing the relaxation method [25] in the van Hove limit [42] or in the

narrowing limit [43], which coincides with the one without the corresponding interference terms X
α(β)
k1(2)(ω) given by

(3.16a)− (3.17b) in the transverse susceptibility χ
(0)

S+
k S−

k

(ω) given by (3.18) derived employing the TCLE method in

the lowest spin-wave approximation. In Fig. 14, the magnetization-amplitudes A
M(0)
k (ω) and A

Mrv(0)
k (ω) are displayed

for the cases of temperatures T given by kBT/(h̄J1)= 0.5, 0.7, 1.0, and for the spin-magnitudes (S1, S2)= (3, 5/2),
the wave number k = 0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0.
The magnetization-amplitude A

Mrv(0)
k (ω) coincides with the one without the corresponding interference terms X

α(β)
k1(2)(ω)

given by (3.16a)− (3.17b) in the magnetization-amplitudes A
M(0)
k (ω) given by (3.40), which has been derived employing

the TCLE method in the lowest spin-wave approximation. The magnetization-amplitude A
M(0)
k (ω) is displayed by

the solid lines and the magnetization-amplitude A
Mrv(0)
k (ω) are displayed by the short dash lines, in Fig. 14. The

magnetization-amplitudes A
M(0)
k (ω) given by (3.40), which have been derived employing the TCLE method, includes

the interference effects which are the effects of the memory and initial correlation for the spin system and phonon
reservoir [25], and are neglected in the magnetization-amplitude A

Mrv(0)
k (ω) derived employing the relaxation method

[25] in the van Hove limit [42] or in the narrowing limit [43] in the lowest spin-wave approximation. Figures 13 and 14
show that the effects of the memory and initial correlation increase the power absorptions and magnetization-amplitude
in the resonance region and produce effects that cannot be disregarded, and that as the temperature T becomes high,
those effects become large comparatively. In Fig. 15, the rate (HP

Rk −HPrv
Rk )/HP

Rk of the interference effects (HP
Rk −HPrv

Rk )
for the peak-height HP

Rk of the power absorption P
(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB

from 0.1 to 1.1 for the cases of spin-magnitudes (S1, S2)= (3, 5/2) and (5, 5/2), and for the anisotropy energy h̄K given
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by K/J1 = 1.5, the wave-number k =0 and the damping constant γRk given by γRk/J1 = 0.5, with ζ [ =J2/J1]= 1.0
and ωz/J1 =1.0. Here, HP

Rk is the peak-height of the power absorption P
(0)
k (ω), the approximate formula given by

(3.28) is used for HP
Rk, and HPrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate

formula (3.28). In Fig. 16, the rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk

of the magnetization-amplitude A
M(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for

the cases of spin-magnitudes (S1, S2)= (3, 5/2) and (5, 5/2), and for the anisotropy energy h̄K given by K/J1 = 1.5,
the wave-number k =0 and the damping constant γRk given by γRk/J1 = 0.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0.
Here, HM

Rk is the peak-height of the magnetization-amplitudes A
M(0)
k (ω), the approximate formula given by (3.42) is

used for HM
Rk, and HMrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula

(3.42). Figures 15 and 16 show in the resonance region of the power absorption and magnetization-amplitude that
as the temperature T becomes high, the interference effects for the power absorption P

(0)
k (ω) and the magnetization-

amplitude A
M(0)
k (ω), become large. As the spin-magnitude S1 (> S2) becomes large for S2 =5/2, those effects become

small slightly. In Fig. 17, the rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the peak-height HP

Rk of
the power absorption P

(0)
k (ω), are displayed varying the damping constant γRk scaled by J1 from 0.5 to 3.5 for the cases

of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-magnitudes (S1, S2)= (3, 5/2), the temperature T given
by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 =1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0. Here,
the peak-height HP

Rk is the peak-height of the power absorption P
(0)
k (ω), the approximate formula given by (3.28) is

used for HP
Rk, and HPrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula

(3.28). In Fig. 18, the rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the
magnetization-amplitude A

M(0)
k (ω), are displayed varying the damping constant γRk scaled by J1 from 0.5 to 3.5 for the

cases of wave numbers k = 0,π/6,π/4, π/3,π/2, and for the spin-magnitudes (S1, S2)= (3, 5/2), the temperature T
given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with ζ [ =J2/J1] = 1.0 and ωz/J1 = 1.0.
Here, HM

Rk is the peak-height of the magnetization-amplitudes A
M(0)
k (ω), the approximate formula given by (3.42) is

used for HM
Rk, and HMrv

Rk is the one without the corresponding interference terms Xα
k1(2)(ω) in the approximate formula

(3.42). Figures 17 and 18 show in the resonance region of the power absorption and magnetization-amplitude that as the
damping constant γRk of the phonon reservoir becomes small, the interference effects for the power absorption P

(0)
k (ω)

and the magnetization-amplitude A
M(0)
k (ω), become large, and also that as the wave number k becomes small, those

effects become large. Since the damping constant γRk of the phonon reservoir is equal to the inverse of its correlation
time τc, the interference effects become large as the phonon reservoir is damped slowly. Thus, the interference effects
produce effects that cannot be disregarded for the high temperature, for the non-quickly damped reservoir or for the
small wave-number.

5 Summary and concluding remarks

We have considered a ferrimagnetic spin system with a uniaxial anisotropy energy and an anisotropic exchange in-
teraction under an external static magnetic-field in the spin-wave region, interacting with a phonon reservoir, and
have derived a form of the transverse magnetic susceptibility for such a spin system interacting with an external driv-
ing magnetic-field, which is a transversely rotating classical field, in the spin-wave approximation by employing the
TCLE method of linear response in terms of the non-equilibrium thermo-field dynamics (NETFD), which have been
formulated for the spin-phonon interaction taken to reflect the energy transfer between the spin system and phonon
reservoir. We have analytically examined the power absorption and the amplitude of the expectation value of the
transverse magnetization, which is referred as “the magnetization-amplitude”, for the ferrimagnetic spin system, and
have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths
in the resonance region of the power absorption and magnetization-amplitude. We have also investigated numerically
the power absorption and magnetization-amplitude for a ferrimagnetic system of one-dimensional infinite spins by
assuming a damped phonon-reservoir model in the region valid for the lowest spin-wave approximation. Here, the
valid region means that na/(4S1) [ = 〈nl〉/(4S1)] and nb/(4S2) [ = 〈nm〉/(4S2)], which correspond to the expectation
values of the second terms in the expansions given by Eqs. (2.3) and (2.5), respectively, are smaller than about 0.01 in
that region, where na [ = na(∞)] and nb [ = nb(∞)] are, respectively, the expectation values of the up-spin deviation
number and down-spin deviation number in the infinite time limit (t→∞). We have mainly obtained the following
results by the numerical investigations for the power absorption and magnetization-amplitude.
1. The power absorption and magnetization-amplitude with the wave number k have a peak for each wave-number.
As the wave number k becomes large, the resonance frequencies and peak-heights (heights of peak) increase, and the
line half-widths decrease in the resonance region. Thus, as the wave number k becomes large, the line shapes in the
resonance region of the power absorption and magnetization-amplitude show “the narrowing”.
2. As the spin-magnitude S1 or S2 becomes large, the resonance frequencies of the power absorption and magnetization-
amplitude become large. As the spin-magnitude S1 (> S2) becomes large, the peak-heights of the power absorption
and magnetization-amplitude increases. As S2 (<S1) becomes large, the peak-height of the magnetization-amplitude
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Figure 13: The power absorptions P
(0)
k (ω) and P

rv(0)
k (ω) given by (3.26) and (4.15), scaled by h̄2γ3 |Hk|2, are displayed

varying the frequency ω scaled by J1 from 14.0 to 16.0, for the cases of temperatures T given by kBT/(h̄J1)= 0.5, 0.7, 1.0,
and for the wave-number k =0, the spin-magnitudes (S1, S2)= (3, 5/2) and the anisotropy energy h̄K given by
K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 = 1.0. The power absorption P

(0)
k (ω) is displayed by the solid lines, and

P
rv(0)
k (ω) is displayed by the short dash lines and coincides with the one without the corresponding interference terms

in the power absorption P
(0)
k (ω) derived employing the TCLE method.

Figure 14: The magnetization-amplitudes A
M(0)
k (ω) and A

Mrv(0)
k (ω) given by (3.40) and (4.16), scaled by h̄γ|Hk|/J1,

are displayed varying the frequency ω scaled by J1 from 14.0 to 16.0 for the cases of temperatures T given by
kBT/(h̄J1)=0.5, 0.7, 1.0, and for the wave-number k =0, the spin-magnitudes (S1, S2)= (3, 5/2) and the anisotropy
energy h̄K given by K/J1 = 1.5, with J2/J1 =1.0 and ωz/J1 =1.0. The magnetization-amplitude A

M(0)
k (ω) is dis-

played by the solid lines, and A
Mrv(0)
k (ω) is displayed by the short dash lines and coincides with the one without the

corresponding interference terms in the magnetization-amplitude A
M(0)
k (ω) derived employing the TCLE method.
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Figure 15: The rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the peak-height HP

Rk of the power
absorption P

(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for the cases of spin-

magnitudes (S1, S2) = (3, 5/2) and (5, 5/2), and for the wave-number k =0 and the anisotropy energy h̄K given by
K/J1 = 1.5, with J2/J1 = 1.0 and ωz/J1 = 1.0. Here, the peak-height HP

Rk is the approximate formula given by (3.28),
and HPrv

Rk is the one without the interference terms in the approximate formula (3.28).

Figure 16: The rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the
magnetization-amplitudes A

M(0)
k (ω), are displayed varying the temperature T scaled by h̄J1/kB from 0.1 to 1.1 for

the cases of spin-magnitudes (S1, S2)= (3, 5/2) and (5, 5/2), and for the wave-number k = 0 and the anisotropy energy
h̄K given by K/J1 =1.5, with J2/J1 =1.0 and ωz/J1 =1.0. Here, the peak-height HM

Rk is the approximate formula
given by (3.42), and HMrv

Rk is the one without the interference terms in the approximate formula (3.42).
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Figure 17: The rate (HP
Rk −HPrv

Rk )/HP
Rk of the interference effects (HP

Rk −HPrv
Rk ) for the peak-height HP

Rk of the power
absorption P

(0)
k (ω), are displayed varying the damping constant γRk of the phonon reservoir, scaled by J1, from 0.5

to 3.5 for the cases of wave numbers k =0, π/6,π/4,π/3,π/2, and for the spin-magnitudes (S1, S2)= (3, 5/2), the
temperature T given by kBT/(h̄J1)= 1.0 and the anisotropy energy h̄K given by K/J1 = 1.5, with J2/J1 =1.0 and
ωz/J1 =1.0.

Figure 18: The rate (HM
Rk −HMrv

Rk )/HM
Rk of the interference effects (HM

Rk −HMrv
Rk ) for the peak-height HM

Rk of the
magnetization-amplitudes A

M(0)
k (ω), are displayed varying the damping constant γRk of the phonon reservoir, scaled

by J1, for the phonon reservoir from 0.5 to 3.5 for the cases of wave numbers k =0,π/6, π/4,π/3,π/2, and for the
spin-magnitudes (S1, S2)= (3, 5/2), the temperature T given by kBT/(h̄J1) =1.0 and the anisotropy energy h̄K given
by K/J1 =1.5, with J2/J1 =1.0 and ωz/J1 = 1.0.

decreases though the one of the power absorption is mostly unchanged.
3. In the resonance region of the power absorption and magnetization-amplitude, as the temperature T becomes
high, the resonance frequencies increase slightly, the peak-heights decrease and the line half-widths increase. The
approximate formulas of the resonance frequencies, peak-heights and line half-widths, which have been derived in the
resonance region of the power absorption and magnetization-amplitude, coincide well with the results investigated
calculating numerically the analytic results of the power absorption and magnetization-amplitude.
4. The effects of the memory and initial correlation for the spin system and phonon reservoir, which are represented
by the interference terms in the TCLE method and are referred as “the interference effects”, increase the power
absorption and magnetization-amplitude in the resonance region, and become large as the temperature T becomes
high, as the phonon reservoir is damped slowly or as the wave number k becomes small. Thus, the interference effects
produce effects that cannot be neglected for the high temperature, for the non-quickly damped reservoir or for the
small wave-number.
5. Each peak of the line shapes of magnetization-amplitude has the hemline longer than that of the power absorption.
Also, the line half-widths in the resonance region of the magnetization-amplitude are larger than those of the power
absorption.

We have analytically examined the power absorption and magnetization-amplitude for the ferrimagnetic spin
system, and have derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and
line half-widths in the resonance region. The approximate formulas of the resonance frequencies in the resonance
region of the power absorption and magnetization-amplitude are given by (3.27) and (3.41), respectively, i.e.,

ωP
Rk

∼= ε+k + Γ′′k+, ωM
Rk

∼= ε+k + Γ′′k+, (5.1)

with Γ′′k+ given by (B.59b) or (4.8b). As shown in Figs. 7 and 8, the approximate formulas of the resonance frequencies
ωP
Rk and ωM

Rk coincide well with the results investigated calculating numerically the analytic results of the power
absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) in the lowest spin-wave approximation, respectively, for the

temperature T given by kBT/(h̄J1)≤ 1.1. The approximate formulas of the peak-heights in the resonance region of
the power absorption and magnetization-amplitude are given by (3.28) and (3.42), respectively, i.e.

HP
Rk

∼= h̄2 γ3 |Hk|2 ωP
Rk Ξα

k (ωP
Rk)′′/(2 Γ′k+), (5.2)

HM
Rk

∼= h̄γ |Hk|
{
(Ξα

k (ωM
Rk)′)2 + (Ξα

k (ωM
Rk)′′)2

}1/2
/ Γ′k+, (5.3)

with Γ′k+ given by (B.59a) or (4.8a), where Ξk
α(ω)′ and Ξk

α(ω)′′ are, respectively, the real and imaginary parts of Ξk
α(ω) 
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given by (3.24a), and take the forms

Ξα
k (ω)′ = {(S1 + S2) cosh 2θk + (S1 − S2) − 2

√
S1S2 sinh 2θk}Xα

k1(ω)′/2

+ {2
√

S1S2 cosh 2θk − (S1 + S2) sinh 2θk}Xα
k2(ω)′/2, (5.4a)

Ξα
k (ω)′′ = {(S1 + S2) cosh 2θk + (S1 − S2) − 2

√
S1S2 sinh 2θk}{1 + Xα

k1(ω)′′}/2

+ {2
√

S1S2 cosh 2θk − (S1 + S2) sinh 2θk}Xα
k2(ω)′′/2. (5.4b)

The above approximate formulas of the peak-heights HP
Rk and HM

Rk include the real and imaginary parts of the corre-
sponding interference terms Xα

k1(ω) and Xα
k2(ω) given by (D.3) and (D.4) at the resonance frequencies. The interference

terms produce the effects that increase the peak-heights of the power absorption and magnetization-amplitude in the
resonance region, as seen in Figs. 13 and 14. As shown in Figs. 9 and 10, the approximate formulas of the peak-
heights HP

Rk and HM
Rk coincide well with the results investigated calculating numerically the analytic results of the

power absorption P
(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) in the lowest spin-wave approximation, respectively,

for the temperature T given by kBT/(h̄J1)≤ 1.1. The approximate formulas of the line half-widths in the resonance
region of the power absorption and magnetization-amplitude are given by (3.34) and (3.46), respectively, i.e.,

∆ωP
Rk

∼= 2 Γ′k+

{
ωP
Rk Ξα

k (ωP
Rk + x1Γ′k+)′ + Γ′k+Ξα

k (ωP
Rk + x1Γ′k+)′′

+
{
(ωP

Rk)2 (Ξα
k (ωP

Rk + x1Γ′k+)′)2 + (Γ′k+)2 (Ξα
k (ωP

Rk + x1Γ′k+)′′)2

+ 2 ωP
Rk Ξα

k (ωP
Rk)′′{Γ′k+ Ξα

k (ωP
Rk + x1Γ′k+)′ + ωP

Rk Ξα
k (ωP

Rk + x1Γ′k+)′′}
− 2 ωP

Rk Γ′k+ Ξα
k (ωP

Rk + x1Γ′k+)′ Ξα
k (ωP

Rk + x1Γ′k+)′′ − (ωP
Rk)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk + x1Γ′k+)′}, (5.5)

∆ωM
Rk

∼= 2 Γ′k+

{
4

(Ξα
k (ωM

Rk +
√

3Γ′k+)′)2 + (Ξα
k (ωM

Rk +
√

3Γ′k+)′′)2

(Ξα
k (ωM

Rk)′)2 + (Ξα
k (ωM

Rk)′′)2
− 1

}1/2

, (5.6)

where x1 is given by (3.31), i.e.,

x1
∼= {

ωP
Rk Ξα

k (ωP
Rk)′ + Γ′k+Ξα

k (ωP
Rk)′′ +

{
(ωP

Rk)2 {(Ξα
k (ωP

Rk)′)2 + (Ξα
k (ωP

Rk)′′)2}
+ (Γ′k+)2 (Ξα

k (ωP
Rk)′′)2

}1/2}
/{ωP

Rk Ξα
k (ωP

Rk)′′ − 2 Γ′k+Ξα
k (ωP

Rk)′}. (5.7)

As shown in Figs. 11 and 12, the approximate formulas of the line half-widths ∆ωP
Rk and ∆ωM

Rk coincide well with
the results investigated coincide well with the results investigated calculating numerically the analytic results of the
power absorption P

(0)
k (ω) and magnetization-amplitude A

M(0)
k (ω) in the lowest spin-wave approximation, respectively,

for the temperature given by kBT/(h̄J1)≤ 1.1.
The above approximate formulas derived for the resonance frequencies, peak-heights and line half-widths in the

resonance region of the power absorption and magnetization-amplitude, are useful for investigating dependence of the
line shapes on variation of various physical quantities. As examples, we investigate dependence of the peak-heights and
line half-widths in the resonance region on the anisotropy energy and the damping constant of the phonon reservoir.
In Fig. 19, the approximate formula of the peak-height HP

Rk in the resonance region of the power absorption, scaled
by h̄2γ3 |Hk|2, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5
for the cases of anisotropy energies h̄K given by A=K/J1 =1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given by
kBT/(h̄J1)=1.0 and the spin-magnitudes (S1, S2)= (3, 5/2), with ζ [ =J2/J1]= 1.0 and ωz/J1 =1.0. In Fig. 20, the
approximate formula of peak-height HM

Rk in the resonance region of the magnetization-amplitude, scaled by h̄γ |Hk|/J1,
is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases of
anisotropy energies h̄K given by A=K/J1 =1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given by kBT/(h̄J1)= 1.0
and the spin-magnitudes (S1, S2)= (3, 5/2), with ζ [ = J2/J1] = 1.0 and ωz/J1 = 1.0. Figures 19 and 20 show in the
resonance region of the power absorption and magnetization-amplitude that as the damping constant γRk of the
phonon reservoir becomes large, the peak-heights HP

Rk and HM
Rk increase, and also that as the anisotropy energy h̄K

increases, the peak-heights HP
Rk and HM

Rk increase. In Fig. 21, the approximate formula of line half-width ∆ωP
Rk in the

resonance region of the power absorption, scaled by J1, is displayed varying the daming constant γRk of the phonon
reservoir, scaled by J1, from 0.5 to 5.5 for the cases of anisotropy energies h̄K given by A= K/J1 =1.5, 2.0, 3.0, 5.0, and
for the temperature T given by kBT/(h̄J1)= 1.0 and the spin-magnitudes (S1, S2) = (3, 5/2), with ζ [ =J2/J1]= 1.0
and ωz/J1 = 1.0. In Fig. 22, the approximate formula of the line half-width ∆ωM

Rk in the resonance region of the
magnetization-amplitude, scaled by J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled
by J1, from 0.5 to 5.5 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.5, 2.0, 3.0, 5.0, and for the
temperature T given by kBT/(h̄J1)= 1.0 and the spin-magnitudes (S1, S2)= (3, 5/2), with ζ [ =J2/J1] = 1.0 and
ωz/J1 =1.0. Figures 21 and 22 show in the resonance region of the power absorption and magnetization-amplitude
that as the damping constant γRk of the phonon reservoir becomes large, the line half-widths ∆ωP

Rk and ∆ωM
Rk decrease,

and that as the anisotropy energy h̄K increases, the line half-widths ∆ωP
Rk and ∆ωM

Rk decrease slightly. Figures 19− 22
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show in the resonance region of the power absorption and magnetization-amplitude that as the damping constant γRk
of the phonon reservoir becomes large, the peak-heights HP

Rk and HM
Rk increase and the line half-widths ∆ωP

Rk and ∆ωM
Rk

decrease. Since the damping constant γRk of the phonon reservoir is equal to the inverse of its correlation time τc, the
phonon reservoir is damped quickly as the damping constant become large. Thus, as the phonon reservoir is damped
quickly, the line shapes of the power absorption and magnetization-amplitude show “the narrowing” in the resonance
region.
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Figure 19: The approximate formula of peak-height HP
Rk in the resonance region of the power absorption, scaled by

h̄2γ3 |Hk|2, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for
the cases of anisotropy energies h̄K given by A= K/J1 = 1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given by
kBT/(h̄J1)=1.0 and the spin-magnitudes (S1, S2)= (3, 5/2), with J2/J1 =1.0 and ωz/J1 =1.0.

Figure 20: The approximate formula of peak-height HM
Rk in the resonance region of the magnetization-amplitude,

scaled by h̄γ |Hk|/J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to
5.5 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.5, 2.0, 2.5, 3.0, 4.0, and for the temperature T given
by kBT/(h̄J1)= 1.0 and the spin-magnitudes (S1, S2)= (3, 5/2), with J2/J1 =1.0 and ωz/J1 = 1.0.

We have discussed the linear response of a ferrimagnetic spin system interacting with a phonon reservoir to an
external driving magnetic-field, which is a transversely rotating classical field, by employing the TCLE method in
the second-order approximation for the system-reservoir interaction, including the effects of the memory and initial
correlation for the spin system and phonon reservoir, i.e., the interference effects (the effects of interference between
the external driving field and the phonon reservoir), which are represented by the interference terms or the interference
thermal state in the TCLE method, give the effects of the deviation from the van Hove limit [42] or the narrowing limit
[43]. The interference effects are the effects of collision of the spin system excited by the external driving field with
the phonon reservoir, and influence the motoin of the spin system according to the motion of the phonon reservoir,
and therefore those effects increases the power absorption and magnetization-amplitude in the resonance region for a
non-quickly damped phonon reservoir as seen in Figs. 13 and 14, because the external driving field excites not only
the spin system but also the phonon reservoir in that region. The interference effects become large as the temperature
becomes high as seen in Figs. 15 and 16, and also become large as the phonon reservoir is damped slowly or as the wave
number k becomes small as seen in Figs. 17 and 18, and thus those effects produce effects that cannot be neglected for
the high temperature, for the non-quickly damped reservoir or for the small wave number k. If the phonon reservoir
is damped quickly, that is to say, the relaxation time τr of the spin system is much greater than the correlation time
τc of the phonon reservoir, i.e., τr 
 τc, as being discussed in Ref. [25], one obtains the transverse susceptibility
χrv

S+
k S−

k

(ω) [(3.47)] without the interference thermal state |D(2)

S−
k

[ω]〉 in the transverse susceptibility χS+
k S−

k
(ω) [(3.6)]

derived employing the TCLE method [25]. The susceptibility χrv
S+

k S−
k

(ω) is derived employing the relaxation method

[25] in the van Hove limit [42] or in the narrowing limit [43], and is valid only in the limit, in which the phonon
reservoir is damped quickly [25]. Since the transverse relaxation times of the ferrimagnetic spin system are equal to
(Γ′k±)−1 according to (B.57a) and (B.57b), where Γ′k± is given by (B.59a) or (4.8a), and the transverse correlation time
of the phonon reservoir is equal to (γRk)−1 according to (4.1a) or (4.1b), we have (Γ′k±)−1 
 (γRk)−1, i.e., Γ′k±
 γRk,
or (the transverse correlation time (γRk)−1 = τTc of the phonon reservoir)→ 0 in the van Hove limit [42] or in the
narrowing limit [43]. In this limit, since the corresponding interference terms X

α(β)
k1 (ω) and X

α(β)
k2 (ω) vanish according

to (D.3)− (D.6) as seen in Figs. 17 and 18, the transverse susceptibility becomes χrv
S+

k
S−

k

(ω) given by (3.47), and
therefore, one cannot discuss theoretically variations of the peak-heights and line half-widths in the resonance region
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Figure 21: The approximate formula of line half-width ∆ωR
P
k in the resonance region of the power absorption, scaled 

by J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 for the cases 
of anisotropy energies h̄K given by A = K/J1 = 1.5, 2.0, 3.0, 5.0, and for the temperature T given by kBT /(h̄J1) = 1.0 
and the spin-magnitudes (S1, S2) = (3, 5/2), with J2/J1 = 1.0 and ωz/J1 = 1.0.

Figure 22: The approximate formula of line half-width ∆ωR
M
k in the resonance region of the magnetization-amplitude, 

scaled by J1, is displayed varying the daming constant γRk of the phonon reservoir, scaled by J1, from 0.5 to 5.5 
for the cases of anisotropy energies h̄K given by A = K/J1 = 1.5, 2.0, 3.0, 5.0, and for the temperature T given by 
kBT /(h̄J1) = 1.0 and the spin-magnitudes (S1, S2) = (3, 5/2), with J2/J1 = 1.0 and ωz/J1 = 1.0.

of the power-absorption and magnetization-amplitude, because the peak-heights approach to ∞ and the line half-
widths approach to 0 in that limit as seen in Figs. 19 − 22. The transverse magnetic susceptibility χS+S− (ω) derived

k k

employing the second-order TCLE method is valid even if the phonon reservoir is damped slowly, in the region valid for 
the second-order perturbation approximation. Thus, the TCLE method is available for a spin system interacting with 
a non-quickly damped phonon-reservoir as well, and one can discuss theoretically variations of the peak-heights and 
line half-widths in the resonance region of the power-absorption and magnetization-amplitude derived employing the 
TCLE method, whereas one cannot discuss theoretically variations of the peak-heights and line half-widths employing 
the relaxation method [25] in the van Hove limit [42] or in the narrowing limit [43], in which the phonon reservoir is 
damped quickly [25].

We have analytically examined the power absorption and magnetization-amplitude in the resonance region of a 
ferrimagnetic spin system interacting with a phonon reservoir using the spin-wave method [6, 9, 46, 47], and have 
derived the approximate formulas of the resonance frequencies, peak-heights (heights of peak) and line half-widths 
in the lowest spin-wave approximation. We have numerically investigated a ferrimagnetic system of one-dimensional 
ininite spins in the region valid for the lowest spin-wave approximation, and have shown that the approximate formulas 
of the resonance frequencies, peak-heights and line half-widths in the resonance region coincide well with the results 
investigated calculating numerically the analytic results of the power absorption and magnetization-amplitude, and 
satisfy “the narrowing condition” that as phonon reservoir is damped quickly, the peak-heights increase and the line 
half-widths decrease, and thus we have numerically verified the approximate formulas. The approximate formulas 
obtained for the resonance frequencies, peak-heights and line half-widths in the resonance region, may have to be 
verified for the various cases both experimentally and by the other theoretical method, e.g. the simulation method. 
We have also investigated numerically the effects of the memory and initial correlation for the spin system and phonon 
reservoir, i.e., the interference effects (the effects of interference between the external driving field and the phonon 
reservoir), and have shown that those effects produce effects that cannot be neglected for the high temperature, for 
the non-quickly damped reservoir or for the small wave-number. Although the numerical investigation have been 
performed for a ferrimagnetic system of one-dimensional infinite spins, the analytic results obtained in the present 
paper are available for two- and three-dimensional spin systems as well, and also are applicable to an anti-ferromagnetic 
spin system for S1 = S2.
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A Derivation of spin-wave Hamiltonians HS0 and HS1

In this Appendix, we derive the spin-wave Hamiltonians HS0 and HS1 and the free spin-wave energies h̄ε±k . Substituting
(2.2) and (2.4) into Hamiltonian HS given by (2.1) and expanding it in accordance with (2.3) and (2.5), we obtain

HS = 2 h̄ J1

√
S1S2

∑
〈l, m〉

{
pl al pm bm + a†l pl b

†
m pm

}
+ 2 h̄ J2

∑
〈l, m〉

(S1 − a†l al)(−S2 + b†m bm)

− h̄ ωz

{ ∑
l

(S1 − a†l al) +
∑
m

(−S2 + b†m bm)
}
− h̄ K

{∑
l

(S1 − a†l al)2 +
∑
m

(S2 − b†m bm)2
}
,

= HS0 + HS1, (A.1)

with

HS0 = 2 h̄ J1

√
S1S2

∑
〈l, m〉

{
al bm + a†l b†m

}
+ 2 z h̄ J2

{
S2

∑
l

a†l al + S1

∑
m

b†m bm

}

+ h̄ ωz

{∑
l

a†l al −
∑
m

b†m bm

}
+ h̄ K

{
(2 S1 − 1)

∑
l

a†l al + (2 S2 − 1)
∑
m

b†m bm

}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄ KN (S2
1 + S2

2)/ 2, (A.2)

HS1 = − h̄

2
J1

∑
〈l, m〉

S2

S1
(a†l al al bm + a†l a†l al b

†
m) +

S1

S2
(al b†m bm bm + a†l b†m b†m bm)

− 2 h̄ J2

∑
〈l, m〉

a†l al b
†
m bm − h̄ K

{∑
l

a†l a†l al al +
∑
m

b†m b†m bm bm

}
+ · · · , (A.3)

where HS0 is the parts up to second order in powers of the spin deviation operators, and HS1 consists of the parts
of fourth order in powers of the spin deviation operators and of the higher order parts, which are denoted by “· · · ”,
and represents the interaction among the spin-waves. The Hamiltonian HS0 is the free spin-wave Hamiltonian and
HS1 is the spin-wave interaction Hamiltonian. In the expression (A.2) for HS0, z is the number of the vectors to the
nearest-neighbour site from each site. The free spin-wave Hamiltonian HS0 given by (A.2) can be expressed in the
wave-number representation by performing the Fourier transformations (2.7a) and (2.7b), as

HS0 = 2 z h̄ J1

∑
k

{
ηk

√
S1S2 (akbk + a†kb†k) + (ζ S2 + κ1 + hz) a†kak + (ζ S1 + κ2 − hz) b†kbk

}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄KN (S2
1 + S2

2)/ 2, (A.4)

where ηk, ζ, hz, κ1 and κ2 are defined by (2.10a) and (2.10b). The spin-wave interaction HS1 can be expressed in
the wave-number representation as

HS1 = − z h̄ J1

N

∑
k1, k2, k3, k4

{(
ηk1

S1

S2
a†k1

b†k2
b†k3

bk4 + ηk4

S2

S1
a†k1

ak2 ak3 bk4 δk1+k4 , k2+k3

+ ηk1

S1

S2
ak1 b†k2

bk3 bk4 + ηk4

S2

S1
a†k1

a†k2
ak3 b†k4

δk1+k2 , k3+k4

}

− 4 z h̄ J2

N

∑
k1, k2, k3, k4

ηk3−k4 a†k1
ak2 b†k3

bk4 δk1+k4 , k2+k3

− 2 h̄K

N

∑
k1, k2, k3, k4

{
a†k1

a†k2
ak3 ak4 + b†k1

b†k2
bk3 bk4

}
δk1+k2 , k3+k4 + · · · . (A.5)

In order to diagonalize the free spin-wave Hamiltonian HS0 given by (A.4), by transforming the operators ak, a†k,
bk, and b†k according to (2.11) and their Hermite conjugates, we express HS0 as follows

HS0 = 2 z h̄ J1

∑
k

{
ηk

√
S1S2 {(αk cosh θk − β†k sinh θk)(−α†k sinh θk + βk cosh θk)

+ (α†k cosh θk − βk sinh θk)(−αk sinh θk + β†k cosh θk)

+ (ζ S2 + κ1 + hz)(α
†
k cosh θk − βk sinh θk)(αk cosh θk − β†k sinh θk)

+ (ζ S1 + κ2 − hz)(−αk sinh θk + β†k cosh θk)(−α†k sinh θk + βk cosh θk)
}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄KN (S2
1 + S2

2)/ 2, (A.6a)
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= 2 z h̄ J1

∑
k

{{− 2 ηk

√
S1S2 sinh θk cosh θk + (ζ S1 + κ2 − hz) sinh2 θk

+ (ζ S2 + κ1 + hz) cosh2 θk}α†kαk + {− 2 ηk

√
S1S2 sinh θk cosh θk

+ (ζ S1 + κ2 − hz) cosh2 θk + (ζ S2 + κ1 + hz) sinh2 θk} β†kβk

+ {ηk

√
S1S2 (sinh2 θk + cosh2 θk) − (ζ (S1 + S2) + κ1 + κ2) sinh θk cosh θk}(αkβk + α†kβ†k)

}
+ 2 z h̄ J1

∑
k

{ − 2 ηk

√
S1S2 sinh θk cosh θk + {ζ (S1 + S2) + κ1 + κ2} sinh2 θk

}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄ KN (S2
1 + S2

2)/ 2 , (A.6b)

= z h̄ J1

∑
k

{{− 2 ηk

√
S1S2 sinh 2θk + (κ1 + κ2 + ζ (S1 + S2)) cosh 2θk

+ (κ1 − κ2 − ζ (S1 − S2) + 2 hz)}α†kαk + {− 2 ηk

√
S1S2 sinh 2θk

+ (κ1 + κ2 + ζ (S1 + S2)) cosh 2θk − (κ1 − κ2 − ζ (S1 − S2) + 2 hz)} β†kβk

+ {2 ηk

√
S1S2 cosh 2θk − (κ1 + κ2 + ζ (S1 + S2)) sinh 2θk}(αkβk + α†kβ†k)

}
+ z h̄ J1

∑
k

{ − 2 ηk

√
S1S2 sinh 2θk + {κ1 + κ2 + ζ (S1 + S2)}(cosh 2θk − 1)

}

− z h̄ J2 NS1S2 − h̄ ωzN (S1 − S2)/ 2 − h̄ KN (S2
1 + S2

2)/ 2 . (A.6c)

Taking the choice of θk as

2 ηk

√
S1S2 cosh 2θk − (κ1 + κ2 + ζ (S1 + S2)) sinh 2θk = 0, (A.7a)

tanh 2θk = 2 ηk

√
S1S2 /{κ1 + κ2 + ζ (S1 + S2)}, (A.7b)

the free spin-wave Hamiltonian HS0 takes the diagonal form (2.14).

B NETFD for ferrimagnetic spin system

In this Appendix, we consider the ferrimagnetic spin system interacting with the phonon reservoir, which has been
modeled in Section 2, and formulate the non-equilibrium thermo-field dynamics (NETFD) for the spin-phonon inter-
action (2.23) taken to reflect the energy transfer between the spin system and phonon reservoir.

B.1 Basic formulation

We first provide the time-convolutionless (TCL) equation of motion for the ferrimagnetic spin system and phonon
reservoir. We take the Hamiltonian H of the ferrimagnetic system and phonon reservoir under an external static field,
as

H = HS + HR + HSR = H0 + HSR , (H0 = HS + HR), (B.1)

and provide the basic requirements (axioms)

Ĥ |ρTE〉 = 0, ĤS |ρS〉 = 0, ĤR |ρR〉 = 0, (B.2)

as in Ref. [30], where ρTE and ρS are the normalized, time-independent density operators given by

ρTE = exp(−β H)/〈1| exp(−β H)〉 = exp(−β H)/ Tr exp(−β H), (B.3)
ρS = exp(−β HS)/〈1S| exp(−β HS)〉 = exp(−β HS)/ tr exp(−β HS), (B.4)

which are the thermal equilibrium density operators at temperature T =(kBβ)−1, where Tr= tr trR. Here, Ĥ, ĤS and
ĤR are the renormalized hat-Hamiltonians defined by, for example, Ĥ=(H−H̃†)/h̄ [25]. The spin deviation operators
αk, βk, the phonon operators Ra

kν , Rb
kν and their tilde conjugates satisfy the commutation relations

[
αk , α†k′

]
=

[
α̃k , α̃†k′

]
=

[
βk , β†k′

]
=

[
β̃k , β̃†k′

]
= δkk′ , (B.5)[

Ra
kν , Ra†

k′ν′
]

=
[
R̃a

kν , R̃a†
k′ν′

]
=

[
Rb

kν , Rb†
k′ν′

]
=

[
R̃b

kν , R̃b†
k′ν′

]
= δkk′ δνν′ , (B.6)

while the other commutators vanish. As done in Refs. [30, 39, 40], we provide the basic requirements

〈1S|αk = 〈1S|α̃†k , 〈1S|βk = 〈1S|β̃†k , (B.7)

〈1R|Ra
kν = 〈1R|R̃a†

kν , 〈1R|Rb
kν = 〈1R|R̃b†

kν , (B.8)
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and their tilde conjugates.
In the thermal-Liouville space of the spin system and phonon reservoir, the time-evolution of the thermal state

|ρT(t)〉 [ = ρT(t)|1〉] for the density operator ρT(t) of the total system is given by the Schrödinger equation [28, 29, 30]

(d/dt) |ρT(t)〉 = − i Ĥ |ρT(t)〉. (B.9)

The spin system and phonon reservoir are assumed to be in the thermal state |ρT(0)〉 at the initial time t =0 as an
initial condition. In order to eliminate the irrelevant part associated with the phonon reservoir, we introduce the
time-independent projection operators P and Q defined by [29]

P = |ρR〉〈1R| = ρR |1R〉〈1R| and Q = 1 − P . (B.10)

Proceeding in the same way as in Ref. [54], the time-convolutionless (TCL) equation of motion for the reduced thermal
state |ρ(t)〉 [ = 〈1R|ρT(t)〉] can be obtained as [26, 27]

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(t) |ρ(t)〉 + |I(t)〉, (B.11)

where the collision operator C(t) and the thermal state |I(t)〉 are given by

C(t) = − i 〈1R| ĤSR {Θ(t) − 1} |ρR〉, (B.12)

|I(t)〉 = − i 〈1R| ĤSR Θ(t) exp(− iQĤQ t )Q |ρT(0)〉, (B.13)

with Θ(t) defined by

Θ(t) =
{

1 + i

∫ t

0

dτ exp(− iQĤQ τ)QĤP exp(i Ĥ τ)
}−1

. (B.14)

Here, we have adopted the first order renormalization given by (2.21)− (2.23) for the free spin-wave Hamiltonian HS0,
the free spin-wave energies h̄ε±k and the spin-phonon interaction HSR. The thermal state |I(t)〉 depends on the initial
condition of the spin system and phonon reservoir, and represents the effects of the initial correlation for the spin
system and phonon reservoir.

We now consider the case that the spin system is interacting so weakly with the phonon reservoir that we can
use the second-order approximation, and expand Eq. (B.11) up to the second order in powers of the spin-phonon
interaction. When we assume the initial condition that the spin system and phonon reservoir are in the thermal
equilibrium state at the initial time t= 0, i.e., |ρT(0)〉= |ρTE〉, Eq. (B.11) reduces to

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(2)(t) |ρ(t)〉 + |I(2)(t)〉, (B.15)

where C(2)(t) and |I(2)(t)〉 are given by [26, 27]

C(2)(t) = −
∫ t

0

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR exp(i Ĥ0 τ)
∣∣ρR〉, (B.16)

|I(2)(t)〉 = i
〈
1R

∣∣ ĤSR exp(− i Ĥ0 t)
∫ β

0

dβ ′ ρS ρR exp(β ′h̄ Ĥ0)
∣∣HSR

〉
,

= − lim
µ→+0

∫ ∞
t

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR ρS ρR
∣∣1〉

e−µ τ . (B.17)

If the relaxation time τr of the spin system is much greater than the correlation time τc of the phonon reservoir, i.e.,
τr 
 τc, the thermal state |I(2)(t)〉 becomes small negligibly [25, 26, 27, 55]. Thus, in the case that the relaxation
time τr of the spin system is much larger than the correlation time τc of the phonon reservoir, i.e., τr 
 τc, which
corresponds to the van Hove limit [42] or the narrowing limit [43], the phonon reservoir is damped quickly, and we
have C(2)(t)=C(2)(∞) and |I(2)(t)〉= 0. In this section, we consider such a case. Then, the reduced thermal state
|ρ(t)〉 [ = 〈1R|ρT(t)〉 ] satisfies the following equation and initial condition

(d/dt) |ρ(t)〉 = − i ĤS |ρ(t)〉 + C(2) |ρ(t)〉 ; |ρ(0)〉 = 〈1R|ρT(0)〉 = 〈1R|ρTE〉, (B.18)

for τr 
 τc, where the collision operator C(2) is defined by

C(2) = C(2)(∞) = −
∫ ∞

0

dτ
〈
1R

∣∣ ĤSR exp(− i Ĥ0 τ) ĤSR exp(i Ĥ0 τ)
∣∣ρR〉. (B.19)

Equation (B.18) can be formally solved as

|ρ(t)〉 = exp{− i ĤS t + C(2) t}|ρ0〉 = U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (|ρ0〉 = |ρ(0)〉 = 〈1R|ρTE〉), (B.20)

-117-



for τr 
 τc. Here, we have divided the Hamiltonian HS of the spin system into the unperturbed part HS0 and the
perturbed part HS1 in accordance with (A.1)− (A.3), i.e., HS =HS0 +HS1, and have defined

U(t) = exp {− (i ĤS0 − C(2)) t } = exp {− i (ĤS0 + i C(2)) t }, (B.21)

ĤS1(t) = U−1(t) ĤS1 U(t), [ ĤS1 = (HS1 − H̃†S1)/h̄ ]. (B.22)

Then, the expectation value of a physical quantity A of the spin system can be described as

〈1|A|ρT(t)〉 = 〈1S|A|ρ(t)〉 = 〈1S|AU(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉. (B.23)

This expression is convenient for the expansion in powers of the spin-wave interaction HS1.

B.2 Collision operator and thermal-state conditions

By substituting (2.23) into (B.19) and by using the basic requirements (B.8) and their tilde conjugates, we can derive
the concrete expression of the collision operator C(2) given by (B.19), as

C(2) =
−1
2

∑
k

{
(S1φ

+−
k (ε+k ) + S2 φ−+

k (−ε+k )){(αk − α̃†k)α†k cosh 2θk − (β†k − β̃k)α†k sinh 2θk}

− (S1φ
−+
k (ε+k )∗ + S2 φ+−

k (−ε+k )∗){(αk − α̃†k) α̃k cosh 2θk − (β†k − β̃k) α̃k sinh 2θk}
+ (S1φ

−+
k (ε+k ) + S2 φ+−

k (−ε+k )){(α†k − α̃k)αk cosh 2θk − (βk − β̃†k)αk sinh 2θk}
− (S1φ

+−
k (ε+k )∗ + S2 φ−+

k (−ε+k )∗){(α†k − α̃k) α̃†k cosh 2θk − (βk − β̃†k) α̃†k sinh 2θk}
+ (S1φ

+−
k (−ε−k ) + S2 φ−+

k (ε−k )){(β†k − β̃k)βk cosh 2θk − (αk − α̃†k)βk sinh 2θk}
− (S1φ

−+
k (−ε−k )∗ + S2 φ+−

k (ε−k )∗){(β†k − β̃k) β̃†k cosh 2θk − (αk − α̃†k) β̃†k sinh 2θk}
+ (S1φ

−+
k (−ε−k ) + S2 φ+−

k (ε−k )){(βk − β̃†k)β†k cosh 2θk − (α†k − α̃k)β†k sinh 2θk}
− (S1φ

+−
k (−ε−k )∗ + S2 φ−+

k (ε−k )∗){(βk − β̃†k) β̃k cosh 2θk − (α†k − α̃k) β̃k sinh 2θk}
}

− 1
2

∑
k

{
(S1φ

+−
k (ε+k ) − S2 φ−+

k (−ε+k ))(αk − α̃†k)α†k − (S1φ
−+
k (ε+k )∗ − S2 φ+−

k (−ε+k )∗)(αk − α̃†k)α̃k

+ (S1φ
−+
k (ε+k ) − S2 φ+−

k (−ε+k ))(α†k − α̃k)αk − (S1φ
+−
k (ε+k )∗ − S2 φ−+

k (−ε+k )∗)(α†k − α̃k)α̃†k
− (S1φ

+−
k (−ε−k ) − S2 φ−+

k (ε−k ))(β†k − β̃k)βk + (S1φ
−+
k (−ε−k )∗ − S2 φ+−

k (ε−k )∗)(β†k − β̃k)β̃†k
− (S1φ

−+
k (−ε−k ) − S2 φ+−

k (ε−k ))(βk − β̃†k)β†k + (S1φ
+−
k (−ε−k )∗ − S2 φ−+

k (ε−k )∗)(βk − β̃†k)β̃k

}
− 1

2

∑
k

{{(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk − (αkβk + α†kβ†k − α̃†kβ̃†k − α̃kβ̃k) sinh 2θk}

× {(α†kαk − α̃†kα̃k + β†kβk − β̃†kβ̃k) cosh 2θk φzz
k (0)

− ((αkβk − α̃†kβ̃†k)φzz
k (ε+k + ε−k ) + (α†kβ†k − α̃kβ̃k)φzz

k (ε+k + ε−k )∗) sinh 2θk}
+ {α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}{α†kαk − α̃†kα̃k − (β†kβk − β̃†kβ̃k)}φzz

k (0)
}
, (B.24)

where φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) are given by

φ+−
k (ε) =

1
2

∑
ν

| g1ν |2
∫ ∞

0

dτ 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε τ), (B.25a)

φ−+
k (ε) =

1
2

∑
ν

| g1ν |2
∫ ∞

0

dτ 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε τ), (B.25b)

φzz
k (ε) =

∑
ν

g2
2ν

∫ ∞
0

dτ
〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp(i ε τ). (B.25c)

In the derivation of the above form for the collision operator C(2), we have ignored the correlation between the first
term and second term in (2.23), and have neglected the spin-wave interaction HS1 in the Hamiltonian HS of the spin
system. The basic requirements (B.7) and their tilde conjugates lead to

〈1S|C(2) = 0, 〈1S|U(t) = 〈1S|U−1(t) = 〈1S|, (B.26)

for U(t) defined by (B.21). The evolution operator U(t) is non-unitary in general, i.e., U †(t) �= U−1(t), because the
collision operator C(2) is non-Hermitian though ĤS0 [ = (HS0 − H̃†S0)/h̄] is Hermitian. Therefore, for t �= 0, we have
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(U−1(t)αkU(t))† �= U−1(t)α†kU(t) and (U−1(t)α̃kU(t))† �= U−1(t)α̃†kU(t) and so for β, β̃. Considering this, as done in
Refs. [29, 30, 39, 40], we define the Heisenberg operators

αk(t) = U−1(t)αk U(t), α††k (t) = U−1(t)α†k U(t), (B.27a)

βk(t) = U−1(t)βk U(t), β††k (t) = U−1(t)β†k U(t), (B.27b)

and their tilde conjugates, which satisfy the canonical commutation relations

[ αk(t) , α††k′ (t) ] = [ α̃k(t) , α̃††k′ (t) ] = [ βk(t) , β††k′ (t) ] = [ β̃k(t) , β̃††k′ (t) ] = δk k′ , (B.28)

while the other commutators vanish. According to the axioms (B.7), (B.26) and their tilde conjugates, we have

〈1S|αk(t) = 〈1S|α̃††k (t), 〈1S|βk(t) = 〈1S|β̃††k (t), (B.29)

and their tilde conjugates, which are the thermal-state conditions at time t for the bra-vector 〈1S| of the spin system.
By proceeding as in Refs. [24, 30], the thermal-state conditions at time t for the ket-vector |ρ0〉 [= ρ0|1S〉 = 〈1R|ρTE〉]
of the spin system, can be obtained as

αk(t) |ρ0〉 = hα
k (t) α̃††k (t) |ρ0〉, βk(t) |ρ0〉 = hβ

k (t) β̃††k (t) |ρ0〉, (B.30)

and their tilde conjugates, where the c-number functions hα
k (t) and hβ

k(t) are given by

hα
k (t) = nα

k (t){1 + nα
k (t)}−1 ; hβ

k (t) = nβ
k (t){1 + nβ

k(t)}−1, (B.31)

with the quantities nα
k (t) and nβ

k (t) defined by

nα
k (t) = 〈1S|α††k (t)αk(t)|ρ0〉, nβ

k (t) = 〈1S|β††k (t)βk(t)|ρ0〉. (B.32)

Here, the bra-vector 〈1S| and ket-vector |ρ0〉 are normalized, i.e., 〈1S|ρ0〉= tr ρ0 =1, and ρ0 is given by ρ0 = trR ρTE.
We now introduce the annihilation and creation quasi-particle operators defined by [39, 40]

λk(t) = Zα
k (t)1/2 {αk(t) − hα

k (t) α̃††k (t)}, λ‡k(t) = Zα
k (t)1/2 {α††k (t) − α̃k(t)}, (B.33a)

ξk(t) = Zβ
k (t)1/2 {βk(t) − hβ

k (t) β̃††k (t)}, ξ‡k(t) = Zβ
k (t)1/2 {β††k (t) − β̃k(t)}, (B.33b)

and their tilde conjugates, where the normalization factor Zα
k (t) and Zβ

k (t) are given by

Zα
k (t) = {1 − hα

k (t)}−1 = 1 + nα
k (t), hα

k (t) = 1 − Zα
k (t)−1, (B.34a)

Zβ
k (t) = {1 − hβ

k(t)}−1 = 1 + nβ
k (t), hβ

k (t) = 1 − Zβ
k (t)−1. (B.34b)

These lead to the canonical commutation relations of the quasi-particle operators :

[ λk(t) , λ‡k′ (t) ] = [ λ̃k(t) , λ̃‡k′ (t) ] = [ ξk(t) , ξ‡k′ (t) ] = [ ξ̃k(t) , ξ̃‡k′ (t) ] = δk k′ , (B.35)

while the other commutators vanish. The thermal state conditions (B.29) and (B.30) and their tilde conjugates give

〈1S|λ‡k(t) = 0, 〈1S|ξ‡k(t) = 0 ; λk(t)|ρ0〉 = 0, ξk(t)|ρ0〉 = 0, (B.36)

and their tilde conjugates. According to Eqs. (B.36) and their tilde conjugates, 〈1S| and |ρ0〉 are, respectively, called
the thermal vacuum bra-vector and the thermal vacuum ket-vector for the spin system [29, 30]. Performing the
inverse transformation of (B.33a), (B.33b), and their tilde conjugates, we have

αk(t) = Zα
k (t)1/2 {λk(t) + hα

k (t) λ̃‡k(t)}, α††k (t) = Zα
k (t)1/2 {λ‡k(t) + λ̃k(t)}, (B.37a)

βk(t) = Zβ
k (t)1/2 {ξk(t) + hβ

k (t) ξ̃‡k(t)}, β††k (t) = Zβ
k (t)1/2 {ξ‡k(t) + ξ̃k(t)}, (B.37b)

and their tilde conjugates. The free spin-wave hat-Hamiltonian ĤS0 takes the diagonal forms

ĤS0 =
∑

k

{
ε+k (α†k αk − α̃†k α̃k) + ε−k (β†k βk − β̃†k β̃k)

}
, (B.38a)

=
∑

k

{
ε+k (λ‡k λk − λ̃‡k λ̃k) + ε−k (ξ‡k ξk − ξ̃‡k ξ̃k)

}
, (B.38b)

with λk = λk(0), λ‡k =λ‡k(0), ξk = ξk(0) and ξ‡k = ξ‡k(0).
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B.3 Forms of the quasi-particle operators

We next derive the forms of the quasi-particle operators. The equations of motion for nα
k (t) and nβ

k(t) defined by
(B.32) can be obtained, by using the thermal-state conditions (B.29) and (B.30), as

d

dt
nα

k (t) = 〈1S| d

dt
α††k (t)αk(t) |ρ0〉 = 〈1S|U−1(t) [ i ĤS0 − C(2), α†k αk ] U(t) |ρ0〉, (B.39a)

= − (1/ 2)
{
S1{(φ−+

k (ε+k ) − φ+−
k (ε+k )∗)∗ + (φ−+

k (ε+k ) − φ+−
k (ε+k )∗)}

+ S2 {(φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)∗ + (φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)}} cosh 2θk nα
k (t)

+ (1/ 2)
{
S1(φ+−

k (ε+k ) + φ+−
k (ε+k )∗) + S2 (φ−+

k (−ε+k ) + φ−+
k (−ε+k )∗)

}
cosh 2θk

− (1/ 2)
{
S1{(φ−+

k (ε+k ) − φ+−
k (ε+k )∗)∗ + (φ−+

k (ε+k ) − φ+−
k (ε+k )∗)}

− S2 {(φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)∗ + (φ+−
k (−ε+k ) − φ−+

k (−ε+k )∗)}}nα
k (t)

+ (1/ 2)
{
S1(φ+−

k (ε+k ) + φ+−
k (ε+k )∗) − S2 (φ−+

k (−ε+k ) + φ−+
k (−ε+k )∗)

}
− φzz

k (0)〈1S|αk(t)β(t) + α††k (t)β††k (t) |ρ0〉 sinh 2θk cosh 2θk

+ (1/ 2){φzz
k (ε+k + ε−k ) + φzz

k (ε+k + ε−k )∗} sinh2 2θk (nα
k (t) + nβ

k (t) + 1), (B.39b)

= −{(S1Φ+
k (ε+k )′ + S2 Φ−k (ε+k )′) cosh 2θk + S1Φ+

k (ε+k )′ − S2 Φ−k (ε+k )′ − Ψ′k sinh2 2θk}nα
k (t)

+ {(S1Φ+
k (ε+k )′ + S2 Φ−k (ε+k )′) cosh 2θk + (S1Φ+

k (ε+k )′ − S2 Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk nβ
k (t) + Ψ′k sinh2 2θk, (B.39c)

d

dt
nβ

k(t) = 〈1S| d

dt
β††k (t)βk(t) |ρ0〉 = 〈1S|U−1(t) [ i ĤS0 − C(2), β†k βk ] U(t) |ρ0〉, (B.40a)

= − (1/ 2)
{
S1{(φ+−

k (−ε−k ) − φ−+
k (−ε−k )∗) + (φ+−

k (−ε−k ) − φ−+
k (−ε−k )∗)∗}

+ S2 {(φ−+
k (ε−k ) − φ+−

k (ε−k )∗) + (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)∗}} cosh 2θk nβ
k(t)

+ (1/ 2)
{
S1(φ−+

k (−ε−k ) + φ−+
k (−ε−k )∗) + S2 (φ+−

k (ε−k ) + φ+−
k (ε−k )∗)

}
cosh 2θk

+ (1/ 2)
{
(S1{(φ+−

k (−ε−k ) − φ−+
k (−ε−k )∗) + (φ+−

k (−ε−k ) − φ−+
k (−ε−k )∗)∗}

− S2 {(φ−+
k (ε−k ) − (φ+−

k (ε−k )∗) + (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)∗}}nβ
k(t)

− (1/ 2)
{
S1(φ−+

k (−ε−k ) + φ−+
k (−ε−k )∗) − S2 (φ+−

k (ε−k ) + φ+−
k (ε−k )∗)

}
− φzz

k (0)〈1S|αk(t)β(t) + α††k (t)β††k (t) |ρ0〉 sinh 2θk cosh 2θk

+ (1/ 2){φzz
k (ε+k + ε−k ) + φzz

k (ε+k + ε−k )∗} sinh2 2θk (nα
k (t) + nβ

k (t) + 1), (B.40b)

= −{(S1Φ−k (ε−k )′ + S2 Φ+
k (ε−k )′) cosh 2θk − S1Φ−k (ε−k )′ + S2 Φ+

k (ε−k )′ − Ψ′k sinh2 2θk}nβ
k(t)

+ {(S1Φ−k (ε−k )′ + S2 Φ+
k (ε−k )′) cosh 2θk − (S1Φ−k (ε−k )′ − S2 Φ+

k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk nα
k (t) + Ψ′k sinh2 2θk, (B.40c)

with n̄(ε) defined by

n̄(ε) = {exp(β h̄ ε) − 1}−1 = {exp(h̄ ε/(kBT )) − 1}−1, (B.41)

where Φ±k (ε)′ and Ψ′k are the real parts of Φ±k (ε) [ = Φ±k (ε)′+ i Φ±k (ε)′′ ] and Ψk [ =Ψ′k + i Ψ′′k ], which are defined by

Φ+
k (ε) = φ−+

k (ε) − φ+−
k (ε)∗ =

1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[Rkν(τ), R†kν ]|ρR〉 exp(i ε τ), (B.42)

Φ−k (ε) = φ+−
k (− ε) − φ−+

k (− ε)∗ =
1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[R†kν(τ), Rkν ]|ρR〉 exp(i ε τ), (B.43)

Ψk = φzz
k (ε+k + ε−k ) =

∫ ∞
0

dτ
∑

ν

g2
2ν 〈1R|∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)|ρR〉 exp{i (ε+k + ε−k ) τ}. (B.44)

In the derivations of Eqs. (B.39c) and (B.40c), we have used the relations [39]

φ+−
k (ε) + φ+−

k (ε)∗ = 2 n̄(ε) Φ+
k (ε)′, φ−+

k (−ε) + φ−+
k (−ε)∗ = 2 n̄(ε)Φ−k (ε)′, (B.45)

which were derived in Appendix A of Ref. [39]. According to the assumption that the phonon correlation function
(2.26c) is real, we have Ψ′k = (φzz

k (ε+k + ε−k )+φzz
k (ε+k + ε−k )∗)/ 2= (φzz

k (ε+k + ε−k )+ φzz
k (− ε+k − ε−k ))/ 2. The solutions of
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Eqs. (B.39c) and (B.40c) can be written as

nα
k (t) =

∫ t

0

dτ
{{(S1Φ+

k (ε+k )′ + S2 Φ−k (ε+k )′) cosh 2θk + (S1Φ+
k (ε+k )′ − S2 Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk nβ
k (τ) + Ψ′k sinh2 2θk

}
exp{−ΓL

k+ ·(t − τ)} + nα
k (0) exp(−ΓL

k+ t), (B.46a)

nβ
k (t) =

∫ t

0

dτ
{{(S1Φ−k (ε−k )′ + S2 Φ+

k (ε−k )′) cosh 2θk − (S1Φ−k (ε−k )′ − S2 Φ+
k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk nα
k (τ) + Ψ′k sinh2 2θk

}
exp{−ΓL

k− ·(t − τ)} + nβ
k (0) exp(−ΓL

k− t), (B.46b)

with nα
k (0) = 〈1S|α†kαk|ρ0〉 and nβ

k (0) = 〈1S|β†kβk|ρ0〉, where we have put for brevity as

ΓL
k± = (S1Φ±k (ε±k )′ + S2 Φ∓k (ε±k )′) cosh 2θk ± (S1Φ±k (ε±k )′ − S2 Φ∓k (ε±k )′) − Ψ′k sinh2 2θk. (B.47)

By substituting each of the above forms for nα
k (t) and nβ

k (t) into the other, we obtain the approximate solutions as

nα
k (t) = nα

k (0) exp(−ΓL
k+ t) + Ψ′k sinh2 2θk nβ

k (0)
exp(−ΓL

k− t) − exp(−ΓL
k+ t)

ΓL
k+ − ΓL

k−
+

{{(S1Φ+
k (ε+k )′ + S2 Φ−k (ε+k )′) cosh 2θk + (S1Φ+

k (ε+k )′ − S2 Φ−k (ε+k )′)} n̄(ε+k )

+ Ψ′k sinh2 2θk

}{1 − exp(−ΓL
k+ t)}/ ΓL

k+ + O(g4), (B.48a)

nβ
k (t) = nβ

k (0) exp(−ΓL
k− t) + Ψ′k sinh2 2θk nα

k (0)
exp(−ΓL

k+ t) − exp(−ΓL
k− t)

ΓL
k− − ΓL

k+

+
{{(S1Φ−k (ε−k )′ + S2 Φ+

k (ε−k )′) cosh 2θk − (S1Φ−k (ε−k )′ − S2 Φ+
k (ε−k )′)} n̄(ε−k )

+ Ψ′k sinh2 2θk

}{1 − exp(−ΓL
k− t)}/ ΓL

k− + O(g4), (B.48b)

where O(g4) denotes the fourth-order parts in powers of the spin-phonon interaction. Owing to stability of the
ferrimagnetic spin system, we assume that ΓL

k± are positive for positive ε±k , i.e., ΓL
k±> 0 for ε±k > 0. Then, as time t

becomes infinite (t→∞), nα
k (t) and nβ

k (t) approach the finite values

nα
k (∞) =

n̄+
k ΓL

k− ·(ΓL
k+ + Ψ′k sinh2 2θk) + (n̄−k + 1)(ΓL

k− + Ψ′k sinh2 2θk)Ψ′k sinh2 2θk

ΓL
k+ΓL

k− − (Ψ′k)2 sinh4 2θk

, (B.49a)

nβ
k(∞) =

n̄−k ΓL
k+ ·(ΓL

k− + Ψ′k sinh2 2θk) + (n̄+
k + 1)(ΓL

k+ + Ψ′k sinh2 2θk)Ψ′k sinh2 2θk

ΓL
k+ΓL

k− − (Ψ′k)2 sinh4 2θk

, (B.49b)

which are derived from Eqs. (B.39c) and (B.40c) in the infinite limit (t→∞), where we have put n̄±k = n̄(ε±k ).
The equations of motion for the quasi-particle operators λk(t) and ξk(t) can be derived, by performing the trans-

formation (B.33a), (B.33b) and their tilde conjugates, by using the thermal-state conditions (B.29) and their tilde
conjugates, and by considering the assumption that the phonon correlation function (2.26c) is real, as follows,

(d/dt)Zα
k (t)1/2 〈1S|λk(t) = (d/dt) 〈1S|αk(t) = 〈1S|U−1(t) [ i ĤS0 − C(2), αk ] U(t),

= 〈1S|
{− i ε+k αk(t) − αk(t){S1(φ−+

k (ε+k ) − φ+−
k (ε+k )∗) − S2 (φ+−

k (− ε+k ) − φ−+
k (− ε+k )∗)}/ 2

− αk(t){S1(φ−+
k (ε+k ) − φ+−

k (ε+k )∗) + S2 (φ+−
k (− ε+k ) − φ−+

k (− ε+k )∗)} cosh 2θk/ 2

− β††k (t){S1(φ+−
k (− ε−k ) − φ−+

k (− ε−k )∗)∗ + S2 (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)∗} sinh 2θk/ 2

− φzz
k (0) αk(t) cosh2 2θk/ 2 − φzz

k (0) αk(t)/ 2 + φzz
k (ε+k + ε−k )αk(t) sinh2 2θk/ 2

− φzz
k (0) β††k (t) sinh 2θk cosh 2θk/ 2 + φzz

k (ε+k + ε−k )∗ β††k (t) sinh 2θk cosh 2θk/ 2
}
, (B.50a)

=
{− i ε+k − {(S1Φ+

k (ε+k ) + S2 Φ−k (ε+k )) cosh 2θk + S1Φ+
k (ε+k ) − S2 Φ−k (ε+k )}/ 2 − Ψ0

k cosh2 2θk/ 2

− Ψ0
k/ 2 + Ψk sinh2 2θk/ 2

}
Zα

k (t)1/2 〈1S|λk(t) − {
(S1Φ−k (ε−k )∗ + S2 Φ+

k (ε−k )∗) sinh 2θk/ 2

+ (Ψ0
k − Ψ∗k) sinh 2θk cosh 2θk/ 2

}
Zβ

k (t)1/2 〈1S| ξ̃k(t), (B.50b)
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(d/dt)Zβ
k (t)1/2 〈1S| ξk(t) = (d/dt) 〈1S|βk(t) = 〈1S|U−1(t) [ i ĤS0 − C(2), βk ] U(t),

= 〈1S|
{− i ε−k βk(t) + βk(t){S1(φ+−

k (− ε−k ) − φ−+
k (− ε−k )∗) − S2 (φ−+

k (ε−k ) − φ+−
k (ε−k )∗)}/ 2

− βk(t){S1(φ+−
k (− ε−k ) − φ−+

k (− ε−k )∗) + S2 (φ−+
k (ε−k ) − φ+−

k (ε−k )∗)} cosh 2θk/ 2

− α††k (t){S1(φ−+
k (ε+k ) − φ+−

k (ε+k )∗)∗ + S2 (φ+−
k (− ε+k ) − φ−+

k (− ε+k )∗)∗} sinh 2θk/ 2

− φzz
k (0) βk(t) cosh2 2θk/ 2 − φzz

k (0) βk(t)/ 2 + φzz
k (ε+k + ε−k )βk(t) sinh2 2θk/ 2

− φzz
k (0) α††k (t) sinh 2θk cosh 2θk/ 2 + φzz

k (ε+k + ε−k )∗ α††k (t) sinh 2θk cosh 2θk/ 2
}
, (B.51a)

=
{− i ε−k − {(S1Φ−k (ε−k ) + S2 Φ+

k (ε−k )) cosh 2θk − S1Φ−k (ε−k ) + S2 Φ+
k (ε−k )}/ 2 − Ψ0

k cosh2 2θk/ 2

− Ψ0
k/ 2 + Ψk sinh2 2θk/ 2

}
Zβ

k (t)1/2 〈1S| ξk(t) − {
(S1Φ+

k (ε+k )∗ + S2 Φ−k (ε+k )∗) sinh 2θk/ 2

+ (Ψ0
k − Ψ∗k) sinh 2θk cosh 2θk/ 2

}
Zα

k (t)1/2 〈1S| λ̃k(t), (B.51b)

where Φ+
k (ε), Φ−k (ε) and Ψk are given by (B.42)− (B.44). The above equations can be rewritten as

(d/dt)Zα
k (t)1/2 〈1S|λk(t) = {− i ε+k − Γk+}Zα

k (t)1/2 〈1S|λk(t) − ∆∗k−Zβ
k (t)1/2 〈1S| ξ̃k(t), (B.52a)

(d/dt)Zβ
k (t)1/2 〈1S| ξ̃k(t) = {i ε−k − Γ∗k−}Zβ

k (t)1/2 〈1S| ξ̃k(t) − ∆k+Zα
k (t)1/2 〈1S|λk(t). (B.52b)

where we have put for brevity as

Γk± = {(S1Φ±k (ε±k ) + S2 Φ∓k (ε±k )) cosh 2θk ± S1Φ±k (ε±k ) ∓ S2 Φ∓k (ε±k )}/ 2

− (Ψk/ 2) sinh2 2θk + (Ψ0
k/ 2)(cosh2 2θk + 1), (B.53a)

∆k± = (S1Φ±k (ε±k ) + S2 Φ∓k (ε±k )) sinh 2θk/ 2 + (Ψ0
k − Ψk) sinh 2θk cosh 2θk/ 2, (B.53b)

with Φ+
k (ε), Φ−k (ε) and Ψk defined by (B.42), (B.43) and (B.44), respectively. Here, we have put

Ψ0
k = φzz

k (0) =
∫ ∞

0

dτ
∑

ν

g2
2ν 〈1R|∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)|ρR〉, (B.54)

which is real according to the assumption that the phonon correlation function (2.26c) is real. The solutions of Eqs.
(B.52a) and (B.52b) can be written as

Zα
k (t)1/2 〈1S|λk(t) = Zα

k (τ)1/2 〈1S|λk(τ) exp{(− i ε+k − Γk+)(t − τ)}

−
∫ t

τ

dt1 exp{(− i ε+k − Γk+)(t − t1)}∆∗k− Zβ
k (t1)1/2 〈1S| ξ̃k(t1), (B.55a)

Zβ
k (t)1/2 〈1S| ξ̃k(t) = Zβ

k (τ)1/2 〈1S| ξ̃k(τ) exp{(i ε−k − Γ∗k−)(t − τ)}

−
∫ t

τ

dt1 exp{(i ε−k − Γ∗k−)(t − t1)}∆k+ Zα
k (t1)1/2 〈1S|λk(t1), (B.55b)

from which we can obtain the approximate solutions as in Ref. [39]. Thus, we can obtain the forms of the quasi-particle
operators, which are valid up to second order in powers of the spin-phonon interaction, as

〈1S|λk(t) = Zα
k (t)−1/2 Zα

k (τ)1/2 exp{(− i ε+k − Γk+)(t − τ)}〈1S|λk(τ)

+ ∆∗k−
Zβ

k (τ)1/2

Zα
k (t)1/2

· exp{(− i ε+k − Γk+)(t − τ)} − exp{(i ε−k − Γ∗k−)(t − τ)}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k(τ), (B.56a)

〈1S| ξ̃k(t) = Zβ
k (t)−1/2 Zβ

k (τ)1/2 exp{(i ε−k − Γ∗k−)(t − τ)}〈1S| ξ̃k(τ)

+ ∆k+
Zα

k (τ)1/2

Zβ
k (t)1/2

· exp{(− i ε+k − Γk+)(t − τ)} − exp{(i ε−k − Γ∗k−)(t − τ)}
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk(τ). (B.56b)

Rewriting the quasi-particle forms (B.56a) and (B.56b) for τ = 0 by putting λk = λk(0) and ξk = ξk(0), we have

〈1S|λk(t) = Zα
k (t)−1/2 Zα

k (0)1/2 exp{(− i ε+k − Γk+) t }〈1S|λk

+ ∆∗k−
Zβ

k (0)1/2

Zα
k (t)1/2

· exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S| ξ̃k , (B.57a)

〈1S| ξ̃k(t) = Zβ
k (t)−1/2 Zβ

k (0)1/2 exp{(i ε−k − Γ∗k−) t }〈1S| ξ̃k

+ ∆k+
Zα

k (0)1/2

Zβ
k (t)1/2

· exp{(− i ε+k − Γk+) t } − exp{(i ε−k − Γ∗k−) t }
i (ε+k + ε−k ) + Γk+ − Γ∗k−

〈1S|λk . (B.57b)
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These formulas are useful for the perturbation calculations of correlation functions and susceptibilities, et al.
From the above quasi-particle forms (B.57a) and (B.57b), we can obtain the quasi-particle correlation forms

〈1S|λk(t)λ‡k|ρ0〉 = Zα
k (t)−1/2 Zα

k (0)1/2 exp{− i (ε+k + Γ′′k+) t − Γ′k+ t }, (B.58a)

〈1S| ξk(t) ξ‡k|ρ0〉 = Zβ
k (t)−1/2 Zβ

k (0)1/2 exp{− i (ε−k + Γ′′k−) t − Γ′k− t }, (B.58b)

〈1S| ξ̃k(t)λ‡k|ρ0〉 =
exp{− i (ε+k + Γ′′k+) t − Γ′k+ t } − exp{i (ε−k + Γ′′k−) t − Γ′k− t }

i (ε+k + ε−k + Γ′′k+ + Γ′′k−) + Γ′k+ − Γ′k−
× Zβ

k (t)−1/2 Zα
k (0)1/2 (∆′k+ + i ∆′′k+), (B.58c)

〈1S|λ̃k(t) ξ‡k|ρ0〉 =
exp{− i (ε−k + Γ′′k−) t − Γ′k− t } − exp{i (ε+k + Γ′′k+) t − Γ′k+ t }

i (ε+k + ε−k + Γ′′k+ + Γ′′k−) + Γ′k− − Γ′k+

× Zα
k (t)−1/2 Zβ

k (0)1/2 (∆′k− + i ∆′′k−), (B.58d)

with λ‡k =λ‡k(0) and ξ‡k = ξ‡k(0), where Γ′k±, ∆′k± and Γ′′k±, ∆′′k± are the real parts and the imaginary parts of Γk± and
∆k±, which are defined by (B.53a) and (B.53b), respectively, and are given by

Γ′k± = S1Φ±k (ε±k )′(cosh 2θk ± 1)/ 2 + S2 Φ∓k (ε±k )′(cosh 2θk ∓ 1)/ 2

− (Ψ′k/ 2) sinh2 2θk + (Ψ0
k/ 2)(cosh2 2θk + 1), (B.59a)

Γ′′k± = S1Φ±k (ε±k )′′(cosh 2θk ± 1)/ 2 + S2 Φ∓k (ε±k )′′(cosh 2θk ∓ 1)/ 2 − (Ψ′′k/ 2) sinh2 2θk, (B.59b)

∆′k± = (S1Φ±k (ε±k )′ + S2 Φ∓k (ε±k )′) sinh 2θk/ 2 + (Ψ0
k − Ψ′k) sinh 2θk cosh 2θk/ 2, (B.59c)

∆′′k± = (S1Φ±k (ε±k )′′ + S2 Φ∓k (ε±k )′′) sinh 2θk/ 2 − Ψ′′k sinh 2θk cosh 2θk/ 2. (B.59d)

Considering that Φ±k (ε±k )′ is positive for positive ε±k , i.e., Φ±k (ε±k )′> 0 for ε±k > 0, as shown in Appendix A of Ref. [39],
and that Ψ0

k is non-negative, i.e., Ψ0
k ≥ 0, as shown in Ref. [26, 27], we notice from (B.44) and (B.54) that Γ′k± are

positive for positive ε±k , i.e.,

Γ′k± ≥ S1Φ±k (ε±k )′(cosh 2θk ± 1)/ 2 + S2 Φ∓k (ε±k )′(cosh 2θk ∓ 1)/ 2 + Ψ0
k > 0, for ε±k > 0. (B.60)

The quasi-particle correlation forms (B.58a) and (B.58b) for the semi-free field show that the λ quasi-particle with
the wave-number k has the energy h̄(ε+k + Γ′′k+) and decays exponentially with the life-time (Γ′k+)−1, that the ξ quasi-
particle with the wave-number k has the energy h̄(ε−k + Γ′′k−) and decays exponentially with the life-time (Γ′k−)−1.
The quasi-particle correlation forms (B.58c) and (B.58d) for the semi-free field show that the λ quasi-particle and
the ξ quasi-particle change to the ξ̃ quasi-particle and the λ̃ quasi-particle, respectively, through the spin-phonon
interaction.

C Form of the interference thermal state |D(2)
S−k

[ω]〉
In this Appendix, we derive a form of the interference thermal state |D(2)

S−
k

[ω]〉 given by (3.8). The interference thermal

state |D(2)

S−
k

[ω]〉 can be expressed by substituting (2.23) into (3.8) and by using the free spin-wave Hamiltonian (2.21),

the axioms (B.2), (B.8) and their tilde conjugates, and the assumptions (2.25a), (2.25b) and (2.26a)− (2.26c), as

|D(2)

S−
k

[ω]〉 =
i γ

4
√

2

∫ ∞
0

dτ

∫ τ

0

ds
∑

ν

|g1ν |2 (〈1R|Rkν(τ)R†kν |ρR〉 − 〈1R|R†kνRkν(τ)|ρR〉)

× {
(
√

S1 cosh θk −
√

S2 sinh θk) exp(i ε+k τ + i ω s − i ε+k s)

× S1{(cosh 2θk + 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉
+ (

√
S2 cosh θk −

√
S1 sinh θk) exp(− i ε−k τ + i ω s + i ε−k s)

× S1{sinh 2θk (α†k − α̃k) − (cosh 2θk − 1) (βk − β̃†k)}|ρ0〉
}

+
i γ

4
√

2

∫ ∞
0

dτ

∫ τ

0

ds
∑

ν

|g1ν |2 (〈1R|R†kν(τ)Rkν |ρR〉 − 〈1R|RkνR†kν(τ)|ρR〉)

× {
(
√

S1 cosh θk −
√

S2 sinh θk) exp(i ε+k τ + i ω s − i ε+k s)

× S2 {(cosh 2θk − 1) (α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉
+ (

√
S2 cosh θk −

√
S1 sinh θk) exp(− i ε−k τ + i ω s + i ε−k s)

× S2 {sinh 2θk (α†k − α̃k) − (cosh 2θk + 1) (βk − β̃†k)}|ρ0〉
}
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+
i γ

2
√

2

∫ ∞
0

dτ

∫ τ

0

ds
∑

ν

g2
2ν 〈1R|∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)|ρR〉

× {
(
√

S1 cosh θk −
√

S2 sinh θk) sinh 2θk cosh 2θk (βk − β̃†k)|ρ0〉 exp(i (ε+k + ε−k ) τ + i ω s − i ε+k s)

+ (
√

S2 cosh θk −
√

S1 sinh θk) sinh 2θk cosh 2θk (α†k − α̃k)|ρ0〉 exp(−i (ε+k + ε−k ) τ + i ω s + i ε−k s)

+ (
√

S1 cosh θk −
√

S2 sinh θk)(cosh2 2θk + 1) (α†k − α̃k)|ρ0〉 exp(i ω s − i ε+k s)

+ (
√

S2 cosh θk −
√

S1 sinh θk)(cosh2 2θk + 1) (βk − β̃†k)|ρ0〉 exp(i ω s + i ε−k s)

+ (αk βk + α†k β†k − α̃k β̃k − α̃†k β̃†k) sinh 2θk

× {
(
√

S1 cosh θk −
√

S2 sinh θk) sinh 2θk (βk − β̃†k)|ρ0〉 exp(i (ε+k + ε−k ) τ + i ω s − i ε+k s)

− (
√

S2 cosh θk −
√

S1 sinh θk) sinh 2θk (α†k − α̃k)|ρ0〉 exp(−i (ε+k + ε−k ) τ + i ω s + i ε−k s)

− (
√

S1 cosh θk −
√

S2 sinh θk) cosh 2θk (α†k − α̃k)|ρ0〉 exp(i ω s − i ε+k s)

+ (
√

S2 cosh θk −
√

S1 sinh θk) cosh 2θk (βk − β̃†k)|ρ0〉 exp(i ω s + i ε−k s)
}}

, (C.1)

with ∆(R†kν(t)Rkν(t))= R†kν(t)Rkν(t) − 〈1R|R†kνRkν |ρR〉 and ∆(R†kνRkν)=R†kνRkν − 〈1R|R†kνRkν |ρR〉, where we have
ignored the higher-order parts in the spin-wave approximation, and have used the assumption that the phonon corre-
lation function given by (2.26c) is real. Here, we have used the relations α†kαk|ρ0〉= α̃†kα̃k|ρ0〉 and β†kβk|ρ0〉= β̃†kβ̃k|ρ0〉,
which are led from the thermal-state conditions (B.30) and their tilde conjugates. The above form of the interfer-
ence thermal state |D(2)

S−
k

[ω]〉 can be written by using the correlation functions φ+−
k (ε), φ−+

k (ε) and φzz
k (ε) defined by

(B.25a)− (B.25c), as

|D(2)

S−
k

[ω]〉 =
γ

2
√

2

{
(
√

S1 cosh θk −
√

S2 sinh θk){(cosh 2θk + 1)(α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉

× S1{(φ−+
k (ω) − φ+−

k (ω)∗) − (φ−+
k (ε+k ) − φ+−

k (ε+k )∗)}/(ω − ε+k )

+ (
√

S2 cosh θk −
√

S1 sinh θk){sinh 2θk (α†k − α̃k) − (cosh 2θk − 1)(βk − β̃†k)}|ρ0〉
× S1{(φ−+

k (ω) − φ+−
k (ω)∗) − (φ−+

k (− ε−k ) − φ+−
k (− ε−k )∗)}/(ω + ε−k )

+ (
√

S1 cosh θk −
√

S2 sinh θk){(cosh 2θk − 1)(α†k − α̃k) − sinh 2θk (βk − β̃†k)}|ρ0〉
× S2{(φ+−

k (−ω) − φ−+
k (−ω)∗) − (φ+−

k (− ε+k ) − φ−+
k (− ε+k )∗)}/(ω − ε+k )

+ (
√

S2 cosh θk −
√

S1 sinh θk){sinh 2θk (α†k − α̃k) − (cosh 2θk + 1)(βk − β̃†k)}|ρ0〉
× S2{(φ+−

k (−ω) − φ−+
k (−ω)∗) − (φ+−

k (ε−k ) − φ−+
k (ε−k )∗)}/(ω + ε−k )

}
+

γ

2
√

2

{
(
√

S1 cosh θk −
√

S2 sinh θk)/(ω − ε+k )

× {
(cosh2 2θk + 1){φzz

k (ω − ε+k ) − φzz
k (0)}(α†k − α̃k)|ρ0〉

+ sinh 2θk cosh 2θk {φzz
k (ω + ε−k ) − φzz

k (ε+k + ε−k )}(βk − β̃†k)|ρ0〉
}

+ (
√

S2 cosh θk −
√

S1 sinh θk)/(ω + ε−k )

× {
sinh 2θk cosh 2θk {φzz

k (ω − ε+k ) − φzz
k (− ε+k − ε−k )}(α†k − α̃k)|ρ0〉

+ (cosh2 2θk + 1){φzz
k (ω + ε−k ) − φzz

k (0)}(βk − β̃†k)|ρ0〉
}

+ (αk βk + α†k β†k − α̃k β̃k − α̃†k β̃†k) sinh 2θk

× {
(
√

S1 cosh θk −
√

S2 sinh θk)/(ω − ε+k )

× {
sinh 2θk {φzz

k (ω + ε−k ) − φzz
k (ε+k + ε−k )}(βk − β̃†k)|ρ0〉

− cosh 2θk {φzz
k (ω − ε+k ) − φzz

k (0)}(α†k − α̃k)|ρ0〉
}

+ (
√

S2 cosh θk −
√

S1 sinh θk)/(ω + ε−k )

× {
cosh 2θk {φzz

k (ω + ε−k ) − φzz
k (0)}(βk − β̃†k)|ρ0〉

− sinh 2θk {φzz
k (ω − ε+k ) − φzz

k (− ε+k − ε−k )}(α†k − α̃k)|ρ0〉
}}}

. (C.2)

D Calculation of corresponding interference terms X
α(β)
k1(2)(ω)

In this Appendix, we derive the forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.16a)− (3.17b).

In order to deal with the fractions in the calculations of X
α(β)
k1(2)(ω) defined by (3.16a)− (3.17b), we use the following
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forms for Φ±k (ε) defined by (B.42) and (B.43) with the phonon correlation functions given by (4.1a) and (4.1b) :

Φ+
k (ε) =

1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[Rkν(τ), R†kν ]|ρR〉 exp(i ε τ) =
g2
1/ 2

− i (ε− ωRk) + γRk
, (D.1)

Φ−k (ε) =
1
2

∫ ∞
0

dτ
∑

ν

|g1ν |2 〈1R|[R†kν(τ), Rkν ]|ρR〉 exp(i ε τ) =
− g2

1/ 2
− i (ε + ωRk) + γRk

. (D.2)

The forms of the corresponding interference terms X
α(β)
k1(2)(ω) defined by (3.16a)− (3.17b), are derived using (D.1),

(D.2) and (4.5)− (4.7) as follows,

Xα
k1(ω) = 〈1S|αk |D(2)

k1 [ω]〉 = Xα
k1(ω)′ + i Xα

k1(ω)′′,

=
i (g2

1/4) S1(cosh 2θk + 1)
{− i (ω − ωRk) + γRk}{− i (ε+k − ωRk) + γRk}

− i (g2
1/4) S2 (cosh 2θk − 1)}

{− i (ω + ωRk) + γRk}{− i (ε+k + ωRk) + γRk}
+ g2

2 (cosh2 2θk + 1)
i n̄(ωRk){n̄(ωRk) + 1}

4 γRk{− i (ω − ε+k ) + 2γRk}
− g2

2 sinh2 2θk
i n̄(ωRk){n̄(ωRk) + 1}

2 {− i (ω + ε−k ) + 2γRk}{− i (ε+k + ε−k ) + 2γRk}
, (D.3a)

= g2
1 S1

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} (cosh 2θk + 1)

+ g2
1 S2

γRk (ω + ε+k + 2 ωRk) − i {(γRk)2 − (ω + ωRk)(ε+k + ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε+k + ωRk)2 + (γRk)2} (cosh 2θk − 1)

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk{(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1) , (D.3b)

Xα
k2(ω) = 〈1S|αk |D(2)

k2 [ω]〉 = Xα
k2(ω)′ + i Xα

k2(ω)′′,

=
i (g2

1/4) S1 sinh 2θk

{− i (ω − ωRk) + γRk}{− i (−ε−k − ωRk) + γRk}
+

− i (g2
1/4) S2 sinh 2θk

{− i (ω + ωRk) + γRk}{− i (−ε−k + ωRk) + γRk}
+ g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

2 {− i (ω − ε+k ) + 2γRk}{− i (− ε+k − ε−k ) + 2γRk}
− g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

4 γRk {− i (ω + ε−k ) + 2γRk }
, (D.4a)

= g2
1 S1

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} sinh 2θk

+ g2
1 S2

γRk (ω − ε−k + 2 ωRk) − i {(γRk)2 + (ω + ωRk)(ε−k − ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε−k − ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk {(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (D.4b)
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Xβ
k1(ω) = 〈1S|β†k |D(2)

k1 [ω]〉 = Xβ
k1(ω)′ + i Xβ

k2(ω)′′,

=
i g2

1 S1 sinh 2θk

4 {− i (ω − ωRk) + γRk}{− i (ε+k − ωRk) + γRk}
+

− i g2
1 S2 sinh 2θk

4 {− i (ω + ωRk) + γRk}{− i (ε+k + ωRk) + γRk}
− g2

2

i n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

2 {− i (ω + ε−k ) + 2γRk}{− i (ε+k + ε−k ) + 2γRk}
+ g2

2

i n̄(ωRk){n̄(ωRk) + 1}
4 γRk {− i (ω − ε+k ) + 2γRk}

sinh 2θk cosh 2θk , (D.5a)

= g2
1 S1

− γRk (ω + ε+k − 2 ωRk) + i {(γRk)2 − (ω − ωRk)(ε+k − ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε+k − ωRk)2 + (γRk)2} sinh 2θk

+ g2
1 S2

γRk (ω + ε+k + 2 ωRk) − i {(γRk)2 − (ω + ωRk)(ε+k + ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε+k + ωRk)2 + (γRk)2} sinh 2θk

+ g2
2

2 γRk (ω + ε+k + 2 ε−k ) − i {4 (γRk)2 − (ω + ε−k )(ε+k + ε−k )}
2 {(ω + ε−k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk

+ g2
2

− (ω − ε+k ) + 2 i γRk

4 γRk {(ω − ε+k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh 2θk cosh 2θk , (D.5b)

Xβ
k2(ω) = 〈1S|β†k |D(2)

k2 [ω]〉 = Xβ
k2(ω)′ + i Xβ

k2(ω)′′,

= g2
1

i S1(cosh 2θk − 1)
4 {− i (ω − ωRk) + γRk}{− i (− ε−k − ωRk) + γRk}

+ g2
1

− i S2 (cosh 2θk + 1)
4 {− i (ω + ωRk) + γRk}{− i (−ε−k + ωRk) + γRk}

− g2
2

i n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1)
4 γRk{− i (ω + ε−k ) + 2γRk}

+ g2
2

i n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

2 {− i (ω − ε+k ) + 2γRk}{− i (− ε+k − ε−k ) + 2γRk}
, (D.6a)

= g2
1 S1

− γRk (ω − ε−k − 2 ωRk) + i {(γRk)2 + (ω − ωRk)(ε−k + ωRk)}
4 {(ω − ωRk)2 + (γRk)2}{(ε−k + ωRk)2 + (γRk)2} (cosh 2θk − 1)

+ g2
1 S2

γRk (ω − ε−k + 2 ωRk) − i {(γRk)2 + (ω + ωRk)(ε−k − ωRk)}
4 {(ω + ωRk)2 + (γRk)2}{(ε−k − ωRk)2 + (γRk)2} (cosh 2θk + 1)

+ g2
2

− 2 γRk (ω − 2 ε+k − ε−k ) + i {4 (γRk)2 + (ω − ε+k )(ε+k + ε−k )}
2 {(ω − ε+k )2 + 4 (γRk)2}{(ε+k + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1} sinh2 2θk

+ g2
2

(ω + ε−k ) − 2 i γRk

4 γRk{(ω + ε−k )2 + 4 (γRk)2} n̄(ωRk){n̄(ωRk) + 1}(cosh2 2θk + 1) . (D.6b)

E Derivation of forms of nα
k (0) and nβ

k(0)

In this Appendix, we consider the case that the ferrimagnetic spin system and phonon reservoir are in the thermal
equilibrium state at the initial time t =0, i.e., ρT(0) = ρTE, and derive forms of nα

k (0) [= 〈1S|α†kαk|ρ0〉] and nβ
k (0)

[ = 〈1S|β†kβk|ρ0〉] up to the second order in powers of the spin-phonon interaction in the lowest spin-wave approximation.
The thermal state |ρ0〉 [ = |ρ(0)〉= 〈1R|ρT(0)〉= 〈1R|ρTE〉] can be expanded in powers of the spin-phonon interaction, as
[36]

|ρ0〉 = |ρS〉 + |ρ(2)
0 〉 + · · · , (E.1)

with ρS given by (B.4), where |ρ(2)
0 〉 is the second-order part of |ρ0〉 [ = 〈1R|ρTE〉] in powers of the spin-phonon interaction

and is given by

|ρ(2)
0 〉 =

∫ β

0

dβ1

∫ β1

0

dβ2

〈
1R

∣∣{HSR(− i h̄ β1)HSR(− i h̄ β2)

− 〈1| HSR(− i h̄ β1)HSR(− i h̄ β2)|ρR〉|ρS〉
}∣∣ρR〉∣∣ρS〉. (E.2)
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The above form for |ρ(2)
0 〉 can be expressed with time-integrals alone by transforming inverse-temperature-integrals

into time-integrals, as done in Ref. [36], as

|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ2 〈1R| ĤSR(− τ2) ĤSR(− τ1) |ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

. (E.3)

Here, HSR(t) and ĤSR(t) are defined by HSR(t) = exp(iH0t/h̄)HSR exp(−iH0t/h̄) and ĤSR(t)= exp(iĤ0t)ĤSR exp(−iĤ0t).
By substituting (2.23) into (E.3), 〈1S|α†kαk|ρ(2)

0 〉 and 〈1S|β†kβk|ρ(2)
0 〉 can be expressed as

〈1S|α†kαk|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ2 〈1S|〈1R|α†kαk ĤSR(− τ2) ĤSR(− τ1)|ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

,

=
1
2

∫ ∞
0

dτ1

∫ τ1

0

dτ
∑

ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
S1(〈1R|Ra†

kν(τ)Ra
kν |ρR〉〈1S|αkα†k|ρS〉 − 〈1R|Ra

kνRa†
kν(τ)|ρR〉〈1S|α†kαk|ρS〉) cosh2 θk exp(− i ε+k τ)

− S1(〈1R|Ra
kν(τ)Ra†

kν |ρR〉〈1S|α†kαk|ρS〉 − 〈1R|Ra†
kνRa

kν(τ)|ρR〉〈1S|αkα†k|ρS〉) cosh2 θk exp(i ε+k τ)

+ S2 (〈1R|Rb
kν(τ)Rb†

kν |ρR〉〈1S|αkα†k|ρS〉 − 〈1R|Rb†
kνRb

kν(τ)|ρR〉〈1S|α†kαk|ρS〉) sinh2 θk exp(− i ε+k τ)

− S2 (〈1R|Rb†
kν(τ)Rb

kν |ρR〉〈1S|α†kαk|ρS〉 − 〈1R|Rb
kνRb†

kν(τ)|ρR〉〈1S|αkα†k|ρS〉) sinh2 θk exp(i ε+k τ)
}

+
∫ ∞

0

dτ1

∫ τ1

0

dτ
∑

ν

g2
2ν exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(Ra†
kν(τ)Ra

kν (τ))∆(Ra†
kνRa

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Rb†
kν(τ)Rb

kν (τ))∆(Rb†
kνRb

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Ra†
kνRa

kν)∆(Ra†
kν(τ)Ra

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Rb†
kνRb

kν)∆(Rb†
kν(τ)Rb

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})}, (E.4)

〈1S|β†kβk|ρ(2)
0 〉 = −

∫ ∞
0

dτ1

∫ τ1

0

dτ2 〈1S|〈1R|β†kβk ĤSR(− τ2) ĤSR(− τ1)|ρR〉|ρS〉 exp(−µ τ1)
∣∣
µ→+0

,

=
1
2

∫ ∞
0

dτ1

∫ τ1

0

dτ
∑

ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
S1(〈1R|Ra

kν(τ)Ra†
kν |ρR〉〈1S|βkβ†k|ρS〉 − 〈1R|Ra†

kνRa
kν(τ)|ρR〉〈1S|β†kβk|ρS〉) sinh2 θk exp(− i ε−k τ)

− S1(〈1R|Ra†
kν(τ)Ra

kν |ρR〉〈1S|β†kβk|ρS〉 − 〈1R|Ra
kνRa†

kν(τ)|ρR〉〈1S|βkβ†k|ρS〉) sinh2 θk exp(i ε−k τ)

+ S2 (〈1R|Rb†
kν(τ)Rb

kν |ρR〉〈1S|βkβ†k|ρS〉 − 〈1R|Rb
kνRb†

kν(τ)|ρR〉〈1S|β†kβk|ρS〉) cosh2 θk exp(− i ε−k τ)

− S2 (〈1R|Rb
kν(τ)Rb†

kν |ρR〉〈1S|β†kβk|ρS〉 − 〈1R|Rb†
kνRb

kν(τ)|ρR〉〈1S|βkβ†k|ρS〉) cosh2 θk exp(i ε−k τ)
}

+
∫ ∞

0

dτ1

∫ τ1

0

dτ
∑

ν

g2
2ν exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(Ra†
kν(τ)Ra

kν(τ))∆(Ra†
kνRa

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Rb†
kν(τ)Rb

kν(τ))∆(Rb†
kνRb

kν)
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{−i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Ra†
kνRa

kν)∆(Ra†
kν(τ)Ra

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})
+

〈
1R

∣∣∆(Rb†
kνRb

kν)∆(Rb†
kν(τ)Rb

kν(τ))
∣∣ρR〉 cosh2 θk sinh2 θk

× (〈1S|αkβkα†kβ†k|ρS〉 exp{i (ε+k + ε−k )τ} − 〈1S|α†kβ†kαkβk|ρS〉 exp{−i (ε+k + ε−k )τ})}, (E.5)
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from which we can obtain the forms of nα
k (0) and nβ

k (0) up to the second order in powers of the spin-phonon interaction
by using the Bose operators Rkν and R†kν defined by the assumptions (2.19) and (2.26a)− (2.26c), as follows

nα
k (0) = 〈1S|α†kαk|ρ0〉 = 〈1S|α†kαk|ρS〉 + 〈1S|α†kαk|ρ(2)

0 〉, (E.6)

= n̄(ε+k )

+
1
4

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
S1(cosh 2θk + 1)〈1S|αkα†k|ρS〉{〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε+k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(i ε+k τ)}

− S1(cosh 2θk + 1)〈1S|α†kαk|ρS〉{〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε+k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(− i ε+k τ)}
+ S2 (cosh 2θk − 1)〈1S|αkα†k|ρS〉{〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε+k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(i ε+k τ)}
− S2 (cosh 2θk − 1)〈1S|α†kαk|ρS〉{〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε+k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(− i ε+k τ)}}

+
1
2

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

g2
2ν sinh2 2θk exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{−i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{i (ε+k + ε−k )τ})

+
〈
1R

∣∣∆(R†kνRkν)∆(R†kν(τ)Rkν (τ))
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{− i (ε+k + ε−k )τ})}, (E.7)

= n̄(ε+k ) − 1
2

∫ ∞
0

dτ · τ
∑

ν

| g1ν |2 exp(−µ τ)
∣∣
µ→+0

× {
S1(cosh 2θk + 1)(n̄(ε+k ) + 1) Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε+k τ)

− S1(cosh 2θk + 1) n̄(ε+k )Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε+k τ)

+ S2 (cosh 2θk − 1)(n̄(ε+k ) + 1) Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε+k τ)

− S2 (cosh 2θk − 1) n̄(ε+k )Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε+k τ)
}

−
∫ ∞

0

dτ · τ sinh2 2θk

{
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) − n̄(ε+k ) n̄(ε−k )

}
exp(−µ τ)

∣∣
µ→+0

× Re
∑

ν

g2
2ν

〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp{i (ε+k + ε−k )τ}, (E.8)

= n̄(ε+k ) − S1(cosh 2θk + 1)
{
(n̄(ε+k ) + 1) Re i

∂

∂ε+k
φ+−

k (ε+k ) + n̄(ε+k )Re i
∂

∂ε+k
φ−+

k (ε+k )
}

− S2 (cosh 2θk − 1)
{
(n̄(ε+k ) + 1) Re i

∂

∂ε+k
φ−+

k (− ε+k ) + n̄(ε+k )Re i
∂

∂ε+k
φ+−

k (− ε+k )
}

+ sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )
φzz

k (ε+k + ε−k ), (E.9)

= n̄(ε+k ) − g2
1 S1(cosh 2θk + 1)(n̄(ε+k ) + 1) Re

i

2
· ∂

∂ε+k

n̄(ωRk)
i (ε+k − ωRk) + γRk

− g2
1 S1(cosh 2θk + 1) n̄(ε+k )Re

i

2
· ∂

∂ε+k

n̄(ωRk) + 1
− i (ε+k − ωRk) + γRk

− g2
1 S2 (cosh 2θk − 1)(n̄(ε+k ) + 1) Re

i

2
· ∂

∂ε+k

n̄(ωRk) + 1
i (ε+k + ωRk) + γRk

− g2
1 S2 (cosh 2θk − 1) n̄(ε+k )Re

i

2
· ∂

∂ε+k

n̄(ωRk)
− i (ε+k + ωRk) + γRk

+ g2
2 sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )
n̄(ωRk) (n̄(ωRk) + 1)
− i (ε+k + ε−k ) + 2 γRk

, (E.10)

= n̄(ε+k ) + g2
1 S1(cosh 2θk + 1) {n̄(ωRk) − n̄(ε+k )} (ε+k − ωRk)2 − (γRk)2

2 {(ε+k − ωRk)2 + (γRk)2}2

+ g2
1 S2 (cosh 2θk − 1) {n̄(ε+k ) + n̄(ωRk) + 1} (ε+k + ωRk)2 − (γRk)2

2 {(ε+k + ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
. (E.11)
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nβ
k(0) = 〈1S|β†kβk|ρ0〉 = 〈1S|β†kβk|ρS〉 + 〈1S|β†kβk|ρ(2)

0 〉, (E.12)

= n̄(ε−k )

+
1
4

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

| g1ν |2 exp(−µ τ1)
∣∣
µ→+0

× {
S1(cosh 2θk − 1)〈1S|βkβ†k|ρ0〉{〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε−k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(i ε−k τ)}

− S1(cosh 2θk − 1)〈1S|β†kβk|ρ0〉{〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε−k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(− i ε−k τ)}
+ S2 (cosh 2θk + 1)〈1S|βkβ†k|ρ0〉{〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε−k τ) + 〈1R|R†kνRkν(τ)|ρR〉 exp(i ε−k τ)}
− S2 (cosh 2θk + 1)〈1S|β†kβk|ρ0〉{〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε−k τ) + 〈1R|RkνR†kν(τ)|ρR〉 exp(− i ε−k τ)}

+
1
2

∫ ∞
0

dτ

∫ ∞
τ

dτ1

∑
ν

g2
2ν sinh2 2θk exp(−µ τ1)

∣∣
µ→+0

× {〈
1R

∣∣∆(R†kν(τ)Rkν (τ))∆(R†kνRkν)
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{−i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{i (ε+k + ε−k )τ})

+
〈
1R

∣∣∆(R†kνRkν)∆(R†kν(τ)Rkν (τ))
∣∣ρR〉

× (
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) exp{i (ε+k + ε−k )τ} − n̄(ε+k ) n̄(ε−k ) exp{− i (ε+k + ε−k )τ})}, (E.13)

= n̄(ε−k ) − 1
2

∫ ∞
0

dτ · τ
∑

ν

| g1ν |2 exp(−µ τ)
∣∣
µ→+0

× {
S1(cosh 2θk − 1)(n̄(ε−k ) + 1) Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(− i ε−k τ)

− S1(cosh 2θk − 1) n̄(ε−k )Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(i ε−k τ)

+ S2 (cosh 2θk + 1)(n̄(ε−k ) + 1) Re 〈1R|R†kν(τ)Rkν |ρR〉 exp(− i ε−k τ)

− S2 (cosh 2θk + 1) n̄(ε−k )Re 〈1R|Rkν(τ)R†kν |ρR〉 exp(i ε−k τ)
}

−
∫ ∞

0

dτ · τ sinh2 2θk

{
(n̄(ε+k ) + 1)(n̄(ε−k ) + 1) − n̄(ε+k ) n̄(ε−k )

}
exp(−µ τ)

∣∣
µ→+0

× Re
∑

ν

g2
2ν

〈
1R

∣∣∆(R†kν(τ)Rkν(τ))∆(R†kνRkν)
∣∣ρR〉 exp{i (ε+k + ε−k )τ}, (E.14)

= n̄(ε−k ) − S1(cosh 2θk − 1)
{
(n̄(ε−k ) + 1) Re i

∂

∂ε−k
φ−+

k (− ε−k ) + n̄(ε−k )Re i
∂

∂ε−k
φ+−

k (− ε−k )
}

− S2 (cosh 2θk + 1)
{
(n̄(ε−k ) + 1) Re i

∂

∂ε−k
φ+−

k (ε−k ) + n̄(ε−k )Re i
∂

∂ε−k
φ−+

k (ε−k )
}

+ sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i

∂

∂(ε+k + ε−k )
φzz

k (ε+k + ε−k ), (E.15)

= n̄(ε−k ) − g2
1 S1(cosh 2θk − 1) (n̄(ε−k ) + 1) Re

i

2
· ∂

∂ε−k

n̄(ωRk) + 1
i (ε−k + ωRk) + γRk

− g2
1 S1(cosh 2θk − 1) n̄(ε−k )Re

i

2
· ∂

∂ε−k

n̄(ωRk)
− i (ε−k + ωRk) + γRk

− g2
1 S2 (cosh 2θk + 1) (n̄(ε−k ) + 1) Re

i

2
· ∂

∂ε−k

n̄(ωRk)
i (ε−k − ωRk) + γRk

− g2
1 S2 (cosh 2θk + 1) n̄(ε−k )Re

i

2
· ∂

∂ε−k

n̄(ωRk) + 1
− i (ε−k − ωRk) + γRk

+ g2
2 sinh2 2θk

{
n̄(ε+k ) + n̄(ε−k ) + 1

}
Re i· ∂

∂(ε+k + ε−k )
n̄(ωRk) (n̄(ωRk) + 1)
− i (ε+k + ε−k ) + 2 γRk

, (E.16)

= n̄(ε−k ) + g2
1 S1(cosh 2θk − 1)

{
n̄(ε−k ) + n̄(ωRk) + 1

} (ε−k + ωRk)2 − (γRk)2

2 {(ε−k + ωRk)2 + (γRk)2}2

+ g2
1 S2 (cosh 2θk + 1)

{
n̄(ωRk) − n̄(ε−k )

} (ε−k − ωRk)2 − (γRk)2

2 {(ε−k − ωRk)2 + (γRk)2}2

+ g2
2 sinh2 2θk {n̄(ε+k ) + n̄(ε−k ) + 1} n̄(ωRk) {n̄(ωRk) + 1} (ε+k + ε−k )2 − 4 (γRk)2

{(ε+k + ε−k )2 + 4 (γRk)2}2
, (E.17)

with n̄(ε) given by (B.41). Here, we have used the assumption that the phonon correlation function (2.26c) is real.
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F Investigation of the region valid for the lowest spin-wave approxima-
tion

In this Appendix, we investigate numerically the region valid for the lowest spin-wave approximation in the ferrimag-
netic system of one-dimensional infinite spins. When the expectation values of the second terms nl/(4S1) [ = a†l al/(4S1)]
and nm/(4S2) [ = b†mbm/(4S2)] in the expansions (2.3) and (2.5) respectively, are much smaller than 1 or are smaller
than about 0.01, the lowest spin-wave approximation becomes valid. In order to investigate the region valid for the
lowest spin-wave approximation, we consider the expectation values na(t) and nb(t) of the up-spin deviation number
a†l al [ =nl] and down-spin deviation number b†mbm [ = nm], which are, respectively, referred to as “the up-spin deviation
number” and “the down-spin deviation number”, and define na(t) and nb(t) by

na(t) =
2
N

〈1S|
∑

l

a†l al |ρ(t)〉 =
2
N

∑
k

〈1S| a†kak U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (F.1a)

nb(t) =
2
N

〈1S|
∑
m

b†mbm |ρ(t)〉 =
2
N

∑
k

〈1S| b†kbk U(t) exp←
{
− i

∫ t

0

dτ ĤS1(τ)
}
|ρ0〉, (F.1b)

with |ρ0〉= 〈1R|ρTE〉, where we have performed the Fourier transformations (2.7a) and (2.7b). Here, ρTE is the thermal
equilibrium density operator for the spin system and phonon reservoir and is given by (B.3). In the lowest spin-
wave approximation, the expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
number can be expressed using nα

k (t) and nβ
k (t) defined by (B.32), as

na(t) =
2
N

∑
k

〈1S| a†kak U(t) |ρ0〉 =
1
N

∑
k

{cosh 2θk

(
nα

k (t) + nβ
k (t) + 1

)
+ nα

k (t) − nβ
k (t) − 1}, (F.2a)

nb(t) =
2
N

∑
k

〈1S| b†kbk U(t) |ρ0〉 =
1
N

∑
k

{cosh 2θk

(
nα

k (t) + nβ
k(t) + 1

) − nα
k (t) + nβ

k (t) − 1}, (F.2b)

where we have transformed according to the transformations (2.11) and their Hermite conjugates, and have considered
the axioms (B.26). The expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
number, given by (F.2a) and (F.2b) respectively, can be calculated by substituting (B.48a), (B.48b), (4.12a) and
(4.12b) into (F.2a) and (F.2b), and by replacing the wave-number summations with the numerical integration (4.14).
In Figs. 23 and 24, the expectation values na(t) and nb(t) of the up-spin deviation number and down-spin deviation
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Figure 23: Up-spin-deviation number na(t) given by (F.2a) are displayed varying the time t scaled by 1/J1 from 0 
to 6000 for the cases of anisotropy energies h̄K given by A = K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitudes 
(S1, S2) = (3, 5/2) and the temperature T given by kBT /(h̄J1) = 1.0, with J2/J1 = 1.0 and ωz/J1 = 1.0.

Figure 24: Down-spin-deviation number nb(t) given by (F.2b) are displayed varying the time t scaled by 1/J1 from 0 
to 6000 for the cases of anisotropy energies h̄K given by A = K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitudes 
(S1, S2) = (3, 5/2) and the temperature T given by kBT /(h̄J1) = 1.0, with J2/J1 = 1.0 and ωz/J1 = 1.0.

number, given by (F.2a) and (F.2b) respectively, are displayed varying the time t scaled by 1/J1 from 0 to 6000 for the 
cases of anisotropy energies h̄K given by K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitudes (S1, S2) = (3, 5/2) 
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and the temperature T given by kBT/(h̄J1)= 1.0, with ζ [ = J2/J1] =1.0 and ωz/J1 =1.0, where the anisotropy energy
is denoted as “A” in the figures. Figs. 23 and 24 show that as the time t becomes large, the expectation values na(t)
and nb(t) increase and approach to the finite values, and that as the anisotropy energy h̄K increases, the expectation
values na(t) and nb(t) decrease. Thus, the expectation values na(t) and nb(t) given by (F.2a) and (F.2b) are the
increase functions of the time t and the decrease functions of the anisotropy energy h̄K, and approach the expectation
values na(∞) and nb(∞) in the infinite time limit, respectively, as time t becomes infinite (t→∞) in no external
driving magnetic-field. In order to confirm the region valid for the lowest spin-wave approximation, we investigate
numerically the expectation values na [ =na(∞)] and nb [= nb(∞)] of the up-spin deviation number and down-spin
deviation number in the infinite time limit (t→∞) :

na = na(∞) =
1
N

∑
k

{cosh 2θk

(
nα

k (∞) + nβ
k (∞) + 1

)
+ nα

k (∞) − nβ
k (∞) − 1}, (F.3a)

nb = nb(∞) =
1
N

∑
k

{cosh 2θk

(
nα

k (∞) + nβ
k (∞) + 1

) − nα
k (∞) + nβ

k (∞) − 1}, (F.3b)

with nα
k (∞) and nβ

k (∞) given by (B.49a) and (B.49b), where na(∞) and nb(∞) are the expectation values in the sta-
tionary state at which the thermal equilibrium state arrives being driven by the evolution operator U(t)= exp{− i (ĤS0+
i C(2)) t}. In Figs. 25 and 26, the expectation values na [ =na(∞)] and nb [= nb(∞)] of the up-spin deviation number

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

A=3.0

A=1.0

A=2.0

A=1.5

T

n (∞)

Spin−Deviation Number A

a

A=4.0

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

A=3.0

A=1.0

A=2.0

A=1.5

T

n (∞)

Spin−Deviation Number B

b

A=4.0

Figure 25: Up-spin-deviation number na [ = na(∞)] is displayed varying the temperatures T scaled by h̄J1/kB from 0
to 1.5 for the cases of anisotropy energies h̄K given by A=K/J1 =1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitudes
(S1, S2) = (3, 5/2), with J2/J1 = 1.0 and ωz/J1 = 1.0.

Figure 26: Down-spin-deviation number nb [ = nb(∞)] is displayed varying the temperatures T scaled by h̄J1/kB from
0 to 1.5 for the cases of anisotropy energies h̄K given by A= K/J1 = 1.0, 1.5, 2.0, 3.0, 4.0, and for the spin-magnitudes
(S1, S2) = (3, 5/2), with J2/J1 = 1.0 and ωz/J1 = 1.0.

and down-spin deviation number in the infinite time limit (t→∞), respectively, are displayed varying the temperatures
T scaled by h̄J1/kB from 0 to 1.5 for the cases of anisotropy energies h̄K given by K/J1 =1.0, 1.5, 2.0, 3.0, 4.0, and
for the spin-magnitudes (S1, S2)= (3, 5/2), with ζ [ =J2/J1] =1.0, ωz/J1 =1.0. The anisotropy energy is denoted as
“A” in the figures. Figures 25 and 26 show that the expectation values na [ =na(∞)] and nb [ =nb(∞)] of the up-spin
deviation number and down-spin deviation number are smaller than about 0.1 in the regions of the temperature T and
anisotropy energy h̄K given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0. Therefore,
when S1,S2 ≥ 5/2, ζ [ =J2/J1] = 1.0 and ωz/J1 =1.0, Figs. 25 and 26 show that na/(4S) [= 〈nl〉/(4S)] and nb/(4S)
[ = 〈nm〉/(4S)], which correspond to the expectation values of the second terms in the expansions given by Eqs. (2.3)
and (2.5) respectively, are smaller than about 0.01 in the regions of the temperature T and anisotropy energy h̄K
given by kBT/(h̄J1)≤ 1.0 and K/J1 ≥ 1.5, or by kBT/(h̄J1)≤ 1.5 and K/J1 ≥ 2.0. In such a region, the lowest spin-wave
approximation is valid. In Figs. 27 and 28, the expectation values na and nb of the up-spin deviation number and
down-spin deviation number in the infinite time limit (t→∞), respectively, are displayed varying the anisotropy energy
h̄K scaled by h̄J1 from 1.0 to 4.0 for the cases of spin-magnitudes (S1, S2)= (2, 3/2), (5/2, 2), (3, 5/2), (7/2, 3), (4, 7/2),
and for the temperature T given by kBT /(h̄J1) = 1.0, with ζ [ = J2/J1] = 1.0, ωz/J1 = 1.0. The anisotropy energy isdenoted as “A”
in the figures. In the Figs. 27 and 28, we can confirm the region of the spin-magnitudes (S1, S2)and anisotropy energy h̄K in which na

/(4S1) [= 〈nl〉/(4S1)] and nb/(4S2) [= 〈nm〉/(4S2)], which correspond to the
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Figure 27: Up-spin-deviation number na [ = na(∞)] is displayed varying the anisotropy energy
h̄K scaled by h̄J1 from 1.0 to 4.0, i.e., A= K/J1 = 1.0∼ 4.0 for the cases of spin-magnitudes
(S1, S2) = (2, 3/2), (5/2, 2), (3, 5/2), (7/2, 3), (4, 7/2), and for the temperature T given by kBT/(h̄J1)=1.0, with
J2/J1 =1.0 and ωz/J1 =1.0.

Figure 28: Down-spin-deviation number nb [ = nb(∞)] is displayed varying the anisotropy energy
h̄K scaled by h̄J1 from 1.0 to 4.0, i.e., A= K/J1 = 1.0∼ 4.0 for the cases of spin-magnitudes
(S1, S2) = (2, 3/2), (5/2, 2), (3, 5/2), (7/2, 3), (4, 7/2), and for the temperature T given by kBT/(h̄J1)=1.0, with
J2/J1 =1.0 and ωz/J1 =1.0.

expectation values of the second terms in the expansions given by Eqs. (2.3) and (2.5) respectively, are smaller than
about 0.01 in the region of the temperature T given by kBT/(h̄J1)≤ 1.0. When the temperature T is in the region
given by kBT/(h̄J1)≤ 1.0, we can confirm the region valid for the lowest spin-wave approximation in Figs. 27 and 28.
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