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Abstract:

The effects of heavy doping and donor (acceptor) size on the hole (electron)-minority

saturation current density JEo JBo , injected respectively into the heavily (lightly) doped

crystalline silicon (Si) emitter (base) region of n� � p junction, which can be applied to

determine the performance of solar cells, being strongly affected by the dark saturation

current density: Jo � JEo � JBo , were investigated. For that, we used an effective Gaussian

donor-density profile to determine JEo , and an empirical method of two points to investigate

the ideality factor n, short circuit current density Jsc , fill factor (FF), and photovoltaic

conversion efficiency η, expressed as functions of the open circuit voltage Voc, giving rise to

a satisfactory description of our obtained results, being compared also with other existing

theoretical-and-experimental ones. So, in the completely transparent and heavily doped (P-Si)
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emitter region, CTHD(P-Si)ER, our obtained JEo -results were accurate within 1.78%. This

accurate expression for JEo is thus imperative for continuing the performance improvement

of solar cell systems. For example, in the physical conditions (PCs) of CTHD (P-Si) ER and

of lightly doped (B-Si) base region, LD(B-Si)BR, we obtained the precisions of the order of

8.1% for Jsc , 7.1% for FF, and 5% for η , suggesting thus an accuracy of JBo (� ���� ).

Further, in the PCs of completely opaque and heavily doped (S-Si) emitter region, COHD(S-

Si)ER, and of lightly doped (acceptor-Si) base region, LD(acceptor-Si)BR, our limiting η -

results are equal to: 27.77%,…, 31.55%, according to the Egi -values equal to: 1.12eV ,…,

1.34eV, given in various (B,…, Tl)-Si base regions, respectively, being due to the acceptor-

size effect. Furthermore, in the PCs of CTHD (donor-Si) ER and of LD(Tl-Si)BR, our

maximal η -values are equal to: 24.28%,…, 31.51%, according to the Egi -values equal to:

1.11eV ,…, 1.70eV , given in various (Sb,…, S)-Si emitter regions, respectively, being due to

the donor-size effect. It should be noted that these obtained highest η-values are found to be

almost equal, as: 31.51%� 3��55�, coming from the fact that the two obtained limiting Jo -

values are almost the same.

Keywords: donor (acceptor)-size effect; heavily doped emitter region; ideality factor; open
circuit voltage; photovoltaic conversion efficiency

1. Introduction

The minority-carrier transport in the non-uniformly and heavily doped (NUHD), quasi-neutral,

and uncompensated emitter region of impurity-silicon (Si) devices such as solar cells and

bipolar transistors at temperature T( = 300 K) , plays an important role in determining the

behavior of many semiconductor devices [1-29]. It should be noted that the minority-carrier

saturation current density, JEo, injected into this emitter region strongly controls the common

emitter current gain [4-8]. Thus, an accurate determination of this JEo or an understanding of

minority-carrier physics inside heavily doped semiconductors is imperative for continuing the

performance improvement of bipolar transistors, and that of solar cell systems, which is

commonly characterized in terms of the parameters such as: the ideality factor n, short circuit

current density Jsc , fill factor FF, and photovoltaic conversion efficiency η, being expressed

as functions of the open circuit voltage Voc [4]. Further, it should be noted that, in most

fabricated silicon devices, the effective Gaussian donor-density profile ρ x , being proposed
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in next Equation (24), varies with carrier position x in the emitter region of width W [13, 18-

20, 22], and it decreases with increasing W, being found to be in good agreement with that

used by Essa et al. [13]. As a result, many other physical quantities, given in this NUHD

n(p)-type thin emitter region such as [1-45]: the band gap narrowing (BGN), ΔEg , Fermi

energy EF , apparent band gap narrowing (ABGN), ΔEga , minority-hole (electron) mobility

μh(e) , minority-hole (electron) lifetime τh(e) , and minority-hole (electron) diffusion length

Lh(e), strongly depend on ρ x .

In the present paper, we determine an accurate expression for the minority-hole current

density JEo , injected into the NUHD emitter region of n� � p junction silicon solar cells at

300 K, being also applied to determine the performance of such crystalline silicon solar cells.

In Section 2, we study the effects of impurity size [or compression (dilatation)], temperature

and heavy doping, affecting the energy-band-structure parameters such as: the intrinsic band

gap Egi , intrinsic carrier concentration ni , band gap narrowing ΔEg , Fermi energy EF ,

apparent band gap narrowing ΔEga , and effective intrinsic carrier concentration nie . In

Section 3, an accurate expression for the optical band gap (OBG), Eg�, is investigated in next

Equation (16), being accurate within 1.86%, as showed in Table 3. Some useful minority-

carrier transport parameters such as: μh and Lh , being given in the heavily doped n-type

emitter region, and μe , τe and the minority-electron saturation current density JBo , being

given in the lightly doped p-type base region, are also presented in Section 4. Then, in Section

5, an accurate expression for the minority-hole saturation current density JEo, injected into the

heavily doped emitter region of n� � p junction silicon solar cells at 300 K is established in

Equation (39) or its approximate form given in Eq. (44), indicating an accuracy of the order of

1.78%, as seen in Table 4. Further, the total saturation current density: Jo = JEo � JBo , where

JBo [1, 7], determined in Equation (21), is the minority-electron saturation current density JBo,

injected into the lightly doped base region of n� � p junction silicon solar cells, can be used

to investigate the photovoltaic conversion effect, as presented in Section 6, suggesting that:

(1) a precision of the order of 5% is obtained in the completely transparent emitter region

case for the photovoltaic conversion efficiency η, as given in Table 6,

(2) in the conditions of completely opaque and heavily doped (S-Si) emitter-and-

(acceptor-Si) lightly doped base regions, the maximal η -values are equal to: 27.77%,…,

31.55%, according to the Egi -values equal to: 1.12eV ,…, 1.34eV , given in various (B,…,

Tl)-Si base regions, respectively, as those given in next Figure 8 (d), and
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(3) in the conditions of completely transparent and heavily doped (donor-Si) emitter-and-

lightly doped (Tl-Si) base regions, the maximal η -values are equal to: 24.28%,…, 31.51%,

according to the Egi -values equal to: 1.11eV ,…, 1.70eV , given in various (Sb,…, S)-Si

emitter regions, respectively, as those given in next Figure 9 (d).

2. Energy-Band-Structure Parameters in Donor (Acceptor)-Si Systems

Here, we study the effects of donor (acceptor) [d(a)]-size, temperature, and heavy doping on

the energy-band-structure parameters of d(a)-Si systems, as follows.

2.1. Effect of d(a)-Size

In d(a)-Si-systems at T=0 K, since the d(a)-radius rd(a) , in tetrahedral covalent bonds is

usually either larger or smaller than the Si atom-radius ro , assuming that in the P(B)-Si

system rP(B) = ro = 0���S nm , with � nm = �0��m , a local mechanical strain (or

deformation potential energy) is induced, according to a compression (dilation) for rd(a) � ro

(rd(a) � ro) , respectively, due to the d(a)-size effect. Then, in the Appendix A of our recent

paper [42], basing on an effective Bohr model, such a compression (dilatation) occurring in

various d(a)-Si systems was investigated, suggesting that the effective dielectric constant,

ε(rd(a)), decreases with increasing rd(a) . This rd(a) -effect thus affects the changes in all the

energy-band-structure parameters, expressed in terms of ε(rd(a)) , noting that in the P(B)-Si

system ε(rP(B)), = ���� . In particular, the changes in the unperturbed intrinsic band gap,

Ego rP(B) = ���S eV , and effective d(a)-ionization energy in absolute values

Edo(ao) rP(B) = 33�5�meV, are obtained in an effective Bohr model, as [42]:

Ego rd(a) � Ego rP(B) = Edo(ao) rd(a) � Edo(ao) rP(B)

= Edo(ao) rP(B) �
ε(rP(B))
ε(rd(a))

�

� �
(1)

Therefore, with increasing rd(a) , the effective dielectric constant ε(rd(a)) decreases, implying

that Ego rd(a) increase. Those changes, which were investigated in our previous paper [42],

are now reported in the following Table 1, in which the data of the critical d(a)-density

Ncn cp (rd(a)) are also reported. This critical density marks the metal-to-insulator transition

from the localized side (all the impurities are electrical neutral), N Na � Ncn cp rd a , to

the extended side, N(Na) ≥ Ncn cp (rd(a)), assuming that all the impurities are ionized even at
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0 K. However, at T = 300 K, for example, all the impurities are thus ionized and the physical

conditions, defined by: N(Na) � �cn cp (rd(a)) and N Na � �cn cp (rd(a)), can thus be used

to define the n(p)-type heavily and lightly doped Si, respectively.

Table 1. The values of ��(h), �(��(h)), and ��辨(��(h)), and critical impurity density ���(�ꇈ)(��(h)),

obtained in our previous paper [42], are reported here.

Donor Sb P As Bi Ti Te Se S

T=0 K

rd (nm) 0.1131 0.1170 0.1277 0.1292 0.1424 0.1546 0.1621 0.1628

ε(rd) 12.02 11.40 8.47 7.95 4.71 3.26 2.71 2.67

Ego rd (eV) 1.167 1.170 1.197 1.205 1.333 1.547 1.729 1.749

Ncn rd (�0�� cm�3) 3 3.52 8.58 10.37 50 150.74 261.24 274.57

At T=300 K, conditions: N � �cn(rd) and N � �cn(rd) , can thus be used to define the n-

type heavily (lightly) doped Si, respectively.

Acceptor B Al Ga In Tl

T=0 K

ra (nm) 0.1170 0.1254 0.1263 0.1352 0.1410

ε(ra) 11.40 8.88 8.49 5.57 4.42

Ego(rd) (eV) 1.170 1.195 1.201 1.292 1.387

Ncp ra (�0�� cm�3) 4.06 8.58 9.83 34.73 69.87

At T=300 K, conditions: Na � �cp(ra)) and Na � �cp(ra)), can thus be used to define the p-

type heavily (lightly) doped Si, respectively.

2.2. Temperature Effect

Being inspired from excellent works by Pässler [33,34], who used semi-empirical descriptions

of T-dependences of band gap of the Si by taking into account the cumulative effect of

electron-phonon interaction and thermal lattice expansion mechanisms or all the contributions

of individual lattice oscillations [33-35], we proposed in our recent paper [43] a simple

accurate expression for the intrinsic band gap in the silicon (Si), due to the T-dependent

carrier-lattice interaction-effect, Egi T,rd(a) , by
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Egi T,rd(a) � Ego(rd(a)) � 0�0S� eV � � � (
�T

��0�6��3 K
)���0�

�
���0�

� � (2)

where the values of Ego(rd(a)) due to the d(a)-size effect are given in Table 1 and those of

Egi T = 300 K,rd(a) tabulated in Table 2. Further, as noted in this Reference 43, in the (P,

S)-Si systems, for 0 K � T � 3500 K, the absolute maximal relative errors of this Egi-result

were found to be equal respectively to: 0.22% and 0.15%, calculated using the very accurate

complicated results given by Pässler [34]. Then, in the n-type HD silicon at temperature T, the

effective mass of the majority electron can be defined by [31,32]:

mc T,rd = 0���63 � 0���05 �
Ego(rd)
Egi T,rd

� �/3

�mo = meo �
Ego(rd)
Egi T,rd

�/3

(3)

which gives: meo = me T = 0 K = 0�3��6 � mo, mo being the electron rest mass, and the

effective mass of the minority hole yields [31,32]:

mv T
= gv

��/3

�
0���35�S � 0�360�5�� � �0��T � 0���S35�5 � �0�3T� � 0���63��� � �0�5T3 � 0�30�55�� � �0��T�

� � 0��6�33�� � �0��T � 0����6��5 � �0�3T� � 0�S�6��S� � �0�6T3 � 0��S�S��� � �0��T�

�/3(4)

which gives mv T = 0 K = mvo = 0�366� � mo . Here, gv = � is the effective average

number of equivalent valence-band edges.

Now, the intrinsic carrier concentration ni is defined by

ni
�(T,rd(a),gc) � Nc(T,rd,gc) � Nv(T,gv) � exp 

� Egi T,rd(a)
kBT

(5)

where, Nc(v) is the conduction (valence)-band density of states, given by [31, 32]:

Nc(T,rd,gc) = �gc �
mc T,rd � kBT

�π��

3
�
(cm�3) (6)

Nv(T,gv) = �gv �
mv T � kBT

�π��

3
�
(cm�3) (7)

where � = h/�π is the Dirac’s constant, kB is the Boltzmann constant, and gc is the
effective average number of equivalent conduction-band edges.

Moreover, for rd � rP and at 300 K, some typical ni -results obtained for different gc -

values, calculated using Equation (5), are given as follows.
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(i) If gc = 6 , one then gets: ni = �0�S � �0� cm�3 , being just a result investigated from a

measurement of energy-band-structure parameters and intrinsic conductivity by Green [31].

(ii) If gc = 5 , one then obtains: ni = ��SS � �0� cm�3 , according to a result given from a

capacitance measurement of a pin diode biased under high injection, by Misiakos and

Tsamakis [37].

(iii) Finally, if gc = �����3 , one then gets: ni = ��6� � �0� cm�3 , according to a result

proposed by Couderc et al. (C) as [38]: ni(C) = ��5�� � �0�5 � T��S�� �

exp � Egi
�kT

cm�3 = ��6� � �0� cm�3 for T=300 K, basing on their updated fit of

experimental data for the minority-carrier mobility and open-circuit voltage decay, which

were given by Sproul and Green [36].

Further, from Equation (5) and in donor-Si systems, the numerical results of ni, calculated for

gc = 6 , as a function of T, are plotted in Figure 1. Then, those of ni , calculated for gc =

6, 5, and �����3 as functions of T, are tabulated in Table 2.

Figure 1. The intrinsic carrier density ��(�,��), plotted as functions of T, increases with increasing T

for a given ��, and decreases (�) with increasing �� for a given T, due to the donor-size effect.

Table 2. The values of intrinsic carrier concentration ��(�, ��(h), ��) and intrinsic band gap ��� are

calculated for �� = t, �, h�� ��䁠��香, using Equations (5, 2), respectively, as functions of T and ��(h).

Donor Sb P As Bi Ti Te Se S
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gc = 6

Egi(300K) in eV
1.121

5
1.1245 1.1515 1.1595 1.2875 1.5015 1.6835 1.7035

ni(300K) in

�0�0 cm�3
1.13 1.07 6�3�

� �0��
5��3
� �0��

��56
� �0��

S��6
� �0��

����
� �0�5

���6
� �0�5

ni(350K) in

�0�� cm�3
4.08 3.88 2.48 2.17 ��5�

� �0��
S���
� �0�3

3�6�
� �0��

��6�
� �0��

ni(�00K) in

�0�� cm�3
6.22 5.96 4.02 3.58 5�5�

� �0��
����
� �0��

��SS
� �0�3

��33
� �0�3

ni(�50K) in

�0�3 cm�3
5.34 5.13 3.62 3.26 6���

� �0��
3���
� �0��

3�S6
� �0�3

���0
� �0�3

gc = 5

ni(300K) in

�0�0 cm�3
1.04

9.77

� �0��
5�S�
� �0��

���6
� �0��

���S
� �0��

6�63
� �0��

���6
� �0�5

��33
� �0�5

ni(350K) in

�0�� cm�3
3.72 3.54 2.26 1.98 ��3S

� �0��
6��0
� �0�3

3�3�
� �0��

��3�
� �0��

ni(�00K) in

�0�� cm�3
5.68 5.44 3.67 3.27 5�0�

� �0��
����
� �0��

��6�
� �0�3

���
� �0�3

ni(�50K) in

�0�3 cm�3
4.87 4.68 3.30 2.98 5�S0

� �0��
3�5�
� �0��

3��3
� �0�3

��65
� �0�3

gc = �����3

ni(300K) in

�0�0 cm�3
1.03

9.68

� �0��
5�S�
� �0��

����
� �0��

���3
� �0��

6�5S
� �0��

����
� �0�5

��3�
� �0�5

ni(350K) in

�0�� cm�3
3.69 3.51 2.24 1.96 ��35

� �0��
6�S�
� �0�3

3���
� �0��

��36
� �0��

ni(�00K) in

�0�� cm�3
5.63 5.39 3.64 3.24 5�05

� �0��
���6
� �0��

��6�
� �0�3

���0
� �0�3

ni(�50K) in

�0�3 cm�3
4.83 4.64 3.28 2.95 5�65

� �0��
3�56
� �0��

3��0
� �0�3

��6�
� �0�3

Acceptor B Al Ga In Tl

gc = 6

Egi(300K) in eV 1.1245 1.1495 1.1555 1.2465 1.3415
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ni(300 K) in �0�0 cm�3 1.07 6�5� � �0�� 5��S � �0�� ��0� � �0�� ��60 � �0��

From those results, one remarks that: (i) ni increases with increasing T for given rd , and (ii)

for T=300 K, for example, ni decreases with increasing rd(a) since Egi T,rd(a) increases

as observed in this Table 2, being due to the donor (acceptor)-size effect.

2.3. Heavy doping effect

First of all, in the donor-Si system, we define the effective intrinsic carrier concentration nie ,

by

nie
� � N � po � ni

� � exp
ΔEga
kBT

(8)

where ni
� is determined in Equation (5). Here, we can also define the “effective doping

density” by [8]: NDeff� � N/exp ΔEga
kBT

so that NDeff� � po � ni
� �

Here, po is the density of minority holes at the thermal equilibrium and the ABGN is

defined by:

ΔEga � ΔEg � kBT � ln
N
NC

� EF (9)

where NC is defined in Equation (6), the Fermi energy EF due to the effects of heavy doping

and Fermi-Dirac statistics is determined in Equation (A3) of the Appendix A, being accurate

within ���� � �0�� [39], and the BGN, ΔEg, due to the heavy doping effect, is determined in

Equation (A15) of the Appendix B.

Furthermore, in order to determine the minority-carrier saturation current JEo , injected into

the uniformly and heavily doped emitter region of the silicon devices, Jain and Roulston (JR)

[15], Klaassen, Slotboom and Graaff (KSG) [16], Zouari and Arab (ZA) [17], Stem and Cid

(SC) [18], and Yan and Cuevas (YC) [19], proposed their empirical expressions for the

ABGN, being obtained in the P-Si system at 300 K, by:

ΔEga JR (N) = ��5 � �0�3

� ln
N

3�5 � �0�S cm�3 � ln
N

3�5 � �0�S cm�3

�

� 0�5 (eV)
(10)
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ΔEga KSG (N) = 6��� � �0�3

� ln
N

��3 � �0�S cm�3 � ln
N

��3 � �0�S cm�3

�

� 0�5 (eV)
(11)

ΔEga ZA (N) = ���S � �0�3 � ln
N

S � �0�S cm�3 (eV) (12)

ΔEga SC (N) = �� � �0�3 � ln
N

��� � �0�S cm�3 (eV) (13)

ΔEga YC (N) = ��� � �0�5 � ln
N

�0�� cm�3

3

(eV) (14)

Then, in such the P-Si system at 300K, being inspired by the term: kBT � ln N
NC

given in

Equation (9), and also by the result: ΔEga(YC)(N) given in Equation (14), we can now propose

a modified (Mod.) YC-model for the ABGN so that its numerical results are found to be

closed to those calculated by using Equation (9), as:

ΔEga Mod�YC N,gc
= ������ � �0�6

� ln
5�S�6S � �03

NC
5�S�6S � �03

NC
�
N � 6
gc

N � 6
gc

3

eV = ������ � �0�6

� ln
N �

6
gc

5 � �0�5 cm�3

3

(eV)

(15)

having a same empirical form as that given in Equation (14).

Now, for gc = 6 , in d-Si systems at 300 K, our numerical ABGN ( ΔEga )-results are

calculated, using Equation (9). First, ours, obtained in the P-Si system, are plotted as a

function of N in Figure 2 (a), in which the other ones, calculated using Equations (10-15), are

also included, for a comparison. Secondly, in the P-Si system, the relative deviations between

ours and the others are also plotted as functions of N in Figure 2 (b). Finally, in Figure 2

(c�, c�), ours are plotted in donor-Si systems as a

function of N.
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Figure 2. (a) Comparison of ABGN (Δ��h)-results given in the P-Si system, (b) comparison of relative

ABGN-deviations given in the P-Si system, and (��, ��) our ABGN-results given in heavily doped

donor-Si systems, with a condition: � � ���(��), as that given in Table 1.

Here, one observes that:

(i) ours and our numerical ABGN-results obtained using Equation (15) are found to be closed

together as seen in Figure 2 (a), and their absolute maximal relative deviation yields: 3.03%,

which occurs at N = ��� � �0�0 cm�3, as observed in Figure 2 (b), and

(ii) in Figure 2 (c�, c�) , for a given donor-Si system, due to the heavy doping effect, ours

increase with increasing N, and for a given N, due to the donor-size effect, ours increase (�)

with increasing rd.
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Moreover, it should be noted that our ABGN-expression (9) and other ones (10-15), given in

the P-Si system at 300K, may be differently varied as functions of high N, as seen in Figure 2

(a).

Then, in the following, it is possible to define the optical band gap (OBG), expressed in terms

of the ABGN (or BGN), suggesting a conjunction between the electrical-and-optical

phenomena.

3. Conjunction between Electrical-and-Optical Phenomena

First of all, we define the optical band gap (OBG) by [25]:

Eg� N,T,rd,gc � Egi T,rd � ΔEg (N,T, rd,gc) � EF N,T,rd,gc (16)

where the intrinsic band gap Egi is determined in Equation (2), the BGN ΔEg is investigated

in Equation (A15) of the Appendix B, and the Fermi energy EF is given in Equation (A3) of

the Appendix A, suggesting that the optical phenomenon is represented by Eg��

Now, in donor-Si systems, our present OBG-results, calculated using Equation (16) for gc =

6 and T=300 K are plotted as functions of N in the following Figure 3.

Figure 3. For � � ���(��), our OBG (���)-results, (a) and (b), obtained in donor-systems, and

plotted as functions of N.

Here, one observes that:
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(i) with increasing rd and for a given N, due to the donor-size effect, in (Sb, P, As, Bi)-Si

systems the OBG decreases (�), as given in Figure (a), while in (Ti, Te, Se, S)-Si systems it

increases (�), as seen in Figure (b), and

(ii) in a given donor-Si system and at N ≥ 3 � �0�0 cm�3, due to the heavy doping effect, the

OBG decreases with increasing N, as seen in Figures (a) and (b), suggesting that from

Equation (16) the BGN-effect is found to be more important than the Fermi-energy one.

Furthermore, it is possible to establish a conjunction between the electrical and optical

phenomena, obtained from Equations (9, 16), by:

Eg� N,T,rd,gc � Egi T,rd � ΔEga (N,T, rd,gc) � kBT � ln
N

NC(T,rd,gc)

which can be rewritten, for example, replacing ΔEga by ΔEga(Mod�YC)(N) determined in

Equation (15), as:

Eg�(Mod�YC) N,T,rd,gc � Egi T,rd � ΔEga Mod�YC (N, gc) � kBT � ln
N

NC(T,rd,gc)
(17)

Now, in the P-Si system, our numerical OBG-results, calculated using Equations (16, 17) for

gc = 6, 5, �����3 and at T=300 K, are tabulated in following Table 3, in which our numerical

results of Eg� and Eg�(Mod�YC) , obtained for gc = 6 , are accurate within 1.86% and 1.9%,

respectively, and found to thus be the best ones, compared with those obtained for gc =

5, �����3 . One notes that the relative deviations (RDs) between calculated Eg� -results and

Eg�-data [44] are defined by: � �
Calculated Eg��results

Eg��data
.

Table 3. Our numerical results of optical band gap (OBG), expressed as functions of N for �� =

t, �, ��䁠��香, and their relative deviations.

� (���� ���香) 4 8.5 15 50 80 150

Eg�(eV)-data [44] 1.020 1.028 1.033 1.050 1.056 1.059

Our OBG-results are obtained, using Equation (16).

gc = 6

Eg�(eV) 1.0390 1.0465 1.0496 1.0483 1.0463 1.0479

RD(%) -1.86 -1.80 -1.61 0.17 0.92 1.05

gc = 5
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Eg�(eV) 1.0411 1.0478 1.0501 1.0473 1.0462 1.0470

RD(%) -2.07 -1.92 -1.66 0.25 0.92 1.14

gc = �����3

Eg�(eV) 1.0413 1.0479 1.0502 1.0473 1.0463 1.0468

RD(%) -2.09 -1.93 -1.66 0.26 0.92 1.15

Other OBG-results are obtained from Equation (17).

gc = 6

Eg�(Mod�YC)(eV) 1.0394 1.0459 1.0489 1.0492 1.0469 1.0415

RD(%) -1.90 -1.74 -1.54 0.08 0.86 1.66

gc = 5

Eg�(Mod�YC)(eV) 1.0412 1.0470 1.0495 1.0485 1.0456 1.0394

RD(%) -2.08 -1.85 -1.59 015 0.98 1.85

gc = �����3

Eg�(Mod�YC)(eV) 1.0414 1.0471 1.0495 1.0484 1.0454 1.0392

RD(%) -2.09 -1.86 -1.60 0.15 0.99 1.87

The underlined �� -values are the maximal ones.

Here, our best choice is gc = 6, meaning that at T ≥ 300 K, due to the high thermal agitation

energy kBT, all the six equivalent conduction-band edges are effective.

4. Minority-Carrier Transport Parameters

Here, in the heavily doped n-type emitter region and the lightly doped p-type base region of

n� � p junction silicon solar cells, the minority-hole (electron) transport parameters are

studied

as follows.

4.1. Heavily doped n-type emitter-region parameters

In order to determine the minority-hole saturation-current density JEo , injected into the

heavily doped n-type emitter-region, we need to know an expression for the minority-hole

mobility μh , being related to the minority-hole diffusion coefficient Dh , by the well-known
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Einstein relation: Dh =
kBT
e
� μh , where e is the positive hole charge. Here, in donor-Si

systems at 300 K and for any gc , since the minority-hole mobility depends on N [10], and

also on gc and ε rd [11], we can propose:

μh N,T,rd,gc = �30 �
500 � �30

� �
N � 6

� � �0�S cm�3 � gc

���5 �
ε(rd)
ε(rP)

�

�
T

300 K

3/�

cm�V��s��

(18)

noting that as T = 300 K, gc = 6, and rd � rP , Equation (18) is reduced to that investigated

by del Alamo et al. [10]. Further, from Equations (5, 8, 9, 15, 18), we can define the following

minority-hole transport parameter F as [8, 22, 25]:

F N,T,rd,gc �
ni
�

po�Dh
= NDeff�

Dh
� N

Dh�exp
ABGN
kBT

(cm�5 � s), NDeff� �
N

exp ABGN
kBT

(19)

where NDeff� is the “effective doping density” [8] and the ABGN is determined in Equation

(9) for our ΔEga-result or in Equation (15) for our approximate ΔEga Mod�YC -one.

Furthermore, the minority-hole length, Lh N,T,rd,gc = τh � Dh , τh being the minority-

hole lifetime, can be determined by [22, 25]:

Lh
�� N,T,rd,gc = τh � Dh �� = C � F � = C �

NDeff�
Dh

�

= C �
ni
�

po � Dh

�

(20)

where the constant C = �0��S (cm�/s) was chosen in this work. Here, one remarks that τh
can be computed since Dh (or μh) and F are determined respectively in Equations (18, 19).

4.2. Lightly Doped p-type Base-Region Parameters

Here, the minority-electron saturation current density injected into the lightly doped p-type

base region, with an acceptor density equal to Na, is given by [1, 7]:

JBo Na,T,ra =

e � ni
�(T,ra,gc = 6) �

De(Na,T,ra)
τe(Na)

Na

(21)
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where ni
�(T,rd a ,gc = 6) is determined in Equation (5) and De(Na,T,ra) �

kBT
e
� μe Na,T,ra

is the minority-electron diffusion coefficient, noting that Equation (21) is valid only for Na �

�0�6 cm�3.

Here, in the acceptor-Si system, μe is the minority-electron mobility, being determined by [3,

11, 16]:

μe Na,T,ra = �� �
�360� ��

� �
Na

��3 � �0�Scm�3

0��� �
ε(ra)
ε(rB)

�

�
T

300 K

3/�

cm�V��s��

(22)

being reduced to the result obtained by Slotbottom and de Graaff [3, 16], as T=300 K and

ra = rB, and τe(Na) is the minority-electron lifetime, computed by [16, 25]:

τe Na �� = �
��5��0�3

� 3 � �0��3 � Na � ���3 � �0�3� � Na�. (23)

Then, in P(B)-Si systems at 300 K and for gc = 6, Klaassen et al. confirmed, in Figures 1 and

2 of their paper [16], that the expressions (18, 22) for minority-hole (electron) mobility μh(e)

are simple and accurate.

Now, in d(a)-Si systems at 300 K and for gc = 6 , using Equations (18, 22), our numerical

results of μh(e) are plotted as functions of N (Na) in Figures 4 (a�,a�), (b). Then, these results

indicate that:

(i) for given N (Na ), they decrease (�) with increasing rd(a) , due to the impurity-size effect,

being in good accordance with that obtained in the d-Si system by Logan et al. [9], as:

μ(Sb) � �(�) � �(��), and

(ii) for given rd(a), they slightly decrease with increasing N (Na).
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Figure 4. (h�,h�) Our ��-results given in heavily doped donor-Si systems, and (b) our ��-results

given in lightly doped acceptor-Si systems, are respectively plotted as functions of N (�h).

In the following, we will determine the minority-hole saturation-current density JEo , injected

into the heavily doped n-type emitter-region of the n� � p junction solar cells.

5. Minority-Hole Saturation Current Density

Let us first propose in the non-uniformly and heavily doped (NUHD) emitter region of donor-

Si devices our expression for the effective Gaussian donor-density profile or the donor

(majority-electron) density, defined in the emitter-region width W, by:
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ρ x = N � exp �
x
W

�
� ln 

N
No(W)

� N �
N

No(W)

� x
W

�

(24)

where No(W) � S�� � �0�S � exp � W
0����� μm

��066
(cm�3) , � μm = �0�� cm , decreases

with increasing W, in good agreement with the doping profile measurement on silicon devices,

studied by Essa et al. [13]. Moreover, Equation (24) indicates that:

(i) at the surface emitter: x=0, ρ(0) = N, defining the surface donor density, and

(ii) at the emitter-base junction: x=W, ρ(W) = No W , which decreases with increasing W,

as noted above. Here, we also remark that No(VCD) = S � �0�S cm�3 was proposed by Van

Cong and Debiais (VCD) [22], and No(ZA) = � � �0�6 cm�3 , by Zouari and Arab (ZA) [17],

for their Gaussian impurity density profile. Moreover, all the parameters given in Equation

(24) were chosen such that the errors of our obtained JEo–values are minimized, as seen in

next Table 4, and our numerical calculation indicates that, from Equation (24), we can

determine the highest value of W, being equal here to �5 μm. ww

Now, from Equations (8, 9) or Equation (19), taken for 0 � x � W, and using Equation (24),

the result: NDeff� x = 0 � N/exp ΔEga(N)
kBT

may be rewritten as:

NDeff�(x) � ρ x /exp
ΔEga(ρ x )

kBT
(25)

which gives at x=W: NDeff� W � No W

exp
ΔEga No W

kBT

�

Then, under low-level injection, in the absence of external generation, and for the steady-state

case, we can define the minority-hole density by:

po(x) �
ni
�

NDeff�(x)
(26)

and a normalized excess minority-hole density [or a relative deviation between p x and

po(x)] by [22, 25]:

u x �
p x � po(x)

po(x)
(27)

which must verify the two following boundary conditions proposed by Shockley as [2]:
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u x = 0 �
� Jh x = 0

eS � po(x = 0)
(28)

u x = W � exp
V

n V � VT
� �, for small W � values (29)

Here, n(V) is an ideality factor, S ( cm
s
) is the hole surface recombination velocity at the

emitter contact, V is the applied voltage, VT � (kBT/e) is the thermal voltage, and the

minority-hole current density Jh x , being found to be similar to the Fick’s law for diffusion

equation, is given by [8, 22]:

Jh x =�
eni

�

F(x)
�
du x
dx =�

eni
�Dh(x)

NDeff�(x)
�
du x
dx

(30)

where F(x) is determined in Equation (19), in which N is replaced by ρ x , proposed in

Equation (24).

Further, the minority-hole continuity equation yields [8, 22]:

dJh x
dx

=� eni
� � u x

F x �Lh
� =� eni

� � u x
NDeff� x �τh(ρ(x))

=� e � p(x) � p0(x) � τh(N)
τh(ρ(x))

� �
τh(N)

.
(31)

Then, from these two Equations (30, 31), one obtains the following second-order differential

equation as [22]:

��u x
dx�

�
dF x
dx �

du x
dx �

u x
Lh
� x

= 0 (32)

Using the two boundary conditions (28, 29), one thus gets the general solution of this

Equation (32) as [22]:

u x = A(W) � sinh P x � B(W) � cosh P x � exp
V

n(V) � VT
� � (33)

where A(W) � �
sinh P W �Ι(W)�cosh P W

, Ι(W,S) � B
A
= Dh(No W )

S�Lh(No W )
and P x � 0

xC � F x dx� ,

since dP x
dx

� C � F x . Here, C = �0��S (cm�/s) , as that chosen in Equation (20), and the

hyperbolic sine-and-cosine functions are defined by: sinh(x) � 0�5 � ex � e�x and

cosh(x) � 0�5 � ex � e�x .
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Further, from Eq. (33), as P W � � (or for small W) one has: A � �
I
or B � � , and one

therefore obtains: u W � exp V
n(V)�VT

� � , which is just the boundary condition given in

Equation (29).

Now, using Equations (30, 33), one gets:

Jh x, N,T,rd,gc, S =� JEo x, N,T,rd,gc, S � exp
V

n(V) � VT
� � (34)

where JEo is the minority-hole saturation current density, being injected into the heavily

doped n-type emitter region for 0 � x � W and given by:

JEo x, N,T,rd,gc, S = eni
�C � A(W) � cosh P x � B(W) � sinh P x (35)

One also remarks that, from Equations (20, 33-35) and after some manipulations, one gets:

u x = 0 � �Jh x=0
eS�po(x=0)

, being just the boundary condition given in Eq. (28).

Now, using the P(x)-definition given in Equation (33), at T=300 K, one can define the inverse

effective minority-hole diffusion length by:

�
Lh,eff� x = W, N,T,rd,gc

=
�
W 0

W dx
Lh(x)

� =
�
W 0

W
C � F x dx � P x = W, N,T,rd,gc� /W (36)

where Lh = CF �� is defined in Equation (20), in which N is replaced by ρ x , being

determined in Equation (24). Therefore, Equation (36) can be rewritten as:

P x = W, N,rd,gc �
W
Lh,eff�

=
W
Lh
�

Lh
Lh,eff�

(37)

for a simplicity. Then, from Eq. (33, 35), since B = A � Ι(W,S) one obtains:

JEo x = 0,N,rd,gc,S = eni
�C � A =

eni
�C

sinh P � Ι � cosh P
(38)

JEo x = W,N,rd,gc,S = eni
�C �

cosh P � Ι � sinh P
sinh P � Ι � cosh P

(39)

Now, from those results (34, 38, 39), one gets:

Jh x = 0,N,rd,gc,S
Jh x = W,N,rd,gc,S

�
JEo x = 0,N,rd,gc,S
JEo x = W,N,rd,gc,S

=
�

cosh P � Ι � sinh P
(40)

Further, using Equations (27, 33, 34) and going back to the minority-hole continuity equation

defined in Equation (31), one gets:
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�
JEo x=W

� JEo x = W � JEo x = 0 = �
τh(N)

� Qh, eff�(x = W,N) ,

(41)

where τh N,rd,gc is determined in Equation �0 , and Qh, eff�(C/cm�) is the effective

excess minority-hole charge density given in the emitter region, defined by [22]:

Qh, eff�(x = W,N) � 0
W e � p(x) � p0(x) � τh(N)

τh(ρ(x))
� dx. (42)

Finally, from Equations (40, 41), if defining the effective minority-hole transit time by:

τt,eff�(x = W,N,S) � Qh, eff�(x = W,N)/JEo x = W,N,rd,gc,S , one then obtains the reduced

effective minority-hole transit time, as:22

τt,eff� x=W,N,rd,gc,S
τh

= � � JEo x=0,N,rd,gc,S
JEo x=W,N,rd,gc,S

= � � �
cosh P �Ι�sinh P

. (43)

Now, from above Equations (38-43), some important results can be obtained and

discussed below.

5.1. Very large �( = ���� �t
�
, �辨⯷ (���t࢞� or � � t and � � � or�� ��,����

Here, various results can be investigated as follows.

(i) From Equations (38-40), since Ι(W) = Dh(No W )
S�Lh(No W )

� 0 as S � t , JEo x=0,N,rd,gc,S
JEo x=W,N,rd,gc,S

�

�
cosh P

� � since P � � , or JEo x = W, N,rd,gc,S � t � JEo x = 0, N,rd,gc,S � t .

Therefore, from

Equation (43), one obtains: τt,eff� x=W,N,rd,gc,S�t
τh(N)

� 0 , suggesting a completely transparent

emitter

region (CTER).

(ii) Further, from Equations (18-20, 39), since Ι � 0 and P � � , the result (39) is now

reduced to:

JEo x = W, N,rd,gc,S � t �
eni

�C
P

=
eni

�

F �W
�
Lh,eff�
Lh

=
eni

� � Dh � exp
ABGN
kBT

N �W
�
Lh,eff�
Lh

(44)

being found to be independent of S and C, since Lh,eff�
Lh

is independent of S and C as observed

in Equations (20, 36), and noting that the ABGN-expression is determined by Equation (9) or

by Equation (15).
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Moreover, by a similar way, this result (44) can also be applied to calculate the electron-

minority saturation current density as:

JEo x = W, NA,rB,gv,S � t �
eni

��De�exp
ABGN
kBT

N�W
� Le,eff�

Le
=

eni
��De

NAeff�W
� Le,eff�

Le
, NAeff �

NA
exp ABGN

kBT

,

being injected into the heavily doped p-type doped emitter region of p� � n junction. Then,

Cuevas et al. (C) [21] used a simplified form as: JEo(C) �
eni

��De
NAeff�W

to explain their

experimental results obtained from the samples: 2B1, 2B2, 2B3, 2B4 and 2B5, as those given

in Table 1 of this Reference 21, giving the relative deviations in absolute values equal to:

28.6%, 0%, 66.7%, 220% and 200%, respectively. It means that this simplified JEo(C)-formula

is found to be inaccurate, due to the fact that they neglected an important ( Le,eff�
Le

)-effect, given

in this heavily doped emitter region.

Now, in the P-Si system, for T = 300 K,rd � rP and gc = 6, 5, �����3 , our two numerical

JEo -results are calculated, using Equations (44, 9) and (44, 15), and tabulated in Table 4, in

which the CTER -condition, P � � (or τt,eff�
τh N

� �) , is fulfilled, and we also compare them

with modeling and measuring JEo -results investigated by del Alamo et al. (ASS) [10, 12].

One further notes that their modeling JEo -result [10] was based only on two independent

parameters: NDeff/Dh and Lh , as that obtained from our above result (44), for Lh,eff� = W .

Therefore, this could explain a great difference between their modeling results [10, 12]

accurate within 36%, and ours accurate within 1.78%, for gc = 6 , as observed in the

following Table 4.

Table 4. Our present results of ��辨 � � t �/���, expressed as functions of N for �� = t, �, ��䁠��香,

and their relative deviations (RDs), calculated by: RD(%)=1-( ���܍��� ��辨/ ��辨-data), where the

��辨-data are given in References 10 and 12, and also the theoretical ASS- ��辨-results, obtained by

Alamo et al. (ASS) [10, 12], and their relative deviations.

N �0�� cm�3 2.1 3.3 4.4 4.6 12

W (μm) 0.20 1.00 0.23 0.66 0.20

JEo S � t �data 3�� � �0��� ��3 � �0��3 ��6 � �0��� ��� � �0��� ��� � �0���

ASS- JEo(S � t)] 3�6 � �0��� ��� � �0��� ��6 � �0��� ��5 � �0��� ���� � �0���

RD(�) -12.5 -32.5 0 -36 -0.4
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No( cm�3) ��65 � �0�S ���� � �0�5 ���� � �0�S ��60 � �0�6 ��65 � �0�S

Present ��辨-results are obtained, using Equations (44, 9)

gc = 6, ni = ��0S � �0�0 cm�3

P(N, W)<<1 5�S � �0�5 ��� � �0�� S�� � �0�5 ��S � �0�� 6�6 � �0�5

τt,eff�
τh N

� � ��6 � �0�� ��� � �0�� ��6 � �0�� ��� � �0�� ��� � �0��

Present JEo(S � t) 3����
� �0���

�����
� �0��3

��55�
� �0���

��0�0
� �0���

��SS�
� �0���

RD(�) -1.32 -1.78 1.77 1.78 0.94

gc = 5, ni = ��SS � �0� cm�3

P(N, W)<<1 5�0 � �0�5 ��� � �0�� 6�� � �0�5 ��� � �0�� 5�S � �0�5

τt,eff�
τh N

� � ��� � �0�� ��� � �0�� ��� � �0�� ��0 � �0�� ��6 � �0��

Present JEo(S � t) 3�05�
� �0���

�����
� �0��3

����5
� �0���

��05�
� �0���

��6�3
� �0���

RD(�) 4.56 2.12 4.43 4.35 3.81

gc = �����3, ni = ��6� � �0� cm�3

P(N, W)<<1 ��� � �0�5 ��� � �0�� 6�� � �0�5 ��� � �0�� 5�6 � �0�5

τt,eff�
τh N

� � ��� � �0�� ��S � �0�� ��� � �0�� ��0 � �0�� ��6 � �0��

JEo A/cm� 3�03�
� �0���

��0�6
� �0��3

���S�
� �0���

��050
� �0���

��6�6
� �0���

RD(�) 5.07 2.46 4.66 4.57 4.07

Present ��辨-results are obtained, using Equations (44, 15)

gc = 6, ni = ��0S � �0�0 cm�3

P(N, W)<<1 5�S � �0�5 ��� � �0�� S�� � �0�5 ��S � �0�� 6�5 � �0�5

τt,eff�
τh N

� � ��6 � �0�� ��3 � �0�� ��6 � �0�� ��5 � �0�� ��� � �0��

Present JEo(S � t) 3��SS
� �0���

���S�
� �0��3

��5�3
� �0���

��0S3
� �0���

����3
� �0���

RD(�) -2.41 -2.07 2.20 2.42 -0.48

gc = 5, ni = ��SS � �0� cm�3
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P(N, W)<<1 5�0 � �0�5 ��� � �0�� 6�� � �0�5 ��5 � �0�� 5�� � �0�5

τt,eff�
τh N

� � ��� � �0�� ��� � �0�� ��� � �0�� ��� � �0�� ��5 � �0��

Present JEo(S � t) 3�0�3
� �0���

���0S
� �0��3

���60
� �0���

��0�0
� �0���

���0�
� �0���

RD(�) 3.66 2.32 5.37 5.49 -0.30

gc = �����3, ni = ��6� � �0� cm�3

P(N, W)<<1 ��� � �0�5 ��� � �0�� 6�� � �0�5 ��� � �0�� 5�3 � �0�5

τt,eff�
τh N

� � ��� � �0�� ��S � �0�� ��� � �0�� ��0 � �0�� ��� � �0��

Present JEo(S � t) 3�066
� �0���

��0S5
� �0��3

���53
� �0���

��03S
� �0���

���0�
� �0���

RD(�) 4.20 2.71 5.64 5.75 -0.31

The underlined �� -values are the maximal ones.

Table 4 indicates that:

 the maximal relative deviations (RDs) in absolute values between our results (44, 9)

and the JEo -data [10, 12] are found to be: 1.78% for gc=6, 4.56% for gc=5, and 5.07% for

gc=4.9113, and

 the maximal RDs in absolute values between our results (44, 15) and the JEo-data [10,

12] are given by: 2.42% for gc=6, 5.49% for gc=5, and 5.75% for gc=4.9113. It suggests that

our numerical results (44, 9) for gc=6 are the best ones, since they are accurate within 1.78%.

Further, one notes that our ΔEga -expression given in Equation (9) was obtained, taking into

account all the physical effects such as: those of donor size, heavy doping and Fermi-Dirac

statistics, while in Equation (15) our ΔEga(Mod�YC) -expression is only an empirical one. So, in

the following, we will choose: gc =6, T=300 K, and our ABGN-expression (9), for all the

numerical calculations.

(iii) Furthermore, in particular, for large S and small P, from Equation (40) one gets:

JEo x=0,N,rd,S
JEo x=W,N,rd,S

= �
cosh P �Ι�sinh P

� �� Dh(No W )
S�Lh(No W )

� P � P �

�
.

Then, from Equation (43), using Equations (20, 37) one obtains in the heavily doped case:
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τt,eff� x = W,N,rd,gc,S � τh �
Dh No W

S � Lh No W
� P �

P �

�

�
W
S
�

Lh No W
Lh,eff� No W

�
W�

�Dh No W
�

Lh No W
Lh,eff� No W

�

�
W�

�Dh No W
�

Lh No W
Lh,eff� No W

�

, as S � t

(45)

and in the lowly doped case (i.e., Lh,eff� � Lh):

τt,eff� x = W,N,rd,S � τt =
W
S
� W�

�Dh
� W�

�Dh
, as S � t (46)

being just a familiar expression given for the minority-hole transit time τt obtained by

Shibib et al. [7].

5.2. Small � = ����� ( �t
�
) or � � �, and � � � or�� ��,����

Here, from Eq. (33) and for any N, one has: Ι = Dh(No W )
S�Lh(No W )

� t , since S � 0 . Therefore,

from Equation (43), one obtains: τt,eff� x=W���,����,N,rd,gc,S�0
τh

� � , suggesting a completely

opaque emitter region (COER).

Now, our numerical results of JEo x = W, N,rd,S � JEo and τt,eff�(x=W,N,rd,S)
τh

� τt,eff�
τh

, for

simplicity, are respectively computed, using Equations (39) and (43), and then plotted into

Figures 5 (a� , a�), (b) and 6 (a� , a�), (b), as a function of N, and Figures 5 (c) and 6 (c), as

functions of S, noting that in those figures we also include various physical conditions such as:

S, W, rd and N, and in particular, due to the heavy doping effect, one must have: N �

�cn(rd), according to the heavily doped donor-Si systems, as those given in Table 1.
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Figure 5. (h�, h�) Our ��辨-results obtained as functions of N, with a condition: � � ���(��), given

in heavily doped donor-Si systems, as defined in Table 1, (b) our ��辨-results obtained as functions of

N in P-Si systems, and (c) our ��辨-results obtained as functions of S in P-Si systems.
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Figure 6. (��, ��) Our (��, ����/��)-results obtained as functions of � � ��餈(⯷�) in heavily doped

donor-Si systems, as defined in Table 1, (b) our (��, ����/��)-results obtained as functions of N in P-Si

systems, and (c) our (��, ����/��)-results obtained as functions of S in P-Si systems.

Some concluding remarks are obtained and discussed below.

(i) Figures 5(a�, a�) and 6(a�, a�) indicate that, since as S � t andW = � μm, τt,eff�
τh
( � � �

�0��) � 0, according to the CTER, and for a given N, due to the donor-size effect, both JEo

and τt,eff�
τh

decrease (�) with increasing rd . Then, for a given rd , at large values of N ≥ 3 �

�0�0 cm�3 , due to the heavy doping effect, JEo (or τt,eff�
τh

) increases (or decreases) with

increasing N.

(ii) Figures 5(b) and 6(b) show that, for a given N, JEo (or τt,eff�
τh
) decreases (or increases) with

increasing W.
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(iii) Figures 5(c) and 6(c), suggest that, for given S, JEo (or τt,eff�
τh

) decreases (or increases)

with increasing W.

(iv) In particular, in Figure 6(c), as S � 0 andW = �5 μm, τt,eff�
τh

� �, according to the COER.

Finally, it should be noted that in next Section 6 we must know the numerical results of dark

saturation current density, defined by:

Jo x = W,N,rd,S, Na,ra � JEo x = W,N,rd,S � JBo Na,ra (47)

where JBo and JEo are determined respectively in Equations (21, 39). Then, those are

tabulated in the following Table 5, in which all the physical conditions are also presented.

Table 5. Our numerical results of �辨 = ��辨 � ��辨, calculated using Equation (47), where ��辨 h�� ��辨
are determined respectively in Equations (21, 39), and those are obtained in the three following cases.

First case: In the heavily doped (HD) P-Si emitter region (N = �0�0 cm�3), and in the lightly doped (LD)

B-Si base region (Na = �0�6 cm�3) in which JBo = 6�0��� � �0��3 A
cm� �

For S = �050 cm/s and W = 0��06 nm, according to the completely transparent emitter region, one

has:

JEo = ����33 � �0�� A
cm� � JBo and Jo = ����3� � �0�� A

cm� � JEo

For S = �050 cm/s and W = ��� nm, according also to the completely transparent emitter region, one

has: JEo = ���6�5 � �0��0 A
cm� � JBo and Jo = ���S06 � �0��0 A

cm� � JEo

For S = �0� cm/s and W = 0�36 μm, one has: JEo = ����3S � �0��3 A
cm� � JBo and Jo =

S�3��� � �0��3 A
cm� � JBo

For S = �0�50 cm/s andW = �5 μm, according also to the completely opaque emitter region, one

has: JEo = ��S��S � �0��� A
cm� � JBo and Jo = 6�0��� � �0��3 A

cm� = JBo

Second case: In the completely opaque HD S-Si emitter region (N = 5 � �0�0 cm�3, S = �0�50 cm/s and

W = �5 μm), and in the lightly doped a-Si base region, in which Na = �0�6 cm�3.

(rS, ra) (rS, rB) (rS, rAl) (rS, rGa) (rS, rIn) (rS, rTl)

JEo
A
cm�

���S��
� �0���

���S��
� �0���

���S��
� �0��� ���S�� � �0��� ���S��

� �0���

JBo
A
cm�

6�0���
� �0��3

���033
� �0��3

��3660
� �0��3 ��6��5 � �0��5 5�30�0

� �0��S
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Jo
A
cm�

6�0���
� �0��3

���033
� �0��3

��3660
� �0��3 ��6��5 � �0��5 5�30�0

� �0��S

Jo = JBo

Third case: In the completely transparent HD d-Si emitter region (N = 5 � �0�0 cm�3, S = �050 cm/s and

W = 0�000�06 μm ), and in the lightly doped Tl-Si base region, in which Na = �0�6 cm�3 and JBo =

5�30�0 � �0��S A
cm� .

(rd, rTl) (rSb, rTl) (rP, rTl) (rAs, rTl) (rBi, rTl)

JEo
A
cm�

��S�06
� �0��

��6S��
� �0��

��5�0�
� �0�� ���336 � �0��

Jo
A
cm�

��S�06
� �0��

��6S��
� �0��

��5�0�
� �0�� ���336 � �0��

(rd, rTl) (rTi, rTl) (rTe, rTl) (rSe, rTl) (rS, rTl)

JEo
A
cm�

��6600
� �0���

S�53S�
� �0��5

��S65�
� �0��� ��6�S� � �0���

Jo
A
cm�

��6600
� �0���

S�5�0�
� �0��5

6����5
� �0��S

5�SS6S � �0��S
� JBo

Some important remarks are given and discussed below.

(i) In the first case, with decreasing S and increasing W, Jo thus decreases from the CTER to

the COER, and one gets in this COER: Jo = JBo.

(ii) In the second case or in the COER-conditions, JBo decreases with increasing ra , being

due to the acceptor-size effect, and for given ra one has: Jo = JBo since JEo = 0.

(iii) In the third case or in the CTER-conditions, JEo decreases with increasing rd, being due

to the donor-size effect, and for (rS, rTl) , one gets: Jo = 5�SS6S � �0��S A
cm� � JBo =

5�30�0 � �0��S A
cm� , which can be compared with the similar result, obtained the second

case or in the COER-conditions, as: Jo = JBo = 5�30�0 � �0��S A
cm� , calculated for

(rS, rTl).

It should be noted that these values of Jo will strongly affect the variations of various

photovoltaic conversion parameters of n� � p junction silicon solar cells, such as: the
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ideality factor n, short circuit current density Jsc , fill factor FF, and photovoltaic conversion

efficiency η, being expressed as functions of the open circuit voltage, Voc [4], as investigated

in the following. Our empirical treatment method used is that of two points. The first point is

characterized by [27]:

Voc� = 6�� mV, Jsc� = 36�3 mA
cm� , FF� = �0�� � (48)

and the second one by [23, 28]:

Voc� = S�0 mV, Jsc� = ���� mA
cm� , FF� = ���S �� (49)

In the following, we will develop our empirical treatment method of two points, used to

determine Jsc and FF, basing on accurate results given in Equations (48) and (49).

6. Photovoltaic Conversion Effect

The well-known net current density J at T=300 K, expressed as a function of the applied

voltage V, flowing through the n� � p junction of silicon solar cells, is defined by:

J V � Jph� V � Jo � �
V

n V � VT � � , VT �
kBT
e

= �5��5�3 mV (50)

Noting that J V = 0 at V = Voc, Voc being an open circuit voltage, at which Jph� V = Voc �

Jsc W,N,rd,S, Na,ra,Voc , where Jsc is the short circuit current density. Here, Jph� is the

photocurrent density and Jo W,N,rd,S, Na,ra � JEo � JBo is the “dark saturation current

density” or the n� � p junction leakage saturation current density in the absence of light,

defined in Equation (47). Therefore, the photovoltaic conversion effect occurs, according to:

Jsc W,N,rd,S, Na,ra,Voc � Jo W,N,rd,S, Na,ra � ev � � , v W,N,rd,S, Na,ra,Voc
�

Voc
n � VT

(51)

Here, n is the ideality factor, being determined by our empirical treatment method of two

points, as:

n W,N,rd,S, Na,ra,Voc
= n� W,N,rd,S, Na,ra,Voc�,Jsc� � n� W,N,rd,S, Na,ra,Voc�,Jsc�

�
Voc
Voc�

� �
yn
,

yn = ������

(52)
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which is valid for anyW,N,rd,S, Na,ra,Voc ≥ Voc�, and increases with increasing Voc for given

W,N,rd,S, Na and ra.

Further, the values of Voc�,Jsc� , Voc� and Jsc� are given in Equations (48, 49), and the

numerical results of n�(�) can be determined from Equation (51) by:

n�(�) W,N,rd,S, Na,ra,Voc�(�),Jsc�(�) �
Voc�(�)
VT

�
�

ln 
Jsc�(�)
Jo

� �
(53)

implying that both n�(�) (or n) and Jo have the same variations for given W,N,rd,S, Na,ra -

variations, being found to be an important remark.

Furthermore, in Equation (52), for the CTER-conditions such as:

W = ��� nm = 0�00�� μm,N = �0�0 cm�3,rd = rP,S = �050
cm
s
, Na = �0�6 cm�3,ra

= rB
(54)

the exponent yn = ������ was chosen such that:

n W,N,rd,S, Na,ra,Voc�(�) � n� � W,N,rd,S, Na,ra,Voc� � ,Jsc� �
= ���3�� ���53� respectively�

For example, from the above remark given in Eq. (53) and from the first case reported in

Table V, we can conclude that, with decreasing S and increasing W, both n and Jo decrease

from the CTER to the COER. Therefore, from Equation (51), Jsc thus increases from the

CTER to the COER, since Jsc is expressed in terms of �v�
Voc
n�VT.

Then, the values of the fill factor FF for Voc = Voc�(�) can be found to be given by:

FF�(�) W,N,rd,S, Na,ra,Voc�(�)

=
v W,N,rd,S, Na,ra,Voc�(�) � ln v W,N,rd,S, Na,ra,Voc�(�) � 0�S�

v W,N,rd,S, Na,ra,Voc�(�) � zFF�(�)

(55)

where zFF�(�) = ��� (0��S�) was chosen such that, under the above conditions (54), the

values of FF�(�) , calculated using Equation (55), are identical to the data given in Equations

(48, 49): 80.1% (82.7%), respectively [27, 23]. Moreover, in the case where both series

resistance and shunt resistance have a negligible effect upon cell performance, zFF� � , Green =

�, as proposed by Green [4].

Now, by applying a same above treatment method of two points, one has:
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FF W,N,rd,S, Na,ra,Voc
= FF� W,N,rd,S, Na,ra,Voc� � FF� W,N,rd,S, Na,ra,Voc�

�
Voc
Voc�

� �
yFF
,

yFF = ��055�

(56)

which is valid for anyW,N,rd,S, Na,ra,Voc ≥ Voc�, and increases with increasing Voc for given

W,N,rd,S, Na and ra. Here, the value of yFF( = ��055�) was chosen such that, under the

conditions (54), FF W,N,rd,S, Na,ra,Voc�(�) � FF�(�) W,N,rd,S, Na,ra,Voc�(�) =

�0��� (���S�),

respectively [27, 23].

Then, the photovoltaic conversion efficiency η can be defined by:

η W,N,rd,S, Na,ra,Voc �
Jsc � Voc � FF

Pin�
(57)

where Jsc and FF are determined respectively in Equations (51, 56), being assumed to be

obtained at 1 sun illumination or at AM1.5G spectrum (Pin� = 0��00 W
cm� ) [27, 28].

In summary, all above parameters such as: n, Jsc, FF and η, defined in above, strongly depend

on Jo, determined in Equation (47), which is thus a central result of the present paper.

Now, for given physical conditions such as: W,N,rd,S, Na and ra , and by taking into account

all remarks given in Table 5 and also in above Equation (53), our numerical results of n, Jsc ,

FF and η, expressed as functions Voc , are respectively computed by using Equations (52, 51,

56, 57), and reported in following Table 6 and Figures 7, 8 and 9.

In Table 6, in which, for 6��� Voc(mV) � S50 [23, 24, 27-29] the physical conditions used

are:

W = 0��06 nm,N = �0�0 cm�3,rd � rP,S = �050
cm
s
, Na = �0�6 cm�3, ra � rB (58)

according to the CTER, we get the precisions of the order of 8.1% for Jsc , 7.1% for FF, and

5% for η, calculated using the corresponding data [23, 24, 27-29], which is strongly affected

by Jo = JEo � JBo , as noted above, suggesting thus an accuracy of JBo (� ���� ), since JEo
was accurate within 1.78%, as given in Table 4.

Table 6. With the physical conditions given in Equation (58), our present results (PR) of n, )�܍�
��
��� ),

FF(%), and η(�), calculated using Equations (52,51,56,57), being compared with corresponding



95

data [23, 24, 27-29], and their relative deviations (RD), computed using the formula: RD= � � (��/

�h�h) .

Data (D) from

References
�辨� (��) n �܍� �� �܍� � ��� �� �� �� � ��� η �� η � ���

[28] 750 1.7474 40.24 (39.5); 1.9 80.58 (83.2); 3.1 24.32 (24.7); 1.5

[23,28] 740 1.7222 41.01 (41.8); 1.9 80.11 (82.7); 3.1 24.31 (25.6); 5.0

[28] 738 1.7172 41.16 (40.8); 0.9 80.02 (83.5); 4.2 24.31 (25.1); 3.2

[28] 737 1.7146 41.23 (41.3); 0.2 80.00 (82.7); 3.3 24.30 (25.2); 3.6

[28] 718 1.6676 42.43 (42.1); 0.8 79.22 (83.2); 4.8 24.13 (25.1); 3.8

[24] 710 1.6481 42.82 (42.3); 1.2 78.95 (82.6); 4.4 24.00 (24.8); 3.2

[28,29] 706 1.6384 42.98 (42.7); 0.6 78.82 (82.8); 4.8 23.91 (25.0); 4.3

[24] 705 1.6360 43.02 (42.2); 1.9 77.87 (83.1); 6.3 23.89 (24.7); 3.3

[24] 703 1.6312 43.08 (42.0); 2.6 78.73 (82.7); 4.8 23.84 (24.4); 2.3

[28] 695 1.6122 43.30 (40.2); 7.7 78.50 (80.5); 2.5 23.62 (22.5); 4.9

[28] 680 1.5772 43.37 (40.5); 7.1 78.14 (80.3); 2.7 23.05 (22.1); 4.3

[29] 671.7 1.5584 43.20 (40.5); 6.5 77.98 (80.9); 3.6 22.63 (22.0); 2.8

[28] 667 1.5479 43.01 (39.8); 8.1 77.91 (80.0); 2.6 22.35 (21.3); 4.9

[27] 665 1.5434 43.91 (42.2); 1.7 76.87 (78.7); 1.0 22.22 (22.1); 0.5

[24] 655 1.5217 42.21 (39.8); 6.1 77.74 (79.4); 2.1 21.50 (20.7); 3.8

[28] 643 1.4968 40.83 (39.3); 3.9 77.64 (83.6); 7.1 20.38 (21.1); 3.4

[27] 632 1.4758 38.80 (39.2); 1.0 77.59 (75.8); 2.4 19.02 (18.7); 1.7

[27] 624 1.4630 36.30 (36.3); 0.0 77.58 (80.1); 3.1 17.57 (18.1); 2.9

The underlined RD(%)-values are the maximal ones.

In Figures 7 (a), (b), (c) and (d), the physical conditions used are:

N = �0�0 cm�3,rd = rP, Na = �0�6 cm�3, ra = rB, and different (S, W) � values (59)

which are given also in these figures, and in Table 5 for the first case. Here, for a given Voc ,

and with decreasing S and increasing W, we observe that:
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 in the Figure 7 (a), the function n determined in Equation (52) (or the function Jo
given in Table 5) decreases from the CTER to the COER

 in Figures 7 (b), 7 (c) and 7(d), the functions Jsc, FF and η therefore increase from the

CTER to the COER, and

 in Figure 7 (d), for the physical functions: W=85 μm and S = �0�50 cm/s, the

function η reaches a maximum equal to 27.77% at Voc=715 mV; here � μm = �0�6m.

Figure 7. (a) Our n-results, (b) )�܍�
��
��� )-results, (c) FF(%)-results, and (d) η(�)-results, plotted as

functions of �辨� and obtained with increasing W and decreasing S (or from the completely

transparent emitter region to the completely opaque emitter region).

In Figures 8 (a), (b), (c) and (d), the physical conditions used are:

W = �5 μm, N = 5 � �0�0 cm�3,rd = rS, S = �0�50
cm
s
, (60)



97

Na = �0�6 cm�3, ra, and Egi(ra) at 300 K

according to the COER, and they are also given in these figures and in Table 5 for the second

limiting case, in which Jo = JBo , since JEo = 0 . Thus, this simplifies the numerical

calculation of functions n, Jsc , FF and η , using Equations (52, 51, 56, 57), where Jo is

replaced by JBo , determined by Eq. (21). Further, in Equation (60), the values of Egi(ra) are

given in Table 2. Then, for a given Voc and with increasing ra -values, it should be

concluded that, due to the acceptor-size effect,

 in the Figure 8 (a), the function n determined in Equation (52) (or the function Jo
given in Table 5) decreases (�), and

 in Figures 8 (b), (c), (d), the functions Jsc , FF and η therefore increase (� ), and in

particular, in Figure 8 (d), for the completely opaque (S-Si) emitter-region conditions, where

JEo =0 or Jo = JBo , the maximal η-values are equal to: 27.77 %,…, 31.55 %, at Voc =715

mV,…,703 mV, according to the Egi -values equal to: 1.12 eV,…, 1.34 eV, which are

obtained in various lightly doped (B,…, Tl)-Si base regions, respectively, being due to the

acceptor-size effect.
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Figure 8. For � = � � ���� ���香 and �h = ���t ���香, (a) our n-results, (b) )�܍�
��
��� )-results, (c)

FF(%)-results, and (d) η(�)- results, plotted as functions of �辨� and obtained in the COER-

conditions.

Finally, in Figures 9 (a), (b), (c) and (d), the physical conditions used are:

W = 0�000�06 μm, N = 5 � �0�0 cm�3, rd, S = �050
cm
s
,

Na = �0�6 cm�3, rTl, and Egi(rd) at 300 K
(61)

according to the CTER, and they are also given in Table 5 for the third case. Here, the values

of Egi(rd) at 300 K are given in Table 2. Then, the numerical results of n, Jsc, FF and η are

calculated, using Equations (52, 51, 56, 57). Further, for a given Voc and with increasing

ra-values, it should be concluded that, due to the donor-size effect,

 in the Figure 9 (a), the function n determined in Equation (52) (or the function Jo
given in Table 5) decreases (�), and

 in Figures 9 (b), (c), (d), the functions Jsc , FF and η therefore increase (� ), and in

particular, in Figure 9 (d), in the conditions of completely transparent and heavily doped

(donor-Si) emitter-and- lightly doped (Tl-Si) base regions, the maximal η-values are equal to:

24.28 %,…, 31.51 %, at Voc=748 mV,…,703 mV, according to the Egi-values equal to: 1.11

eV,…, 1.70 eV, obtained in various (Sb,…, S)-Si emitter regions, respectively, being due to

the donor-size effect, which can be compared with those given in Figure 8 (d).
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Figure 9. For � = � � ���� ���香 and �h = ���t ���香, (a) our n-results, (b) )�܍�
��
��� )-results, (c)

FF(%)-results, and (d) η(�)- results, plotted as functions of �辨� and obtained in the CTER-

conditions.

7. Concluding Remarks

We have developed the effects of heavy doping and impurity size on various parameters at

300 K, characteristic of energy-band structure, as given in Sections 2 and 3, and of the

performance of crystalline silicon solar cells, being strongly affected by the dark saturation

current density: Jo � JEo � JBo , as given in Sections 4, 5 and 6. Then, some concluding

remarks are obtained and discussed as follows.

1. Using the optical band gap (Eg�)-data given by Wagner and del Alamo [44], our Eg�-

results, due to the heavy doping effect and calculated using Equation (16), are found to be

accurate within 1.86%, as observed in Table 3.
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2. In the CTER-conditions, as those given in Table 4, and using the JEo -data, given by

del Alamo et al. [10, 12], by using Equation (44), our JEo -results, obtained in the heavily

doped and completely transparent (P-Si) emitter region, are found to be accurate within

1.78%, while the modeled JEo-results, obtained by those authors, are accurate within 36% [10,

12]. Our present accurate expression for JEo is thus imperative for continuing the

performance improvement of solar cell systems.

3. For given physical conditions and using an empirical treatment method of two points,

as developed and discussed in Section 6, both our two results (n and Jo ) have the same

variations, which strongly affect other ( Voc , Jsc , FF, η)-results, as discussed in Eq. (53),

indicating that Jo, determined in Equation (47), is a central result of our present paper.

4. In the CTER-conditions, as those given in Equation (58), and using various (Jsc , FF,

η)-data [23, 24, 27-29], we get the precisions of the order of 8.1% for Jsc , 7.1% for FF and

5% for η, suggesting thus a probable accuracy of JBo ( � ����) , since our JEo -results are

accurate within 1.78%.

5. In the physical conditions of completely opaque and heavily doped (S-Si) emitter-and-

lightly doped (acceptor-Si) base regions, as given in Eq. (60), and in the physical conditions

of completely transparent and heavily doped (donor-Si) emitter-and-lightly doped (Tl-Si) base

regions, as given in Eq. (61), our obtained maximal η-values, due to the impurity-size effect,

are found to be equal respectively to: 27.77%, …, 31.55%, as seen in Figure 8 (d), and

24.28%, …, 31.51%, as observed in Figure 9 (d), noting that our obtained highest η-values

are found to be almost equal, as: 31.51%� 3��55�. This probably comes from the fact that in

the limiting case of the physical conditions given Eq. (60), defined as: rS and ra = rTl , we

obtain: Jo = JBo = 5�30�0 � �0��S A
cm� , as given in Table 5 for the second case, and in

other limiting case of the physical conditions given Eq. (61), defined as: rd = rS and rTl, we

get: Jo = 5�SS6S � �0��S A
cm� � JBo = 5�30�0 � �0��S A

cm� , as seen in Table 5 for the

third case.

In summary, being due to the impurity-size effects, our limiting value of η�=31.55%, as that

given in Figure 8 (d), is thus obtained in the following limiting physical conditions as:

W = �5 μm, N = 5 � �0�0 cm�3,Egi rd = rS = ��S035 eV, S = �0�50
cm
s
,

Na = �0�6 cm�3, and Egi ra = rTl = ��3��5, at 300 K,
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η� =27.77%, as that given in Figure 7 (d), is obtained in the following limiting

physical conditions as:

W = �5 μm, N = �0�0 cm�3,Egi rd = rP = �����5 eV, S = �0�50
cm
s
,

Na = �0�6 cm�3, and Egi ra = rB = �����5, at 300 K,

and η3 =27.77%, as that given in Figure 8 (d), is thus obtained in the following

limiting physical conditions as:

W = �5 μm, N = 5 � �0�0 cm�3,Egi rd = rS = ��S035 eV, S = �0�50
cm
s
,

Na = �0�6 cm�3, and Egi ra = rB = �����5 eV, at 300 K.

Those limiting η�,�,3–results can be compared with that obtained by Richter et al. (R)

[26], ηR =29.43%, for a thick �00 μm solar cell made of un-doped silicon, as: η� =

η3 � ηR � η�, being probably due to the impurity-size effects.

Finally, it should be noted that the effects of heavy doping and impurity size on minority-

carrier transport parameters in heavily (lightly) doped p(n)-type crystalline silicon at

300 K, applied to determine the performance of p� � n junction solar cells, could be

investigated by a similar empirical treatment method.

Acknowledgments: We thank Prof. Dr. Nghi Q. Lam, the Former Editor-in-Chief of Applied

Physics Letters (1994-2014), for his helpful remarks and suggestions, which have greatly

improved the presentation of our paper.

Appendices

Appendix A: Fermi Energy

0The Fermi energy EF , obtained for any T and donor density N, being investigated in our

previous paper, with a precision of the order of ���� � �0�� [39], is now summarized in the

following. First of all, we define the reduced electron density by:

u(N,T,rd,gc) �
N

Nc T,rd,gc
� ��/�(θ)

(A1

)

where Nc is defined in Eq. (6), θ u � EF u
kBT

is the reduced Fermi energy, and ��/�(θ) is the

Fermi-Dirac integral, defined by [40]:



102

��
�
θ �

�
π

0

t
x
�
�dx

� � ex�θ
� , x �

E
kBT

(A2

)

which was calculated for any values of θ, with a precision of the order of �0�S, by Van Cong

and Doan Khanh [40], using a theorem existence of Hermite interpolating polynomials. Then,

by a reversion method of u � ��/�(θ) so useful to obtain θ u , concerned with doped

semiconductors at arbitrary N and T, our expression for reduced Fermi energy was found to

be given by [39]:

θ u �
EF u
kBT

=
G u � AuBF u

� � AuB
, with A = 0�00053S� and B = ��������6�

(A3

)

where, in the degenerate case or when θ u � � � t, Equation (A3) is reduced to:

F u = au
�
3 � � bu�

�
3 � cu�

�
3
� �
3
� a = 3 �/� �/3, b = �

�
�
a

�
, and c = 6��3S3��55

���0
�
a

�
,

and in the non-degenerate case or when θ u � � � 0, to:

G u � Ln u � ��
3
� � u � e�du, d = �3/�

�
�S
�
�S

�
3
�6
3
�6

� 0

Appendix B: Approximate Form for Band Gap Narrowing (BGN)

First of all, we will normalize the various energies by using the effective Rydberg energy R,

as:

R T,rd = �3�6056�3 �
mc T,rd
ε� rd

(eV) (A4)

and we express the effective Wigner-Seitz radius rs characteristic of the interactions by:

rs(N,T,rd,gc) �
3gc
�πN

�
3
�

�
aB(T,rd)

Here, aB(T,rd) = 5����SS�5 � �0�� � ε(rd)
mc(T,rd)

(cm) is the Bohr radius. Therefore, one has:

rs(N,T,rd,gc) = ���S�3 � �0� �
gc
N

�/3
�
mc(T,rd)
ε(rd)

(A5)

Therefore, the ratio R/rs is thus proportional to: ε(rP)
ε(rd)
ε(rP)
ε(rd)

� Nr
�/3 , where Nr �

6�N
gc��������0�S cm�3 . Now, an empirical expression for BGN is proposed by:
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ΔEg(N,T,rd,gc) = ΔEg XE � ΔEg e�cor � ΔEg h�cor � ΔEg e�D � ΔEg h�D
� ΔEg LT ��R � μXE(rs) � R� μc(rs) � R � μnh�Cor(rs) � R
� μne�D(rs) � R � μnh�D(rs) � ΔEg LT

(A6)

where, R and rs are defined above, and five first contributions of the spin-polarized chemical

potential energy μ were determined in our previous paper [42], and sixth μ -one by Lanyon

and Tuft [6]. Further, the BGN-results such as:

ΔEg XE , ΔEg e�cor , ΔEg h�cor , ΔEg e�D , ΔEg h�D , and ΔEg LT will be respectively

determined in the following.

(i) The first ΔEg(XE) �� R � μXE(rs) -term of Equation (A6) represents the shift in majority

conduction-band edge, due to the exchange energy (XE) of an effective electron gas, being

proportional to: R/rs or to: ε(rP)
ε(rd)
ε(rP)
ε(rd)

� Nr
�/3. Therefore, one has:

ΔEg(XE) � a� �
ε(rP)
ε(rd)
ε(rP)
ε(rd)

� Nr
�/3 (A7)

where the constant a� was chosen to be equal to 3�� � �0�3 (eV).

(ii) The second ΔEg(e�cor) �� R� μc(rs) -term of Equation (A6) represents the shift in

majority conduction-band edge, due to the correlation energy of an effective electron gas,

Ec rs , and given by [42]:

Ec N,T,rd,gc =
� 0��S553
0�0�0� � rs

�

0��S553
0�0�0� � rs

�
� � � ln �

π�
� ln (rs) � 0�0�3���

� � 0�03��SS�� � rs��6S3S��S6
(A8)

noting that from the a Seitz’s theorem [42], one has:

μc N,T,rd,gc �
� rs�

3
�

∂
∂rs

Ec rs
rs3

=� Ec rs �
rs
3
�

∂
∂rs
∂
∂rs

Ec rs � ��503 � � Ec rs

� μc(A) rs
(A9)

Moreover, our numerical calculation indicates that the approximate form for μc rs , μc(A) rs ,

is accurate within 1.87% for gc = 6 in various donor-Si systems, noting that the relative error

of μc(A) rs is defined as: � �
μc(A) rs
μc rs

. Therefore, from Equations (A4,

A5, A8, A9), an approximate form for ΔEg(e�cor) �� R� μc(rs) � ��503 � � R � Ec rs ,

being proportional to: R
rs

� ��503 � � � Ec rs � rs� , is found to be given by:
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ΔEg(e�cor) � a� �
ε rP
ε rd
ε rP
ε rd
ε rP
ε rd

� Nr
�
3 � ��503 � � � Ec rs � rs� (A10)

where the constant a� was chosen to be equal to 6�5 � �0�� eV .

(iii) The third ΔEg(h�cor) �� R � μnh�Cor(rs) -term of Equation (A6) is the spin-polarized

ground-state energy at the wave number k=0, due to the minority hole-correlation or screened

Coulomb hole-correlation, being obtained by the plasmon-pole approximation and thus

proportional to: R

rs
3/� �

mv(T)
mc(T,rd)

[42]. That thus gives:

ΔEg(h�cor) � a3 �
ε(rP)
ε(rd)

5/�

�
mc(T,rd)
mc(T,rP)

�/�

� Nr
�/� �

mv(T)
mc(T,rd)

(A11)

where the constant a3 was chosen to be equal to ��� � �0�3 eV .

(iv) The fourth ΔEg(e�D) �� R � μne�D(rs) -term of Equation (A6) is the spin-polarized

chemical potential energy, due to the majority electron-donor (e-D) interaction screened

Coulomb potential energy, being obtained by a second-order perturbation approximation and

proportional to: R

rs
3/� [42]. Therefore, one has:

ΔEg(e�D) � a� �
mc(T,rP) � ε(rP)
mc(T,rd) � ε(rd)

� Nr
�/� (A12)

where the constant a� was chosen to be equal to 5�5�S � �0�3 eV .

(v) The fifth ΔEg(h�D) �� R � μne�D(rs) -term of Equation (A6) is the spin-polarized

chemical potential energy, due to the minority hole-D interaction screened Coulomb potential

energy, being also obtained by a second-order perturbation approximation and now

proportional to: mv(T)�ε(rP)
mv(T)�ε(rd)

� Nr
�/� [42]. Here, one has:

ΔEg(h�D) � a5 �
ε(rP)
ε(rd)

� Nr
�/� (A13)

where a5 � a�.

(vi) Finally, the sixth ΔEg(LT) -term of Equation (A6) is the BGN, which was determined by

Lanyon [6], basing on the basic concept that the charge of minority hole attracts to its

majority electrons of the opposite polarity, producing a screened Coulomb potential, with a
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screening length Ls , being proportional to: N��/6 � ε(rd)
mc(T,rd)

[6]. Further, because of the

electrostatic force between the charges, the work must be done to separate them since the

paired charges have a lower energy than when each is isolated. This reduction in energy or the

BGN can be shown to be proportional to: �
ε(rd)�Ls

,6 or to: mc(T,rd)
mc(T,rP)

�/�
� ε rP

ε rd

3
� � Nr

�
6 .

Therefore, one has:

ΔEg LT � a6�
mc(T,rd)
mc(T,rP)

�/�

�
ε rP
ε rd

3
�
� Nr

�
6 (A14)

where the constant a6 was chosen to be equal to ��� � �0�� eV .

In summary, replacing Equations (A7, A10-A14) into Equation (A6), we thus obtain an

approximate expression for the BGN as:

ΔEg(N,T,rd,gc) � a� �
ε(rP)
ε(rd)
ε(rP)
ε(rd)

� Nr
�/3 � a� �

ε rP
ε rd
ε rP
ε rd
ε rP
ε rd

� Nr
�
3 � ��503 � � � Ec rs � rs�

� a3 �
ε(rP)
ε(rd)

5/�

�
mc(T,rd)
mc(T,rP)

�/�

� Nr
�/� �

mv(T)
mc(T,rd)

� a�

�
mc(T,rP) � ε(rP)
mc(T,rd) � ε(rd)

� Nr
�/� � ��

mc(T,rd)
mc(T,rP)

� a6�
mc(T,rd)
mc(T,rP)

�/�

�
ε rP
ε rd

3
�
� Nr

�
6

(A15)

noting that in the P-Si system at 300 K the above constants an , with n=1, 2, …, 6, were

chosen such that for gc = 6 the numerical results of minority-carrier saturation current JEo
are found to be accurate within 1.78%, as seen in Table 4.
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