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Abstract

The effects of heavy doping and acceptor (donor) size on the electron (hole)-minority

saturation current density JEo JBo , injected respectively into the heavily (lightly) doped

crystalline silicon (Si) emitter (base) region of p� � n junction, which can be applied to

determine the performance of solar cells, being strongly affected by the dark saturation

current density: Jo � JEo � JBo , were investigated. For that, we used an effective Gaussian

acceptor-density profile to determine JEo , and an empirical method of two points to

investigate the ideality factor n, short circuit current density Jsc , fill factor (FF), and

photovoltaic conversion efficiency η, expressed as functions of the open circuit voltage Voc ,

giving rise to a satisfactory description of our obtained results, being compared also with

other existing theoretical-and-experimental ones. In particular, the highest η -value, obtained
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in the present paper is equal to: η present = 27.56%, given in the condition of completely

opaque and heavily doped (Tl-Si) emitter-and-lightly doped (S-Si) base regions, with the

intrinsic band gap, Egi rTl = ͳ.Ǥ� eV, where rTl is the Tl-atom radius, while in our previous

paper we got: η previous = Ǥͳ.55% , obtained in the condition of completely opaque and

heavily doped (S-Si) emitter-and-lightly doped (Tl-Si) base regions, with Egi rS =

ͳ.7� eV > Egi rTl = ͳ.Ǥ� eV, where rS is the S-atom radius. That is due to the impurity-size

effect, because of rS > rTl. Those results can be compared with a well-known highest η-value,

obtained by Richter et al. (R), η R = 29.�Ǥ% , as: η present = 27.56% � η R =

29.�Ǥ% � η previous = Ǥͳ.55%.

Keywords: donor (acceptor)-size effect; heavily doped emitter region; ideality factor; open
circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent paper [1], which will be henceforth be referred to as I, we studied the effects of

heavy doping and impurity size on minority-carrier transport parameters in heavily (lightly)

doped n(p)-type crystalline silicon at 300 K, respectively, being applied to determine the

performance of n� � p junction solar cells. Those effects of heavy doping and donor

(acceptor) size on the hole (electron)-minority saturation current density JEo JBo , injected

respectively into the heavily (lightly) doped crystalline silicon (Si) emitter (base) region of

n� � p junction, which can be applied to determine the performance of solar cells, being

strongly affected by the dark saturation current density: Jo � JEo � JBo, were investigated. For

that, we used an effective Gaussian donor-density profile to determine JEo , and an empirical

method of two points to investigate the ideality factor n, short circuit current density Jsc , fill

factor (FF), and photovoltaic conversion efficiency η , expressed as functions of the open

circuit voltage Voc , giving rise to a satisfactory description of our obtained results, being

compared also with other existing theoretical-and-experimental ones. In particular, in I, the

highest η -value, obtained in the condition of completely opaque and heavily doped (S-Si)

emitter-and-lightly doped (Tl-Si) base regions, was found to be equal to 31.55%.

Then, in the present paper [1-46], we will investigate the effects of heavy doping and impurity

size on minority-carrier transport parameters in heavily (lightly) doped p(n)-type crystalline
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silicon at 300 K, respectively, being applied to determine the performance of p� � n junction

solar cells, by using a same treatment method as that given in I.

In Section 2, we study the effects of impurity size [or compression (dilatation)], temperature

and heavy doping, affecting all the energy-band-structure parameters such as: the intrinsic

band gap Egi , intrinsic carrier concentration ni , band gap narrowing ΔEg , Fermi energy EF ,

apparent band gap narrowing ΔEga , and effective intrinsic carrier concentration nie . In

Section 3, using Equations (16, 17), an accurate expression for the optical band gap (OBG),

Egͳ , is investigated, being found to be accurate within 1.88% and 1.46%, respectively, as

showed in Table 3. Some useful minority-carrier transport parameters such as: the minority-

electron mobility and diffusion length, μe and Le , given in the heavily doped p-type emitter

region, and the minority-hole mobility and lifetime, μh and τh , and the minority-hole

saturation current density JBo , being given in the lightly doped n-type base region, are also

presented in Section 4. Then, in Section 5, an accurate expression for the minority-electron

saturation current density, JEo , injected into the heavily doped p-type emitter region of p� �

n junction silicon solar cells at 300 K is established in Eq. (35) or its approximate form given

in Eq. (40). Further, the total saturation current density: Jo = JEo � JBo, where JBo, determined

in Equation (17), is the minority-hole saturation current density, JBo , injected into the lightly

doped n-type base region of p� � n junction silicon solar cells, can be used to investigate the

photovoltaic conversion effect, as presented in Section 6. Finally, some concluding remarks

are discussed and given in Section 7.

2. Energy-Band-Structure Parameters in Acceptor (Donor)-Si Systems

Here, we study the effects of acceptor (donor) [a(d)]-size, temperature, and heavy doping on

the energy-band-structure parameters of a(d)-Si systems, as follows.

2.1. Effect of d(a)-Size

In a(d)-Si systems at T=0 K, since the a(d)-radius ra(d) , in tetrahedral covalent bonds is

usually either larger or smaller than the Si atom-radius ro , assuming that in the B(P)-Si

system rB(P) = ro = �.ͳͳ7 nm , with ͳ nm = ͳ��9m , a local mechanical strain (or

deformation potential energy) is induced, according to a compression (dilation) for ra(d) > ro

(ra(d) � ro) , respectively, due to the a(d)-size effect. Then, in the Appendix A of our recent

paper [43], basing on an effective Bohr model, such a compression (dilatation) occurring in
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various a(d)-Si systems was investigated, suggesting that the effective dielectric constant,

ε(ra(d)), decreases with increasing ra(d) . This ra(d) -effect thus affects the changes in all the

energy-band-structure parameters, expressed in terms of ε(ra(d)) , noting that in the B(P)-Si

system ε(rB(P)), = ͳͳ.� . In particular, the changes in the unperturbed intrinsic band gap,

Ego rB(P) = ͳ.ͳ7 eV , and effective a(d)-ionization energy in absolute values

Eao(do) rB(P) = ǤǤ.5umeV, are obtained in an effective Bohr model, as [43]:

Ego ra(d) � Ego rB(P) = Eao(do) ra(d) � Eao(do) rB(P)

= Eao(do) rB(P) �
ε(rB(P))
ε(ra(d))

2

� ͳ
(1)

Therefore, with increasing ra(d) , the effective dielectric constant ε(ra(d)) decreases, implying

that Ego ra(d) increase. Those changes, which were investigated in our previous paper [43],

are now reported in the following Table 1, in which the data of the critical d(a)-density

Ncn cp (rd(a)) are also reported. This critical density marks the metal-to-insulator transition

from the localized side (all the impurities are electrical neutral), N Na ≤ Ncn cp rd a , to

the extended side, N(Na) ≥ Ncn cp (rd(a)), assuming that all the impurities are ionized even at

0 K. However, at T = Ǥ�� K, for example, all the impurities are thus ionized and the physical

conditions, defined by: N(Na) > �cn cp (rd(a)) and N Na � �cn cp (rd(a)), can thus be used

to define the n(p)-type heavily and lightly doped Si, respectively.
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Table 1. The values of ��(ᅺ), �(��(ᅺ)), and ���(��(ᅺ)), and critical impurity density ��t(��)(��(ᅺ)), at T=0 K, obtained in I, are reported here.

Donor Sb P As Bi Ti Te Se S

rd (nm) 0.1131 0.1170 0.1277 0.1292 0.1424 0.1546 0.1621 0.1628
ε(rd) 12.02 11.40 8.47 7.95 4.71 3.26 2.71 2.67
Ego(rd) (eV) 1.167 1.170 1.197 1.205 1.333 1.547 1.729 1.749
Ncn(rd) (ͳ�ͳu cm�Ǥ) 3 3.52 8.58 10.37 50 150.74 261.24 274.57

At T=300 K, the conditions: N > �cn(rd) and N ≤ Ncn(rd), can thus be used to define the n-type heavily-and-lightly doped Si, respectively.

Acceptor B Al Ga In Tl

ra (nm) 0.1170 0.1254 0.1263 0.1352 0.1410
ε(ra) 11.40 8.88 8.49 5.57 4.42
Ego(rd) (eV) 1.170 1.195 1.201 1.292 1.387
Ncp(ra) (ͳ�ͳu cm�Ǥ) 4.06 8.58 9.83 34.73 69.87

At T=300 K, the conditions: Na > �cp(ra)) and Na ≤ Ncp(ra)), can thus be used to define the p-type heavily-and-lightly doped Si, respectively.
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2.2. Temperature Effect

Being inspired from excellent works by Pässler [34, 35], who used semi-empirical

descriptions of T-dependences of band gap of the Si by taking into account the cumulative

effect of electron-phonon interaction and thermal lattice expansion mechanisms or all the

contributions of individual lattice oscillations [33-35], we proposed in our recent paper [43] a

simple accurate expression for the intrinsic band gap in the silicon (Si), due to the T-

dependent carrier-lattice interaction-effect, Egi T,rd(a) , as:

Egi T,rd(a) ≃ Ego(rd(a)) � �.�7ͳ eV � ͳ � (
2T

���.69ͳǤ K
)2.2�ͳ

ͳ
2.2�ͳ

� ͳ (2)

where the values of Ego(rd(a)) due to the d(a)-size effect are given in Table 1 and those of

Egi T = Ǥ�� K,rd(a) tabulated in Table 2. Further, as noted in this Reference 43, in the (P,

S)-Si systems, for � K ≤ T ≤ Ǥ5�� K, the absolute maximal relative errors of this Egi-result

were found to be equal respectively to: 0.22% and 0.15%, calculated using the very accurate

complicated results given by Pässler [35]. Then, in the p(n)-type heavily (lightly) doped (HD)

silicon at temperature T, the effective mass of the minority (majority) electron can be defined

by [32, 33]:

mc T,ra(d) = �.9ͳ6Ǥ � �.ͳ9�5 �
Ego(ra(d))
Egi T,ra(d)

2 ͳ/Ǥ

�mo

= �.Ǥ2ͳ6 �mo �
Ego(ra(d))
Egi T,ra(d)

2/Ǥ (3)

mo being the electron rest mass, and the effective mass of the majority (minority) hole yields

[32, 33]:

mv T
= gv

�2/Ǥ

�
�.��Ǥ5u7 � �.Ǥ6�952u � ͳ��2T � �.ͳͳ7Ǥ5ͳ5 � ͳ��ǤT2 � �.ͳ26Ǥ2ͳu � ͳ��5TǤ � �.Ǥ�255uͳ � ͳ��uT�

ͳ � �.�6uǤǤu2 � ͳ��2T � �.22u6u95 � ͳ��ǤT2 � �.7�6927ͳ � ͳ��6TǤ � �.ͳ727�uͳ � ͳ��uT�

2/Ǥ(4)

which gives mv T = � K = mvo = �.Ǥ66� � mo . Here, gv = 2 is the effective average

number of equivalent valence-band edges. Here, the intrinsic carrier concentration ni is

defined by
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ni
2(T,ra(d)) � Nc T,ra(d) � Nv(T) � exp 

� Egi T,ra(d)
kBT

(5)

where, Nc(v) is the conduction (valence)-band density of states, given by [32, 33]:

Nc T,ra(d) = 2gc �
mc T,ra(d) � kBT

2π�2

Ǥ
2
(cm�Ǥ) (6)

Nv T = 2gv �
mv T � kBT

2π�2

Ǥ
2

cm�Ǥ . (7)

Here, � = h/2π is the Dirac’s constant, kB is the Boltzmann constant, and gc = 6 is the

effective average number of equivalent conduction-band edges.

Moreover, at T=300 K, using Equations (2, 5), some typical results of Egi and ni , are

calculated as functions of rd(a), and tabulated in following Table 2.
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Table 2. Typical values of intrinsic carrier concentration t�(�, ��(ᅺ), ��) and intrinsic band gap ���

Donor Sb P As Bi Ti Te Se S

Egi(Ǥ��) in eV 1.1215 1.1245 1.1515 1.1595 1.2875 1.5015 1.6835 1.7035
ni(Ǥ��K) in ͳ�ͳ� cm�Ǥ 1.13 1.07 6.Ǥ� � ͳ��ͳ 5.�Ǥ � ͳ��ͳ �.56 � ͳ��2 7.26 � ͳ��� 2.ͳ� � ͳ��5 ͳ.�6 � ͳ��5

Acceptor B Al Ga In Tl

Egi(Ǥ��) in eV 1.1245 1.1495 1.1555 1.2465 1.3415
ni(Ǥ�� K) in ͳ�ͳ� cm�Ǥ 1.07 6.59 � ͳ��ͳ 5.u7 � ͳ��ͳ ͳ.�ͳ � ͳ��ͳ ͳ.6� � ͳ��2
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From those results, one remarks that ni rd(a) decreases with increasing rd(a) since

Egi rd(a) increases as observed in this Table 2, being due to the donor (acceptor)-size effect.

2.3. Heavy doping effect

In the HD acceptor-Si system, we can define the effective intrinsic carrier concentration nie ,

by

nie
2 � N � no � ni

2 � exp
ΔEga
kBT

(8)

where ni
2 is determined in Equation (5), N is the total acceptor density, no is the density of

minority electron at the thermal equilibrium, and the ABGN is defined by:

ΔEga � ΔEg � kBT � ln
N
NV

� EF (9)

where NV is defined in Equation (7), noting that , from Eq. (8), we can also define the

“effective acceptor density” by [10]: NAeff. � N/exp ΔEga
kBT

so that NDeff. � no � ni
2. Further,

in Eq. (9), the Fermi energy EF can also be determined with a precision of the order of

2.ͳͳ � ͳ��� [40], as that determined in Eq. (A3) of I, in which the reduced donor density u

is now simply replaced by the reduced acceptor one: w = N
Nv T

. Furthermore, in Eq. (9), the

BGN, ΔEg , due to the heavy doping effect, can also be determined in Equation (A15) of I, by

a similar way, being appropriate to the BGN, obtained now in the HD acceptor-Si systems as:

ΔEg(N,ra) ≃ aͳ �
ε(rB)
ε(ra)
ε(rB)
ε(ra)

� Nr
ͳ/Ǥ � a2 �

ε rB
ε ra

ε rB
ε ra

ε rB
ε ra

� Nr
ͳ
Ǥ � 2.5�Ǥ � � � Ec rs � rs� � aǤ �

ε(rB)
ε(ra)

5/�
� Nr

ͳ/� � mc(T,ra)
mv(T)

� a� �
ε(rB)
ε(ra)

� Nr
ͳ/2 � 2� a5 �

ε rB
ε ra

Ǥ
2 � Nr

ͳ
6,

(10)

where Nr =
N

9.999
� ͳ�ͳ7 cm�Ǥ , aͳ = Ǥ.ͳ5 � ͳ��Ǥ, a2 = 5.�ͳ � ͳ���, aǤ = 2.Ǥ2 �

ͳ��Ǥ, a� = �.ͳ95 � ͳ��Ǥ, a5 = 9.u � ͳ��5 , and Ec rs is the shift in majority valence-band

edge, determined in Eq. (A7) of I, as a function of the effective Wigner-Seitz rs, by:

rs(N,ra) �
Ǥgv
�πN

ͳ
Ǥ � ͳ

aB(ra)
, aB(ra) = 5.29ͳ77ͳ5 � ͳ��9 � ε(ra)

mv
(cm),

aB ra being the effective Bohr radius.
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Then, in such the P-Si system at 300K, being inspired by the term: kBT � ln N
NC

given in Eq.

(9), and also by the last term given in Eq. (10), we propose an empirical form (EF) of the

ABGN, as:

ΔEga(EF) � 9.9u7 � ͳ��Ǥ � ln N
ͳ�ͳ7 cm�Ǥ � ͳ.�Ǥ9 � ͳ��� � Nr

ͳ
6 .

(11)

It should be noted that the empirical forms given in Equations (10, 11) have been chosen such

that the obtained numerical results of optical band gap (OBG) are accurate as seen in next

Table 3.

Now, in d-Si systems at 300 K, our numerical ABGN ( ΔEga )-results are calculated as

functions of N, using Equations (9, 11), and plotted in the following Fig. 1.

Fig. 1. (a) Comparison of ABGN (Δ��ᅺ)-results given in the P-Si system, (b) relative ABGN-

deviations given in the P-Si system, and (c) our ABGN-results given in heavily doped acceptor-Si

systems, obtained using Eq. (9).

Here, one observes that:

(i) the absolute maximal relative deviation yields about 27.5%, and

(ii) in Fig. 1(c), for a given acceptor (Al, Ga, In, Tl)-Si system, due to the heavy doping effect,

or ABGN-result increases with increasing N, and for a given N, due to the donor-size effect,

ours increase (�) with increasing ra.

3. Conjunction between Electrical-and-Optical Phenomena

First of all, we define the optical band gap (OBG) by [26]:
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Egͳ(O) N,T,ra � Egi T,ra � ΔEg (N, ra) � EF N,ra , (12)

suggesting that the optical phenomenon is represented by Egͳ(O).

Furthermore, it is possible to establish a conjunction between the electrical (E) and optical (O)

phenomena, obtained from Equations (9, 12), by:

Egͳ(E) N,T,ra � Egi T,ra � ΔEga (N, ra) � kBT � ln
N

NV(T)

which can be rewritten, for example, replacing ΔEga by ΔEga(EF) determined in Eq. (11), as:

Egͳ(E) N,T,ra � Egi T,ra � ΔEga(EF) � kBT � ln N
NV(T)

. (13)

Now, in the P-Si system, our numerical Egͳ(O,E) -results, calculated using Equations (12, 13)

for at T=300 K, are tabulated in following Table 3, in which our numerical results of Egͳ(O)

and Egͳ(E) are accurate within 1.88% and 1.46%, respectively, confirming the accuracy of

our empirical forms chosen in Equations (10, 11).
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Table 3. Our numerical results of optical band gap, ��o(m,�), expressed as functions of N, and their relative deviations, calculated by: RD(%)=1-(our

��o(m,�)-results/ ��o-data), where the ��o-data are given in Ref. 45.

N (ͳ�ͳu cm�Ǥ) 6.5 11 15 26 60 170 400

Egͳ(eV)-data 1.036 1.044 1.048 1.051 1.062 1.086 1.102

Egͳ(O)(eV) 1.055 1.062 1.066 1.071 1.076 1.092 1.101
RD(%) -1.87 -1.75 -1.69 -1.88 -1.35 -0.55 0.04
Egͳ(E)(eV) 1.042 1.051 1.055 1.064 1.077 1.094 1.107
RD(%) -0.60 -0.63 -0.72 -1.26 -1.46 -0.73 -0.50

The underlined RD -values are the maximal ones.
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4. Minority-Carrier Transport Parameters

Here, in the heavily doped p-type emitter region and the lightly doped n-type base region of

p� � n junction silicon solar cells, the minority-electron (hole) transport parameters are

studied as follows.

4.1. Heavily doped n-type emitter-region parameters

In order to determine the minority-electron saturation-current density JEo , injected into the

heavily doped p-type emitter-region, we need to know an expression for the minority-electron

mobility μe , being related to the minority-electron diffusion coefficient De , by the well-

known Einstein relation: De =
kBT
e
� μe , where e is the positive hole charge. Here, in

acceptor-Si systems at 300 K, since the minority-electron mobility depends on N [4], and also

ε ra [12], we can propose:

μe Na,T,ra = 92 �
ͳǤ6�� 92

ͳ �
Na

ͳ.Ǥ � ͳ�ͳ7cm�Ǥ

�.9ͳ �
ε(ra)
ε(rB)

2

�
T

Ǥ�� K

Ǥ/2

cm2V�ͳs�ͳ

(14)

noting that as T = 300 K, and ra � rB , Eq. (14) is reduced to that investigated by Slotbottom

and de Graaff [4], and for a given N and with increasing ra , μe decreases, since ε(ra)

decreases, as seen in Table 1, in good accordance with that observed by Logan et al. [10].

Further, from Equations (5, 8, 9, 11, 14), we can define the following minority-electron

transport parameter F as:

F N,T,ra �
ni
2

no�De
= NAeff.

De
� N

De�exp
ABGN
kBT

(cm�5 � s), NAeff. �
N

exp ABGN
kBT

(15)

where NDeff. is the “effective doping density” [10] and the ABGN is determined in Eq. (9) or

Eq. (11).

Furthermore, the minority-electron diffusion length, Le N,T,ra = τe � De , τe being the

minority-electron lifetime, can be determined by [23, 26]:

Le�2 N,T,ra = τe � De �ͳ = C � F 2 = C �
NAeff.
De

2

= C �
ni
2

no � De

2

(16)
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where the constant C = ͳ��ͳ7 (cm�/s) was chosen in this work. Here, one remarks that τe
can be computed since De (or μe) and F are determined respectively in Equations (14, 15).

4.2. Lightly Doped n-type Base-Region Parameters

Here, the minority-hole saturation current density injected into the lightly doped n-type base

region, with a donor density equal to Nd, is given by [2, 8]:

JBo Nd,T,rd =

e � ni
2(T,rd) �

Dh(Nd,T,rd)
τh(Nd)

Nd

(17)

where ni
2(T,rd) is determined in Eq. (5) and Dh(Nd,T,rd) �

kBT
e
� μh Nd,T,rd is the

minority-hole diffusion coefficient, noting that Eq. (17) is valid only for Nd ≤ ͳ�ͳ6 cm�Ǥ.

Here, in the donor-Si system, μh is the minority-hole mobility, being determined by [12, 17]:

μh Nd,T,rd,gc = ͳǤ� � 5���ͳǤ�

ͳ� Nd
u�ͳ�ͳ7 cm�Ǥ

ͳ.25 � ε(rd)
ε(rP)

2
� T

Ǥ�� K

Ǥ/2
cm2V�ͳs�ͳ

(18)

being reduced to the result obtained by del Alamo et al. [11, 17], as T=300 K and rd = rP ,

and τh(Nd) is the minority-hole lifetime, determined by [26]:

τh Nd �ͳ = ͳ
2.5�ͳ��Ǥ

� ͳͳ.76 � ͳ��ͳǤ � Nd � 2.7u � ͳ��Ǥͳ � Nd
2. (19)

Moreover, in Eq. (18), one notes that, for a given Nd and with increasing rd , μh
decreases, since ε(rd) decreases, as seen in Table 1, in good accordance with that

observed by Logan et al. [10].

In the following, we will determine the minority-electron saturation-current density JEo ,

injected into the heavily doped p-type emitter-region of the p� � n junction solar cells.

5. Minority-Hole Saturation Current Density

Let us first propose in the non-uniformly and heavily doped (NUHD) emitter region of

acceptor-Si devices an expression for the effective Gaussian acceptor-density profile or the

acceptor (majority-hole) density, being defined in the emitter-region width W, by:
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ρ x = N � exp �
x
W

2
� ln 

N
No(W)

� N �
N

No(W)

� x
W

2

(20)

where No(W) � 2 � ͳ�5 � exp � W
ͳ��7 cm

�.5
(cm�Ǥ) , ͳ μm = ͳ��� cm , decreases with

increasing W, in good agreement with the doping profile measurement on silicon devices,

studied by Essa et al. [14]. Moreover, Eq. (20) indicates that:

(i) at the surface emitter: x=0, ρ(�) = N, defining the surface acceptor density, and

(ii) at the emitter-base junction: x=W, ρ(W) = No W , which decreases with increasing W,

as noted above. Moreover, all the parameters given in Eq. (20) were chosen such that the

errors of our obtained JEo–values are minimized, as seen in next Table 4, and our numerical

calculation indicates that, from Equation (20), the highest values of W are found to be: W ≥

ͳǤ6 μm , being equivalent to W → � . Then, for example, for N = 5 � ͳ�2� cm�Ǥ and with

some different values of W, the numerical results of ρ x are calculated as a function of the

emitter depth x, and then plotted in Fig. 2.

Fig. 2. The numerical results of the effective Gaussian acceptor-density profile � � .

Now, from Eq. (15), for � ≤ x ≤ W, and using Eq. (20), one has:

NAeff.(x) � ρ x /exp ΔEga(ρ x )
kBT

. (21)

Then, under low-level injection, in the absence of external generation, and for the steady-state

case, we can define the minority-electron density by:

no(x) �
ni
2

NAeff.(x)
(22)

and a normalized excess minority-electron density [or a relative deviation between n x and

no(x)] by [23, 26]:
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u x �
n x � no(x)

no(x)
(23)

which must verify the two following boundary conditions proposed by Shockley as [3]:

u x = � �
Jh x = �

eS � no(x = �)
(24)

u x = W ≃ exp
V

n V � VT
� ͳ, for small W � values. (25)

Here, n(V) is an ideality factor, S ( cm
s
) is the hole surface recombination velocity at the

emitter contact, V is the applied voltage, VT � (kBT/e) is the thermal voltage, and the

minority-electron current density Je x , being found to be similar to the Fick’s law for

diffusion equation, is given by [9, 23]:

Je x =
eni

2

F(x)
�
du x
dx

=�
eni

2De(x)
NAeff.(x)

�
du x
dx

(26)

where F(x) is determined in Eq. (19), in which N is replaced by ρ x , proposed in Equation

(20).

Further, the minority-electron continuity equation yields [9, 23]:

dJe x
dx

= eni
2 � u x

F x �Le2
= eni

2 � u x
NAeff. x �τe(ρ(x))

= e � n(x) � n�(x) � τe(N)
τe(ρ(x))

� ͳ
τe(N)

. (27)

Then, from these two Equations (26, 27), one obtains the following second-order differential

equation as [1, 23]:

d2u x
dx2

�
dF x
dx

�
du x
dx

�
u x
Le2 x

= � (28)

Using the two boundary conditions (24, 25), one thus gets the general solution of this

Equation (28) as [1, 23]:

u x = A(W) � sinh P x � B(W) � cosh P x � exp V
n(V)�VT

� ͳ , (29)

where A(W) � ͳ
sinh P W �Ι(W)�cosh P W

, Ι(W,S) � B
A
= De(No W )

S�Le(No W )
and P x � �

xC � F x dx� ,

since dP x
dx

� C � F x . Here, C = ͳ��ͳ7 (cm�/s) , as that chosen in Eq. (16), and the

hyperbolic sine-and-cosine functions are defined by: sinh(x) � �.5 � ex � e�x and

cosh(x) � �.5 � ex � e�x .
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Further, from Eq. (29), as P W � ͳ (or for small W) one has: A ≃ ͳ
I
or B ≃ ͳ , and one

therefore obtains: u W ≃ exp V
n(V)�VT

� ͳ , which is just the boundary condition given in

Eq. (25).

Now, using Equations (26, 29) at T=300 K, one gets:

Je x, N,ra, S = JEo x, N,T,ra, S � exp
V

n(V) � VT
� ͳ (30)

where JEo is the minority-hole saturation current density, being injected into the heavily

doped p-type emitter region, for � ≤ x ≤ W, and given by:

JEo x, N,ra, S = eni
2C � A(W) � cosh P x � B(W) � sinh P x (31)

One also remarks that, from Equations (16, 29-31), and after some manipulations, one gets:

u x = � � Je x=�
eS�no(x=�)

, being just the boundary condition given in Eq. (24).

Now, using the P(x)-definition given in Equation (29), one can define the inverse effective

minority-electron diffusion length by:

ͳ
Le,eff. x = W, N,ra

=
ͳ
W �

W dx
Le(x)

� =
ͳ
W �

W
C � F x dx � P x = W, N,ra� /W (32)

where Le = CF �ͳ is defined in Equation (16), in which N is replaced by ρ x , being

determined in Equation (20). Therefore, for a simplicity, Eq. (32) can be rewritten as:

P x = W, N,ra �
W
Le,eff.

=
W
Le
�

Le
Le,eff.

(33)

Then, from Eq. (29, 31), since B = A � Ι(W,S), one obtains:

JEo x = �,N,ra,S = eni
2C � A =

eni
2C

sinh P � Ι � cosh P
(34)

JEo x = W,N,ra,S = eni
2C �

cosh P � Ι � sinh P
sinh P � Ι � cosh P

(35)

Now, from those results (30, 34, 35), one gets:

Je x = �,N,ra,S
Je x = W,N,ra,S

�
JEo x = �,N,ra,S
JEo x = W,N,ra,S

=
ͳ

cosh P � Ι � sinh P
(36)

Further, using Equations (23, 29, 30) and going back to the minority-electron continuity

equation defined in Eq. (27), one gets:
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ͳ
JEo x=W

� JEo x = W � JEo x = � = ͳ
τe(N)

� Qe, eff.(x = W,N) ,

(37)

where τe N,ra is determined in Eq. ͳ6 , and Qe, eff.(C/cm2) is the effective excess

minority-electron charge density given in the emitter region, defined by [1, 23]:

Qe, eff.(x = W,N) � �
W e � n(x) � n�(x) � τe(N)

τe(ρ(x))
� dx. (38)

Finally, from Equations (36, 37), if defining the effective minority-hole transit time by:

τt,eff.(x = W,N,S) � Qe, eff.(x = W,N)/JEo x = W,N,ra,S , one then obtains the reduced

effective minority-electron transit time, as [1, 23]:

τt,eff. x=W,N,rd,gc,S
τe

= ͳ � JEo x=�,N,ra,S
JEo x=W,N,ra,S

= ͳ � ͳ
cosh P �Ι�sinh P

. (39)

Now, from above Equations (34-39), some important results can be obtained and discussed

below.

5.1. Very large �( ≥ ot�t ��
�
, �th (����࢞� or � → � and � � o or�� ��,���.

Here, various results can be investigated as follows.

(i) From Equations (34-36), since Ι(W) = De(No W )
S�Le(No W )

→ � as S → �, JEo x=�,N,ra,S
JEo x=W,N,ra,S

≃ ͳ
cosh P

→

ͳ since P � ͳ , or JEo x = W, N,ra,S → � ≃ JEo x = �, N,ra,S → � . Therefore, from Eq.

(35), one obtains: τt,eff. x=W,N,rd,gc,S→�
τh(N)

→ �, suggesting a completely transparent emitter region

(CTER).

(ii) Further, from Equations (18-20, 39), since Ι → � and P � ͳ , the result (35) is now

reduced to:

JEo x = W, N,ra,S → � ≃
eni

2C

P
=

eni
2

F�W
� Le,eff.

Le
=

eni
2�De�exp

ABGN
kBT

N�W
� Le,eff.

Le
=

eni
2�De

NAeff�W
� Le,eff.

Le
, (40)

being found to be independent of S and C, since Lh,eff.
Lh

is independent of S and C, as

observed in Equations (16, 32), and noting that the ABGN-expression is determined by Eq. (9)

or by Eq. (11).

It should be noted that Cuevas et al. (CFY) [22] used a simplified form as: JEo(C) ≃
eni

2�De
NAeff�W

to

explain their experimental results obtained from the samples: 2B1, 2B2, 2B3, 2B4 and 2B5,

as those given in Table 1 of this Reference 22, giving the relative deviations in absolute



144

values equal to: 28.6%, 0%, 66.7%, 220% and 200%, respectively. It means that this

simplified JEo(C) -formula is found to be inaccurate, due to the fact that they neglected an

important ( Le,eff.
Le

)-effect, given in this heavily doped emitter region.

Now, in the B-Si system, for T = Ǥ�� K,ra � rB , our two numerical JEo-results are calculated,

using Equations (40, 9) and (40, 11), and tabulated in Table 4, in which the CTER -condition,

P � ͳ or τt,eff.
τe N

� ͳ , is fulfilled, and we also compare them with modeling and measuring

JEo-results investigated by Cuevas et al. (CFY) [22].
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Table 4. Our present results of ���, expressed as functions of N and W, and the corresponding relative deviations (RDs), calculated, using: RD(%)=1-
( �ᅺ����ᅺܝ�� ���/ ���-data), using the ���-data given by Cuevas et al. CFY [22], their calculated results [22], CFY- ���, and the corresponding RDs.
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The underlined RD -values are the maximal ones, being equal to: 220% for CFY- JEo [22],

and 32.9% and 20.4% for our present JEo - results, calculated using Equations (40, 9) and

(44,11), respectively.

Table 4 indicates that: (1) the RDs between our JEo–values and measured CFY- JEo ones are

well minimized, confirming that all the parameters given in Eq. (20) have been well chosen,

and (2) since for N ≥ 6 � ͳ�2� cm�Ǥ , the measured CFY- JEo values are not regular (for

example, they obtained the same results of De(CFY) and CFY- JEo . Furthermore, one notes

that our ΔEga -expression given in Eq. (9) has been obtained, taking into account all the

physical effects such as: those of acceptor size, heavy doping and Fermi-Dirac statistics,

while in Equation (11) our ΔEga(EF) -expression is only an empirical ABGN-form. So, we

will choose the ABGN-result (9) for all the following numerical calculations.

(iii) Furthermore, in particular, for large S and small P, from Equation (36) one gets:

JEo x=�,N,ra,S
JEo x=W,N,ra,S

= ͳ
cosh P �Ι�sinh P

≃ ͳ� De(No W )
S�Le(No W )

� P � P 2

2
.

Then, from Equation (39), using Equations (16, 33) one obtains in the heavily doped case:

τt,eff. x = W,N,ra,S ≃ τe �
De No W

S � Le No W
� P �

P 2

2

≃
W
S
�

Le No W
Le,eff. No W

�
W2

2De No W
�

Le No W
Le,eff. No W

2

≃
W2

2De No W
�

Le No W
Le,eff. No W

2

, as S → �

(41)

and in the lowly doped case (i.e., Le,eff. ≃ Le):

τt,eff. x = W,N,ra,S � τt =
W
S
� W2

2De
≃ W2

2De
, as S → � (42)

being just a familiar expression given for the minority-hole transit time τt obtained by Shibib

et al. [8].

5.2. Small � = ot��t ( ��
�
) or � → t, and � � o or�� ��,���.

Here, from Eq. (29) and for any N, one has: Ι = De(No W )
S�Le(No W )

→ � , since S → � . Therefore,

from Equation (39), one obtains: τt,eff. x=W���,���.,N,ra,S→�
τe

→ ͳ, suggesting a completely opaque

emitter region (COER).
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Then, in the B-Si system at 300 K, our numerical results of JEo x = W, N,ra,S � JEo and
τt,eff.(x=W,N,ra,S)

τe
� τt,eff.

τe
, for simplicity, are computed, using Equations (35, 39), and plotted into

Fig. 3 and Fig. 4, respectively, noting that all the above discussions are presented in those

Figures (3, 4).

Fig. 3. (ᅺ, �) Our ���-results obtained as functions of N, (c) our ���-ones obtained as functions of S.

Fig. 4. (ᅺ, �) Our ,ܝ�) ���./��)-results obtained as functions of N, (c) our
,ܝ� ���.
��

-ones obtained as

functions of S.

Finally, it should be noted that in next Section 6 we must know the numerical results of dark

saturation current density, defined by:

Jo x = W,N,ra,S, Nd,rd � JEo x = W,N,ra,S � JBo Nd,rd (43)

where JBo and JEo are determined respectively in Equations (17, 35). Then, those are

tabulated in the following Table 5, in which all the physical conditions are also presented.
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Table 5. Our numerical results of �� = ��� � ���, calculated using Eq. (43).

First case: In the heavily doped (HD) B-Si emitter region (N = ͳ�2� cm�Ǥ), and in the lightly doped (LD) P-Si base region (Nd = ͳ�ͳ6 cm�Ǥ) in which JBo = 7.26uu7 � ͳ��ͳǤ A
cm2 .

For S = ͳ�5� cm/s and W = �.2�6 nm, according to the completely transparent emitter region, one has:

JEo = ͳ.7ͳ22u � ͳ��9 A
cm2 � JBo and Jo = ͳ.7ͳǤ�ͳ � ͳ��9 A

cm2 ≃ JEo

For S = ͳ�5� cm/s and W = �.� nm, according also to the completely transparent emitter region, one has:

JEo = u.2�629 � ͳ��ͳͳ A
cm2 � JBo and Jo = u.27u9u � ͳ��ͳͳ A

cm2 ≃ JEo

For S = ͳ�� cm/s and W = �.Ǥ6 μm, one has:

JEo = ͳ.97�26 � ͳ��ͳ5 A
cm2 � JBo and Jo = 7.2uu5u � ͳ��ͳǤ A

cm2 ≃ JBo

For S = ͳ��5� cm/s and W = ͳǤ6 μm, according also to the completely opaque emitter region, one has:

JEo = Ǥ.7u�u7 � ͳ��ͳu A
cm2 � JBo and Jo = 7.26u9ͳ � ͳ��ͳǤ A

cm2 ≃ JBo

Second case: In the completely opaque HD Tl-Si emitter region (N = 5 � ͳ�2� cm�Ǥ, S = ͳ��5� cm/s andW= ͳǤ6 μm), where JEo = �.2Ǥ � ͳ��22 A
cm2 , and in the limiting lightly doped d-Si base region, in which

Nd = ͳ�ͳ6 cm�Ǥ.

(rTl, rd) (rTl, rSb) (rTl, rP) (rTl, rAs) (rTl, rBi) (rTl, rTi) (rTl, rTe) (rTl, rSe) (rTl, rS)

JBo
A
cm2 Ǥ.5�5 � ͳ��ͳ� Ǥ.�97 � ͳ��ͳ� ͳ.7ͳu � ͳ��ͳ� ͳ.5�7 � ͳ��ͳ� 7.6u5 � ͳ��ͳ5 5.ͳ�u � ͳ��ͳ5 �.257 � ͳ��ͳ5 �.ͳu5 � ͳ��ͳ5

Jo
A
cm2 Ǥ.5�5 � ͳ��ͳ� Ǥ.�97 � ͳ��ͳ� ͳ.7ͳu � ͳ��ͳ� ͳ.5�7 � ͳ��ͳ� 7.6u5 � ͳ��ͳ5 5.ͳ�u � ͳ��ͳ5 �.257 � ͳ��ͳ5 �.ͳu5 � ͳ��ͳ5

Thus, Jo = JBo, since JEo ≃ �.

Third case: In the completely transparent HD a-Si emitter region (N = 5 � ͳ�2� cm�Ǥ, S = ͳ�5� cm/s andW= �.���2�6 μm), and in the lightly doped S-Si base region, in which JBo = ͳ.7�ͳ2� � ͳ��ͳǤ A
cm2 for

Nd = ͳ�ͳ6 cm�Ǥ.

(rS, ra) (rS, rB) (rS, rAl) (rS, rGa) (rS, rIn) (rS, rTl)

JEo
A
cm2 7.ͳ6� � ͳ��ͳ� �.Ǥ�5 � ͳ��ͳ� Ǥ.76� � ͳ��ͳ� 2.Ǥͳu � ͳ��ͳͳ 7.9Ǥ5 � ͳ��ͳǤ

Jo
A
cm2 7.ͳ65 � ͳ��ͳ� �.Ǥ�7 � ͳ��ͳ� Ǥ.762 � ͳ��ͳ� 2.ǤǤ5 � ͳ��ͳͳ 9.6Ǥ6 � ͳ��ͳǤ
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Some important remarks are given and discussed below.

(i) In the first case, with decreasing S and increasing W, Jo thus decreases from the CTER to

the COER, and one gets in this COER-condition: Jo ≃ JBo.

(ii) In the second case or in the COER-condition, JBo decreases with increasing rd, being due

to the donor-size effect, and for given rd one has: Jo = JBo since JEo ≃ �.

(iii) In the third case or in the CTER-condition, JEo decreases with increasing ra , being due

to the acceptor-size effect.

It should be noted that these values of Jo will strongly affect the variations of various

photovoltaic conversion parameters of p� � n junction silicon solar cells, such as: the

ideality factor n, short circuit current density Jsc , fill factor FF, and photovoltaic conversion

efficiency η , being expressed as functions of the open circuit voltage, Voc [1, 5], as

investigated in the following. Our empirical treatment method used here is that of two points

[1]. The first point is characterized by [29]:

Vocͳ = 6Ǥ6 mV, Jscͳ = Ǥ6.9 mA
cm2 , (44)

and the second one by [29]:

Voc2 = 7�� mV, Jsc2 = �ͳ.6 mA
cm2 . (45)

In the following, we will develop our empirical treatment method of two points, used to

determine the performance of p� � n junction solar cells.

6. Photovoltaic Conversion Effect

The well-known net current density J at T=300 K, expressed as a function of the applied

voltage V, flowing through the p� � n junction of silicon solar cells, is defined by:

J V � Jph. V � Jo � �
V

n V � VT � ͳ , VT �
kBT
e

= 25.u5�Ǥ mV (46)

noting that J V = � at V = Voc, Voc being an open circuit voltage, at which Jph. V = Voc �

Jsc W,N,ra,S, Nd,rd,Voc , where Jsc is the short circuit current density. Here, Jph. is the

photocurrent density and Jo W,N,ra,S, Nd,rd � JEo � JBo is the “dark saturation current

density” or the p� � n junction leakage saturation current density in the absence of light,

defined in Equation (43). Therefore, the photovoltaic conversion effect occurs, according to:
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Jsc W,N,ra,S, Nd,rd,Voc � Jo W,N,ra,S, Nd,rd � ev � ͳ , v W,N,ra,S, Nd,rd,Voc
�

Voc
n(V) � VT

(47)

Here, n is the ideality factor, being determined by our empirical treatment method of two

points, as:

n W,N,ra,S, Nd,rd,Voc
= nͳ W,N,ra,S, Nd,rd,Vocͳ,Jscͳ � n2 W,N,ra,S, Nd,rd,Voc2,Jsc2

�
Voc
Vocͳ

� ͳ
yn
,

(48)

which is valid for any W,N,ra,S, Nd,rd,Voc ≥ Vocͳ , and increases with increasing Voc for

given W,N,ra,S, Nd and rd , noting that will be chosen such that the following definition of

nͳ(2) is correct.

Further, the values of Vocͳ,Jscͳ , Voc2 and Jsc2 are given in Equations (44, 45), and the

numerical results of nͳ(2) can be determined by:

nͳ(2) W,N,ra,S, Nd,rd,Vocͳ(2),Jscͳ(2) �
Vocͳ(2)
VT

�
ͳ

ln 
Jscͳ(2)
Jo

� ͳ
(49)

which implies that both nͳ(2) (or n) and Jo have the same variations for given

W,N,ra,S, Nd,rd -variations, suggesting thus an important remark.

Furthermore, in Eq. (48), for the CTER-conditions such as:

W = �.���2�6 μm,N = ͳ�2� cm�Ǥ,ra = rB,S = ͳ�5� cm
s
, Nd = ͳ�ͳ6 cm�Ǥ,rd = rP, (50)

one obtains: nͳ 2 = ͳ.�56u� (ͳ.6�ͳ2Ǥ), according to the value of the exponent yn, given in

Eq. (48), equal to 1.07616.

Then, the values of the fill factor FF, obtained as a function of Voc, can be proposed by:

FF W,N,ra,S, Nd,rd,Voc =
v W,N,ra,S, Nd,rd,Voc � ln v W,N,ra,S, Nd,rd,Voc � �.72

v W,N,ra,S, Nd,rd,Voc � yFF
(51)

where yFF = �.7 was chosen such that, under the above conditions (50), the values of FF are

found to be equal about to 80%, noting that, in the case where both series resistance and shunt

resistance have a negligible effect upon cell performance, yFFGreen = ͳ, as proposed by Green

[5].

Finally, the photovoltaic conversion efficiency η can be defined by:
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η W,N,rd,S, Na,ra,Voc �
Jsc � Voc � FF

Pin.
(52)

where Jsc and FF are determined respectively in Equations (47, 51), being assumed to be

obtained at 1 sun illumination or at AM1.5G spectrum (Pin. = �.ͳ�� W
cm2 ) [28, 29].

In summary, all above parameters such as: n, Jsc, FF and η, defined in above, strongly depend

on Jo, determined in Equation (43), which is thus a central result of the present paper.

Now, for given physical conditions such as: W,N,ra,S, Nd and rd , and by taking into account

all remarks given in Table 5 and also in above Equation (49), our numerical results of n, Jsc ,

FF and η, expressed as functions Voc, are respectively computed, using Equations (48, 47, 51,

52), and reported in following Table 6 and Figures 5, 6 and 7.

In Table 6, in which, for 6Ǥ6≤ Voc(mV) ≤ 7�5, the physical conditions used are those given

in Eq. (50), according to the CTER, we will get the precisions of the order of 9.1% for Jsc ,

6% for FF, and 9.8% for η, calculated using the corresponding data [2, 18, 19, 20, 25, 29, 30],

being strongly affected by Jo = JEo � JBo , as noted above. One can conclude here that, with

such high accuracies of these performance parameters, our obtained JEo -results given in

Table 4, using Equations (40, 9), may be accurate within about 9.8%.
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Table 6. With the physical conditions given in Eq. (58), our present results (PR) of n, ���, FF, and η, calculated using Equations (52, 51, 56, 57), being

compared with corresponding data (D), and their relative deviations (RD), computed using the formula: RD= o � (ሺ�/�) . VC

Data (D) from Voc n Jsc PR Jsc D ;RD FF PR FF D ;RD η PR η D ;RD

References (mV) (mA
cm2) (

mA
cm2) (%) (%) (%) (%) (%) (%) (%)

[2] 745 1.6968 40.66 (39.4); 3.2 79.79 (80.9); 1.4 24.17 (23.7); 1.9
[2] 729 1.6591 41.18 (38.5); 6.9 79.80 (79.1); 0.9 23.95 (22.1); 8.4
[2] 735 1.6732 41.00 (38.5); 6.5 79.80 (77.5); 3.0 24.05 (21.9); 9.8
[2] 726 1.6521 41.26 (37.8); 9.1 79.80 (79.7); 0.1 23.90 (21.8); 9.6
[2] 639 1.4619 37.70 (39.3); 4.1 79.73 (78.9); 1.0 19.20 (19.8); 3.0
[25] 655 1.4934 39.90 (39.5); 1.0 79.77 (79.9); 0.1 20.85 (20.7); 0.7
[25] 656 1.4955 39.99 (39.5); 1.2 79.80 (79.8); 0.0 20.93 (20.7); 1.1
[20] 727 1.6544 41.23 (38.9); 6.0 79.80 (78.4); 1.8 23.92 (22.1); 8.0
[29] 704 1.6012 41.60 (41.6); 0.0 79.81 (83.5); 4.4 23.37 (24.5); 4.6
[29] 704 1.6012 41.60 (41.5); 0.2 79.81 (81.0); 1.5 23.37 (23.7); 1.4
[29] 712 1.6196 41.53 (38.4); 8.1 79.81 (78.7); 1.4 23.60 (21.5); 9.7
[29] 678 1.5428 41.27 (39.5); 4.5 79.80 (80.3); 0.6 22.33 (21.5); 3.9
[29] 636 1.4568 36.90 (36.9); 0.0 79.71 (77.0); 3.5 18.71 (18.1); 3.3
[18] 677 1.5406 41.24 (40.3); 2.3 79.80 (80.6); 0.9 22.28 (22.0); 1.3
[18] 729 1.6591 41.18 (39.6); 3.9 79.80 (80.0); 0.2 23.95 (23.0); 4.1
[18] 704 1.6012 41.60 (41.9); 0.7 79.80 (81.0); 1.5 23.37 (23.9); 2.2
[19] 651 1.4852 39.49 (38.8); 1.8 79.76 (76.4); 4.4 20.51 (19.3); 6.2
[19] 721 1.6404 41.37 (40.5); 2.1 79.80 (82.9); 3.7 23.80 (24.2); 1.6
[19] 704 1.6012 41.60 (42.0); 0.9 79.81 (83.5); 4.4 23.37 (24.7); 5.4
[30] 738 1.6802 40.91 (42.6); 4.1 79.79 (84.9); 6.0 24.09 (26.7); 9.7
[30] 674.2 1.5345 41.13 (41.1); 0.1 79.80 (80.5); 0.9 22.13 (22.3); 0.8
[30] 687 1.5628 41.50 (38.5); 7.8 79.81 (80.3); 0.6 22.75 (21.2); 7.3

The underlined RD(%)-values are the maximal ones, being equal to: 9.1% at Voc = 726 mV for Jsc PR , 6.0% at Voc = 7Ǥu mV for FF PR , and 9.8% at Voc =

7Ǥ5 mV for η PR .
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In Figures 5 (a), (b), (c) and (d), the physical conditions used are:

N = ͳ�2� cm�Ǥ,ra = rB, Nd = ͳ�ͳ6 cm�Ǥ, rd = rP, and different (S, W) � values. (53)

Here, for a given Voc, and with decreasing S and increasing W, we observe that:

(i) in the Fig. 5 (a), the function n (or the function Jo given in Table 5) decreases from the

CTER to the COER,

(ii) in Figures 5 (b), 5 (c) and 5(d), the functions Jsc , FF and η therefore increase from the

CTER to the COER, and

(iii) in Figure 5 (d), for the physical functions: W=136 μm and S = ͳ��5� cm/s, the function

η reaches a maximum equal to 27.36% at Voc=742 mV; here ͳ μm = ͳ��6 m.
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Figure 5. (a) Our n-results, (b) ���(
��
��� )-results, (c) FF(%)-results, and (d) η(%)-results, plotted as

functions of ��� and obtained with increasing W and decreasing S (or from the completely

transparent emitter region to the completely opaque emitter region).

In Figures 6 (a), (b), (c) and (d), the physical conditions used are:

W = ͳǤ6 μm, N = 5 � ͳ�2� cm�Ǥ,ra = rTl, S = ͳ��5�
cm
s
,

Nd = ͳ�ͳ6 cm�Ǥ, rd, and Egi(rd) at Ǥ�� K, (54)

according to the COER, and they are also given in these Figures and in Table 5 for the second

limiting case, in which Jo = JBo , since JEo = � . Thus, this simplifies the numerical

calculation of functions n, Jsc , FF and η , using Equations (48, 47, 51, 52), where Jo is

replaced by JBo , determined by Eq. (17). Further, in Equation (54), the values of Egi(rd) are

given in Table 2. Then, for a given Voc and with increasing rd -values, it should be

concluded that, due to the acceptor-size effect,

(i) in the Fig. 6 (a), the function n (or the function Jo given in Table 5) decreases (�), and

(ii) in Figures 6 (b), (c), (d), the functions Jsc , FF and η therefore increase ( � ), and in

particular, in Fig. 6 (d), for the completely opaque (Tl-Si) emitter-region conditions, where

JEo =0 or Jo = JBo , the maximal η-values are equal to: 27.35 %,…, 27.56 %, at Voc =742

mV,…,739 mV, according to the Egi -values equal to: 1.11 eV,…, 1.70 eV, which are

obtained in various lightly doped (Sb,…, S)-Si base regions, respectively, being due to the

donor-size effect.
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Fig. 6. (a) Our n-results, (b) ���(
��
��� )-results, (c) FF(%)-results, and (d) η(%)- results, plotted as

functions of ���, and obtained in the COER-conditions, as those given in Eq. (54).

Finally, in Figures 7 (a), (b), (c) and (d), the physical conditions used are:

W = �.���2�6 μm, N = 5 � ͳ�2� cm�Ǥ, ra, S = ͳ�5�
cm
s
,

Nd = ͳ�ͳ6 cm�Ǥ, rd = rS, and Egi(ra) at Ǥ�� K, (55)

according to the CTER, and they are also given in Table 5 for the third case. Here, the values

of Egi(ra) at Ǥ�� K are given in Table 2. Then, the numerical results of n, Jsc, FF and η are

calculated, using Equations (48, 47, 51, 52). Further, for a given Voc and with increasing

ra-values, it should be concluded that, due to the acceptor-size effect,

(i) in the Fig. 7 (a), the function n determined in Equation (52) (or the function Jo given in

Table 5) decreases (�), and

in Figures 7 (b), (c), (d), the functions Jsc , FF and η therefore increase (�), and in particular,

in Fig. 7 (d), in the conditions of completely transparent and heavily doped (acceptor-Si)

emitter-and- lightly doped (S-Si) base regions, the maximal η-values are equal to: 24.59 %,…,

26.52 %, at Voc=771 mV,…,743 mV, according to the Egi -values equal to: 1.1245 eV,…,

1.3415 eV, obtained in various (B,…, Tl)-Si emitter regions, respectively, being due to the

acceptor-size effect.
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Fig. 7. (a) Our n-results, (b) ���(
��
��� )-ones, (c) FF(%)-ones, and (d) η(%)-ones, plotted as functions

of ��� and obtained in the CTER-conditions.

7. Concluding Remarks

We have developed the effects of heavy doping and impurity size on various parameters at

300 K, characteristic of energy-band structure, as given in Sections 2 and 3, and of the

performance of crystalline silicon emitter (base) regions of p� � n junction solar cells, being

strongly affected by the dark saturation current density: Jo � JEo � JBo, as given in Sections 4,

5 and 6. Then, some concluding remarks are obtained and discussed as follows.

(i) Using the optical band gap (Egͳ )-data given by Wagner and del Alamo [45], our Egͳ -

results, due to the heavy doping effect and calculated using Eq. (12), are found to be accurate

within 1.88%, as observed in Table 3.

(ii) In the CTER-conditions, as those given in Table 4, and using the JEo -data, given by

Cuevas et al. [22], and Equations (40, 9) and Equations (40, 11), our JEo-results, obtained in
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the heavily doped and completely transparent (B-Si) emitter region, are found to be accurate

within 32.9% and 19.4%, respectively, while the calculated JEo-results, obtained by Cuevas et

al. [22], are accurate within 220%.

(iii) For given physical conditions and using an empirical treatment method of two points, as

developed and discussed in Section 6, both our two results (n and Jo ) have the same

variations, which strongly affect other ( Voc , Jsc , FF, η)-results, as discussed in Eq. (49),

indicating that Jo, determined in Eq. (43), is a central result of our present paper.

(iv) In the CTER-conditions, as those given in Eq. (50), and using various (Jsc, FF, η)-data [2,

18, 19, 20, 25, 29, 30], we get the precisions of the order of 9.1% for Jsc, 6% for FF and 9.8%

for η, being strongly affected by Jo = JEo � JBo , as noted above. Thus, we can conclude here

that, with such high accuracies of these performance parameters, our obtained JEo -results

given in Table 4, using Equations (40, 9), may be accurate within about 9.8%.

(v) In the physical conditions of completely opaque and heavily doped (Tl-Si) emitter-and-

lightly doped (donor-Si) base regions, as given in Eq. (54), and in the physical conditions of

completely transparent and heavily doped (acceptor-Si) emitter-and-lightly doped (Tl-Si) base

regions, as given in Eq. (55), our calculated maximal η-values, due to the impurity-size effect,

are found to be equal to: 27.35%, …, 27.56%, as seen in Figure 6 (d), and 24.59%, …,

26.52%, as observed in Figure 7 (d), respectively. So, the highest η -value, obtained in the

present paper is equal to: η present = 27.56% , obtained in the condition of completely

opaque and heavily doped (Tl-Si) emitter-and-lightly doped (S-Si) base regions, with

Egi rTl = ͳ.Ǥ� eV, while in our previous paper [1] we got: η previous = Ǥͳ.55%, obtained

in the condition of completely opaque and heavily doped (S-Si) emitter-and-lightly doped (Tl-

Si) base regions, with Egi rS = ͳ.7� eV > Egi rTl = ͳ.Ǥ� eV, being due to the impurity-size

effect, because of rS > rTl , as seen in Table 1. Furthermore, those results can be compared

with a well-known highest η-value, obtained by Richter et al. (R) [27], η R = 29.�Ǥ% , as:

η present = 27.56% � η R = 29.�Ǥ% � η previous = Ǥͳ.55%.
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