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Abstract

Interface defect states of polycrystalline silicon thin-film transistors (poly-Si TFTs) play

important role in the degradation of subthreshold characteristics. In this paper, an

investigation of interface states is taken on, results show that both the threshold voltage and

the difference between the threshold voltage and the gate voltage corresponding to the

minimum drain current are proportional to the density of interface states at the SiO2/poly-Si

interface, and results fit well with the experimental data.
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1. Introduction

With the development of research and fabrication process in thin-film transistors (TFTs),

applications of polycrystalline silicon (poly-Si) TFTs gradually tend to be popularized, such

as active matrix liquid-crystal displays (AMLCD) [1, 2] and organic light-emitting diode

(OLED)[3]. Contrast with the amorphous silicon, the poly-Si shows higher mobility. However,
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one major limitation as related to poly-Si is defect states. Most models of poly-Si TFT [4-10]

pay more attentions to bulk defects, but few focus on interface states. What’s more, along

with the decreasing of the grain size [11], the influence of defect states at the interface on the

TFT’s performance became more evident in comparison with that in poly-Si. Therefore,

theoretical investigations on interface states can represent a useful tool to improve the

performance of TFTs based on poly-Si.

As to n type poly-Si TFT, when the positive gate voltage Vgs is smaller than the threshold

voltage (Vth), that is to say, Vo<Vgs<Vth, where Vo is the gate voltage corresponding to the

minimum drain current, the TFT is working in the subthreshold regime [9]. If the operation

range of subthreshold region can be reduced, the switching characteristic would be greatly

improved.

In this paper, we describe briefly the effect of interface states on the device performance, the

calculation and the modeling are presented in second section. Finally, the main conclusions

are given in the last part.

2. Model development

I . Relation of Vth-Vo and the density of interface defect states

Due to the defect states, the transfer characteristic curve of the poly-Si TFT is more gently

than that of the MOSFET[9]. The Fig 1 presents the transfer characteristic curve of the

poly-Si TFT

Fig.1 transfer characteristic curve of the poly-Si TFT
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Based on homothetic triangle theory,

g,max o ds1

th o ds2
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(1)

where Vg ， max is the gate voltage corresponding to the maximum transconductance of the

poly-Si TFT, Ids1、Ids2 are drain current corresponding to the Vg，max and the Vth, respectively.

From Eq.(1), the following can be obtained:
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As the subthreshold swing satisfies[1]:

gs ds gs
t

ds ds

d d
2.3

d lg d
V I V

S C DN
I I

    (3)

where C and D are constants; Nt is the density of defect states at the SiO2/poly-Si interface.

After some algebraic manipulation, Eq. (3) can be rewritten as:
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Theoretically, the curve can be almost a straight line if the angle is small enough. Therefore,

one can get

ds ds1 ds2dI I I  (5)

gs g,max thdV V V  (6)

Substitute Eqs.(5)(6) into Eq.(2), then:

th o tV V E FN   (7)

where E and F are constants.

II. Relation of Vth and the density of interface defect states

Assume the defect states are distributed at the interface only, then the current of the poly-Si

TFT can be given by[10]:

ds
t

ds,lin

I K N
I


 (8)

where K is a constant, γ is a fitting factor related to the short channel effect and Ids,lin is the



103

drain current in the subthreshold regime.

As the drain voltage is small, the drain current can be expressed as[12]:

ds
ds eff ox gs th ds( )

2
VWI C V V V

L
   (9)

μeff is the effective mobility. Combining Eq.(8) with Eq.(9):

th tV N (10)

3. Results and discussion

Two-dimensional device simulations are effective for investigating the underlying physics of

device operation. In this section, we used the device simulator MEDICI for modeling. The

device parameters used in simulation are listed in Table 1.

Table 1 The device parameters used in simulation.

doping concentration of the source and drain 1×1022cm-3eV-1

doping concentration of the channel 1×1016cm-3eV-1

poly-Si layer thickness 100nm

Insulator thickness 30nm

TFT flat-band voltage 0.7V

Channel length 2.5μm

Channel width 80μm

With the consideration of the lateral electric field[13], simulation results are presented in Fig

2, Fig 3 and Fig 4. Fig. 4 shows the comparison of experimental results[14] with modeling

results of relation of threshold voltage and interfacial state densities.
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Fig.2 relation of subthreshold swing with the interface states

Fig.3 relation of Vth-Vo and the density of interface defect states
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Fig.4 relation of Vth and the density of interface defect states.

Combining Eqs.(7)(10) with simulation results, we can have a conclusion that the difference

between the threshold voltage and the gate voltage corresponding to the minimum drain

current (Vth-Vo) is proportional to the density of interface defect states, which means the

operation range of subthreshold region is linearly with the density of interface states. Besides,

the threshold voltage (Vth) shows linear relationship with the density of interface states as well,

which is in conformity with the Redinger’s assumption [15].

4. Conclusion

With the development of poly-Si TFTs, understanding the influence of interface defect states

may be helpful in providing insight into routes to reduce this undesired effect. In this paper,

an investigation of interface defect states is presented, results show that both the difference

between the threshold voltage and the gate voltage corresponding to the minimum drain

current and the threshold voltage are proportional to the density of interface states, results fit

well with the experimental data.
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