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System definition

Let’s consider a potential well which has a width of 2a (m) and a height of U0 (eV) for |x| >=

a while for |x| < a is equal to 0, see Figure 1. The particle under study is an electron of charge

q (C), rest mass m0 (kg) and an energy E (eV) such that 0 < E < U0. The system’s

mathematical description is the following

 I)(region          for           (eV)0 ax      UU(x) 

  ax U(x) II)(region         for                            0 

 ax    UU(x) III)(region         for                (eV)0 

Figure 1. System definition.

The time independent one dimensional Schrödinger equation in terms of the Rydberg unit of

energy, Ry (eV), is - see Appendix A -

 (x)
Ryr

ExU
dx

(x)d

H
)(1/m   )( 5/2

22

2
 

 (4)

where rH (m) is the H atom Bohr radius. Ry is given by
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where  is the Planck constant h (J-s) divided by 2π.

The equation system to solve
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where φI, φII and φIII (m1/2) stand for the particle wave function for regions I, II and III,

respectively. Also, the following definitions have been made

(1/m)          ;  201 EF EUF   (9)

)(1/m/eV   10 x  5.12316711 1/29
Ryr

F
H

(10)

General solution

There are numerous alternatives to solve this system. Examples are given in references

[1,2,3,4]. The system (6) to (8) has the following general solution

ax BeAe(x) xx
I     )(1/m    1/211  (11)

ax xDx)C(x)II    )(1/m    )sin(cos( 1/2
22  (12)

ax GeEe(x) xx
III     )(1/m    1/211  (13)

where A, B, C, D, E and G are normalization constants to be evaluated shortly.

Even solution case

Considering x→∞ and the quantum mechanics postulate which states that all valid wave

functions for any quantum system must vanish at infinite coordinate limits, it follows from

(11) an (13) that

FAEB     and   0   ,  0 (14)
Now, from (12), for this symmetry case we have

0D (15)
With these expressions, (11), (12) and (13) become
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These functions, evaluated at x = ± a and considering that one of the quantum mechanics

postulates states that all valid wave functions and their first derivative have to be continuous

and single-valued along the whole system, give the following expressions
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Then, we obtain
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(23) converts (16), (17) and (18) into
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C is determined in Appendix B and is given by
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Now, dividing (23) by (24)

0)tan( ,1,2,2  evevev a  (29)

which, using (9) and (10), gives

0)tan( 0  evevev EUEaFE (30)

Resolving (30), either numerically or graphically, provides the particle allowed energy levels

for the even wave functions describing its behavior.

Odd solution case.

Following a similar derivation as above, the solution for this symmetry case is found to be
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D is determined in Appendix C and is given by



65

)(1/m   
)(sin

2
)2sin(

1 1/2

,1

,2
2

,2

,2

od

od

od

od aa
a

D










(34)

The continuity conditions for this case give

0)cot( ,1,2,2  evevev a  (35)

then, the expression to determine the particle allowed energy values for odd wave functions

is

0)cot( 0  ododod EUEaFE (36)

Now, rearranging (35) this way
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multiplying both sides by the cosine term,
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Let’s now consider (35) and write it as
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multiplying both sides by the sine term,
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Interestingly, both terms in (39) and in (42) appear in C and D expressions, (28) and (34),

respectively. Then, using (39) in (30), the following is derived

)(cos)2sin(5.0 2
0 evevevev EaFEUEaFE  (43)

Also, with (42), (36) becomes



66

)(sin)2sin(5.0 2
0 odododod EaFEUEaFE  (44)

Analytical energy eigenvalues for particle confinement cases.

Even waveform confinement.

This case is obtained when (25) and (27) vanish. This is obtained for

0)cos( ,,2 aCev (45)

which is true for
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2,,,2  nnaCnev
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This, using (9) and (10), gives
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Odd waveform confinement.

Now, the vanishing condition for (31) and (33) implies

0)sin( ,,2 aCev (48)

Which is met for

,...6,4,2 ,   
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Again, with (9) and (10), we get
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Note that if we use for the vanishing condition the left side of either (43) or (44), we can

write

0)2sin( ,/,2 aCodev (51)

Which is met for

,...3,2,1 ,   π2 ,,/,2  ssaCsoddev (52)

Now, with (9) and (10), we derive
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This expression merges (47) and (50) values, odd s values provide confined even wave

functions and also non-confined odd wave functions which have a certain tunneling level

involved; for s even values, the confined/tunneling roles are interchanged between the two

wave symmetries. This condition of a given allowed energy level corresponding to two

different waveforms is known as eigenstate degeneracy and is the fundamental explanation

for the Schrödinger’s cat in a box paradox and the eerie phenomenon of entanglement he

introduced.

Mean of the two probability density functions for degenerated eigenstates.

For any s value, let’s use the particle presence probability density function for each of the

two symmetry wave functions, ��䥰⽻෠
� and ��缘⽻෠

� , to define their mean probability density

function as follows

 )(1/m    
2

2
,

2
,

,
(x)(x)

(x) sodsev
smpd





 (54)

This parameter has physical sense if, for example, we consider a certain multiplicity of

identical systems such that the particle energy is the same in all of them and is supposed that

both particle wave function symmetries in the degenerated states have equal likelihood of

being present.

Calculation examples.

System A. a = 16rH (m). U0 = 4.72089 (eV).

Graphical and analytical calculation of the particle allowed energies sE for this system are

shown in Figure 2. As can be seen there are six energy levels for this case, the highest of

which was established by fine tuning U0 to the value given above such that U0 - E6 ~ 10 µeV.
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Figure 2. Determination of allowed particle energies for system A.

The particle wave functions soddev ,/ for s = 1 to 4 are plotted is Figure 3.

Figure 3. System A particle wave functions for first four quantum numbers showing the

confinement/non confinement alternating nature described above.

The system A wave functions for s = 5 and 6 are plotted in Figure 4. For s = 5, the wave

functions behave as described in Fig. 3. For s = 6, confinement is again present for the odd

symmetry wave function, however, for the even symmetry case the particle becomes loose,

that is, behaves like a near free particle. Then, this allowed energy level can have a particle in

either a fully localized condition or in an almost fully spread one. This configuration is

known as entanglement.
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Figure 4. s = 5 and 6 particle wave functions in system A. For s = 5, the confinement/non

confinement behavior is similar as in Fig. 3. For s = 6, the non-confined case (even WF) becomes

extreme such that the particle becomes nearly free while the confined case (odd WF) remains like all

s values.

The system A particle presence probability functions and their corresponding cumulative

probability functions are depicted in Figures 5 and 6, respectively. Note that all the zero

crossings of the wave functions in Figures 3 and 4 become particle exclusion points inside

the well, that is, its presence probability vanishes at these locations.

Figure 5. Particle presence probability density functions for x <= 0. System A.



70

Figure 6. Cumulative particle presence probability functions for x <= 0. System A.

Let’s now consider the mean particle presence probability densities defined in (54) and

shown in Figure 7. a) with their cumulative traces given in Figure 7. b). As compared with

the previous two Figures we notice that the particle exclusion points inside the well are now

not present and that the cumulative particle presence probability functions are nearly linear

for s = 1 to 5, two aspects somehow reminiscent of Classical Mechanics predictions inside

the well.

The φmpd,6 case illustrates the archetype of Quantum Mechanics phenomenon of particle

entanglement whose cumulative presence probabilities inside and outside the well are both

nearly 50 %. In terms of Schrödinger’s cat in a box fate, rather than alive or dead, we can say

that the pet, when searched for, can be found 50 % of the times at home inside the box and

the other 50 % observed to be wandering around out of the box. The quite striking thing is

that the cat can interchange presence sites instantly, without any energy transfer involved, a

phenomenon known as teleportation.
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Figure 7. a) System A mean probability density functions and b) their corresponding

particle presence cumulative probability.

Case B. a = (π/2)rH (m). U0 = Ry + 1.88E-6 (eV).

Graphical and analytical calculation of the only particle allowed energy for this system are

shown in Figure 8-a). This time, the fine tuning of U0 to reach the value given above was

such that E1 = Ry. Figure 8-b) depicts the particle wave functions, now with the even case

being confined and the odd case being near free.

Figure 8. a) Allowed single particle energy level for system B determination. b) Corresponding

confined, even, and near-free, odd wave functions.

System B particle presence probability functions and their mean are plotted in Figure 9-a)

while their corresponding cumulative traces are presented in Figure 9-b). As above, a particle

50 % inside-50 % outside the well presence probability is obtained for this single allowed

energy level system.



72

Figure 9. a) Particle presence probability density functions and of their mean. b) Corresponding

cumulative traces.

Conclusions.

An analysis of the quantum behavior of a particle interacting with a unidimensional, square

and finite box of potential energy system was presented. By solving the system’s time-

independent Schrödinger equation - written in terms of the Rydberg unit of energy Ry -, the

particle allowed energy levels for confined conditions were determined graphically and

analytically. The mean particle presence probability function concept was introduced and

used to illustrate the occurrence of the particle entanglement phenomenon in a couple of

calculation examples.

Appendix A. The Rydberg unit of energy derived from the Schrödinger equation.

The time-independent unidimensional Schrödinger equation for a particle of rest mass m0 (kg)

having an energy E (J) in a given system of potential energy U(x) (J) is written as

)(1/m   0 ))((2 5/2
2

0
2

2

 (x)ExUm
dx

(x)d  


(A1)

where φ(x) (1/m1/2) is the particle wave function,  (J-s) is the Planck’s constant h divided by

2π. If we consider that the particle is an electron with charge q (C) and make use of the atom

Bohr radius rH (m), we can transform the above expression as follows

)(1/m02 5/2
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2
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2

   )
r
r

q
q(x)(E) (U(x)m
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(x)d

H

H  
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with this, U and E are converted into eV units.

Then, (A2) can be rearranged as
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where the constant Ry (eV), the Rydberg unit of energy - which corresponds to the highest

energy photon that can be emitted/absorbed by an atom -, is written as
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This number was calculated using CODATA internationally recommended 2018 values of

the NIST Fundamental Physical Constants site [1]. It has a relative standard uncertainty (rsu)

of 6.54 x 10-12 with respect to NIST provided definition which is as follows

  )10 x 1.9(rsu   (eV)   994  122  693  13.605
22
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020  v
q
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mRy NIST (A6)

where α is the Sommerfeld’s or finite-structure constant, c (m/s) is the speed of light in

vacuum and v1 is the electron orbit exit speed.

Appendix B. Constant C evaluation.

To determine the normalization constant C in (25) to (27), it is necessary to apply the

quantum mechanics postulate which stablishes that the particle probability presence density

must integrate to 1 through all the system. Then, we have to evaluate
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Appendix C. Constant D determination.

D in (31) to (33) is determined as follows
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