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Abstract:

In our recent two works [1, 2], by basing on: (1) the effects of heavy(light) doping and donor

(acceptor), d(a), size , which affect the total carrier-minority saturation current density JoI(II) ≡

JEn(p)o + JBp(n)o, JEn(p)o(JBp(n)o), being injected respectively into the heavily doped donor

(acceptor)-Si emitter-lightly doped acceptor (donor)-Si base regions, HD[d(a)-Si]ER-LD[a(d)-

Si]BR, of n+(p+) − p(n) junction solar cells, respectively, (2) an effective Gaussian donor-

density profile to determine JEn(p)o, and (3) the use of two experimental points, we investigated

the photovoltaic conversion factor nI(II) , short circuit current density JscI(II) , fill factor FI(II) , and

finally efficiency ηI(II). Further, we obtained the highest maximal values of ηI(II),
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ηI(II)−max. = 31.55% (27.56%), being due to the taken large values of d(a)-radius, rd(a)=0.163

(0.141) nm, which do not correspond to the of rS(Tl) -radius, rS(Tl) = 0.10(0.19) nm [8], for

the emitter thickness W = 85 μm and surface recombination velocity S = 10−50 cm/s, for

example, corresponding to the completely opaque COER, given in the COHD[d(a)-Si]ER, and

for a low Tl(S)-acceptor(donor) density Na(d) = 1016cm−3 , taken in the LD[a(d)-Si]BR,

respectively.

In the present work, by basing on such a treatment method, but using now the usual physical

conditions such as: W = 15 μm, NBi(In) = 5 × 1020 cm−3 and S = 100 (cm/s ) , according to

the highly transparent HD[Bi(In)-Si]ER-case, and then NIn(Bi) = 5 × 1018cm−3 for LD[In(Bi)-

Si]BR, with rBi(In) = 0.160(0.135) nm [8], we now get: ηI(II)−max. = 31% (30.65%),

respectively, which can be compared with the result � =31% for W = 15 μm and S =

100 (cm/s ) ,obtained recently by Bhattacharya and John, using the numerical simulation

method [3, 4].

Keywords: donor (acceptor)-size effect; heavily doped emitter region; photovoltaic

conversion factor; open circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent works [1, 2], which will be henceforth referred to as I and II, by basing on: (i) the

heavy doping and impurity size effects, which affect the total carrier-minority saturation current

density JoI(II) ≡ JEn(p)o + JBp(n)o, where those JEn(p)o (JBp(n)o) are injected respectively into the

heavily doped donor (acceptor)-Si emitter-lightly doped acceptor (donor)-Si base-regions,

HD[d(a)-Si]ER-LD[a(d)-Si]BR, of n+(p+) − p(n) junction solar cells, (ii) an effective

Gaussian donor (acceptor)-density profile ρd(a) to determine JEn(p)o[1, 2, 13, 18-20, 22] and (iii)

the use of two fixed experimental points, we investigated the photovoltaic conversion factor

nI(II) , the short circuit current density JscI(II) , the fill factor FI(II) , and finally the efficiency

ηI(II) [1, 45]. These physical quantities were expressed as functions of the open circuit voltage

Voc , and various parameters such as: the emitter thickness W , high donor (acceptor) density

Nd(a), surface recombination velocity S , given in the HD[d(a)-Si]ER, and low acceptor (donor)

density Na(d) , in the LD[a(d)-Si]BR. Further, in I and II, we remark that: (a) for a given Voc ,

both nI(II) and JoI(II) have the same variations and strongly affect other ( JscI(II) , FI(II) , ηI(II)) -
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results, and (b) for a given Voc , and with decreasing S and increasing W, while both nI(II) and

JoI(II) decrease from the completely transparent emitter region (CTER)-case, as S → ∞ , to the

completely opaque emitter-region (COER)-case, as S → 0 , JscI(II) , FI(II) , and ηI(II) therefore

increase from the CTER-case to the COER-case. Here, in the COER-case: JoI(II) = JBp(n)o . So,

our important results, obtained in I and II, are reported in the following.

In the CTHD[d(a)-Si]ER-LD[a(d)-Si]BR, in which rd(a) =0.163 (0.141) nm, which do not

correspond to the of rS(Tl) -radius, rS(Tl) = 0.10(0.19) nm , for W = 0.000206 μm, Nd(a) =

5 × 1020 cm−3, S( → ∞) = 1050 (cm/s ), and Na(d) = 1016cm−3, we obtained the maximal

values of ηI(II) as: ηI(II)−max. = ��. ��% (26.52%) at VocI(II) = 703(743) mV, respectively.

Then, in the COHD[d(a)-Si]ER-LD[a(d)-Si]BR, in which rd(a)=0.163 (0.141) nm, which do not

correspond to the of rS(Tl) -radius, rS(Tl) = 0.10(0.19) nm [8], for the physical conditions:W =

85(136) μm, Nd(a) = 5 × 1020 cm−3, S( → 0) = 10−50 (cm/s ), and NTl(S) = 1016cm−3 ,

we achieved: ηmax.I(II) = ��. ��% (27.56%) at VocI(II) = 703(739) mV.

Then, in our present work, by basing on such a treatment method developed in I (II), we will use

other usual physical conditions, given in the highly transparent HD[Bi(In)-Si]ER-LD[In(Bi)-

Si]BR-case, in which rBi(In) =0.160 (0.135) nm, respectively, as: W = 15 μm, NBi(In) = 5 ×

1020 cm−3, S = 100 (cm/s ), and NIn(Bi) = 5 × 1018cm−3, we achieve: ηI(II)−max. = 31%

(30.65%) at Voc = 703 (733) mV, as those given respectively in Tables 4 and 5. Those results

can be compared with the result � =31% for W = 15 μm and S = 100 (cm/s ) , obtained

recently by Bhattacharya and John, using the numerical simulation method [3, 4].

In Section 2, as developed in I and II, all the results energy-band-structure parameters for d(a)-

Si systems are reported in Table 1, and the expressions for JEn(p)o are also reported, so that we

can determine the total (or dark) carrier-minority saturation current density JoI(II) ≡ JEn(p)o +

JBp(n)o, where JBp(n)o is determined in Eq. (C1) of the Appendix C. In Section 3, the photovoltaic

effect is presented. Finally, some concluding remarks are given and discussed in Section 4.
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2. Energy-Band-Structure Parameters and dark minority-carrier saturation

current density, due to impurity-size and heavy doping effects

Here, as investigated in I and II, we now present the effects of donor (acceptor) [d(a)]-size and

heavy doping, taken on the energy-band-structure parameters and minority-carrier saturation

current density, as follows.

2.1. Effect of d(a)-size

In d(a)-Si-systems at T=0 K, since the d(a)-radius rd(a) , in tetrahedral covalent bonds is usually

either larger or smaller than the Si atom-radius rSi , assuming that in the P(B)-Si system rP(B) =

rSi = 0.117 nm , with 1 nm = 10−9m , a local mechanical strain (or deformation potential

energy) is induced, according to a compression (dilation) for rd(a) > rSi ( rd(a) < rSi) ,

respectively, due to the d(a)-size effect [42]. From the numerical results of the effective

dielectric constant, ε(rd(a)), obtained from such a deformation potential energy model [42], for

0.113(0.117) ≤ rd(a)in nm ≤ 0.163 (0.141), we can propose its simple approximate form as:

ε(rd(a)) ≃ 11.4 × rSi
rd(a)

4.377 (4.7)
, (1a)

being accurate to within 10% (7%), respectively, equal to 11.4 as rd(a) = rSi , according to the

absence of the impurity size effect, and decreased with increasing rd(a). This rd(a) -effect thus

affects the changes in all the energy-band-structure parameters, expressed in terms of ε(rd(a). In

particular, the changes in the unperturbed intrinsic band gap at 0K, Ego rP(B) = 1.17 eV , and

effective d(a)-ionization energy in absolute values Edo(ao) rP(B) = 33.58 meV, are obtained in

an effective Bohr model, as [42]:

Egon(p) rd(a) − Ego rP(B) = Edo(ao) rd(a) − Edo(ao) rP(B) = Edo(ao) rP(B) × ε(rP(B))
ε(rd(a))

2
− 1 (1b)

Therefore, with increasing rd(a) , the effective dielectric constant

ε(rd(a)), determined above, decreases, implying that Ego rd(a) and Edo(ao) rd increase, as

observed in the following Table 1.
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Table 1. Impurity size effects on the effective dielectric constant ε(rd(a)) , determined in Eq. (1a), the

intrinsic band gap Egin(p)(rd(a)) , determined in Equations (1a) and Eq. (A4), and the intrinsic carrier

concentration nin(p) , calculated using Eq. (A4) of the Appendix A, for the effective average number of

equivalent conduction (valence)-band edges gc(v) = 6(2), respectively. Here, T=300K.

Donor P Te Sb Bi

rd (nm) 0.117 0.140 0.145 0.160

ε(rd) 11.4 5.20 4.46 2.90

Egin(T, rd) 1.121 eV 1.269 eV 1.340 eV 1.724 eV

nin(T, rd) in 1010 cm−3 1.07 6.11 × 10−2 1.55 × 10−2 9.16 × 10−6

Acceptor B Al Ga In

ra (nm) 0.117 0.125 0.130 0.135

ε(ra) 11.4 8.35 6.95 5.82

Egip(T, ra) 1.121 eV 1.150 eV 1.178 eV 1.216 eV

nip(T, ra) in 1010 cm−3 1.07 6.12 × 10−1 3.56 × 10−1 1.69 × 10−1

In summary, the effects of Nd(a) -heavy doping and rd(a) - impurity size given in the HD[d(a)-

Si]ER, and those of Na(d) -low doping in the LD[a(d)-Si]BR, affect all the minority-carrier

transport properties, given in the Appendix A, B and C, and in the following equations.

2.2. Total minority-carrier saturation current density at 300K

The total carrier-minority saturation current density is defined by:

JoI(II) ≡ JEn p o + JBp n o, (2)

where JBp n o is the minority-electron (hole) saturation current density injected into the LD[a(d)-

Si]BR, being determined in Eq. (C1) of the Appendix C, and JEn p o is the minority-hole

saturation-current density injected into the HD[d(a)-Si]ER, being developed and determined

from I and II, now reported in the following.

In the non-uniformly and heavily doped emitter region of d(a)-Si devices, the effective Gaussian

d(a)-density profile or the d(a) (majority-e(h)) density, is defined in the HD[d(a)-Si]ER-width W:

ρd(a) x = Nd(a) × exp − x
W

2
× ln  Nd(a)

Nd(a)o(W)
≡ Nd(a) × Nd(a)

Nd(a)o(W)

− x
W

2

, 0 ≤ x ≤ W,

Nd(a)o(W) ≡ 7.9 × 1017 (2 × 105) × exp − W
184.2 (1)10−7 cm

1.066 (0.5)
(cm−3), (3)
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where ρd(a)(x = 0) = Nd(a) is the surface d(a)-density, and at the emitter-base junction,

ρd(a) x = W = Nd(a)o(W) , decreasing with increasing W [1, 2, 13]. Further, the “effective

doping density” is defined by:

Nd(a)eff.(x, rd(a)) ≡ ρd(a) x /exp ΔEga n(p)(ρd(a) x , rd(a))
kBT

,

Nd(a)eff. x = 0, rd(a) ≡ Nd(a)

exp
ΔEga n(p) Nd(a),rd(a)

kBT

and Nd(a)eff. x = W, rd(a) ≡ Nd(a)o(W)

exp
ΔEga n(p) Nd(a)o(W), rd(a)

kBT

, (4)

where ΔEga n(p) are determined in Equations (B4, B5) of the Appendix B.

Then, under low-level injection, in the absence of external generation, and for the steady-state

case, we can define the minority-h(e) density by:

po(x)[no(x)] ≡
nin(p)

2

Nd(a)eff.(x, rd(a))
, (5)

where nin(p)
2 is determined in (A5) of the Appendix A and a normalized excess minority-h(e)

density u(x) or a relative deviation between p x [n(x)] and po(x)[no(x)], by [22, 25]:

u x ≡ p x [n(x)]−po(x)[no(x)])
po(x)[no(x)]

, (6)

which must verify the two following boundary conditions proposed by Shockley as [6]:

u x = 0 ≡ −Jh x=0 [Je x=0 ]
eS×po(x=0)[no(x=0)]

, (7)

u x = W = exp V
nI(II)(V)×VT

− 1. (8)

Here, nI(II)(V) is a photovoltaic conversion factor determined in Equations (27, 28), S ( cm
s

) is

the surface recombination velocity at the emitter contact, V is the applied voltage, VT ≡ (kBT/

e) is the thermal voltage, and the minority-hole (electron) current density Jh(e) x .

Further, as developed in I and II, from the Fick’s law for minority hole (electron)-diffusion

equations [8, 12]:

Jh(e) x = −e(+e)×ni
2

Fh(e)(x)
× du x

dx
=

−e(+e)nin(p)
2 Dh(e)(x)

Nd(a)eff. x
× du x

dx
, (9)

where Nd(a)eff. is given in Eq. (4), Dh(e) and Fh(e) are determined respectively in Equations (C3,

C2, C6) of the Appendix C, and from the minority-hole (electron) continuity equation [8, 12]:

dJh(e) x
dx

=− e( + e) × ni n(p)
2 × u x

Fh(e)(x)×Lh(e)
2 =− e( + e) × ni n(p)

2 × u x
Nd(a)eff. x × τh(e)E

, (10)



86

where Lh(e) and τh(e)E are defined respectively in Equations (C7, C8) of the Appendix C, one

finally obtains the following second-order differential equation as [22]:

d2u x
dx2 − dFh(e)(x)

dx
× du x

dx
− u x

Lh(e)
2 x

= 0. (11)

Then, taking into account the two boundary conditions (7, 8), one thus gets the general solution

of this Eq. (11), as [22]:

u x = sinh P x +Ι(W,S)×cosh P x
sinh P W +Ι(W,S)×cosh P W

× exp V
nI(II)(V)×VT

− 1 , Ι(W, S) = Dh(e)(No W )
S×Lh(e)(No W )

. (12)

where the function nI(II) V is the photovoltaic conversion factor, determined in Eq. (29).

Further, since dP x
dx

≡ C × Fh(e)(x)= 1
Lh(e)(x)

, C = 10−17 (cm4/s), for the crystalline Si, being

an empirical parameter, chosen for each crystalline semiconductor, P(x) is thus found to be

defined by:

P x ≡ 0
x dx

Lh(e)(x)
� ), 0 ≤ x ≤ W, P x = W ≡ ( 1

W
× 0

W dx
Lh(e)(x)

� ) × W ≡ W
Lh(e)eff.

= Lh(e)

Lh(e)eff.
× W

Lh(e)
, (13)

where Lh(e)eff. is the effective minority-hole (electron) diffusion length. Further, from Eq. (9, 13),

the minority-hole (electron) current density injected into the HD[d(a)-Si]ER is found to be

determined by:

Jh(e) x, W, Nd(a), rd(a), S, V =− JEno x, W, Nd, rd, S [JEpo x, W, Na, ra, S ] × exp V
nI(II)(V)×VT

− 1 , (14)

where JEn(p)o is the saturation minority-hole (electron) current density,

JEn(p)o x, W, Nd(a), rd(a), S =
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P(x) +Ι(W,S)×sinh P(x)

sinh P(W) +Ι(W,S)×cosh P(W)
. (15)

Here, the intrinsic carrier concentration ni n(p) is computed by Eq. (A5) of the Appendix A, and

the effective doping density Nd(a)eff. is determined in Eq. (4), the minority-hole (electron)

diffusion coefficient De(h) and minority-hole (electron) diffusion length Lh(e) are given

respectively in Equations (C2, C3, C7) of the Appendix C, and the factor I(W, S) is determined

by:

I(W, S) = Dh(e)(Nd(a)o W )
S×Lh(e)(Nd(a)o W )

, (16)

where Nd(a)o W is determined in Eq. (3).

Further, one remarks that: (i) from Equations (12, 14-16) one obtains: u x = 0 ≡
−Jh x=0 [Je x=0 ]

eS×po(x=0)[no(x=0)]
, which is just the first boundary condition given in Eq. (7), and then, (ii) Eq.
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(12) yields: u x = W = exp V
nI(II)(V)×VT

− 1, being the second boundary condition given in Eq.

(8).

In the following, we will denote P(W) and I(W, S) by P and I, for a simplicity. So, Eq. (15)

gives:

JEn(p)o x = 0, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

sinh P +Ι×cosh P
, (17)

JEn(p)o x = W, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P +Ι×sinh P

sinh P +Ι×cosh P
. (18)

Thus, from Equations (14, 17, 18), one gets

Jh(e) x=0,W,Nd(a),rd(a),S,V
Jh(e) x=W, W,Nd(a), rd(a),S,V

≡ JEn(p)o x=0,W,Nd(a), rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1
cosh P +Ι×sinh P

. (19)

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter

region by [22]:

Qh(e)eff.(x = W, Nd(a), rd(a)) ≡ 0
W +e( − e) × u x × po(x)[no(x)] × τh(e)E(Nd(a),rd(a))

τh(e)E(ρd(a) x ,rd(a))
� dx , and

the effective minority-hole transit time by: τteff.(x = W, W, Nd(a), rd(a), S) ≡ Qh(e) eff.(x =

W, Nd(a), rd(a))/JEn(p)o x = W, W, Nd(a), rd(a), S , one can define, from Equations (10, 19), the

reduced effective minority-hole transit time:

τteff. x=W,W,Nd(a),rd(a),S
τh(e)E

≡ 1 − JEn(p)o x=0,W,Nd(a),rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1 − 1
cosh P +Ι×sinh P

. (20)

Now, some important results can be obtained and discussed below.

As P ≪ 1 (or W ≪ Lh,eff. ) and S → ∞ , I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ 0 , from Eq. (20), one has:

τt,eff. x=W,W,Nd(a),rd(a),S
τh(e)E

→ 0 , suggesting a completely transparent emitter region (CTER)-case,

where, from Eq. (18), one obtains:

JEn(p)o x = W, Nd(a), rd(a), S → ∞ →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

P(W)
, (21a)

and then, as P ≫ 1 (or W ≫ Lh,eff. ) and S → 0 , I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ ∞ , from Eq. (20),

one has:
τteff. x=W,W,Nd(a),rd(a),S

τh(e)E
→ 1 , suggesting a completely opaque emitter region (COER)-

case, where, from Eq. (18), one gets:

JEn(p)o x = W, Nd(a), rd(a), S → 0 →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× tanh P . (21b)
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In summary, in the n+(p+) − p(n) junction solar cells, the dark carrier-minority saturation

current density Jo , defined in Eq. (2), is now replaced by JoI(II) , for a good presentation, and

rewritten by:

JoI(II) W, Nd(a), rd(a), S, Na(d), ra(d) ≡ JEn(p)o(W, Nd(a), rd(a), S) + JBp(n)o(Na(d), ra(d))， (22)

where JEn(p)o and JBp(n)o are determined respectively in Equations (18) and (C1) of the

Appendix C.

Then, in the following, in the n+(p+) − p(n) junction solar cells, and for physical conditions as:

W = 0.0044 (0.000206)μm, NP(B) = 1020 cm−3, S = 1050 cm
s

, NB(P) = 1016 cm−3,

we propose, at given VocI1(2) and VocII1(2), the experimental results of the short circuit current

density JscI(II) and the fill factor FI(II) , in order to formulate our treatment method of two fixe

experimental points. Then, for the n+ − p junction [1, 2, 23, 27, 28],

VocI1(2) = 624 (740) mV, JscI1(2) = 36.3 (41.8) mA/cm2, FI1(2) = 80.1 (82.7) %, and (23)

for the p+ − n junction [1, 2, 30],

VocII1(2) = 639 (738) mV, JscII1(2) = 39.3 (42.6) mA/cm2, FII1(2) = 78.9 (84.9) %. (24)

3. Photovoltaic conversion effect at 300K

As defined and developed in I and II, the net current density J, at T=300 K and for the infinite

shunt resistance, expressed as a function of the applied voltage V, flowing through the

n+(p+) − p(n) junction of silicon solar cells, is defined by [1, 2, 5-10]:

J V ≡ Jph. V − JoI(II) × eXI(II) V − 1 , XI(II) V ≡ V
nI(II) V ×VT

, VT ≡ kBT
e

= 25.85 mV, (25)

where the function nI(II) V is the photovoltaic conversion factor (PVCF), noting that as V =

Voc , J V = 0, the photocurrent density is defined by: Jph. V = Voc ≡

JscI(II) W, Nd(a), rd(a), S, Na(d), ra(d), Voc , for Voc ≥ VocI(II)1 . Therefore, the photovoltaic

conversion effect occurs, according to:

JscI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JoI(II) W, Nd a , rd a , S, Na d , ra d × eXI(II) Voc − 1 , (26)

where nI(II)(Voc) ≡ nI(II) W, Nd a , rd a , S, Na d , ra d , Voc is the PVCF, and XI(II) Voc ≡
Voc

nI(II) Voc ×VT
.
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Here, one remarks that (i) for a given Voc , both nI(II) and JoI(II) have the same variations,

obtained in the same physical conditions, as observed in many cases, given in I and II, and (ii)

the function eXI(II) Voc − 1 or the PVCF nI(II), representing the photovoltaic conversion effect,

thus converts the light, represented by JscI(II), into the electricity, by JoI(II).

Further, from Equations (22, 26), we obtain for the n+ − p junction:

nI1(2) W, Nd, rd, S, Na, ra, VocI1(2), JscI1(2) ≡ VocI1(2)

VT
× 1

ln 
JscI1(2)

JoI
+1

≡ nI1(2)(VocI1(2), JscI1(2)) , and

then,

nI W, Nd, rd, S, Na, ra, Voc = nI1(VocI1, JscI1) + nI2(VocI2, JscI2) × Voc
VocI1

− 1
1.1248

, (27)

being valid for any values of (W, Nd, rd, S, Na, ra, Voc ≥ VocI1), and then, for the p+ − n junction:

nII1(2) W, Na, ra, S, Nd, rd, VocII1(2), JscII1(2) ≡ VocII1(2)

VT
× 1

ln 
JscII1(2)

JoII
+1

≡ nII1(2)(VocII1(2), JscII1(2)),

and then,

nII W, Na, ra, S, Nd, rd, Voc = nII1(VocI1, JscI1) + nII2(VocII2, JscII2) × Voc
VocII1

− 1
1.0939664

, (28)

being valid for any values of (W, Na, ra, S, Nd, rd, Voc ≥ VocII1).

Therefore, from Equations (23, 24, 27, 28), one obtains, nI1(II1) = 1.2344 (1.45827) at

VocI1(II1) = 624 (639) mV , and nI2(II2) = 1.4534 (1.67622) at VocI2(II2) = 740 (738) mV ,

respectively, for n+(p+) − p(n) junction solar cells.

Thus, XI defined from Eq. (26) now becomes for the n+ − p junction:

XI W, Nd, rd, S, Na, ra, Voc ≡ Voc
nI W,Nd,rd,S, Na,ra,Voc ×VT

, and therefore, we can determine the values

of the fill factors FI1(2) at Voc = VocI1(2) by [1, 2]:

FI1(2) W, Nd, rd, S, Na, ra, VocI1(2) =
XI W,Nd,rd,S, Na,ra,VocI1(2) −ln XI W,Nd,rd,S, Na,ra,VocI1(2) +0.72 (0.72)

XI W,Nd,rd,S, Na,ra,VocI1(2) +1.1 (0.472)
≡

FI1(2) Voc = VocI1(2) , for a presentation simplicity, and further, the fill factor FI can be

computed by:

FI W, Nd, rd, S, Na, ra, Voc = FI1 VocI1 + FI2 VocI2 × Voc
VocI1

− 1
2.0559

, (29)

which is valid for any values of W, Nd, rd, S, Na, ra, Voc ≥ VocI1 .

Then, also from Eq. (26), we can define for the p+ − n junction:
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XII W, Na, ra, S, Nd, rd, Voc ≡ Voc
nII W,Na,ra,S, Nd,rd,Voc ×VT

, where nII W, Na, ra, S, Nd, rd, Voc is

determined in Eq. (28). Therefore, we can determine the values of the fill factors FII1(2) at Voc =

VocII1(2) as:

FII1(2) W, Na, ra, S, Nd, rd, VocII1(2) =
XII W,Na,ra,S, Nd,rd,VocII1(2) −ln XII W,Na,ra,S, Nd,rd,VocII1(2) +0.72 (0.00)

XII W,Na,ra,S, Nd,rd,VocII1(2) +0.895 (0.00)
≡ FII1(2) VocII1(2) , for a presentation

simplicity, and further, the fill factor FII is determined by:

FII W, Na, ra, S, Nd, rd, Voc = FII1 VocII1 + FII2 VocII2 × Voc
VocII1

− 1
1.41011

, (30)

being valid for any values of W, Na, ra, S, Nd, rd, Voc ≥ VocII1 .

Further, in the n+(p+) − p(n) junction solar cells, and for physical conditions:

W = 0.0044 (0.000206)μm, NP(B) = 1020 cm−3, rP(B), S = 1050 cm
s

, NB(P) = 1016 cm−3, rB(P) ,

Equations (29, 30) give: FI1(2)=80.01% (82.7%) at VocI1(2) = 624 (740) for the n+ − p junction,

and FII1(2)=78.9% (84.9%) at VocII1(2) = 639 (738) mV for the p+ − n junction, respectively,

being in perfect agreement with the data given in Equations (23, 24).

Finally, the efficiency ηI(II) can be defined in the n+(p+) − p(n) junction solar cells, by:

ηI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JscI(II)×Voc×FI(II)

Pin.
, (31)

where JscI(II) and FI(II) are determined respectively in Equations (26, 29, 30), being assumed to

be obtained at 1 sun illumination or at AM1.5G spectrum (Pin. = 0.100 W
cm2 ) [1, 2, 26-29].

4. Numerical results and concluding remarks

Here, we will respectively consider the two following cases: (4.1) the absence of the impurity

size effect (ISE) such as the transparent THD[P(B) − Si]ER − LD[B(P) − Si]BR − cases,

because of rd(a) = rP(B) = rSi = 0.117 nm , and (4.2) the presence of the ISE such as the

THD[S(Tl) − Si]ER − LD[Tl(S) − Si]BR − cases, because of rd(a) = rS(Tl) =

0.1628 (0.1410)nm > rSi.

4.1. ��[�(�) − ��]�� − ��[�(�) − ��]�� −cases

(4.1a) ��(� − ��)�� − ��(� − ��)�� − case. Here, we have rP(PB) = rSi = 0.117 nm ,

according also to the absence of ISE, and we propose the usual physical conditions as:
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W = 15 μm, NP = 5 × 1020 cm−3, S = 100 (cm/s ), and NB = 1016(5 × 1017, 1018)cm−3. (32)

Then, from Equations (12, 13, 18, 20, 26,27,29,31) and (C7, C8) of the Appendix C, on

obtains:

P = W
Lheff.

= 1.19 × 10−3, Lh = 0.37 cm, I(W, S) = 0, τhE = 40.4 ms, τteff.
τhE

= 7.09 × 10−7 ≪ 1,

suggesting the hightly transparent HTER condition, and from Eq. (18), JEno = 1. 54 ×

10−13 A
cm2 . Further, in the LD[B-Si]-BR and for NB = 1016(5 × 1017, 1018) cm−3 <

NCr.(rB) = 4.06 × 1018 cm−3 , according respectively to the non-degenerate case: −EFp

kBT
=−

8.04 ( − 4.12, − 3.42 ) <− 1 , one gets from Eq. (C1) of the Appendix C: JBpo =

6.09 (0.51, 0.33) × 10−13 A
cm2 . Therefore, one obtains respectively: JoI =

7.63 (2.05, 1.87) × 10−13 A
cm2 , and from the following Table 2, for example, at Voc =

715 mV, nI=1.11 (1.06, 1.05) and ηI= 27.68 (28.21, 28.25)%, meaning that, with increasing NB,

both JoI and nI decrease, while ηI increases, being new results.

Table 2. With the physical conditions given in Eq. (32) and for NB = 1016(5 × 1017, 1018) cm−3 given in

the BR, our numerical results of nI , JscI , FI , and ηI , are computed by using Equations (27, 26, 29, 31),

respectively. Here, on notes that, for a given Voc and with increasing NB , the function nI decreases, while the

functions: JscI, FI, and ηI increase, being new results.

Voc(mV) nI JscI( mA
cm2) FI(%) ηI(%)

750 1.17 (1.12, 1.11) 41.86 (42.12, 42.14) 86.32 (86.97, 87.01) 27.10 (27.47, 27.50)

740 1.16 (1.10, 1.09) 43.09 (43.44, 43.46) 85.82 (86.47, 86.51) 27.37 (27.80, 27.82)

738 1.15 (1.09, 1.09) 43.33 (43.69, 43.72) 85.73 (86.38, 86.42) 27.41 (27.85, 27.88)

737 1.15 (1.09, 1.08) 43.44 (43.82, 43.84) 85.68 (86.33, 86.37) 27.43 (27.88, 27.91)

718 1.12 (1.06, 1.06) 45.41 (45.92, 45.95) 84.88 (85.52, 85.57) 27.67 (28.20, 28.23)

715 1.11 (1.06, 1.05) 45.67 (46.19, 46.23) 84.77 (85.41, 85.45) 27.68 (28.21, 28.25)

706 1.10 (1.04, 1.04) 46.34 (46.91, 46.95) 84.45 (85.10, 85.14) 27.63 (28.18, 28.22)

705 1.10 (1.04, 1.04) 46.41 (46.98, 47.02) 84.42 (85.06, 85.10) 27.62 (28.17, 28.21)

702 1.09 (1.04, 1.03) 46.58 (47.17, 47.21) 84.32 (84.97, 85.01) 27.57 (28.14, 28.17)

700 1.09 (1.03, 1.03) 46.69 (47.28, 47.33) 84.26 (84.90, 84.95) 27.54 (28.10, 28.14)

695 1.08 (1.03, 1.02) 46.90 (47.52, 47.56) 84.12 (84.76, 84.80) 27.42 (27.99, 28.03)

680 1.06 (1.00, 1.00) 47.09 (47.73, 47.77) 83.74 (84.38, 84.42) 26.82 (27.38, 27.42)
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667 1.04 (0.99, 0.98) 46.56 (47.17, 47.21) 83.49 (84.12, 84.16) 25.93 (26.47, 26.50)

665 1.04 (0.98, 0.98) 46.41 (47.01, 47.05) 83.45 (84.09, 84.13) 25.76 (26.29, 26.32)

655 1.02 (0.97, 0.97) 45.34 (45.86, 45.90) 83.32 (83.95, 83.99) 24.74 (25.22, 25.25)

643 1.00 (0.95, 0.95) 43.18 (43.58, 43.61) 83.20 (83.84, 83.88) 23.10 (23.49, 23.52)

632 0.99 (0.94, 0.94) 40.06 (40.27, 40.28) 83.15 (83.78, 83.82) 21.05 (21.32, 21.34)

624 0.98 (0.93, 0.93) 36.30 (36.30, 36.30) 83.14 (83.77, 83.81) 18.83 (18.97, 18.98)

(4.1b) ��(� − ��)�� − ��(� − ��)�� − case. Here, we have rB(P) = rSi = 0.117 nm ,

according also to the absence of ISE, and we propose the usual physical conditions

[2, 13, 18, 20, 26],

W = 15 μm, NB = 5 × 1020 cm−3, S = 100 (cm/s ), and NP = 1016(5 × 1017, 1018)cm−3. (33)

Then, from Equations (12, 13, 18, 20, 26,28,30,31) and (C7, C8) of the Appendix C, one

obtains:

P = W
Le,eff.

= 8.89 × 10−3, Le = 0.24 cm, I(W, S) = 0, τeE = 0.017 s, and τt,eff.
τeE

= 3.95 ×

10−5 ≪ 1, suggesting the HTER − condition, and from Eq. (18), JEpo = 2. 06 × 10−14 A
cm2 .

Further, in the LD[P-Si]-BR and for NP = 1016(5 × 1017, 1018) cm−3 < NCr.(rP) = 3.52 ×

1018 cm−3 , according respectively to the non-degenerate case: EFn
kBT

=− 7.96( − 4.04, −

3.34) <− 1, one gets from Eq. (C1) of the Appendix C: JBno = 7.27 (0.92, 0.60) ×

10−13 A
cm2 . Therefore, one obtains: JoII = 7.47 (1.12, 0.81) × 10−13 A

cm2 , and from the

following Table 3, for example, at Voc = 749 (742, 742) mV, nII = 1.169 (1.075, 1.062), ηII

= 29.82 (30.02, 30.06)%, suggesting that, with increasing NP , both JoII and nII decrease, while

ηII increases, being also new results.

Table 3. With the physical conditions given in Eq. (33) and for NP = 1016(5 × 1017, 1018) cm−3 given in

the BR, our numerical results of nII , JscII , FII , and ηII , are computed by using Equations (28, 26, 30, 31),

respectively. Here, on notes that, for a given Voc and with increasing NP , the function nII decreases, while the

functions JscII, FII, and ηII increase, being new results.

Voc(mV) n Jsc( mA
cm2) FF(%) η(%)

755 1.18 (1.09, 1.08) 42.30 (42.50, 42.54) 91.70 (92.61, 92.76) 29.81 (29.95, 29.98)

749 1.17 (1.09, 1.07) 42.92 (43.18, 43.22) 91.14 (92.04, 92.19) 29.82 (30.00, 30.03)

739 1.15 (1.07, 1.06) 43.89 (44.23, 44.29) 90.22 (91.12, 91.26) 29.79 (30.02, 30.06)

733 1.14 (1.06, 1.05) 44.43 (44.81, 44.88) 89.69 (90.58, 90.73) 29.73 (29.99, 30.04)
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726 1.13 (1.05, 1.04) 45.00 (45.44, 45.51) 89.09 (89.98, 90.12) 29.62 (29.91, 29.96)

723 1.13 (1.05, 1.03) 45.22 (45.68, 45.76) 88.83 (89.72, 89.86) 29.56 (29.87, 29.92)

712 1.11 (1.03, 1.02) 45.92 (46.44, 46.53) 87.94 (88.82, 88.96) 29.27 (29.60, 29.66)

700 1.09 (1.01, 1.00) 46.41 (47.00, 47.09) 87.03 (87.90, 88.04) 28.78 (29.14, 29.20)

687 1.07 (0.99, 0.98) 46.54 (47.13, 47.23) 86.12 (86.98, 87.12) 28.03 (28.39, 28.45)

680 1.06 (0.98, 0.97) 46.39 (46.97, 47.07) 85.67 (86.53, 86.67) 27.51 (27.86, 27.92)

670 1.04 (0.97, 0.96) 45.53 (46.36, 46.45) 85.08 (85.94, 86.07) 26.59 (26.91, 26.96)

660 1.03 (0.95, 0.94) 44.76 (45.20, 45.28) 84.56 (85.42, 85.55) 25.43 (25.69, 25.73)

655 1.02 (0.95, 0.94) 43.98 (44.36, 44.43) 84.33 (85.19, 85.33) 24.74 (24.95, 24.99)

650 1.01 (0.94, 0.93) 42.99 (43.28, 43.33) 84.14 (84.99, 85.13) 23.94 (24.10, 24.13)

645 1.01 (0.94, 0.92) 41.70 (41.89, 41.92) 83.98 (84.83, 84.96) 22.99 (23.10, 23.12)

640 1.00 (0.93, 0.92) 39.87 (39.91, 39.92) 83.86 (84.72, 84.85) 21.79 (21.81, 21.82)

639 1.00 (0.93, 0.92) 39.30 (39.30, 39.30) 83.85 (84.71, 84.84) 21.44 (21.44, 21.44)

4.2. ��[��(��) − ��]�� − ��[��(��) − ��]�� −cases

(4.2a) ��[�� − ��]�� − ��[�� − ��]�� −case. Here, we have rBi(In) = 0.160 (0.135)nm >

rSi = 0.117 nm, according to the presence of ISE, and we propose the usual physical conditions:

W = 15 μm, NBi = 5 × 1020 cm−3, S = 100 (cm/s ), and NIn = 1017(1018, 5 × 1018) cm−3. (34)

Then, from Equations (12, 13, 18, 20, 26,27,29,31) and (C7, C8) of the Appendix C , one

obtains:

P = W
Lheff.

= 2 × 10−4, Lh = 8.28 × 105 cm, I = 0, τhE = 3.15 × 1012 s, τteff.
τhE

= 2.02 × 10−8 ≪

1, suggesting the HTER-condition, and JEno = 6.6 × 10−23 A
cm2 . Further, in the LD(In-Si)-

BR and NIn = 1017(1018, 5 × 1018) cm−3 , according respectively to the non-degenerate

condition: −EFp

kBT
=− 5.74 ( − 3.42, − 1.77) <− 1, as that given in Eq. (A6) of the Appendix A,

one gets, from Eq. (C1) of the Appendix C: JBpo = 1.91(0.42, 0.22) ×

10−15 A
cm2 . Therefore, one obtains: JoI = 1.91(0.42, 0.22) × 10−15 A

cm2 = JBpo , and from

the following Table 4, for example, at Voc = 703 mV , nI =0.88 (0.84, 0.82) and ηI = 30.09

(30.70, 31)%, respectively, noting that, with increasing NTl , both JoI and nI decrease, while ηI

increases, being new results.

Table 4. With the physical conditions given in Eq. (34) and for N�� = 1017(1018, 5 × 1018) cm−3 given in

the BR, our numerical results of nI , JscI , FI , and ηI , are computed by using Equations (27, 26, 29, 31),
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respectively. Here, on notes that, for a given Voc and with increasing NTl, the function nI decreases, while the

functions JscI, FI, and ηI increase, being new results.

Voc(mV) nI Jsc( mA
cm2) FF(%) η(%)

750 0.94 (0.90, 0.88) 43.09 (43.44, 43.54) 88.92 (89.44, 89.66) 28.73 (29.12, 29.29)

740 0.93 (0.88, 0.87) 44.70 (45.11, 45.30) 88.41 (88.93, 89.15) 29.24 (29.69, 29.88)

738 0.93 (0.88, 0.86) 45.00 (45.44, 45.63) 88.31 (88.83, 89.05) 29.33 (29.79, 29.99)

737 0.93 (0.88, 0.86) 45.16 (45.60, 45.80) 88.26 (88.78, 89.01) 29.37 (29.84, 30.04)

718 0.90 (0.86, 0.84) 47.76 (48.36, 48.64) 87.44 (87.96, 88.18) 29.98 (30.54, 30.79)

715 0.90 (0.85, 0.84) 48.10 (48.73, 49.02) 87.33 (87.84, 88.06) 30.03 (30.61, 30.86)

705 0.88 (0.84, 0.82) 49.09 (49.78, 50.10) 86.97 (87.49, 87.70) 30.10 (30.70, 30.97)

703 0.88 (0.84, 0.82) 49.25 (49.96, 50.28) 86.90 (87.42, 87.64) 30.09 (30.70, 31.00)

702 0.88 (0.84, 0.82) 49.33 (50.04, 50.36) 86.87 (87.39, 87.61) 30.08 (30.70, 30.97)

700 0.88 (0.83, 0.82) 49.47 (50.19, 50.52) 86.81 (87.32, 87.54) 30.06 (30.68, 30.96)

695 0.87 (0.83, 0.81) 49.77 (50.51, 50.85) 86.66 (87.17, 87.39) 29.97 (30.60, 30.88)

680 0.85 (0.81, 0.79) 50.05 (50.82, 51.17) 86.27 (86.78, 87.00) 29.36 (29.99, 30.27)

667 0.83 (0.80, 0.78) 49.38 (50.12, 50.45) 86.01 (86.52, 86.74) 28.33 (28.92, 29.19)

665 0.83 (0.79, 0.78) 49.19 (49.91, 50.24) 85.98 (8649, 86.71) 28.12 (28.71, 28.97)

655 0.82 (0.78, 0.77) 47.79 (48.43, 48.72) 85.84 (86.35, 86.56) 26.87 (27.39, 27.62)

643 0.81 (0.77, 0.75) 45.01 (45.49, 45.70) 85.72 (86.23, 86.45) 24.81 (25.22, 25.40)

632 0.80 (0.76, 0.74) 41.02 (41.27, 41.38) 85.67 (86.18, 86.39) 22.21 (22.47, 22.59)

624 0.79 (0.75, 0.74) 36.30 (36.30, 36.30) 85.66 (86.16, 86.38) 19.40 (19.52, 19.57)

(4.2b) ��(�� − ��)�� − ��(�� − ��)�� −case. Here, we have rIn(Bi) = 0.135(0.160)nm >

rSi = 0.117 nm, according to the presence of ISE, and we propose the usual physical conditions:

W = 15 μm, NIn = 5 × 1020 cm−3, S = 100 (cm/s ), NBi = 1017(1018, 5 × 1018) cm−3. (35)

Then, from Equations (12, 13, 18, 20, 26,28,30,31) and (C7, C8) of the Appendix C) , on

obtains: P = W
Leeff.

= 2.61 × 10−3, LeE = 0.575 cm, I = 1.29 × 10−67, τeE = 0.151 s , τteff.
τeE

=

3.41 × 10−6 ≪ 1, according to the HTER − condition, and JEpo = 1.75 × 10−15 A
cm2 .

Further, in the LD[Bi-Si]-BR and for NBi = 1017(1018, 5 × 1018) cm−3, according respectively

to the non-degenerate case: EFn
kBT

=− 5.64( − 3.33, − 1.67) <− 1, one gets: JBno =



95

5.68(1.54, 0.688) × 10−14 A
cm2 . Therefore, one obtains: JoII = 5.85(1.71, 0.86 ) ×

10−14 A
cm2 ≃ JBno, and from the following Table 5, for example, nII=1.04 (0.99, 0.97) and ηII

= 30.37 (30.55, 30.65)% at Voc = 733 mV, respectively, noting that, with increasing NBi , both

JoII and nII decrease, while ηII increases, being new results.

Table 5. With the physical conditions given in Eq. (35) and for NBi = 1017(1018, 5 × 1018) cm−3 given in

the BR, our numerical results of nII , JscII , FI , and ηII , are computed by using Equations (28, 26, 30, 31),

respectively. Here, on notes that, for a given Voc and with increasing NS, the function nII decreases, while the

functions JscII, FII, and ηII increase, being new results.

Voc(mV) n Jsc( mA
cm2) FF(%) η(%)

743 1.05(1.00,0.98) 43.93(44.13,44.24) 91.77(92.28,92.55) 30.38(30.53,30.61)

741 1.05(1.00,0.98) 44.14(44.35,44.49) 91.59(92.10,92.37) 30.39(30.54,30.63)

739 1.04(1.00,0.98) 44.35(44.57,44.69) 91.41(91.91,92.18) 30.39(30.55,30.64)

734 1.04(0.99,0.97) 44.85(45.10,45.24) 90.96(91.46,91.73) 30.37(30.55,30.65)

733 1.04(0.99,0.97) 44.95(45.20,45.34) 90.87(91.38,91.64) 30.37(30.55,30.65)

723 1.02(0.98,0.95) 45.84(46.14,46.31) 90.00(90.51,90.77) 30.26(30.47,30.58)

712 1.00(0.96,0.94) 46.63(46.97,47.16) 89.10(89.60,89.86) 30.01(30.24,30.37)

700 0.99(0.94,0.92) 47.19(47.56,47.78) 88.18(88.67,88.94) 29.55(29.80,29.93)

687 0.97(0.93,0.90) 47.34(47.72,47.94) 87.26(87.75,88.01) 28.79(29.04,29.17)

680 0.96(0.92,0.90) 47.17(47.55,47.76) 86.81(87.30,87.55) 28.25(28.49,28.62)

670 0.95(0.90,0.88) 46.54(46.89,47.09) 86.21(86.70,86.95) 27.28(27.49,27.61)

660 0.93(0.89.0.87) 45.36(45.65,45.81) 85.69(86.17,86.43) 26.03(26.20,26.30)

655 0.93(0.89,0.86) 44.49(44.74,44.88) 85.46(85.95,86.20) 25.27(25.42,25.50)

650 0.92(0.88,0.86) 43.39(43.58,43.68) 85.26(85.75,86.00) 24.40(24.51,24.58)

645 0.91(0.87,0.85) 41.95(42.08,42.14) 85.10(85.58,85.84) 23.36(23.44,23.48)

640 0.91(0.87,0.85) 39.93(39.96,39.97) 84.99(85.47,85.72) 22.03(22.06,22.07)

639 0.91(0.87,0.85) 39.30(39.30,39.30) 84.98(85.46,85.71) 21.65(21.66,21.66)

In conclusion, our values of limiting highest efficiency, obtained in Tables 2-5, are reported, as:

��(��) = 28.25 (30.06) %, obtained in Tables 2 and 3 for the hightly transparent HD[P(B) − Si]ER −

LD[B(P) − Si]BR − cases, with Egi rP B = 1.12(1.12) eV , S = 100 (cm/s ), τh(e)E =

40.4 ms (0.017 s) and W = 15 μm, (36)
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��(��) = 30.06 (31.00) %, obtained in those Tables 4 and 5 for the hightly transparent HD[Bi(In) −

Si]ER − LD[In(Bi) − Si]BR −cases, with Egi rBi In = 1.724 (1.216) eV, S = 100 (cm/s ), and W =

15 μm. (37)

Our values of ��(��) = 28.25 (30.06) %, given in Eq. (36), can be compared respectively with

other limiting η-results equal to: 29.43% for a 110 μm thick solar cell made of intrinsic silicon,

being obtained by Richter et al. [26], and 30% for Egi rP B = 1.1 eV , being obtained by

Shockley and Queisser [6].

Finally, our values of ��(��) = 30.06 (31.00) %, given in Eq. (37) can also be compared with

other limiting result (� = ��%) for physical conditions: S = 100 cm/s and W = 15 μm.
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Appendix

Appendix A. Fermi Energy

In the n(p)-type semiconductor, the Fermi energy EFn( − EFp) , obtained for any T and donor

density N, being investigated in our previous paper, with a precision of the order of 2.11 × 10−4

[39, 40], is now summarized in the following.

First of all, we define the reduced electron density by:

u ≡ Nd(a)

Nc(v)
, Nc(T, rd) = 12 × mc T,rd ×kBT

2πℏ2

3
2 (cm−3), Nv(T) = 4 × mv T ×kBT

2πℏ2

3
2 (cm−3). (A1)

Here, Nc(v) is the conduction (valence)-band density of states, respectively, mc T, rd is the

effective mass of the electron in n-type Si can be defined by [31, 32]:

mc T, rd = 0.3216 × mo × Ego(rd)
Egi T,rd

2/3
, (A2)

where mo being the electron rest mass, the effective mass of the hole in the p-type Si yields [31,

32]:

mv T = gv
−2/3 × 0.443587+0.3609528×10−2T+0.1173515×10−3T2+0.1263218×10−5T3+0.3025581×10−8T4

1+0.4683382×10−2T+0.2286895×10−3T2+0.7469271×10−6T3+0.1727481×10−8T4

2/3
, (A3)

which gives mv T = 0 K = mvo = 0.3664 × mo , and finally, Egin(p) T, rd(a) is the intrinsic

band gap in the silicon (Si), due to the T-dependent carrier-lattice interaction-effect, by [1, 2, 33,

34]:
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Egin(p) T, rd(a) ≃ Egon(p)(rd(a)) − 0.071 eV × 1 + ( 2T
440.6913 K

)2.201
1

2.201 − 1 , (A4)

being due to the d(a)-size effect are given in Table 1.

Furthermore, in the n(p)-type Si, one can define the intrinsic carrier concentration nin(p) by:

ni n(p)
2 (T, rd(a)) ≡ Nc(T, rd) × Nv(T) × exp  −Egin(p) T,rd(a)

kBT
. (A5)

Then, denoting the reduced Fermi energy in the n(p)-type semiconductor, respectively by:

EFn(�)
kBT

( −EFp(�)
kBT

), we found with a precision of the order of 10−7 [39], as:

EFn(�)
kBT

( −EFp(�)
kBT

) = G u +AuBF(u)
1+AuB , A = 0.0005372 and B = 4.82842262 (A6)

where

F u = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, a = (3 �/4) × � 2/3 , b = 1

8
�
a

2
and c = 62.3739855

1920
�
a

4

and G u ≃ Ln u + 2−3
2 × u × e−du; d = 23/2 1

27
1
27

− 3
16
3
16 > 0,

noting that: (i) EFn(u≫1)
kBT

( −EFp(u≫1)
kBT

) > 1 , according to the HD[d(a)-Si]ER-case (i.e., the

degenerate case), Eq. (A6) is reduced to the function F(u), and (ii) EFn(u≪1)
kBT

( −EFp(u≪1)
kBT

) <− 1 ,

to the LD[a(d)-Si]BR-case (i.e., the non-degenerate case), Eq. (A6) is reduced to the function

G(u), respectively. Then, Eq. (A6) can be applied to the following cases as:

(i) in the HD[P(B)-Si]ER-case, for NP(B) = 1020(1020) cm−3 , we get: EFn(u≫1)
kBT

( −EFp(u≫1)
kBT

) =

2.6 (2.39) > 1 , and in the HD[Bi(In)-Si]ER-case, for NBi(In) = 3(1) × 1020cm−3 we

respectively get: EFn(u≫1)
kBT

( −EFp(u≫1)
kBT

) = 6.1 (2.40) > 1, respectively, and

(ii) in the LD[B(P)-Si]BR-case, for NB(P) = 1016(5 × 1017, 1018) cm−3 , we respectively get:
−EFp(u≪1)

kBT
=− 8.04 ( − 4.12, − 3.42) <− 1 and EFn(u≪1)

kBT
=− 7.96 ( − 4.04, − 3.34) <− 1, and

in the LD[In(Bi)-Si]BR-case, for NIn(Bi) = 1017(1018, 5 × 1018) cm−3 , we obtain: −EFp(u≪1)
kBT

=

− 5.74 ( − 3.42, − 1.77) <− 1 and EFn(u≪1)
kBT

=− 5.64 ( − 3.33, − 1.67) <− 1 , respectively.

Those numerical results thus confirm the choice of the limiting Na(d) -values, as those given in

Tables 2-5.
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Appendix B. Approximate forms for band gap narrowing and apparent band gap

narrowing

First of all, in the n(p)-type Si, we define the effective Wigner-Seitz radius rs characteristic of

the interactions by [1, 2]

rsn ≡ rs(Nd, T, rd) = 1.1723 × 108 × 6
Nd

1/3
× mc(T,rd)

ε(rd)
(B1)

and

rsp ≡ rs(Na, T, ra) = 1.1723 × 108 × 2
Na

1/3
× mv(T)

ε(ra)
, (B2)

where mc(T, rd) and mv(T) are given in (A2) and (A3). Therefore, the correlation energy of an

effective electron gas, Ec rs , is given by [1, 2, 42]:

Ecn(cp) Nd(a), T, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B3)

Then, in the n-type heavily doped Si, the BGN is found to be given from I as

ΔEgn(Nd, rd) ≃ a1 × ε(rP)
ε(rd)
ε(rP)
ε(rd) × Nr

1/3 + a2 × ε(rP)
ε(rd)
ε(rP)
ε(rd)
ε(rP)
ε(rd) × Nr

1
3 × 2.503 × [ − Ec rsn × rsn] + a3 × ε(rP)

ε(rd)

5/4
×

mv(T)
mc(T,rd)

× mc(T,rd)
mc(T,rP)

1
4 × Nr

1/4 + a4 × ε(rP)
ε(rd)

× mc(T,rP)
mc(T,rd)

× Nr
1/2 × [1 + mc(T,rd)

mc(T,rP)
] + a5 × ε(rP)

ε(rd)

3
2 ×

mc(T,rd)
mc(T,rP)

× Nr

1
6, Nr ≡ Nd

9.999×1017 cm−3 , (B4)

where a1 = 3.8 × 10−3(eV) , a2 = 6.5 × 10−4(eV) , a3 = 2.8 × 10−3(eV) , a4 = 5.597 ×

10−3(eV) and a5 = 8.1 × 10−4(eV), and in the p-type heavily doped Si, from II, one has

ΔEgp(Na, ra) ≃ a1 × ε(rB))
ε(ra)
ε(rB))
ε(ra) × Nr

1/3 + a2 × ε(rB))
ε(ra)
ε(rB))
ε(ra)
ε(rB))
ε(ra) × Nr

1
3 × 2.503 × [ − Ec rsp × rsp] + a3 × ε(rB))

ε(ra)

5/4
×

mc(T,rP)
mv(T)

× Nr
1/4 + 2a4 × ε(rB))

ε(ra)
× Nr

1/2 + a5 × ε(rB))
ε(ra)

3
2 × Nr

1
6, Nr ≡ Na

9.999×1017 cm−3 , (B5)

where a1 = 3.15 × 10−3(eV) , a2 = 5.41 × 10−4(eV) , a3 = 2.32 × 10−3(eV) , a4 = 4.12 ×

10−3(eV) and a5 = 9.80 × 10−5(eV).

Further, in the donor (acceptor)-Si, we define the effective intrinsic carrier concentration nien(p),

by

ni en(p)
2 (Nd(a), rd(a)) ≡ Nd(a) × po(no) ≡ ni n(p)

2 × exp ΔEgan(p)

kBT
, (B6)

where we can define the “effective doping density” by: Nd(a)eff. ≡ Nd(a)/exp ΔEga n(p)

kBT
so that

Nd(a)eff. × po(no) ≡ ni n(p)
2 [8], and also the apparent band gap narrowing (ABGN), ΔEga n(p), as
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ΔEga n(p) ≡ ΔEg n(p) + kBT × ln Nd(a)

��(�)
− EFn( Nd

Nc
)[ − EFp( Na

Nv
)], (B7)

where Nc(v) is defined in Eq. (A1), the Fermi energy is determined in Eq. (A6).

Appendix C. Minority-carrier transport parameters

Here, the minority-electron (hole) saturation current density injected into the LD[a(d)-Si]BR,

with an acceptor density equal to Na(d), is given in I and II by [1, 7]:

JBp(n)o Na(d), ra(d) =
e×ni

2(rd(a))×
De(h)(Na(d),ra(d))

τe(h)B(Na(d))

Na(d)
, (C1)

where ni n(p)
2 (rd(a)) is determined in (A5), De(h)(Na(d), ra(d)) is the minority-hole (electron)

diffusion coefficient:

De(Na, ra) = kBT
e

× 92 + 1360−92

1+ Na
1.3×1017cm−3

0.91 × ε(ra)
ε(rB)

2
cm2V−1s−1 , (C2)

Dh Nd, rd = kBT
e

× 130 + 500−130

1+ Nd
8×1017 cm−3

1.25 × ε(rd)
ε(rP)

2
cm2V−1s−1 , (C3)

and τh(e)B(Nd(a)) is the minority-hole (electron) lifetime in the base region:

τeB Na
−1 = 1

2.5×10−3 + 3 × 10−13 × Na + 1.83 × 10−31 × Na
2. (C4)

τhB Nd
−1 = 1

2.5×10−3 + 11.76 × 10−13 × Nd + 2.78 × 10−31 × Nd
2, (C5)

Further, from (A6), (B4)-(B7)), in the HD[d(a)-Si]ER, we can define the following minority-

hole(electron) transport parameter Fh(e) as [8, 22, 25]:

Fh(e) (Nd(a), rd(a)) ≡
ni n(p)

2 (rd(a))
po(no)×Dh(e)

= Nd(a)eff.

Dh(e)
≡ Nd(a)

Dh(e)×exp
ΔEg an(p)

kBT

(cm−5 × s), (C6)

Furthermore, the minority-hole (electron) diffusion length, Lh(e) Nd(a), rd(a) and the minority-

hole(electron) lifetime τh(e)E in the HD[d(a)-Si]ER can be determined by

Lh(e)
−2 Nd(a), rd(a) = τh(e)E × Dh(e)

−1 = C × Fn(p)
2 = C × Nd(a)eff.

Dh(e)

2
= C ×

ni n(p)
2 (rd(a))

po(no)×Dh(e)

2

, (C7)

where the constant C = 10−17 (cm4/s) was chosen in I and II, and then, τh(e)E can be

computed by:

τh(e)E = 1

Dh(e)× C×Fn(p)
2 . (C8)
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