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Abstract:

In our recent works [1, 2], by basing on: (1) the effects of heavy(light) doping and donor

(acceptor), d(a), size , which affect the total carrier-minority saturation current density JoI(II) ≡

JEn(p)o + JBp(n)o, JEn(p)o(JBp(n)o), being injected respectively into the heavily doped donor

(acceptor)-GaAs emitter-lightly doped acceptor (donor)-Si base regions, HD[d(a)-Si]ER-

LD[a(d)- Si]BR, of n+(p+) − p(n) junction solar cells, respectively, (2) an effective Gaussian

donor-density profile to determine JEn(p)o , and (3) the use of two experimental points, we

investigated the photovoltaic conversion factor nI(II), short circuit current density JscI(II), fill factor

FI(II) , and finally efficiency ηI(II) . Then, the limiting highest efficiencies, 31% (30.65%), were

obtained in n+(p+) − p(n) junction solar cells at 300K.

In the present work, by basing on such a treatment method, and using the physical conditions

such as: W = 15 μm, NSb(In) = 1019 (1020) cm−3 and S = 100 (cm/s ) , according to the

highly transparent HD[Sb(In)-GaAs]ER, and then NIn(Sb) = 1018 (1017)cm−3 for LD[In(Sb)-
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GaAs]BR, of n+(p+) − p(n) junction solar cells, we get respectively the maximal values of ηI(II),

ηI(II)−max. =31.474% (44.359%), as those observed in Tables 3 et 5, which can be compared with

the result of η = 29.1 % , obtained for GaAs-thin film cell, and η = 45.7 % , for

GaInP/GaAs/GaInAs/GaInAs multijunction cell, by Green et al. [3].

Keywords: donor (acceptor)-size effect; heavily doped emitter region; photovoltaic conversion
factor; open circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent works [1, 2], by basing on: (i) the heavy doping and impurity size effects, which

affect the total carrier-minority saturation current density JoI(II) ≡ JEn(p)o + JBp(n)o, where those

JEn(p)o (JBp(n)o) are injected respectively into the heavily doped donor (acceptor)-Si emitter-

lightly doped acceptor (donor)-GaAs base-regions, HD[d(a)-Si]ER-LD[a(d)-Si]BR, of the

n+(p+) − p(n) junction solar cells, denoted by I(II), respectively, (ii) an effective Gaussian

donor (acceptor)-density profile ρd(a) to determine JEn(p)o[1, 2, 13, 18-20, 22] and (iii) the use of

two fixed experimental points, we investigated the photovoltaic conversion factor nI(II) , the short

circuit current density JscI(II) , the fill factor FI(II) , and finally the efficiency ηI(II) [1- 45]. These

physical quantities were expressed as functions of the open circuit voltage Voc , and various

parameters such as: the emitter thickness W, high donor (acceptor) density Nd(a) , surface

recombination velocity S , given in the HD[d(a)-Si]ER, and low acceptor (donor) density Na(d) ,

in the LD[a(d)-Si]BR.

Further, we remark [1, 2] that: (a) for a given Voc , both nI(II) and JoI(II) have the same variations

and strongly affect other ( JscI(II), FI(II), ηI(II))-results, and (b) for a given Voc, and with decreasing

S and increasing W, while both nI(II) and JoI(II) decrease from the completely transparent emitter

region (CTER), as S → ∞ , to the completely opaque emitter-region (COER), as S → 0 , JscI(II) ,

FI(II), and ηI(II) therefore increase from the CTER-case to the COER-one.

Then, in our present work, we have used such a treatment method [1, 2] to determine the

numerical results of JscI(II), FI(II), and ηI(II), given in HD[d(a)-GaAs]ER- LD[a(d)-GaAs]BR of the

n+(p+) − p(n) junction solar cells, obtained in the CTER-cases, as those given in Tables 2-5. In

particular, in the CTHD(Sb-GaAs)ER-LD(In-GaAs)BR of the n+ − p junction solar cell, the
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maximal value of ηI, is found to be given by: ηI−max. =31.474 %, as observed in Table 3, and in

the CTHD(In-GaAs)ER-LD(Sb-GaAs)BR of the p+ − n junction solar cell, by:

ηII−max. =44.359 %, as obtained in Table 5.

In Section 2, all the results energy-band-structure parameters for d(a)- GaAs systems are reported

in Table 1, and the expressions for JEn(p)o are also reported, so that we can determine the total (or

dark) carrier-minority saturation current density JoI(II) ≡ JEn(p)o + JBp(n)o, where JBp(n)o is

determined in Eq. (C1) of the Appendix C. In Section 3, the photovoltaic effect is presented.

Finally, some numerical results and concluding remarks are given and discussed in Section 4.

2. Energy-Band-Structure Parameters and dark minority-carrier saturation

current density, due to impurity-size and heavy doping effects

Here, we now present the effects of donor (acceptor) [d(a)]-size and heavy doping, taken on the

energy-band-structure parameters and minority-carrier saturation current density, as follows.

2.1. Effect of d(a)-size

In d(a)-GaAs-systems at T=0 K, since the d(a)-radius rd(a) , in tetrahedral covalent bonds [8], is

usually either larger or smaller than the atom-radius rAs(Ga) = 0.118 (0.126) nm , 1 nm =

10−9m , a local mechanical strain (or deformation potential energy) is induced, according to a

compression (dilation) for rd(a) > rAs(Ga) (rd(a) < rAs(Ga)), respectively, due to the d(a)-size effect

[42]. From the numerical results of the effective dielectric constant, ε(rd(a)), obtained from such

a deformation potential energy model [42], for 0.113(0.117) �� ≤ rd(a) ≤ 0.163 (0.144) nm, we

can propose its simple approximate form as:

ε(rd(a)) ≃ 12.85 × rAs(Ga)

rd(a)

4.377 (4.7)
, (1a)

being accurate to within 10% (7%), respectively, and equal to 12.85 as rd(a) = rAs(Ga) , according

to the absence of the impurity size effect, and decreased (increased) with increasing (decreasing)

rd(a). This rd(a) -effect thus affects the changes in all the energy-band-structure parameters,

expressed in terms of ε(rd(a)). In particular, the changes in the unperturbed intrinsic band gap at

0K, Ego rAs(Ga) = 1.519 eV , and effective d(a)-ionization energy in absolute values

Edo(ao) rAs(Ga) = 0.0055 (0.0371) eV, are obtained in an effective Bohr model, as [42]:

Egon(p) rd(a) − Ego rAs(Ga) = Edo(ao) rd(a) − Edo(ao) rAs(Ga) = Edo(ao) rAs(Ga) × ε(rAs(Ga))
ε(rd(a))

2
− 1 . (1b)
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Therefore, with increasing rd(a) , the effective dielectric constant

ε(rd(a)), determined above, decreases, implying that Ego rd(a) and Edo(ao) rd increase, as

observed in the following Table 1.

Table 1. Impurity size effects on the effective dielectric constant ε(rd(a)), determined in Eq. (1a), the intrinsic

band gap Egin(p)(rd(a)), determined in Equations (1a) and Eq. (A4), and the intrinsic carrier concentration nin(p),

calculated using Eq. (A4) of the Appendix A.

Donor As Te Sb

rd (nm) [8] 0.118 0.132 0.136

ε(rd) 12.85 7.87 6.91

Egin(0K, rd) 1.519 eV 1.528 eV 1.533 eV

Egin(300K, rd) 1.422 eV 1.432 eV 1.436 eV

nin(300K, rd) in 106 cm−3 2.12 1.71 1.62

Acceptor Ga Al In

ra (nm) [8] 0.126 0.126 0.144

ε(ra) 12.85 12.85 6.86

Egip(0K, ra) 1.519 eV 1.519 eV 1.612eV

Egip(300K, ra) 1.422 eV 1.422 eV 1.516 eV

nip(300K, ra) in 106 cm−3
2.12 2.12 3.5 × 10−1

In summary, the effects of Nd(a) -heavy doping and rd(a) - impurity size given in the HD[d(a)-

GaAs]ER, and those of Na(d)-low doping in the LD[a(d)-GaAs]BR, affect all the minority-carrier

transport properties, given in the Appendix A, B and C, and in the following equations.

2.2. Total minority-carrier saturation current density at 300K

The total carrier-minority saturation current density is defined by:

JoI(II) ≡ JEn p o + JBp n o, (2)

where JBp n o is the minority-electron (hole) saturation current density injected into the LD[a(d)-

Si]BR, being determined in Eq. (C1) of the Appendix C, and JEn p o is the minority-hole

saturation-current density injected into the HD[d(a)-Si]ER.
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In the non-uniformly and heavily doped emitter region of d(a)-Si devices, the effective Gaussian

d(a)-density profile or the d(a) (majority-e(h)) density, is defined in the HD[d(a)-Si]ER-width W:

ρd(a) x = Nd(a) × exp − x
W

2
× ln  Nd(a)

Nd(a)o(W)
≡ Nd(a) × Nd(a)

Nd(a)o(W)

− x
W

2

, 0 ≤ x ≤ W,

Nd(a)o(W) ≡ 7.9 × 1017 (2 × 105) × exp − W
184.2 (1)10−7 cm

1.066 (0.5)
(cm−3), (3)

where ρd(a)(x = 0) = Nd(a) is the surface d(a)-density, and at the emitter-base junction,

ρd(a) x = W = Nd(a)o(W) , decreasing with increasing W [1, 2, 13]. Further, the “effective

doping density” is defined by:

Nd(a)eff.(x, rd(a)) ≡ ρd(a) x /exp ΔEga n(p)(ρd(a) x , rd(a))
kBT

,

Nd(a)eff. x = 0, rd(a) ≡ Nd(a)

exp
ΔEga n(p) Nd(a),rd(a)

kBT

and Nd(a)eff. x = W, rd(a) ≡ Nd(a)o(W)

exp
ΔEga n(p) Nd(a)o(W), rd(a)

kBT

, (4)

where ΔEga n(p) are determined in Equations (B4, B5) of the Appendix B.

Then, under low-level injection, in the absence of external generation, and for the steady-state

case, we can define the minority-h(e) density by:

po(x)[no(x)] ≡
nin(p)

2

Nd(a)eff.(x, rd(a))
, (5)

where nin(p)
2 is determined in (A5) of the Appendix A and a normalized excess minority-h(e)

density u(x) or a relative deviation between p x [n(x)] and po(x)[no(x)], by [22, 25]:

u x ≡ p x [n(x)]−po(x)[no(x)])
po(x)[no(x)]

, (6)

which must verify the two following boundary conditions proposed by Shockley as [6]:

u x = 0 ≡ −Jh x=0 [Je x=0 ]
eS×po(x=0)[no(x=0)]

, (7)

u x = W = exp V
nI(II)(V)×VT

− 1. (8)

Here, nI(II)(V) is a photovoltaic conversion factor determined in Equations (27, 28), S ( cm
s

) is the

surface recombination velocity at the emitter contact, V is the applied voltage, VT ≡ (kBT/e) is

the thermal voltage, and the minority-hole (electron) current density Jh(e) x .

Further, as developed in I and II, from the Fick’s law for minority hole (electron)-diffusion

equations [8, 12]:
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Jh(e) x = −e(+e)×ni
2

Fh(e)(x)
× du x

dx
=

−e(+e)nin(p)
2 Dh(e)(x)

Nd(a)eff. x
× du x

dx
, (9)

where Nd(a)eff. is given in Eq. (4), Dh(e) and Fh(e) are determined respectively in Equations (C3,

C2, C6) of the Appendix C, and from the minority-hole (electron) continuity equation [8, 12]:

dJh(e) x
dx

=− e( + e) × ni n(p)
2 × u x

Fh(e)(x)×Lh(e)
2 =− e( + e) × ni n(p)

2 × u x
Nd(a)eff. x × τh(e)E

, (10)

where Lh(e) and τh(e)E are defined respectively in Equations (C7, C8) of the Appendix C, one

finally obtains the following second-order differential equation as [22]:

d2u x
dx2 −

dFh(e)(x)
dx

× du x
dx

− u x
Lh(e)

2 x
= 0. (11)

Then, taking into account the two boundary conditions (7, 8), one thus gets the general solution

of this Eq. (11), as [22]:

u x = sinh P x +Ι(W,S)×cosh P x
sinh P W +Ι(W,S)×cosh P W

× exp V
nI(II)(V)×VT

− 1 , Ι(W, S) = Dh(e)(No W )
S×Lh(e)(No W )

. (12)

where the function nI(II) V is the photovoltaic conversion factor, determined in Eq. (29). Further,

since dP x
dx

≡ C × Fh(e)(x)= 1
Lh(e)(x)

, C = 2.0893× 10−30 (cm4/s), for the crystalline Si, being an

empirical parameter, chosen for each crystalline semiconductor, P(x) is thus found to be defined

by:

P x ≡ 0
x dx

Lh(e)(x)
� ), 0 ≤ x ≤ W, P x = W ≡ ( 1

W
× 0

W dx
Lh(e)(x)

� ) × W ≡ W
Lh(e)eff.

= Lh(e)

Lh(e)eff.
× W

Lh(e)
, (13)

where Lh(e)eff. is the effective minority-hole (electron) diffusion length. Further, from Eq. (9, 13),

the minority-hole (electron) current density injected into the HD[d(a)-GaAs]ER is found to be

determined by:

Jh(e) x, W, Nd(a), rd(a), S, V =− JEno x, W, Nd, rd, S [JEpo x, W, Na, ra, S ] × exp V
nI(II)(V)×VT

− 1 , (14)

where JEn(p)o is the saturation minority-hole (electron) current density,

JEn(p)o x, W, Nd(a), rd(a), S =
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P(x) +Ι(W,S)×sinh P(x)

sinh P(W) +Ι(W,S)×cosh P(W)
. (15)

Here, the intrinsic carrier concentration ni n(p) is computed by Eq. (A5) of the Appendix A, and

the effective doping density Nd(a)eff. is determined in Eq. (4), the minority-hole (electron)

diffusion coefficient De(h) and minority-hole (electron) diffusion length Lh(e) are given

respectively in Equations (C2, C3, C7) of the Appendix C, and the factor I(W, S) is determined

by:
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I(W, S) = Dh(e)(Nd(a)o W )
S×Lh(e)(Nd(a)o W )

, (16)

where Nd(a)o W is determined in Eq. (3).

Further, one remarks that: (i) from Equations (12, 14-16) one obtains: u x = 0 ≡
−Jh x=0 [Je x=0 ]

eS×po(x=0)[no(x=0)]
, which is just the first boundary condition given in Eq. (7), and then, (ii) Eq. (12)

yields: u x = W = exp V
nI(II)(V)×VT

− 1, being the second boundary condition given in Eq. (8).

In the following, we will denote P(W) and I(W, S) by P and I, for a simplicity. So, Eq. (15) gives:

JEn(p)o x = 0, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

sinh P +Ι×cosh P
, (17)

JEn(p)o x = W, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P +Ι×sinh P

sinh P +Ι×cosh P
. (18)

Thus, from Equations (14, 17, 18), one gets

Jh(e) x=0,W,Nd(a),rd(a),S,V
Jh(e) x=W, W,Nd(a), rd(a),S,V

≡ JEn(p)o x=0,W,Nd(a), rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1
cosh P +Ι×sinh P

. (19)

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region

by [22]:

Qh(e)eff.(x = W, Nd(a), rd(a)) ≡ 0
W +e( − e) × u x × po(x)[no(x)] × τh(e)E(Nd(a),rd(a))

τh(e)E(ρd(a) x ,rd(a))
� dx, and the

effective minority-hole transit time by: τteff.(x = W, W, Nd(a), rd(a), S) ≡ Qh(e) eff.(x =

W, Nd(a), rd(a))/JEn(p)o x = W, W, Nd(a), rd(a), S , one can define, from Equations (10, 19), the

reduced effective minority-hole transit time:

τteff. x=W,W,Nd(a),rd(a),S
τh(e)E

≡ 1 − JEn(p)o x=0,W,Nd(a),rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1 − 1
cosh P +Ι×sinh P

. (20)

Now, some important results can be obtained and discussed below.

As P ≪ 1 (or W ≪ Lh,eff. ) and S → ∞ , I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ 0 , from Eq. (20), one has:

τt,eff. x=W,W,Nd(a),rd(a),S
τh(e)E

→ 0 , suggesting a completely transparent emitter region (CTER)-case,

where, from Eq. (18), one obtains:

JEn(p)o x = W, Nd(a), rd(a), S → ∞ →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

P(W)
, (21a)
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and then, as P ≫ 1 (or W ≫ Lh,eff.) and S → 0, I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ ∞, from Eq. (20), one

has: τteff. x=W,W,Nd(a),rd(a),S
τh(e)E

→ 1, suggesting a completely opaque emitter region (COER)-

case, where, from Eq. (18), one gets:

JEn(p)o x = W, Nd(a), rd(a), S → 0 →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× tanh P . (21b)

In summary, in the n+(p+) − p(n) junction solar cells, the dark carrier-minority saturation

current density Jo , defined in Eq. (2), is now replaced by JoI(II) , for a good presentation, and

rewritten by:

JoI(II) W, Nd(a), rd(a), S, Na(d), ra(d) ≡ JEn(p)o(W, Nd(a), rd(a), S) + JBp(n)o(Na(d), ra(d)), (22)

where JEn(p)o and JBp(n)o are determined respectively in Equations (18) and (C1) of the Appendix

C.

3. Photovoltaic conversion effect at 300K

Here, in the n+(p+) − p(n) junction solar cells, denoted respectively by I(II), and for physical

conditions as:

W = 0.0044 μm, NAs(Ga) = 1019(1020) cm−3, rAs(Ga), S = 1050 cm
s

, NGa(As) = 1017 cm−3, rGa(As), (23)

we propose, at given VocI1(2) and VocII1(2), the experimental results of the short circuit current

density JscI(II), fill factor FI(II), and photovoltaic conversion factor ηI(II), in order to formulate our

following treatment method of two fixe experimental points [3, 4], for the n+ − p junction,

VocI1(I2) = 980 (1127.2) mV , JscI1(I2) = 27.06 (29.78) mA/cm2 , FI1(I2) = 83.35 (86.7) % ,

ηI1(I2) = 22.07 (29.1) %, and for the p+ − n junction,

VocII1(II2) = 980 (1030) mV , JscII1(II2) = 24.2 (29.8) mA/cm2 , FII1(II2) = 76.4 (86) % , ηII1(II2) =

18.1 (26.4) %. (24)

First of all, we define the net current density J at T=300 K, obtained for the infinite shunt

resistance, and expressed as a function of the applied voltage V, flowing through the n+(p+) −

p(n) junction of GaAs solar cells, by [1, 2, 5-10]:

J V ≡ Jph. V − JoI(II) × eXI(II) V − 1 , XI(II) V ≡ V
nI(II) V ×VT

, VT ≡ kBT
e

= 25.85 mV, (25)
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where the function nI(II) V is the photovoltaic conversion factor, noting that as V = Voc, J V =

0, the photocurrent density is defined by: Jph. V = Voc ≡ JscI(II) W, Nd(a), rd(a), S, Na(d), ra(d), Voc ,

for Voc ≥ VocI(II)1. Therefore, the photovoltaic conversion effect occurs, according to:

JscI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JoI(II) W, Nd a , rd a , S, Na d , ra d × eXI(II) Voc − 1 , (26)

where nI(II)(Voc) ≡ nI(II) W, Nd a , rd a , S, Na d , ra d , Voc , and XI(II) Voc ≡ Voc
nI(II) Voc ×VT

.

Here, one remarks that (i) for a given Voc, both nI(II) and JoI(II) have the same variations, obtained

in the same physical conditions, as observed in many cases, given in Ref. [1], and (ii) the function

eXI(II) Voc − 1 or the PVCF nI(II) , representing the photovoltaic conversion effect, thus converts

the light, represented by JscI(II), into the electricity, by JoI(II).

Further, from Equations (22, 26), we obtain for the n+ − p junction:

nI1(2) W, Nd, rd, S, Na, ra, VocI1(2), JscI1(2) ≡ VocI1(2)

VT
× 1

ln 
JscI1(2)

JoI
+1

≡ nI1(2)(VocI1(2), JscI1(2)),

and we then propose:

nI W, Nd, rd, S, Na, ra, Voc = nI1(VocI1, JscI1) + nI2(VocI2, JscI2) × Voc
VocI1

− 1
1.1248

, (27)

being valid for any values of (W, Nd, rd, S, Na, ra, Voc ≥ VocI1).

Furthermore, for the p+ − n junction,

nII1(2) W, Na, ra, S, Nd, rd, VocII1(2), JscII1(2) ≡ VocII1(2)

VT
× 1

ln 
JscII1(2)

JoII
+1

≡ nII1(2)(VocII1(2), JscII1(2)),

and then,

nII W, Na, ra, S, Nd, rd, Voc = nII1(VocI1, JscI1) + nII2(VocII2, JscII2) × Voc
VocII1

− 1
1.0939664

, (28)

being valid for any values of (W, Na, ra, S, Nd, rd, Voc ≥ VocII1).

Therefore, from Equations (23, 24, 27, 28), one obtains, nI1(II1) =0.9701 (0.99492) at VocI1(II1) =

980 (980) mV , and nI2(II2) =1.1131 (1.04) at VocI2(II2) = 1127.2 (1030) mV , respectively, for

n+(p+) − p(n) junction solar cells.

Thus, XI defined from Eq. (26) now becomes for the n+ − p junction:

XI W, Nd, rd, S, Na, ra, Voc ≡ Voc
nI W,Nd,rd,S, Na,ra,Voc ×VT

, and therefore, we can determine the values of

the fill factors FI1(I2) at Voc = VocI1(I2) by [1, 2]:
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FI1(I2) W, Nd, rd, S, Na, ra, VocI1(I2) =
XI W,Nd,rd,S, Na,ra,VocI1(I2) −ln XI W,Nd,rd,S, Na,ra,VocI1(I2) +0.72

XI W,Nd,rd,S, Na,ra,VocI1(I2) +3.385 (1.758)
≡

FI1(I2) Voc = VocI1(I2) , for a presentation simplicity, and further, the fill factor FI can be

computed by:

FI W, Nd, rd, S, Na, ra, Voc = FI1 VocI1 + FI2 VocI2 × Voc
VocI1

− 1
1.716

, (29)

which is valid for any values of W, Nd, rd, S, Na, ra, Voc ≥ VocI1 .

Then, also from Eq. (26), we can define for the p+ − n junction:

XII W, Na, ra, S, Nd, rd, Voc ≡ Voc
nII W,Na,ra,S, Nd,rd,Voc ×VT

, where nII W, Na, ra, S, Nd, rd, Voc is

determined in Eq. (28). Therefore, we can determine the values of the fill factors FII1(II2) at Voc =

VocII1(II2) as:

FII1(II2) W, Na, ra, S, Nd, rd, VocII1(II2) =
XII W,Na,ra,S, Nd,rd,VocII1(II2) −ln XII W,Na,ra,S, Nd,rd,VocII1(II2) +0.72

XII W,Na,ra,S, Nd,rd,VocII1(II2) +6.9795 (1.9752)
≡ FII1(2) VocII1(II2) , for a presentation

simplicity, and further, the fill factor FII is determined by:

FII W, Na, ra, S, Nd, rd, Voc = FII1 VocII1 + FII2 VocII2 × Voc
VocII1

− 1
0.73688

, (30)

being valid for any values of W, Na, ra, S, Nd, rd, Voc ≥ VocII1 .

Then, with physical conditions given in Eq. (23), our numerical calculation shows that we obtain

the same values of JscI1(I2) and FI1(I2) at VocI1(I2) = 980 (1127.2) mV, and JscII1(II2) and FII1(II2)

at VocII1(II2) = 980 (1030) mV , as those given in Eq. (24).

Finally, the efficiency ηI(II) can be defined in the n+(p+) − p(n) junction solar cells, by:

ηI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JscI(II)×Voc×FI(II)

Pin.
, (31)

where, JscI(II) and FI(II) are determined respectively in Equations (26, 29, 30), being assumed to be

obtained at 1 sun illumination or at AM1.5G spectrum (Pin. = 0.100 W
cm2 ) [1, 2, 26-29]. Then,

from Equations (31, 24), we get the numerical results of η , by using this assumption: Pin. =

0.100 W
cm2, and their relative errors in absolute values (RE), calculated by using the experimental

results of ηI1(I2) and ηII1(II2) given in Eq. (24),

-for the n+ − p junction at VocI1(I2) = 980 (1127.2) mV, ηI1(I2) = 22.10 (29.10) % , with

RE=10−3(1.8 × 10−4) , and
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-for the p+ − n junction at VocII1(II2) = 980 (1030) mV , ηII1(II2) = 18.13 (26.41) % , with

RE=1.1 × 10−3(1.8 × 10−4).

4. Numerical results and concluding remarks

In the following, we will respectively consider the two cases: the HD[As(Sb) − GaAs]ER −

LD[Ga(In) − GaAs]BR, and the HD[Ga(In) − GaAs]ER − LD[As(Sb) − GaAs]BR.

4.1. ��[��(��) − ����]�� − ��[��(��) − ����]�� −cases

(4.1a) ��(�� − ����)�� − ��(�� − ����)�� −case.

Here, there is the absence of the impurity size effect (ISE), because of rAs(Ga) =

0.118 (0.126) nm, and we propose the usual physical conditions as:

W = 15 μm, NAs = 1019 cm−3, S = 100 (cm/s ), and NGa = 1017(1018)cm−3. (32)

Then, from Equations (12, 13, 18, 20, 26,27,29,31) and (C7, C8) of the Appendix C, on obtains:

P = W
Lheff.

= 2.19 × 10−14, Lh = 2.64 × 109 cm, I(W, S) = 0, τhE = 1.9 × 1018 s, τteff.
τhE

= 0,

suggesting the completely transparent ������ − condition, and from Eq. (18), JEno =

6. 86 × 10−23 A
cm2 . Further, in the LD[B-Si]-BR and for NGa = 1017(1018) cm−3 , one gets

from Eq. (C1) of the Appendix C: JBpo = 2.551 ( 0.136) × 10−19 A
cm2 . Therefore, one obtains

respectively: JoI = 2.551 ( 0.136) × 10−19 A
cm2 = JBpo , and from the following Table 2, for

example, at Voc = 1078 mV , nI =1.038 (0.965) and the maximal values of ηI, ��,���. = 29.80

(30.52)%, meaning that, with increasing NGa , both JoI and nI decrease, while ηI increases, being

new results.

Table 2. In the HD(As-GaAs) ER-LD(Ga-GAAs) BR and for physical conditions given in Eq. (32), our

numerical results of n, Jsc , F, and η, are computed by using Equations (27, 26, 29, 31), respectively. Here, on

notes that, for a given Voc and with increasing NGa , the function nI decreases, while the functions Jsc , F, and η

increase, being new results.

Voc(mV) n Jsc(
mA
cm2) F(%) η(%)

1130 1.112 (1.035) 29.60 (29.77) 86.86 (87.80) 29.05 (29.54)

1127.2 1.109 (1.032) 29.79 (29.98) 86.75 (87.69) 29.13 (29.63)

1079 1.039 (0.966) 33.05 (33.53) 84.52 (85.44) 29.80 (30.52)
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1078 1.038 (0.965) 33.06 (33.54) 84.50 (85.42) 29.80 (30.52)

1077 1.037 (0.965) 33.08 (33.56) 84.47 (85.39) 29.79 (30.51)

1000 0.983 (0.915) 30.88 (31.18) 83.50 (84.42) 25.78 (26.32)

990 0.975 (0.907) 29.46 (29.64) 83.43 (84.34) 24.33 (24.75)

980 0.967 (0.900) 27.06 (27.06) 83.39 (84.31) 22.11 (22.36)

(4.1b) ��(�� − ����)�� − ��(�� − ����)�� −case.

Here, there is the presence of the ISE, since rSb In = 0.136 0.144 nm > rAs(Ga) =

0.118 (0.126) nm, and we propose the usual physical conditions:

W = 15 μm, NSb = 1019 cm−3, S = 100 (cm/s ), and NIn = 1017(1018) cm−3. (33)

Then, from Equations (12, 13, 18, 20, 26,27,29,31) and (C7, C8) of the Appendix C , one

obtains:

P = W
Lheff.

= 1.94 × 10−14, Lh = 3.17 × 109 cm, I = 0, τhE = 9.51 × 1018 s, τteff.
τhE

= 0,

suggesting the CTHDER-condition, and JEno = 4.51 × 10−23 A
cm2 . Further , in the LD(In-Si)-

BR and NIn = 1017(1018) cm−3 , one gets, from Eq. (C1) of the Appendix C: JBpo =

3.72( 0.368) × 10−21 A
cm2 , and therefore, Jo = 3.76( 0.372) × 10−21 A

cm2 ≃ JBpo . Then,

from the following Table 3, one notes that, for a given Voc and with increasing NIn , both JoI and

nI decrease, while ηI increases, being new results. In particular, for NIn = 1017(1018) cm−3 and

at Voc = 1072 mV, one gets: nI=0.950 (0.894) and ��,���.= 30.814 % (31.474) %, respectively.

Table 3. In the HD(Sb-GaAs) ER-LD(In-GaAs) BR and for physical conditions given in Eq. (33), our

numerical results of n, Jsc , F, and η, are computed by using Equations (27, 26, 29, 31), respectively. Here, on

notes that, for a given Voc and with increasing NIn , the function n decreases, while the functions Jsc , F, and η

increase, being new results.

Voc(mV) n Jsc(
mA
cm2) F(%) η(%)

1130 1.004 (0.945) 29.85 (30.01) 88.18 (88.93) 29.739 (30.154)

1127.2 1.002 (0.942) 30.06 (30.23) 88.07 (88.82) 29.839 (30.269)

1072 0.950 (0.894) 33.35 (33.78) 86.19 (86.93) 30.814 (31.474)

1071 0.949 (0.893) 33.39 (33.81) 86.16 (86.90) 30.809 (31.470)
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1070 0.948 (0.892) 33.42 (33.85) 86.13 (86.87) 30.802 (31.466)

1000 0.888 (0.835) 31.31 (31.60) 84.79 (85.51) 26.549 (27.021)

990 0.880 (0.828) 29.73 (29.90) 84.71 (85.44) 24.929 (25.291)

980 0.873 (0.821) 27.06 (27.06) 84.68 (85.40) 22.455 (22.647)

One remarks from Tables 2 and 3 that the obtained results of ηI,max. , being given in Table 3, are

found to be very large compared with those given in Table 2, since the corresponding values of

JoI and nI, obtained in Table 3, are very small compared with those obtained in Table 2.

4.2. ��[��(��) − ����]�� − ��[��(��) − ����]�� −cases

(4.2a) ��[�� − ����]�� − ��[�� − ����]�� −case.

Here, we propose the usual physical conditions:

W = 15 μm, NGa = 1020 cm−3, S = 100 (cm/s ), and NAs = 1016(1017) cm−3. (34)

Then, from Equations (12, 13, 18, 20, 26,27,29,31) and (C7, C8) of the Appendix C , one

obtains:

P = W
Lheff.

= 3.99 × 10−15, Le = 3.77 × 1011 cm, I = 0, τeE = 5.77 × 1019 s, τteff.
τhE

= 0,

suggesting the CTHDER-condition, and JEpo = 3.77 × 10−22 A
cm2 . Further, one gets, from Eq.

(C1) of the Appendix C: JBno = 7.31(0.72) × 10−19 A
cm2 . Therefore, one obtains: JoII =

7.31(0.72) × 10−19 A
cm2 = JBpo , and from the following Table 4, for example, at Voc =

1375 (1355) mV , nII =1.396 (1.296) and ηII = 43.76 (43.97)%, respectively, noting that, with

increasing ���, both ���� and ��� decrease, while ��� increases, being new results.

Table 4. In the HD(Ga-GaAs) ER-LD(As-GaAs) BR and for physical conditions given in Eq. (34), our

numerical results of n, Jsc , F, and η, are computed by using Equations (27, 26, 29, 31), respectively. Here, on

notes that, for a given Voc and with increasing NAs , the function nI decreases, while the functions Jsc , F, and η

increase, being new results.

Voc(mV) n Jsc(
mA
cm2) F(%) η(%)

1380 1.401 (1.321) 25.51 (25.50) 120.8 (122.2) 43.761 (43.899)

1375 1.396 (1.316) 25.69 (25.69) 120.4 (121.7) 43.763 (43.922)

1366 1.386 (1.307) 26.02 (26.04) 119.6 (121.0) 43.758 (43.953)
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1361 1.381 (1.302) 26.20 (26.23) 119.2 (120.6) 43.750 (43.965)

1355 1.375 (1.296) 26.42 (26.46) 118.7 (120.1) 43.735 (43.974)

1338 1.357 (1.279) 27.03 (27.12) 117.3 (118.6) 43.659 (43.965)

1290 1.306 (1.231) 28.70 (28.92) 113.2 (114.5) 43.154 (43.633)

1030 1.042 (0.982) 29.79 (30.15) 85.97 (87.07) 27.251 (27.695)

1000 1.014 (0.955) 27.25 (27.44) 81.26 (82.33) 22.890 (23.147)

980 0.996 (0.939) 24.20 (24.20) 76.37 (77.41) 18.7432 (18.823)

(4.2b) ��(�� − ����)�� − ��(�� − ����)�� −case.

Here, we propose the usual physical conditions:

W = 15 μm, NIn = 1020 cm−3, S = 100 (cm/s ), NSb = 1016(1017) cm−3 . (35)

Then, from Equations (12, 13, 18, 20, 26,28,30,31) and (C7, C8) of the Appendix C) , on

obtains: P = W
Leeff.

= 2.63 × 10−15, LeE = 5.75 × 1011 cm, I = 2.7 × 10−80, τeE = 7.2 ×

1020 s , τteff.
τeE

= 0, corresponding to the CTHDER − condition, and JEpo = 1.56 × 10−23 A
cm2 .

Further, in the LD[Bi-Si]-BR , one gets: JBno = 2.29(0.22) × 10−19 A
cm2 . Therefore, one

obtains : JoII = 2.29(0.22 ) × 10−19 A
cm2 = JBno, and from the following Table 5, for example,

at Voc = 1361 (1338) mV, one obtains: nII =1.340 (1.243) and ηII = 43.928

(44.359)% , respectively, noting that, with increasing NSb , both JoII and nII decrease, while ηII

increases, being new results.

Table 5. In the HD(In-GaAs) ER-LD(Sb-GaAs) BR and for physical conditions given in Eq. (35), our

numerical results of n, Jsc , F, and η, are computed by using Equations (27, 26, 29, 31), respectively. Here, on

notes that, for a given Voc and with increasing NSb , the function nI decreases, while the functions Jsc , F, and η

increase, being new results.

Voc(mV) n Jsc( mA
cm2) F(%) η(%)

1366 1.345 (1.270) 26.03 (26.06) 120.3 (121.6) 43.926 (44.289)

1361 1.340 (1.265) 26.22 (26.25) 119.9 (121.2) 43.928 (44.311)

1355 1.334 (1.259) 26.44 (26.49) 119.4 (120.7) 43.925 (44.333)
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1338 1.316 (1.243) 27.07 (27.16) 118.0 (119.3) 43.883 (44.359)

1290 1.267 (1.196) 28.81 (29.03) 113.9 (151.1) 43.465 (44.118)

1030 1.011 (0.954) 29.97 (30.34) 86.54 (87.59) 27.523 (28.092)

1000 0.984 (0.929) 27.34 (2754) 81.81 (82.83) 23.062 (23.424)

980 0.967 (0.913) 24.20 (24.20) 76.90 (77.89) 18.819 (18.985)

In conclusion, by basing on such a treatment method, and using the physical conditions such as:

W = 15 μm, NSb(In) = 1019 (1020) cm−3 and S = 100 (cm/s ), according to the CTHD[Sb(In)-

GaAs]ER, and then NIn(Sb) = 1018 (1017)cm−3 for LD[In(Sb)-GaAs]BR, of n+(p+) − p(n)

junction solar cells, we get respectively the maximal values (or limiting ones) of ηI(II) ,

ηI(II)−max. =31.474% (44.359%), as those observed in Tables 3 et 5. They can also be compared

with the other ones: η = 29.1 % , obtained for the GaAs-thin film cell, and η = 45.7 % for

GaInP/GaAs/GaInAs/GaInAs multijunction cell, by Green et al. [3].
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Appendix

Appendix A. Fermi Energy

In the n(p)-type semiconductor, the Fermi energy EFn( − EFp) , obtained for any T and donor

density N, being investigated in our previous paper, with a precision of the order of 2.11 × 10−4

[39, 40], is now summarized in the following.

First of all, we define the reduced electron density by:

u ≡ Nd(a)

Nc(v)
, Nc(T, rd) = 2 × mc T,rd ×kBT

2πℏ2

3
2 (cm−3), Nv(T) = 2 × mv T ×kBT

2πℏ2

3
2 (cm−3). (A1)

Here, Nc(v) is the conduction (valence)-band density of states, respectively, mc T, rd is the

effective mass of the electron in n-type Si can be defined by [31, 32]:

mc T, rd(a) = 0.067 × mo × Ego(rd(a))
Egi T,rd(a)

2/3
, (A2)
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where mo = 9.1096 × 10−28 (�) is the electron rest mass, the effective mass of the hole in the p-

type Si yields [31, 32]:

mv = 0.45 × mo, (A3)

and Egin(p) T, rd(a) is the intrinsic band gap in the GaAs-semiconductor, due to the T-dependent

carrier-lattice interaction-effect, by [1, 2, 33, 34]:

Egin(p) T, rd(a) ≃ Egon(p)(rd(a)) − 5.405×10−4×T2

T+204
. (A4)

Here, Egon(p)(rd(a)) is determined in Eq. (1b), due to the d(a)-size effect.

Furthermore, in the n(p)-type Si, one can define the intrinsic carrier concentration nin(p) by:

ni n(p)
2 (T, rd(a)) ≡ Nc(T, rd) × Nv(T) × exp  −Egin(p) T,rd(a)

kBT
. (A5)

Then, denoting the reduced Fermi energy in the n(p)-type semiconductor, respectively, by
EFn(�)

kBT
( −EFp(�)

kBT
),

Being accurate to within 10−7 , we have [39] :

EFn(�)
kBT

( −EFp(�)
kBT

) = G u +AuBF(u)
1+AuB , A = 0.0005372 and B = 4.82842262 (A6)

where

F u = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, a = (3 �/4) × � 2/3 , b = 1

8
�
a

2
and c = 62.3739855

1920
�
a

4

and

G u ≃ Ln u + 2−3
2 × u × e−du; d = 23/2 1

27
1
27

− 3
16
3
16 > 0.

Here, one notes that: (i) EFn(u≫1)
kBT

( −EFp(u≫1)
kBT

) > 1, according to the HD[d(a)-GaAs]ER-case or to

the degenerate case, Eq. (A6) is reduced to the function F(u), and (ii) EFn(u≪1)
kBT

( −EFp(u≪1)
kBT

) <− 1,

to the LD[a(d)-GaAs]BR-case or to the non-degenerate case, Eq. (A6) is reduced to the function

G(u), respectively.

(i) In the HD[As(Sb)-GaAs]ER-case for NAs(Sb) = 1019 cm−3 , we get: EFn
kBT

= 9.49 (9.53) > 1 ,

and in the HD[Ga(In)-GaAs]ER-case for NGa(In) = 1020 cm−3 , we get: −EFp

kBT
= 6.94 (6.94) > 1

according to degenerate conditions.
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(ii) In the LD[Ga(In)-GaAs]BR-case for NGa(In) = 1017(1018) cm−3 we obtain: −EFp

kBT
=−

4.32 ( − 1.98) <− 1 , and in the LD[As(Sb)-GaAs]BR-case for NAs(Sb) = 1016(1017) cm−3 we

get: EFn
kBT

=− 3.8 ( − 1.5) <− 1 , according to non-degenerate conditions. Those obtained results

confirm the limiting values of Na(d)[ = 1018(1017) cm−3], given in Tables 2-5, for the LD[a(d)-

GaAs] BR, respectively.

Appendix B. Approximate forms for band gap narrowing and apparent band gap

narrowing

First of all, in the n(p)-type Si, we define the effective Wigner-Seitz radius rs characteristic of the

interactions by [1, 2]

rsn ≡ rs(Nd, T, rd) = 1.1723 × 108 × 1
Nd

1/3
× mc(T,rd)

ε(rd)
(B1)

and

rsp ≡ rs(Na, T, ra) = 1.1723 × 108 × 1
Na

1/3
× mv(T)

ε(ra)
, (B2)

where mc(T, rd) and mv(T) are given in (A2) and (A3). Therefore, the correlation energy of an

effective electron gas, Ec rs , is given by [1, 2, 42]:

Ecn(cp) Nd(a), T, rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B3)

Then, in the n-type heavily doped GaAs, the band gap narrowing is found to be given as [1, 2]:

ΔEgn(Nd, rd) ≃ a1 × ε(rAs)
ε(rd)
ε(rAs)
ε(rd) × Nr

1/3 + a2 × ε(rAs)
ε(rd)
ε(rAs)
ε(rd)
ε(rAs)
ε(rd) × Nr

1
3 × 2.503 × [ − Ec rsn × rsn] + a3 × ε(rAs)

ε(rd)

5/4
×

mv(T)
mc(T,rd)

× mc(T,rd)
mc(T,rAs)

1
4 × Nr

1/4 + a4 × ε(rAs)
ε(rd)

× mc(T,rAs)
mc(T,rd)

× Nr
1/2 × [1 + mc(T,rd)

mc(T,rAs)
] + a5 × ε(rAs)

ε(rd)

3
2 ×

mc(T,rd)
mc(T,rAs)

× Nr

1
6, Nr ≡ Nd

9.999×1017 cm−3 , (B4)

where a1 = 3.8 × 10−3(eV) , a2 = 6.5 × 10−4(eV) , a3 = 2.8 × 10−3(eV) , a4 = 5.597 ×

10−3(eV) and a5 = 8.1 × 10−4(eV), and in the p-type heavily doped GaAs, one has [1, 2]:

ΔEgp(Na, ra) ≃ a1 × ε(rGa))
ε(ra)

ε(rGa))
ε(ra) × Nr

1/3 + a2 × ε(rGa))
ε(ra)

ε(rGa))
ε(ra)

ε(rGa))
ε(ra) × Nr

1
3 × 2.503 × [ − Ec rsp × rsp] + a3 × ε(rGa))

ε(ra)

5/4
×

mc(T,rAs)
mv(T)

× Nr
1/4 + 2a4 × ε(rGa))

ε(ra)
× Nr

1/2 + a5 × ε(rGa))
ε(ra)

3
2 × Nr

1
6, Nr ≡ Na

9.999×1017 cm−3 , (B5)

where a1 = 3.15 × 10−3(eV) , a2 = 5.41 × 10−4(eV) , a3 = 2.32 × 10−3(eV) , a4 = 4.12 ×

10−3(eV) and a5 = 9.80 × 10−5(eV).
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Further, in the donor (acceptor)-GaAs, we define the effective intrinsic carrier concentration

nien(p), by

ni en(p)
2 (Nd(a), rd(a)) ≡ Nd(a) × po(no) ≡ ni n(p)

2 × exp ΔEgan(p)

kBT
, (B6)

where we can define the “effective doping density” by: Nd(a)eff. ≡ Nd(a)/exp ΔEga n(p)

kBT
so that

Nd(a)eff. × po(no) ≡ ni n(p)
2 [8], and also the apparent band gap narrowing, ΔEga n(p), as

ΔEga n(p) ≡ ΔEg n(p) + kBT × ln Nd(a)

��(�)
− EFn( Nd

Nc
)[ − EFp( Na

Nv
)], (B7)

where Nc(v) is defined in Eq. (A1), the Fermi energy is determined in Eq. (A6).

Appendix C. Minority-carrier transport parameters

Here, the minority-electron (hole) saturation current density injected into the LD[a(d)-GaAs]BR,

with an acceptor density equal to Na(d), is given by [1, 2]:

JBp(n)o Na(d), ra(d) =
e×ni

2(rd(a))×
De(h)(Na(d),ra(d))

τe(h)B(Na(d))

Na(d)
, (C1)

where ni n(p)
2 (rd(a)) is determined in (A5), De(h)(Na(d), ra(d)) is the minority-hole (electron)

diffusion coefficient:

De(Na, ra) = kBT
e

× 200 + 8500−200

1+ Na
1.3×1017cm−3

0.91 × ε(ra)
12.85

2
cm2V−1s−1 , (C2)

Dh Nd, rd = kBT
e

× 130 + 400−130

1+ Nd
8×1017 cm−3

1.25 × ε(rd)
12.85

2
cm2V−1s−1 , (C3)

and τh(e)B(Nd(a)) is the minority-hole (electron) lifetime (s) in the base region:

τeB Na
−1 = 1

10−7 + 3 × 10−13 × Na + 1.83 × 10−31 × Na
2. (C4)

τhB Nd
−1 = 1

10−7 + 11.76 × 10−13 × Nd + 2.78 × 10−31 × Nd
2, (C5)

Further, from (A6), (B4)-(B7)), in the HD[d(a)-GaAs]ER, we can define the following

minority-hole(electron) transport parameter Fh(e) as [8, 22, 25]:

Fh(e) (Nd(a), rd(a)) ≡
ni n(p)

2 (rd(a))

po(no)×Dh(e)
= Nd(a)eff.

Dh(e)
≡ Nd(a)

Dh(e)×exp
ΔEg an(p)

kBT

(cm−5 × s), (C6)

Furthermore, the minority-hole (electron) diffusion length, Lh(e) Nd(a), rd(a) and the minority-

hole(electron) lifetime τh(e)E in the HD[d(a)-GaAs]ER can be determined by
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Lh(e)
−2 Nd(a), rd(a) = τh(e)E × Dh(e)

−1 = C × Fn(p)
2 = C × Nd(a)eff.

Dh(e)

2
= C ×

ni n(p)
2 (rd(a))

po(no)×Dh(e)

2

, (C7)

where the constant C is chosen to be 2.0893 × 10−30 (cm4/s), and then, τh(e)E can be computed

by:

τh(e)E = 1

Dh(e)× C×Fn(p)
2 . (C8)

References

[1] H. Van Cong, K. C. Ho-Huynh Thi, P. Blaise, R. Brouzet, and O. Henri-Rousseau, “31%

(30.65%)- Limiting Highest Efficiencies obtained in n+(p+) − p(n) Junction Solar Cells at

300K, Due to the Effects of Heavy (Low) Doping and Impurity Size, “SCIREA J. Phys., vol.

7, pp.81-103, 2022.

[2] H. Van Cong, P. Blaise, and O. Henri-Rousseau, “Effects of Heavy Doping Impurity Size on

Minority-Carrier Transport Parameters in Heavily (Lightly) Doped n(p)-Type Crystalline

Silicon at 300K, Applied to Determine the Performance of n+ − p Junction Solar Cells,

“SCIREA J. Phys., vol. 4, pp. 63-110, 2019 ;

H. Van Cong, P. Blaise, and O. Henri-Rousseau, “Effects of Heavy Doping Impurity Size on

Minority-Carrier Transport Parameters in Heavily (Lightly) Doped p (n)-Type Crystalline

Silicon at 300K, Applied to Determine the Performance of p+ − n Junction Solar Cells,

“SCIREA J. Phys., Vol.4, pp. 126-162, 2019.

[3] M. A. Green et al., “Solar cell efficiency tables (version 60),” Prog Photovoltaic Res Appl.,

Vol. 30, pp.687-701, 2022; M. A. Green et al., “Solar cell efficiency tables (version 36),”

Prog Photovoltaic Res Appl., Vol.18, pp.346-352, 2010.

[4] S. Moon et al.,” Highly efficient single-junction GaAs thin-film solar cell on flexible

substrate,” Sci. Rep., vol. 6, 30107; doi:10.1038/srep30107, 2016.

[5] F. A. Lindholm, A. Neugroschel, C. T. Sah, M. P. Godlewski, H. W. Brandhorst, “A

methodology for experimentally based determination of gap shrinkage and effective lifetimes

in the emitter and base of p-n junction solar cells and other p-n junction devices, “IEEE

Trans. Electron Devices ED, vol. 24, pp. 402-410, 1977.

[6] W.Shockley and H. J. Queisser, “Detailed balace limit of efficiency of p-n junction solar

cells,” J. Appl. Phys., vol. 32, pp. 510-519, 1961.

[7] M.A. Shibib, F.A. Lindholm, and F. Therez, “Heavily doped transparent-emitter region in

junction solar cells, diodes, and transistors,” IEEE Trans. Electron Devices 1979, vol. ED-26,

pp. 959-965, 1979.



133

[8] C. Kittel, “Introduction to Solid State Physics, pp. 84-100. Wiley, New York (1976).

[9] R.A. Logan, J.F. Gilbert, and F.A. Trumbore, “Electron mobilities and tunneling currents in

silicon,” J. Appl. Phys., vol. 32, pp. 131-132, 1961.

[10] J. del Alamo, S. Swirhum, and R.M. Swanson, “Measuring and modeling minority carrier

transport in heavily doped silicon,” Solid-State Electron., vol. 28, pp. 47-54, 1985.

[11] D. Chattopadhyay, and H.J. Queisser, “Electron scattering by ionized impurities in

semiconductors,” Rev. Mod. Phys., vol. 53, pp. 745-768, 1981.

[12] J. del Alamo and R.M. Swanson, “Modeling of minority-carrier transport in heavily doped

silicon emitters. Solid-State Electron., vol. 30, pp. 1127-1136, 1987.

[13] Z. Essa et al., “Doping profile measurement on textured silicon surface,” EPJ Photovoltaics,

vol. 9, p.5, 2018.

[14] S.C. Jain, E.L. Heasell, and D.J. Roulston, “Recent advances in the physics of silicon p-n

junction solar cells including their transient response,” Prog. Quant. Electron., vol. 11,

pp.105-204, 1987.

[15] S.C. Jain and D.J. Roulston,” A simple expression for band gap narrowing in heavily doped

Si, Ge, GaAs and GexSi1−x strained layers. Solid-State Electron., vol. 34, pp. 453-465 (1991).

[16] D.B.M. Klaassen, J.W. Slotboom, and H.C. de Graaff, “Unified apparent band gap narrowing

in n- and p-type silicon. Solid-State Electron. 1992, vol. 35, pp. 125-129, 1992.

[17] A. Zouari and A.B. Arab, “A simple formulation of the saturation current density in heavily

doped emitters,” Can. J. Phys., vol. 81, pp. 1109-1120, 2003.

[18] J. W. Slotboom and H.C. de Graaff, “Measurements of band gap narrowing in Si bipolar

transistors. Solid-State Electron,” vol. 19, pp. 857-862, 1976.

[19] M. A. Green, “Solar cell fill factors: general graph and empirical expressions. Solid-State

Electron,” 1981, vol. 24, pp. 788-78, 1971.

[20] R.M. Swanson and R.A. Sinton, “Advances in Solar Energy,” edited by K. A. Bouer ,

American Solar Energy, Newark, Delaware, 1990.

[21] H. Van Cong, and S. Brunet, “Effective drift current densities in the n-type heavily doped

emitter region of p − n+ junction silicon solar cells. Solar Cells,” vol. 5, pp. 355-365, 1982.

[22] H. Van Cong, “A simple accurate solution to minority electron injection in the p-type heavily

doped emitter region of silicon devices,” Physica Status Solidi A, vol. 149, pp. 619-628,

1995; H. Van Cong and G. Debiais, “About a conjunction between electrical and optical

phenomena in p-type heavily doped silicon at room temperature,” Physica Status Solidi B,

vol. 191, pp. 161-169, 1995.



134

[23] K. Masuko et al., “Achievement of more than 25% conversion efficiency with crystalline

silicon heterojunction solar cell. IEEE J. Photovoltaic, vol. 4, pp. 1433-143, 2014.

[24] A. Fell, et al., “Input Parameters for the simulation of silicon solar cells in 2014,” IEEE J.

Photovoltaics, vol. 5, pp. 1250-1263, 2015.

[25] H. Van Cong, and G. Debiais, “Energy band structure parameters and their data, derived

from the measurements of minority carrier current density in heavily doped emitters of

silicon devices,” Solar Ener. Mater. and Solar Cells, vol. 45, pp. 385-399, 1997; “Apparent

band-gap narrowing and its data derived from the measurements of minority-carrier current

density in heavily doped emitters of silicon devices,” Physica Status Solidi A, vol. 155, pp.

547-553, 1996; H. Van Cong, “ A new solution for minority-carrier injection into the heavily

doped emitter of silicon devices,” Physica Status Solidi A, vol. 171, pp. 631-64, 1999.

[26] A. Richter, M. Hermle, and S.W. Glunz, “Reassessment of the limiting efficiency for

crystalline silicon solar cells,” IEEE J. Photovoltaics, vol. 3, pp. 1184-1191, 2013.

[27] R.S. Davidsen, et al., “Black silicon laser-doped selective emitter solar cell with 18.1%

efficiency. Sol. Energy Mater. Sol. Cells,” vol. 144, pp. 740-747, 2016.

[28] C. Battaglia, A. Cuevas, and S. de Wolf, “High-efficiency crystalline silicon solar cells:

status and perspectives,” Energy Environ. Sci., vol. 9, pp. 1552-1576, 2016.

[29] M.A. Green, et al., “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl.,

vol. 26, pp. 3-12, 2018.

[30] J.E. Lang, F.L. Madarasz, and P.M. Hemenger, “Temperature dependent density of states

effective mass in non-parabolic p-type silicon,” J. Appl. Phys., vol. 54, pp. 3612-3612, 1983.

[31] M.A. Green, “Intrinsic concentration, effective densities of states, and effective mass in

silicon,” J. Appl. Phys., vol. 67, pp. 2944-2954, 1990.

[32] H. Van Cong, “Band gap changes in excited intrinsic (heavily doped) Si and Ge

semiconductors,” Physica B, vol. 405, pp. 1139-1149, 2010.

[33] R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in

semiconductors,” Phys. Rev. B, vol. 66, p. 085201, 2002.

[34] R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in

semiconductors,” Physica Status Solidi B, vol. 236, pp. 710-728, 2003.

[35] O. Henri-Rousseau, and P. Blaise, “Quantum Oscillators,” edited by John Wiley & Sons, Inc.,

Hoboken, New Jersey, 2011.

[36] A.B. Sproul, and M.A. Green, “Improved value for the silicon intrinsic carrier concentration

from 275 to 375 K,” J. Appl. Phys., vol. 70, pp. 846-854, 1991.



135

[37] K. Misiakos, and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier

density from 77 to 340 K,” J. Appl. Phys., vol. 74, pp. 3293-3297, 1993.

[38] R. Couderc, M. Amara, and M. Lemiti, “Reassessment of the intrinsic carrier density

temperature dependence in crystalline silicon,” J. Appl. Phys., vol. 115, p. 093705, 2014.

[39] H. Van Cong, and G. Debiais, “ A simple accurate expression of the reduced Fermi energy

for any reduced carrier density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993.

[40] H. Van Cong, and B. Doan Khanh, “Simple accurate general expression of the Fermi-Dirac

integral Fj a and for j> -1,” Solid-State Electron., vol. 35, pp. 949-951, 1992; H. Van Cong,

“New series representation of Fermi-Dirac integral Fj( − ∞ < a < ∞) for arbitrary j> -1, and

its effect on Fj(a ≥ 0+) for integer j≥ 0,” Solid-State Electron., vol. 34, pp. 489-492, 1991.

[41] H. Van Cong, S. Abide, B. Zeghmati, and X. Chesneau, “Optical band gap in various

impurity-Si systems from the metal-insulator transition study,” Physica B, vol. 436, pp. 130-

139, 2014.

[42] H. Van Cong, “Effects of impurity size and heavy doping on energy-band-structure

parameters of various impurity-Si systems,” Physica B, vol. 487, pp. 90-101, 2016.

[43] H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and

thermoelectric properties of various degenerate donor-silicon systems at low temperatures,”

American Journal of Modern Physics, vol. 7, pp. 136-16, 2018.

[44] J. Wagner, and J.A. del Alamo, “Band-gap narrowing in heavily doped silicon: A

comparison of optical and electrical data,” J. Appl. Phys., vol. 63, pp. 425-429, 1988.

[45] H. Van Cong, “Fermi energy and band-tail parameters in heavily doped semiconductors,” J.

Phys. Chem. Solids, vol. 36, pp. 1237-1240, 1975.


