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Abstract:

In the n™(p™) — p(n) crystalline Si-junction solar cells, by basing on a same treatment method, and
for a same heavy (low) doping effect, as those given in our recent paper (RP) [1], but using now a
new expression, obtained for the relative dielectric constant E(Vd(a)) , determined exactly in the
effective Bohr model, as that given in Eq. (lc), representing the donor (acceptor) d(a)-radius
laca) — effect or the E(Vd(a)) — effect, suggesting further that, for an increasing ryc) , E(Vd(a))
decreases, as showed in Table 1, according to the increase in photovoltaic efficiency n, as observed
in Tables 2 and 3, we finally get in our present paper, for highest values of ry,), the new limiting
highest efficiencies, N=28.68% (29.87%)<nNgp =31% (30.65%), being due to rye) [8] < ryw),
according to: E(Vd(a)) > €rp(Fy(a)), €rp(Fd(ay) being our inaccurate and simple formula, proposed in
RP, and also reported in Eq. (1d), for a comparison. Finally, our new limiting highest efficiencies,
N=28.68% (29.87%), can also be compared with other limiting n-results, such as: 29.43% [26],
30%[6],and % [3, 4].

160



Keywords: donor (acceptor)-size effect; heavily doped emitter region; photovoltaic conversion

factor; open circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent paper (RP) [1], by basing on: (i) the heavy doping and impurity size effects, which
affect the total carrier-minority saturation current density Joiry = Jenpyo + Jsp(n)or JEn(pyo aNd Jgp(nyo
being the carrier-minority saturation current densities, injected respectively into the heavily doped
donor (acceptor)-Si emitter-lightly doped acceptor (donor)-Si base-regions, HDJ[d(a)-Si]ER-
LDJ[a(d)-Si]BR, of n™(p™) — p(n) junction solar cells, (ii) an effective Gaussian donor (acceptor)-
density profile Py to determine Jgn(pyo [1, 2, 13, 18-20, 22], and (iii) the use of two fixed
experimental points, we investigated the photovoltaic conversion factor nyq;y, the short circuit
current density Jseiqiry, the fill factor Fy(y, and finally the efficiency nyqy [1- 45]. These physical
quantities were expressed as functions of the open circuit voltage V., and of various parameters
such as: the emitter thicknessW , high donor (acceptor) density Ngya) , surface
recombination velocity S , given in the HD[d(a)-Si]ER, and low acceptor (donor) density Ny ,
given in the LDJ[a(d)-Si]BR.

Then, in our present paper, by basing on a same treatment method, and for a same heavy (low)
doping effect, as those given in RP, but using now a new expression, obtained for the relative
dielectric constant E(rd(a)), determined exactly in the effective Bohr model, as that given in Eq. (1c),
representing the donor (acceptor) d(a)-radius Iy —effect or the E(rd(a)) —effect, suggesting further
that, for an increasing Iy, E(rd(a)) decreases, as showed in Table 1, according to the increase in
photovoltaic efficiency n, as observed in Tables 2 and 3, we finally get in our present paper, for
highest values of Iy, the new limiting highest efficiencies, N=28.68% (29.87%) <ngp =31%
(30.65%), being due to rye) [8] < ry@), , according to: E(Vd(a)) > €pp(Faea)), Erp(rdca)) being our
inaccurate and simple formula, proposed in RP, and also reported in Eq. (1d), for a comparison.
Finally, our new limiting highest efficiencies, N=28.68% (29.87%), can also be compared with
other limiting n-results, such as: 29.43% [26], 30% [6],and % [3, 4].

In Section 2, all the results energy-band-structure parameters for d(a)- Si systems are reported in
Table 1, and the expressions for Jgn(p)o are also reported, so that we can determine the total (or dark)
carrier-minority saturation current density Joi(1y = Jen(pyo + JBp(n)or IBp(n)o being determined in Eq.
(C1) of the Appendix C. In Section 3, the photovoltaic effect is investigated. Finally, some

numerical results and concluding remarks are given and discussed in Section 4.

161



2. Energy-Band-Structure Parameters and dark minority-carrier saturation

current density, due to impurity-size and heavy doping effects
2.1. Effect of d(a)-size

In d(a)-Si-systems at T=0 K, since the d(a)-radius ryc), in tetrahedral covalent bonds is usually
either larger or smaller than the Si atom-radius rg;, a local mechanical strain (or deformation
potential energy) is induced, according to a compression (dilation) for rgcy > rsi (Fy@) <rsi =
0.117 nm), respectively, due to the d(a)-size effect [42]. Further, we also suppose that there exist
the donor (acceptor)-atoms, having their donor (acceptor)-radii Fyogag) » S0 that Fyoeag)y = Isi =
0.117 nm, 1 nm = 10"°m, corresponding to the absence of impurity size effect. Then, we have
shown [8] that this ryc,) -effect affects the changes in all the energy-band-structure parameters,

expressed in terms of the relative dielectric constant €(ry()), as given in the following.

First, we note that in the Si [8] the relative dielectric constant of the intrinsic silicon is equal to:

e(rsi) = 11.7, the relative effective electron (hole) mass in conduction (valence) bands yield: (m./

0.16+0.52
2

m,) = 0.2 and (Mm,/m,) = = 0.34, the unperturbed intrinsic band gap at 0K, Eg,(rg) =

1.17 eV, the effective donor(acceptor)-ionization energy at Igoao)y = I'si in absolute values:

__13600%(Mm¢/mg) _ __13600x(my/my) _
Ego(rgo) = e’ meV = 19.9meV, and E,,(ry) = e meV = 33.8 meV, and
the isothermal bulk modulus are defined, for the n(p)-type Si, by: B, = Edo =4.745 x

(4 3)x(rg)*

108 (N/m?), and B, = W?’E)—x(rs)s = 8.066 x 108 (N/m?).

Therefore, at 4y = Fdo(ao) » the boundary conditions are found to be, for the impurity-atom volume

3 : )
V., Vdo@ao) = (4 /3) % (rdo(ro)) , the pressure p, P, = 0, and the deformation potential energy or

the strain energy 0, 0, = 0.

Further, the two important equations [42], needed to determine the o-variation Ac= 0-0, =

are defined by: :—52—5 and pz—g—\c;. giving: dd_v(g_\c; = %. Then, in the n(p)-type Si, by an integration,

one gets:

Vv rd(a 3 rd(a 3
(A0)n(p)=Bn(p) X (V—Vdo(ag)) < In )= Edoao) * [( o) ) - 1] x In(ﬂ) =0. (1a)

Vdo(ao) do(ao) do(ao)

Furthermore, at T=0K, we also shown [42] that, as rIqea) > Fogao)( Fd(a) < Fdo(ao)) » the
compression (dilatation) corresponding the repulsive (attractive) force increases (decreases)

the energy gap Egn(gp)(rd(a)) and the effective donor(acceptor)-ionization energy Ed(a)(rd(a)) in
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absolute values, obtained in the effective Bohr model, which is represented by: +(—) (A0)n(p) .

respectively. That gives:

1 \2
Egn(gp) - Ego = Ed(a) - Edo(ao) = Edo(ao) x [(%Z;)) - 1] =+ (Ac)n(p)a for rq(a) = rgo(an), and
e(rs) \
Egn(gp) — Ego = Ed(a) — Edo(ao) = Edo(ao) > [(m) - 1] == (Ao)n(p)a for ryeay = I'do(ao)- (1b)

Then, from Equations (1a, 1b), the exact expression of relative dielectric constant €(ryc), is given
by:

&(rsi)

1+ ( fd(a) )3—1 xln( fd(a) )3
do(ao) 'do(ao)

< g(rs;), for ld(a) = I'do(ao)> and

e(rgea))= J

&(rsi)

3 3
_|([e@ ) d(a)
1 [(rdo(ao)) l]xm(rdo(ao))
which can be compared with its approximated and simple form, proposed in our recent paper (RP)

[1], by:

= g(Ig;), for rycay = rdo(ao)» (lc)

€(raea))= J

)4.377 4.7)
. (1d)

erp(rd@) 114 x (i

ld(a)

Therefore, with increasing Fd(a) , the effective dielectric constant
€(Iqca)), determined in Eq. (1c), decreases, implying that Ego(rd(a)) and Ego(a0)(ra), given in Eq.
(1b), increase, as observed in the following Table 1, in which we also remark that, for a given ryc,),
€rp(rd()) < €(rye))- This remark further explains that the values of limiting highest efficiencies,

given for the n™(p™) — p(n) crystalline Si-junction solar cells, obtained in our RP, are found to be
high, 31% (30.65%), compared respectively with the present ones, 28.68% (29.87%), as those
showed in Tables 2 and 3.

Table 1. Impurity size effects, taken on the effective dielectric constant €(rgcs)), being determined in Eq. (1c),
the effective donor(acceptor)-ionization energy, Ed(a)(rd(a)), in absolute values, and the band gap, Egn(p) (Fy(a))- at
T=0K, determined both in Eq. (1b), and finally, the intrinsic band gap, Egin(p) (T = 300K, rycsy) and the intrinsic

carrier concentration Njyp) (T = 300K, rye)) , determined respectively in Equations (A4) and (AS5) of the

Appendix A.

Donor P o As Te Sb Sn
rg (nm) [8] 0.110 0.117 0.118 0.132 0.136 0.140
e(rq) 11.89 11.7 [8] 11.69 10.87 10.43 9.94
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Eq(rg) in meV 19.2 19.9 19.99 23 25 28
Egn(rq) in meV 1169 1170 [8] 1170.9 1173 1175 1178
Egin(300K, rg) in meV 1123 1124 1124.1 1127 1129 1133
Nin(300K, rg) in 10° cm™3 424 4.16 4.159 3.92 3.77 3.56
Acceptor B a0 Ga Al Mg In
r, (nm) [8] 0.088 0.117 0.126 0.126 0.140 0.144
&(ry) 16.4 11.7[8] 11.39 11.39 9.95 9.43
Ea(ra) in meV 172 33.8 35.6 35.6 47 52
Egp(ra) in meV 1153 1170 [8] 1172 1172 1183 1188
Egip(300K, 1) in meV 1107 1124 1126 1126 1137 1143
Nip(300K, 1) in 10° cm™3 5.8 4.16 4 4 3.23 2.92

Comparison between our numerical results, obtained in present paper and recent paper (RP) [1]; €(ryc))

[ C O]

Donor P Te Sb
rg(m)[ (nm)] 0.110 [0.117] 0.132 [0.140] 0.136 [0.145]
era) [ ()] 11.89 [11.4] 10.87 [5.20] 10.43 [4.46]
Acceptor B Ga In
ra(m)[  (nm)] 0.088 [0.117] 0.126 [0.130] 0.144 [0.135]
erd) [ ()] 16.4 [11.4] 11.39 [6.95] 9.43 [5.82]

In summary, the effects of Ngq)-heavy doping and ry,)- impurity size, given in the HD[d(a)-Si]ER,
and those of Ny(g)-low doping and Iy - impurity size, given in the LD[a(d)-Si]BR, affect all the
minority-carrier transport properties, as those given in the Appendix A, B and C, and also in the

following equations.

2.2. Total minority-carrier saturation current density at 300K

The total carrier-minority saturation current density is defined by:

Jol(ll) = ‘]En(p)o + ‘]Bp(n)o’ (2)

where Jgpn)o is the minority-electron (hole) saturation current density injected into the LD[a(d)-
Si]BR, being determined in Eq. (C1) of the Appendix C, and Jgn(p)o is the minority-hole saturation-
current density injected into the HD[d(a)-Si]ER, being developed and determined from I and II,

now reported in the following.
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In the non-uniformly and heavily doped emitter region of d(a)-Si devices, the effective Gaussian

d(a)-density profile or the d(a) (majority-e(h)) density, is defined in the HD[d(a)-Si]ER-width W:

x\2
_ o (x 2 Nd(a) _ Nd(a) _(W)
pd(a)(X) B Nd(a) * exp{ (W) *In [Nd(a)o(W) } - Nd(a) x [Nd(a)o(W)] ’ O=x= W’
W 1.066 (0.5) _
Nagayo(W) = 7.9 x 10%7 (2 x 105) x exp {— (FzamTe) } (cm™3), 3)

where Pgea)(X = 0) = Ng(y) is the surface d(a)-density, and at the emitter-base junction, pqea)(X =
W) = Ny(ayo(W), decreases with increasing W [1, 2, 13]. Further, the “effective doping density” is
defined by:

_ AE (Pd(a) X, Td(a))
Nacayefr. (X, Fd(a)) = Pdca) )/ exp[ 200 kd;? @,
_ — Nd(a) _ — Na(a)o(W)
Naayeft.(X = 0, Fy(ay) = g2 ne) (o a@)] and Ngcayeft (X = W, Fqq)) = TPV CTSNTE 4)
EXpl kgT J eXp[ kgT

where AEg, n(p) are determined in Equations (B4, BS) of the Appendix B.

Then, under low-level injection, in the absence of external generation, and for the steady-state case,

we can define the minority-h(e) density by:

Po()[Ne(¥)] = —n®___ (5)

Na(ayeft.(% Fd(a))’

where nizn(p) is determined in (AS5) of the Appendix A and a normalized excess minority-h(e)

density u(x) or a relative deviation between p(x)[N(X)] and po(X)[Ny(X)], by [22, 25]:

— PCAINE)]—Po(X)[No(X)])
R T R ©)
which must verify the two following boundary conditions proposed by Shockley as [6]:
— M = “hG=0)[e(x=0)]
U= 0) = oo, emoninoe=or ™
— — V —
U= W) = exp (nl(ll)(V)xVT) 1 ®

Here, nyq;y(V) is a photovoltaic conversion factor determined in Equations (27, 28), S (%) is the
surface recombination velocity at the emitter contact, V is the applied voltage, V1 = (kgT/€) is the
thermal voltage, and the minority-hole (electron) current density Jne)(X).

Further, as developed in I, from the Fick’s law for minority hole (electron)-diffusion equations [8,

12]:

—e(+e)xn? o Ju0o _ _e(+e)ni2n(p)Dh(e)(X) 5 Queo
Fh(ey(0) dx Nd(ayefr. (X) dx

Ihe)() = \ &)

165



where Ngayerr. 1s given in Eq. (4), Dpcey and Fpey are determined respectively in Equations (C3, C2,
C6) of the Appendix C, and from the minority-hole (electron) continuity equation [8, 12]:

Ahee) (X)
dx

u(x)

u(x)
in(p) m —e(+e)><n T — (10)

—e(+e)x n; in(p) ™ Ndayefr. 00> The)e’
where Lpe) and The)e are defined respectively in Equations (C7, C8) of the Appendix C, one

finally obtains the following second-order differential equation as [22]:

d2u()  dFhe() _ dux)  u(x)
dx? dx x dx Lﬁ(e)(x) - (11)

Then, taking into account the two boundary conditions (10, 11), one thus gets the general solution

of this Eq. (11), as [22]:

_sinh(P())+1(W,S)xcosh(P(x)) ( ( v )_ ) _ Dney(No(W))
uG) = sinh(P(W))+1(W,S)>cosh(P(W)) x|\ &XP nan(V)xVy 1).1(W.$) = SxLp(e) (No(W))' (12)

where the function nyqy(V) is the photovoltaic conversion factor, determined in Eq. (29). Further,

d(

since ——==C X Fho)(X)=——= ,C= 10717 (cm?/s), for the crystalline Si, being an empirical

Lh(e )(X)
parameter, chosen for each crystalline semiconductor, P(x) is thus found to be defined by:

W dx
0 Lyey®)

W L W
)XW= =_"O = , (13)
Lheeyeft.  Lh(edeft.  Lh(e)

PX)= ,—), 0<x<WP(x—W)_(

0 Lh( )(X)

where Lyeetr. 18 the effective minority-hole (electron) diffusion length. Further, from Eq. (9, 13),

the minority-hole (electron) current density injected into the HD[d(a)-Si]ER is found to be
determined by:

v
Ince) (% W, Ngay, Faay: S V) == Jgno (%, W, Ny, Fg, ) [Jepo(X, W, Ny, Fa, S)] % (exp (W) - 1), (14)

where Jgn(p)o 18 the saturation minority-hole (electron) current density,

eni2n(p)’<Dh(e) « cosh(P(x))+1(W,S)xsinh(P(x)) (15)
Nd(a)eff. XLh(e) sinh(P(W))+1(W,S)xcosh(P(W))

Jen(pyo (X W, Nagay, Faay: S) =

Here, the intrinsic carrier concentration Ny is computed by Eq. (A5) of the Appendix A, and the
effective doping density Nycyer, is determined in Eq. (4), the minority-hole (electron) diffusion
coefficient De¢ny and minority-hole (electron) diffusion length Ly are given respectively in

Equations (C2, C3, C7) of the Appendix C, and the factor (W, S) is determined by:

Dh(e) (Nd(@a)o(W))

I(W,8) = $xLn(e) (Nacayo (W)’

(16)

where Nga)o (W) is determined in Eq. (3).
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—Ih (x=0)[Je (x=0)]

Further, one remarks that: (i) from Equations (12, 14-16) one obtains: u(x = 0) = Py m—
o\A— o\

which is just the first boundary condition given in Eq. (7), and then, (ii) Eq. (12) yields: u(x =

W) = exp <+) — 1, being the second boundary condition given in Eq. (8).
many(V)xVr

In the following, we will denote P(W) and (W, S) by P and I, for a simplicity. So, Eq. (15) gives:

2
— _ eNGnpy*Dh(e) 1
JEn(p)O(X o O’ W’ Nd(a)’ rd(a)’ S) - Nd(a)eff.xl-h(e) x sinh(P)+|><cosh(P) ’ (17)
2 .
_ __ eNfpp)*Dnee) _ cosh(P)+Ixsinh(P)
Jenpo(x = W W, Naa, Facay S) = Na@efi <Lnge) - Sinh(P)+1xcosh(P)’ (18)
Thus, from Equations (14, 17, 18), one gets
In(e) (EOWNa@) M@ SV) _ Jeno(*=OWNaa). Fa@$) _ 1 (19)
Ine) (X=W, W Ngcay, @) SV)  Jen(pyo(X=W.W Ny(a) Fd@y:S)  cosh(P)+Ixsinh(P)’

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region

by [22]:

Th(e)e(Nd(a)d(a)) d
Th(e)e (Pd(a) X).rd(a))

W
Qnceyeft. (X = W, Nga), Fa@)) = o +e(—€) X u(x) x po(x)[Ny(x)] < X, and the

effective  minority-hole  transit time  by:  Teer (X = W, W, Nyay, Fdcay, S) = Qnceyerr. (X =
W, Nd(a)ard(a))/JEn(p)o(X =W, W, Nd(a),rd(a),S) , one can define, from Equations (10, 19), the

reduced effective minority-hole transit time:

Treft, (X=W.W.Ng(a) Fd(a)S) _ 1— Jen(p)o(*=OWNaa) fa@S) _ o _ 1 (20)
Th(e)E JEn(p)o(X:WxWde(a)xrd(a)vS) cosh(P)+Ixsinh(P)’

Now, some important results can be obtained and discussed below.
_ __Da(No(W)) ,
As P 1 (or W Lpeg)and S - oo, [ =I(W,S) = LMWy 0, from Eq. (20), one has:

Ty eff.(X=W,W.Ng(a) Fd(a) S)
Th(e)E

- 0, suggesting a completely transparent emitter region (CTER)-case, where,
from Eq. (18), one obtains:

enizn(p)th(e) < 1
Ndcayeff.<Lhe)  P(W)’

Jen(pyo(X = W, Nyay, Faga) S ~ ) - (21a)

and then,asP 1 (orW Lpeg)andS - 0,1 =1(W,S) = % - oo, from Eq. (20), one

Treff. (X=W,W.Ng(a) Fd(a).S)
Th(e)E

has: - 1, suggesting a completely opaque emitter region (COER)-case,

where, from  Eq. (18), one gets:

2
— €Nin(p) *Dhee)
‘JEn(p)o(X =W, Nd(a)’ rd(a), S S 0) - Ndl(:):ff,XLh(e) X tanh(P) (21b)
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In summary, in the n*(p™) — p(n) junction solar cells, the dark carrier-minority saturation current

density J,, defined in Eq. (2), is now replaced by Jy i1y, for a good presentation, and rewritten by:

Jorany (W, Naay: Tagay: S Nagdy: Tacd)) = Jen(pyo (W, Naay: Taca): S) + Jepnyo (Nacdy: Facay)- (22)
where Jenpyo and Jgp(n)o are determined respectively in Equations (18) and (C1) of the Appendix C.

Then, in the following, in the n™(p*) — p(n) junction solar cells, and for physical conditions as:

W = 0.0044 (0.000206)um, Ng=do(azaoy = 10?°(10?°) cm—3,S = 1050%, Nazao(d=do) =
10%6(10%%) cm™3, we propose, at given Vocir2) and Voeiii(ey, the experimental results of the short
circuit current density Jsciry and the fill factor Fy(yy, in order to formulate our treatment method of

two fixe experimental points. Then, for the n* — p junction [1, 2, 23, 27, 28],
Voeir@z) = 624 (740) MV, Jg1(2) = 36.3 (41.8) MA/cm?, Fy(p) = 80.1 (82.7) %, and (23)
for the p* — n junction [1, 2, 30],

VOCIIl(Z) =639 (738) mvV, JSCIIl(Z) =393 (426) mA/sz, F||1(2) =789 (849) %. (24)

3. Photovoltaic conversion effect at 300K

As defined and developed in I, the net current density J, at T=300 K and for the infinite shunt
resistance, expressed as a function of the applied voltage V, flowing through the n*(p*) — p(n)

junction of silicon solar cells, is defined by [1, 2, 5-10]:

Vv _ kgT

IV) = Jon (V) = Joiqry % (MO — 1), X4y (V) = EPROET Vp=--=2585mV, (25)

where the function nyg;y(V) is the photovoltaic conversion factor (PVCF), noting that as V = V.,
JV) =0, the photocurrent density is defined by: Jon. (V= Vo) =
JSC|(||)(W, Nd(ay: Fdca): S Nacdy: Facd) VOC) , for Vg = Voeqani - Therefore, the photovoltaic

conversion effect occurs, according to:

Jseriny (W, Nagay Facay: S, Nagay: Tacay: Voc) = Joian (W, Nagay Fagay: S, Naga: Faey) % (X100 — 1), (26)

where n|(||) (VOC) = n|(||)(W, Nd(a)a rd(a), S, Na(d)a ra(d), VOC) is the PVCF, and X|(||) (VOC) =

VOC
Ny Vo) <V’

Here, one remarks that (i) for a given V,, both Ny and Jy ¢y have the same variations, obtained in

the same physical conditions, as observed in many cases, given in I , and (ii) the function
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(ex'(“)(VOC) - l) or the PVCF ny(y, representing the photovoltaic conversion effect, thus converts

the light, represented by Jsci1y, into the electricity, by Joiqy.

Further, from Equations (22, 26), we obtain for the N"™ — p junction:

V, 1
N2y (W, Ng, g, S, Na, Fa, Voern2y sein)) = 022(2) x - (Jsc,l(z)H) = Mi1e)Voenn2) Jseirz)) >  and
Jol
then,
Voc 11216
nI(W’ Nd’ d, S: Na’ I’a’Voc) = nIl(VocIl’\]scll) + nI2(VocI2ﬂ]scI2) x (Vocll - 1) B (27)

being valid for any values of (W, Ng, rg, S, Na, ra, Voo = Voei1), and then, for the p* — n junction:

VOC 1 —_—
Ni1) (W, Ng, ra, S, Ny, ra, Vociizy Jsenin)) = \I,ITl(Z) x - (Jsc||1(2)+1) = M) Voen12) Iseini(2))
Joll

and then,

Ve 1.09103
N (W, Na, ra, S, Na, Fa, Vo) = Niin (Voeins dsein) + Ni2(Vocnzs Jsciiz) < ( - )

, (28)

Vocliz

being valid for any values of (W, Ng, I3, S, Ng, rg, Voo = Vocnr)-

Therefore, from Equations (23, 24, 27, 28), one obtains, Njy¢ 1) =1.0808 (1.20469) at Vo111 =
624 (639) mV, and Ny = 1.2737 (1.38588) at Voepqizy = 740 (738) mV, respectively, for

n*(p™) — p(n) junction solar cells.

Thus, X, defined from Eq. (26) now becomes for the n™ — p junction:

Voc
N (W,Ng,rg,S, Na,ra,Voe) XV

Xi(W,Ng,rqg,S, Ng, g, Vo) = , and therefore, we can determine the values of

the fill factors F|1(2) at VOC = VOCIl(Z) by [1, 2]

_ X.(W,Nd,rd,s, Na,ra,Voc|1(2))—In[X.(W,Nd,rd,s, Na,ra,Voc|1(2))+0.72 (0.72)]
F|1(2) (W, Ndl rda S| Naa ra, VOC|1(2)) - X|(W,Nd,rd,s, Navravvocll(Z))+l-63 (09)

Fii2) (VOC = Vocl1(2))= for a presentation simplicity, and further, the fill factor F; can be computed
by:

Vos )2.0559

Vocl1

Fi(W,Ng, 4, S, Ng, ra, Voo) = Fi1(Vocin) + Fiz(Voer2) % ( , (29)

which is valid for any values of (W, Ny, g, S, Na, a, Voo = Voai1).

Then, also from Eq. (26), we can define for the p™ — n junction:
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Voc
Ny (W,Ng,ra,S, Ny, rd,Voc) <V ’

X||(W, Na’ la S, Nd’ lq, VOC) = where n||(W, Na, la, S, Nda lq, VOC) i
determined in Eq. (28). Therefore, we can determine the values of the fill factors Fy 1) at Voo =
Voclii(z) as:

XII(WxNaxraxSx Ndxrdxvoclll(Z))_ln[Xll(WxNavraxSx Ndxrdxvoclll(Z))"'o-?Z (072)]
F W,N,, r Ng, rq, vV =
1@ (W: NarTa, 8, Na. o Voen(a)) Xin(WNara 8, Nara Vooin2)) +1 6136 (0.0595)

Fiie) (Vocul(z)), for a presentation simplicity, and further, the fill factor F,; is determined by:

VOC
Vocii1

-1

1.4209
) (30)

Fii(W,Ng, ra, S, Ng, Fa, Voo) = Fiin(Voen) + Friz(Voen2) x (

being valid for any values of (W, Ny, ra, S, Ng, g, Voc = Voen)-

Numerically, Equations (29, 30) give: Fy1(2)=80.01% (82.7%) at Vg 1(2) = 624 (740) for the n"—
P junction, and Fyjy(2) =78.9% (84.9%) at Voer(2) = 639 (738) mV for the p* —n junction,

respectively, being in perfect agreement with the data given in Equations (23, 24).

Finally, the efficiency Ny can be defined in the n*(p™) — p(n) junction solar cells, by:

J XV XF
Man (W, Naca): Facay S, Nacdy: Tacy: Voc) = w (€29)

where Jseiqry and Fyqpy are determined respectively in Equations (26, 29, 30), being assumed to be

obtained at 1 sun illumination or at AM1.5G spectrum (P;, = 0.100 C%) [1,2,26-29].

4. Numerical results and concluding remarks

We will respectively consider the two following cases, given in 8 n™(p*) — p(n) junction solar

cells: P(B)-B(P), As(Ga)-Ga(As), Sb(Mg)-Mg(Sb), Sn(In)-In(Sn), respectively, in the following.
4.1. [(P; As; Sb; Sn) — ] —  [(B; Ga; Mg; In) — )] —cases

Here, for those 4 (n* — p) — junctions: [(P — B), (As — Ga), (Sb — Mg), (Sn — In)], respectively,

we propose the following physical conditions as:
W =15pum, Ng=5x10%cm~3S =100 (cm/s), and N, = 108 cm~3, (32)
Then, from Eq. (20) , on respectively obtains: %2 (2.34, 207, 0.75, 0.48) x 1074 1,
hE

suggesting the highly transparent condition, and from Eq. (18),

Jeno = (L.3,1.4,1.8,2.1) x 10715 (Cmiz) Further, one respectively gets from Eq. (C1) of the

Appendix C:
Jgpo = (14,05,0.3,0.2) x 10714 (C%) . Then, from Eq. (22), one obtains respectively:
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Jo = (15, 0.6, 0.4, 0.4) x 107 (iz), and from the following Table 2, for example, at V. =

cm
705 mV, n;= (0.948, 0.918, 0.909, 0.906) and n;= (28.17, 28.53, 28.64, 28.68) %, meaning that,
with increasing Fday or with decreasing €q(a), which is due to the d(a)-size effect, both Jy and
N, decrease, while 1, increases, being new obtained results.

Table 2. In the HD[(P; As; Sb; Sn)-Si] ER-LD[(B; Ga; Mg; In)-Si)] BR and for physical conditions given in Eq.
(32), our numerical results of N, Js;, F|, and n,, are computed by using Equations (27, 26, 29, 31), respectively.

Here, on notes that, for a given V. and with increasing ry(,), the function n; decreases, while other functions Js¢,

F|, and n, increase, being due to the impurity size ry,)-effect, suggesting our new obtained results.

Voe(mV) n Ja (5) Fi(%) i (%)

750 1.013; 0.981; 0.971; 0.969 41.65;41.80; 41.85;41.87 86.6; 87.0; 87.1; 87.1 27.04;27.27; 27.34; 27.36
740 0.998; 0.967; 0.957; 0.954 43.11;43.33; 43.39; 43.41 86.1; 86.5; 86.6; 86.6 27.46;27.73;27.81; 27.84
720 0.969; 0.939; 0.930; 0.927 45.71;46.03; 46.12; 46.16 85.2; 85.6; 85.7; 85.8 28.04; 28.37; 28.47; 28.50
710 0.955; 0.925; 0.916; 0.913 46.75;47.11; 47.23;47.26 84.8;85.2;85.4;85.4 28.16; 28.51; 28.62; 28.66
705 0.948; 0.918; 0.909; 0.906 47.19; 47.57; 47.69; 47.72 84.7;85.1;85.2; 85.2 28.17; 22%56:;, 28.64;

700 0.941; 0.911; 0.903; 0.900 47.56; 47.96; 48.08; 48.12 84.5; 84.9; 85.0; 85.1 28.13;28.51; 28.62; 28.66
680 0.914; 0.885; 0.876; 0.874 48.22; 48.65; 48.78; 48.83 84.0; 84.4; 84.5; 84.5 27.54;27.92; 28.03; 28.07
655 0.881; 0.853; 0.845; 0.843 46.42; 46.79; 46.90; 46.94 83.6; 84.0; 84.1; 84.1 25.41;25.73; 25.83; 25.86
640 0.863; 0.836; 0.828; 0.825 43.24; 43.49; 43.56; 43.59 83.4; 83.8; 83.9; 84.0 23.09; 23.33; 23.40; 23.43
624 0.847; 0.820; 0.812; 0.810 36.30; 36.30; 36.30; 36.30 83.4; 83.8; 83.9; 83.9 18.89; 18.98; 19.00; 19.01

4.2. [(B; Ga; Mg; In) — ] —  [(P; As; Sb; Sn) — ]

—cases

Here, for those 4 (p* — n) — junctions: [(B — P), (Ga — As), (Mg — Sb), (In — Sn)], respectively,

we propose the following physical conditions as:
W =15pm, N, =5x%102°cm=3,S =100 (cm/s), and Ng = 108 cm~3. (33)
Then, fromEq. (20) on

obtains:

respectively % = (1.0,0.97,0.88, 0.81),

suggesting the highly opaque condition, and from Eq. (18), Jgp, = (5.35, 2,56, 1.69, 1.40) %

10~Y/ (cmiz) Further, one respectively gets from Eq. (C1) of the Appendix C:

Jeno = (9.89,9.75,8.69,8.28) x 107%° (cmiz) . Then, from Eqg. (22), one obtains respectively:
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Jou = (9.94,9.77,8.71,8.30) x 107° (;) . and from the following Table 3, for example, at
Voe = (731) mV, nj; = (0.970, 0.970, 0.966, 0.964) and n, = (29.74, 29.81, 29.85, 29.87) %,
meaning that, with increasing ryqy or with decreasing €,(qy, which is due to the a(d)-size effect, both
Jon and Ny, decrease, according to the increase in IN;;, being new obtained results.

Table 3. In the HD[(B; Ga; Mg; In)-Si] ER-LD[(P; As; Sh; Sn)-Si)] BR and for physical conditions given in Eq.
(33), our numerical results of Ny, Jseij, Fy1, and Ny, are computed by using Equations (28, 26, 30, 31), respectively.

Here, on notes that, for a given V. and with increasing r,(q), the function ny decreases, while other functions Js¢y,

Fi1, and ny; increase, being due to the impurity size ry(q)-effect, suggesting our new obtained results.

Voe(mV) n 1) F(%) n(%)
800 1.070; 1.069; 1.065; 1.063 35.80; 35.80; 35.80; 35.80 96.1; 96.1; 96.1; 96.2 28.13; 28.18; 28.19; 28.20
738 0.980; 0.980; 0.976; 0.974 43.86; 43.86; 43.88; 43.88 89.9; 89.9; 89.9; 90.0 29.72; 29.78; 29.83; 29.84
731 0.970; 0.970; 0.966; 0.964 44.61;44.61; 44.63; 44.64 89.3; 89.3; 89.3; 89.3 29.74; 29.81; 29.85; 29.87

724 0.961; 0.960; 0.956; 0.955 45.29; 45.30; 45.32; 45.33 88.7; 88.7; 88.7; 88.7 29.71; 29.78; 29.82; 29.84

715 0.948; 0.948; 0.944; 0.942 46.06; 46.06; 46.09; 46.10 87.9; 87.9; 88.0; 88.0 29.59; 29.66; 29.70; 29.72

670 0.888; 0.888; 0.884; 0.883 46.56; 46.56; 46.59; 46.61 84.8; 84.8; 84.9; 84.9 27.06;27.11; 27.16; 27.18

650 0.864; 0.863; 0.860; 0.858 43.46; 43.46; 43.48; 43.49 83.9; 83.9; 84.0; 84.0 24.24;24.29; 24.32; 24.34

645 0.858; 0.858; 0.854; 0.853 42.01; 42.02; 42.03; 42.03 83.8; 83.8; 83.8; 83.8 23.21; 23.26; 23.29; 23.30

640 0.853; 0.852; 0.849; 0.848 39.95; 39.95; 39.95; 39.95 83.7;83.7; 83.7; 83.7 21.87;21.91; 21.93; 21.94

639 0.852; 0.852; 0.848; 0.847 39.30; 39.30; 39.30; 39.30 83.6; 83.6; 83.7; 83.7 21.48;21.52;21.54;21.55

In conclusion, our new limiting highest efficiency results: 28.68% and 29.87%, given in Tables 2

and 3, can also be compared respectively with other limiting n-results equal to:

(1) 29.43%, for a 110 ym thick solar cell made of intrinsic silicon, being obtained by Richter et al.
[26],

(1) 30%, for Egi(rp(B)) = 1.1 eV, being investigated by Shockley and Queisser [6], and

(iii) %, for physical conditions: =100 /  and =15 , being obtained by
Bhattacharya and John [3, 4].

Acknowledgments: We thank Drs A.L. Pivet and 1. Pivet for their continuous interest in this work.
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Appendix
Appendix A. Fermi Energy

In the n(p)-type Si crystal, the Fermi energy Eg,( — Egp), obtained for any T and donor density N,

being investigated in our previous paper, with a precision of the order of 2.11 x 1074 [39, 40], is

now summarized in the following.

First of all, we define the reduced electron density by:

3

U= Nd(a) Ng(T,rg) = 2 % 6 x (mckaT) (cm™3),Ny(T) =2 x 2 x (vakBT) (cm™3). (A.1)

Here, N¢(y) is the conduction (valence)-band density of states, respectively, M, is the effective mass
of the electron in n-type Si can be defined by [8]:

m¢/m, = 0.2, (A2)
where M, is the electron rest mass, the averaged effective mass of the hole m,,, given in the p-type
Si yields [8]:

0.16+0.52

my,/mg = >

=0.34, (A3)

and finally, Egin(p) (T, rd(a)) is the intrinsic band gap, given in the silicon (Si), due to the T-

dependent carrier-lattice interaction-effect, by [1, 33, 34]:

1
2201
Egin(p) (T Td(a)) = Egn(p) (Fa(ay) — 0.071 (eV) x {[1 *+ Gaossm) " - 1} (A4)

where Egn(p)(Faca)) is determined in Eq. (1b) and its numerical results are given in Table 1.

Furthermore, in the n(p)-type Si, one can define the intrinsic carrier concentration Nipp) by:

—Eginp) (T raca
Do) (T @) = Ne(T,Ta) % Ny(T) x exp (“omelre)), (A35)

Then, denoting the reduced Fermi energy in the n(p)-type semiconductor, respectively by:

Ern( )( EFP( )

T ), we found with a precision of the order of 1077 [39], as:
B

Ern( ) , —Erp( )y _ G(W)+AuBF(u)
keT ( keT )= AL - A =0.0005372 and B = 4.82842262 (A6)

where

2
2 _4 _8\ 3 1,52 62.3739855 , \4
F(U) = aus (1+bu 3+ CU 3) , a= [(3\/_/4) X ]2/3 R bzg(g) and C:W(E)

and
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3
G(u) Ln(u)+2zxuxed, d=2%2 2l >0,

[~
V27 16

Epy(u_1)  Erp(u D

T T ) > 1, according to the HD[d(a)-Si]ER-case (i.e., the degenerate
B B

noting that: (i)

Een(u_1) ( Erp(u 1

case), Eq. (A6) is reduced to the function F(u), and (i1) T T
B B

) <—1, to the LD[a(d)-

Si]BR-case (i.e., the non-degenerate case), Eq. (A6) is now reduced to the function G(u),

respectively. Then, Eq. (A6) can be applied to the following cases as:

(i) in the HD[d(a)-Si]JER-case, for Ny =10%°(10°)cm™3 , we respectively get:

Epn(u 1)
kgT

(_EF::(L-:— 1)) = 4.84 (5.85) > 1, according to degenerate conditions.
B

ii) in the LD[a(d)-Si]BR-case, for N, = 108(10¥)cm™ , we respectivel et:
(d) y 8

_EFp (U 1) (

T EF”IEUT 1)) =—2.26 (—257) <— 1, according to non-degenerate conditions. Thus, those
B B

limiting values of N,y = 10*8(10*8) cm™2 can be used in the LD[a(d)-Si] BR-cases, respectively.
Appendix B. Approximate forms for band gap narrowing and apparent band gap narrowing

First of all, in the n(p)-type Si, we define the effective Wigner-Seitz radius rg characteristic of the

interactions by [1, 2]

1/3
_ _ 8 5 (5 Me
Fen = rs(Ng, rq) = 1.1723 x 108 x (Nd) x (B1)
and
1/3
Fop = Fo(Nay o) = 11723 10° x () o (B2)
a a.
Therefore, the correlation energy of an effective electron gas, Ec(rsn(sp)), is given by [1, 2, 42]:
087553 (2[1-In(2)]
c (N i ) __osmsss Ty ( ng )xln (Fsn(sp))—0.093288 53
en(ep)\Nd(@) 1d(2)/ ™ 0,0008+rgn(sp) 1+0,03847728xrL513/3876 ‘ (B3)
Then, in the n-type heavily doped Si, the BGN is found to be given as [1]:
AE N £(rs;j) N1/3 (rs;j) N% 2 E &(rsi) 5/4 My
gn( d’rd) alxmx r +a2xs(Tj)x rx( ,503)([— c(rsn)xrsn])+a3x[ﬁ] m_cx
3 1
1/4 (rsi) 1/2 e(rsi)]2 6 — Ng
N +ag > e(rq) XN x 2+ a5 x [s(rd) *Np, Ny = (9.999><10l7 cm_3)’ (B4)

where a; =3.8x1073(eV) , a, =65x107%V) , azg=28x10"3(eV) , a, =5597 x
1073(eV) and a5 = 8.1 x 10~*(eV), and in the p-type heavily doped Si, one has [1]:
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5/4
1/3 ; c
AEgp(NayTa)  ag % S0 x N + a x%’ﬂ;xNSx (2508 x [~ Ec(rep) X ep]) +ag x [52] x| x
3
1/4 &(rsi) oo \1/2 e(rsi)|2 E — Na
N +2ay < e(ra) XNy +ag x [e(ra)] *Nr, N = (9.999x1017cm—3)’ (B5)

where a; =3.15x1073(eV), a, =541 x107%(eV) , a3 =2.32x1073(eV) , a, =4.12 %
1073(eV) and ag = 9.80 x 107°(eV).

Further, in the donor (acceptor)-Si, we define the effective intrinsic carrier concentration Nign(py, by
Nen(p)(Naay: Fa@) = Nagy X Po(No) = Ny X exp[ E:nT(p) , (B6)
where we can define the “effective doping density” by: Ngcyeti. = Naa)/€XP [%] so that
Nacayefr. X Po(No) = nizn(p) [8], and also the apparent band gap narrowing (ABGN), AE g, (), as
BEqan(ey = BEgrngpy + kT  In (M4 d(@) Een (R — Erp(32)], (B7)

where N¢) is defined in Eq. (A1), the Fermi energy is determined in Eq. (A6).

Appendix C. Minority-carrier transport parameters

Here, the minority-electron (hole) saturation current density injected into the LD[a(d)-Si]BR, with
an acceptor density equal to N,(g), is given in RP by [1, 7]:

2 PeyMate)Ta(e)
XN (Fa@)™ |~ 5 (Nagay)
(CD)

Na(d) ’

Jap(nyo(Nagdy Faqy ) =

where n?n(p)(rd(a)) is determined in (AS5), Deny(Nacdy: Facg)) is the minority- electron (hole)

diffusion coefficient:

keT 1360-92 .
De(Ng, Fa) =~ % |92+ ™ 0.91] (Zg )) (cm?v1sT1), (C2)
L 1+ (13x1017 —3)
keT _ 500—130 2 o
Dn(Ng. Fg) =T x | 130+ = )1.25] x (Zggi) (cm2v~is1), (C3)
- 8x1017 cm—3

and Te(n)s(Ny(ay) is the minority- electron (hole) lifetime in the base region:

1

13 31 2
= S5+ 3% 107 x N, + 1.83 x 10731 x N2, (C4)

TeB(Na) 1=

Te(Ng) ™t = = oo+ 1176 % 10718 x Ng +2.78 x 10731 x N3, (C5)

Further, from (A6), (B4)-(B7)), in the HD[d(a)-Si]ER, we can define the following minority-
hole(electron) transport parameter Fpee) as [8, 22, 25]:
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2
Ny (fd@) _ N N _
inE)\'d@/) __ Nd(aeff. _ d(eXEg (Cm 5 % S), (C6)

po(no)th(e) - Dh(e) - Dh(e)xexp [%(m
B

Fre) (Ndqay: M) =

Furthermore, the minority-hole (electron) diffusion length, Lh(e)(Nd(a)n rd(a)) and the minority-
hole(electron) lifetime Tpe)e in the HD[d(a)-Si]ER can be determined by

2 2
(ox )’

2
-2 _ -1 _ 2 Nd(a)efr.
Ly (Nocoy Tew) = [Tnre X D] = (€% Fay )” = (€ Tt AT

Dhe)
where the constant C[= 10717 (cm*/s)] was chosen in I and II, and then, Th(e)e can be computed

by:

1

B (C8)
De) X(CxFn(p) )°

The)e =
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