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Abstract:

In the n+(p+) − p(n) crystalline GaAs-junction solar cells, by basing on a same treatment method,

and for a same heavy (low) doping effect, as those given in our recent paper (RP) [1], but using

now a new expression, obtained for the relative dielectric constant ε rd a , determined exactly in

the effective Bohr model, as that given in Eq. (1c), representing the donor (acceptor) d(a)-radius

rd a − effect, or the ε rd a − effect, suggesting further that, for an increasing rd a , ε rd a

decreases, as showed in Table 1, according to the increase in photovoltaic efficiency η, as observed

in Tables 2 and 3, we finally get in our present paper, for highest values of rd a , the new limiting

highest efficiencies, η=30.76% (42.73%)<ηRP =31.474% (44.359%), coming from the fact that:

ε rd a > εRP(rd(a)), εRP(rd(a)) being our inaccurate and simple formula, proposed in RP, and also

reported in Eq. (1d), for a comparison. Finally, our new limiting highest efficiencies, η=30.76%

(42.73%), can also be compared with other limiting η-results, such as: 29.1% for GaAs-thin film
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cell, and 45.7% and 44.4%, respectively for GaInP/GaAs/GaInAs/GaInAs -and-

InGaP/GaAs/InGaAs multijunction cells, obtained by Green et al. [3].

Keywords: donor (acceptor)-size effect; heavily doped emitter region; photovoltaic conversion

factor; open circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent paper (RP) [1], by basing on: (i) the heavy doping and impurity size effects, which

affect the total carrier-minority saturation current density JoI(II) ≡ JEn(p)o + JBp(n)o, JEn(p)o and JBp(n)o

being the carrier-minority saturation current densities, injected respectively into the heavily doped

donor (acceptor)-GaAs emitter-lightly doped acceptor (donor)-Si base-regions, HD[d(a)- GaAs]ER-

LD[a(d)- GaAs]BR, of n+(p+) − p(n) junction solar cells, (ii) an effective Gaussian donor

(acceptor)-density profile ρd(a) to determine JEn(p)o [1, 2, 13, 18-20, 22], and (iii) the use of two

fixed experimental points, we investigated the photovoltaic conversion factor nI(II), the short circuit

current density JscI(II) , the fill factor FI(II) , and finally the efficiency ηI(II) [1- 45]. These physical

quantities were expressed as functions of the open circuit voltage Voc , and of various parameters

such as: the emitter thickness W , high donor (acceptor) density Nd(a) , surface

recombination velocity S , given in the HD[d(a)- GaAs]ER, and low acceptor (donor) density

Na(d) , given in the LD[a(d)- GaAs]BR.

Then, in our present paper, by basing on a same treatment method, and for a same heavy (low)

doping effect, as those given in RP, but using now a new expression, obtained for the relative

dielectric constant ε rd a , determined exactly in the effective Bohr model, as that given in Eq. (1c),

which represents the donor (acceptor) d(a)-radius rd a −effect or the ε rd a −effect, suggesting

further that, for an increasing rd a , ε rd a decreases, as showed in Table 1, according to the

increase in photovoltaic efficiency η, as observed in Tables 2 and 3, we finally get in our present

paper, for highest values of rd a , the new limiting highest efficiencies, η=30.76% (42.73%)

<ηRP =31.474% (44.359%), according to: ε rd a > εRP(rd(a)) , εRP(rd(a)) being our inaccurate

and simple formula, proposed in RP, and also reported in Eq. (1d), for a comparison.

Finally, our new limiting highest efficiencies, η=30.76% (42.73%), can also be compared with

other limiting η -results, such as: 29.1% for GaAs-thin film cell, and 45.7% and 44.4%,
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respectively for GaInP/GaAs/GaInAs/GaInAs -and- InGaP/GaAs/InGaAs multijunction cells, being

obtained by Green et al. [3].

In Section 2, all the results energy-band-structure parameters for d(a)- GaAs systems are reported in

Table 1, and the expressions for JEn(p)o are also reported, so that we can determine the total (or dark)

carrier-minority saturation current density JoI(II) ≡ JEn(p)o + JBp(n)o, JBp(n)o being determined in Eq.

(C1) of the Appendix C. In Section 3, the photovoltaic effect is investigated. Finally, some

numerical results and concluding remarks are given and discussed in Section 4.

2. Energy-Band-Structure Parameters and dark minority-carrier saturation

current density, due to impurity-size and heavy doping effects

Now, we present the effects of donor (acceptor) [d(a)]-size and heavy doping, taken on the energy-

band-structure parameters, and investigate the minority-carrier saturation current densities, as

follows.

2.1. Effect of d(a)-size

In d(a)-GaAs-systems at T=0 K, since the d(a)-radius rd(a) , in tetrahedral covalent bonds is usually

either larger or smaller than the As(Ga) atom-radii rAs(Ga), a local mechanical strain (or deformation

potential energy) is induced, according to a compression (dilation) for rd(a) > rAs(Ga) ( rd(a) <

rAs(Ga) = rdo(ao) = 0.118 (0.126) nm) , respectively, due to the d(a)-size effect [42]. Then, we

have shown [8] that this rd(a)-effect affects the changes in all the energy-band-structure parameters,

expressed in terms of the relative dielectric constant ε(rd(a)), as given in the following.

First, we note that in the GaAs [8] the relative dielectric constant of the intrinsic silicon is equal to:

ε(rAs(Ga)) = 13.13, the relative effective electron (hole) mass in conduction (valence) bands yield:

(mc/mo) = 0.066 and (mv/mo) = 0.082+0.5
2

= 0.291, the unperturbed intrinsic band gap at 0K,

Ego rdo(ao) = rAs(Ga) = 1.52 eV , the effective donor (acceptor)-ionization energy at rdo(ao) =

rAs(Ga) in absolute values: Edo rdo = 13600×(mc/mo)

ε(rAs(Ga)))
2 meV = 5.2 meV , and Eao rao =

13600×(mv/mo)

ε(rAs(Ga))
2 meV = 23 meV, and the isothermal bulk modulus are defined, for the n(p)-type GaAs,

by: Bn ≡ Edo
(4�/3)× rAs

3 = 1.212 × 108 (N/m2) , and finally, Bp ≡ Eao
(4�/3)× rGa

3 = 4.389 × 108 (N/

m2).
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Therefore, at rd(a) = rdo(ao) , the boundary conditions are found to be, for the impurity-atom volume

V, Vdo(ao) = (4�/3) × rdo(ro)
3
, the pressure p, po = 0 , and the deformation potential energy or

the strain energy σ, σo = 0. Further, the two important equations [42], needed to determine the

σ-variation ∆σ≡ σ-σo = �, are defined by: dp
dV

=−B
V

and p=−dσ
dV

. giving: d
dV
(dσ

dV
)= B

V
. Then, in the

n(p)-type GaAs, by an integration, one gets:

(∆σ)n(p)=Bn(p)×(V−Vdo(ao))× ln ( V
Vdo(ao)

)= Edo(ao) × rd(a)
rdo(ao)

3
− 1 × ln rd(a)

rdo(ao)

3
≥0. (1a)

Furthermore, we also shown [42] that, as rd(a) > rdo(ao) ( rd(a) < rdo(ao)) , the compression

( dilatation) corresponding the repulsive (attractive) force increases (decreases) the energy

gap Egn(gp) rd(a) and the effective donor(acceptor)-ionization energy Ed(a) rd(a) in absolute

values, obtained in the effective Bohr model, which is represented by: +(−) (∆σ)n(p) , respectively.

That gives:

Egn(gp) − Ego = Ed(a) − Edo(ao) = Edo(ao) × ε(rAs(Ga))
ε(rd(a))

2
− 1 =+ (∆σ)n(p), for rd(a) ≥ rdo(ao), and

Egn(gp) − Ego = Ed(a) − Edo(ao) = Edo(ao) × ε(rAs(Ga))
ε(rd(a))

2
− 1 =− (∆σ)n(p), for rd(a) ≤ rdo(ao). (1b)

Then, from Equations (1a, 1b), the exact expression of relative dielectric constant ε(rd(a)), is given

by:

ε(rd(a))=
ε(rAs(Ga))

1+
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≤ ε(rAs(Ga)), for rd(a) ≥ rdo(ao), and

ε(rd(a))=
ε(rAs(Ga))

1−
rd(a)

rdo(ao)

3
−1 ×ln

rd(a)
rdo(ao)

3
≥ ε(rAs(Ga)), for rd(a) ≤ rdo(ao), (1c)

which can be compared with its approximated and simple form, proposed in our recent paper (RP)

[1], by:

εRP(rd(a)) ≃ 11.4 × rAs(Ga)

rd(a)

4.377 (4.7)
. (1d)

Therefore, with increasing rd(a) , the effective dielectric constant

ε(rd(a)), determined in Eq. (1c), decreases, implying that Ego rd(a) and Edo(ao) rd , given in Eq.

(1b), increase, as observed in the following Table 1, in which we also remark that, for a given rd(a),

εRP(rd(a)) < ε(rd(a)) . This remark further explains that the values of limiting highest efficiencies,

given for the n+(p+) − p(n) crystalline GaAs-junction solar cells, obtained in our RP, are found to
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be high, 31.474% (44.359%), compared respectively with the present ones, 30.76% (42.73%), as

those showed in Tables 2 and 3.

Table 1. Impurity size effects, taken on the effective dielectric constant ε(rd(a)), being determined in Eq. (1c), the

effective donor(acceptor)-ionization energy, Ed(a) rd(a) , in absolute values, and the band gap, Egn(p)(rd(a)) , at

T=0K, determined both in Eq. (1b), and finally, the intrinsic band gap, Egin(p)(T = 300K, rd(a)) and the intrinsic

carrier concentration nin(p)(T = 300K, rd(a)) , determined respectively in Equations (A4) and (A5) of the

Appendix A

Donor P As Te Sb Sn

rd (nm) [8] 0.110 0.118 0.132 0.136 0.140

ε(rd) 13.4 13.13 [8] 12.33 11.86 11.33

Ed(rd) in meV 5.0 5.2 5.91 6.38 7.00

Egn(rd) in meV 1519.8 1520 [8] 1520.7 1521.2 1521.8

Egin(300K, rd) in meV 1423.3 1423.5 1424.2 1424.7 1425.3

nin(300K, rd)in 106 cm−3 1.44 1.43 1.41 1.40 1.38

Acceptor B Ga Al Mg In

ra (nm) [8] 0.088 0.126 0.126 0.140 0.144

ε(ra) 24.38 13.13 [8] 13.13 [8] 12.42 11.99

Ea(ra) in meV 6.66 23 23 25.7 27.5

Egp(ra) in meV 1503.7 1520 [8] 1520 [8] 1522.7 1524.5

Egip(300K, ra) in meV 1407.2 1423.5 1423.5 1426.2 1428

nip(300K, ra) in 106 cm−3 1.97 1.43 1.43 1.36 1.31

Comparison between our numerical results, obtained in present paper and recent paper (RP) [1]; ε(rd(a)) ≫ [���(��(�))]

Donor As Te Sb

rd (nm) [�� (nm)] 0.118 [0.118] 0.132 [0.132] 0.136 [0.136]

ε(rd) [���(��)] 13.13 [12.85] 12.33 [7.87] 11.86 [6.91]

Acceptor Ga Al In

ra (nm) [�� (nm)] 0.126 [0.126] 0.126 [0.126] 0.144 [0.144]

ε(ra) [���(��)] 13.13 [12.85] 13.13 [12.85] 11.99 [6.86]

In summary, those effects of Nd(a)-heavy doping and rd(a)- impurity size [or the ε(rd(a)) −effect],

given in the HD[d(a)-GaAs]ER, and those of Na(d)-low doping in the LD[a(d)-GaAs]BR, affect all
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the minority-carrier transport properties, as those given in the Appendix A, B and C, and also in the

following equations.

2.2. Total minority-carrier saturation current density at 300K

The total carrier-minority saturation current density is defined by:

JoI(II) ≡ JEn p o + JBp n o, (2)

where JBp n o is the minority-electron (hole) saturation current density injected into the LD[a(d)-

GaAs]BR, being determined in Eq. (C1) of the Appendix C, and JEn p o is the minority-hole

saturation-current density injected into the HD[d(a)-GaAs]ER.

In the non-uniformly and heavily doped emitter region of d(a)-GaAs devices, the effective

Gaussian d(a)-density profile or the d(a) (majority-e(h)) density, is defined in the HD[d(a)-

GaAs]ER-width W:

ρd(a) x = Nd(a) × exp − x
W

2
× ln  Nd(a)

Nd(a)o(W)
≡ Nd(a) × Nd(a)

Nd(a)o(W)

− x
W

2

, 0 ≤ x ≤ W,

Nd(a)o(W) ≡ 7.9 × 1017 (2 × 105) × exp − W
184.2 (1)10−7 cm

1.066 (0.5)
(cm−3), (3)

where ρd(a)(x = 0) = Nd(a) is the surface d(a)-density, and at the emitter-base junction, ρd(a) x =

W = Nd(a)o(W), decreasing with increasing W [1, 2, 13]. Further, the “effective doping density” is

defined by:

Nd(a)eff.(x, rd(a)) ≡ ρd(a) x /exp ΔEga n(p)(ρd(a) x , rd(a))
kBT

,

Nd(a)eff. x = 0, rd(a) ≡ Nd(a)

exp
ΔEga n(p) Nd(a),rd(a)

kBT

and Nd(a)eff. x = W, rd(a) ≡ Nd(a)o(W)

exp
ΔEga n(p) Nd(a)o(W), rd(a)

kBT

, (4)

where ΔEga n(p) are determined in Equations (B4, B5) of the Appendix B.

Then, under low-level injection, in the absence of external generation, and for the steady-state case,

we can define the minority-h(e) density by:

po(x)[no(x)] ≡
nin(p)

2

Nd(a)eff.(x, rd(a))
, (5)

where nin(p)
2 is determined in (A5) of the Appendix A and a normalized excess minority-h(e)

density u(x) or a relative deviation between p x [n(x)] and po(x)[no(x)], by [22, 25]:

u x ≡ p x [n(x)]−po(x)[no(x)])
po(x)[no(x)]

, (6)

which must verify the two following boundary conditions proposed by Shockley as [6]:
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u x = 0 ≡ −Jh x=0 [Je x=0 ]
eS×po(x=0)[no(x=0)]

, (7)

u x = W = exp V
nI(II)(V)×VT

− 1. (8)

Here, nI(II)(V) is a photovoltaic conversion factor determined in Equations (27, 28), S ( cm
s

) is the

surface recombination velocity at the emitter contact, V is the applied voltage, VT ≡ (kBT/e) is the

thermal voltage, and the minority-hole (electron) current density Jh(e) x .

Further, as developed in RP, from the Fick’s law for minority hole (electron)-diffusion equations [8,

12]:

Jh(e) x = −e(+e)×ni
2

Fh(e)(x)
× du x

dx
=

−e(+e)nin(p)
2 Dh(e)(x)

Nd(a)eff. x
× du x

dx
, (9)

where Nd(a)eff. is given in Eq. (4), Dh(e) and Fh(e) are determined respectively in Equations (C3, C2,

C6) of the Appendix C, and from the minority-hole (electron) continuity equation [8, 12]:

dJh(e) x
dx

=− e( + e) × ni n(p)
2 × u x

Fh(e)(x)×Lh(e)
2 =− e( + e) × ni n(p)

2 × u x
Nd(a)eff. x × τh(e)E

, (10)

where Lh(e) and τh(e)E are defined respectively in Equations (C7, C8) of the Appendix C, one

finally obtains the following second-order differential equation as [22]:

d2u x
dx2 − dFh(e)(x)

dx
× du x

dx
− u x

Lh(e)
2 x

= 0. (11)

Then, taking into account the two boundary conditions (7, 8), one thus gets the general solution of

this Eq. (11), as [22]:

u x = sinh P x +Ι(W,S)×cosh P x
sinh P W +Ι(W,S)×cosh P W

× exp V
nI(II)(V)×VT

− 1 , Ι(W, S) = Dh(e)(No W )
S×Lh(e)(No W )

. (12)

where the function nI(II) V is the photovoltaic conversion factor, determined in Eq. (29). Further,

since dP x
dx

≡ C × Fh(e)(x) = 1
Lh(e)(x)

, C = 2.0893× 10−30 (cm4/s), for the crystalline Si, being an

empirical parameter, chosen for each crystalline semiconductor, P(x) is thus found to be defined by:

P x ≡ 0
x dx

Lh(e)(x)
� ), 0 ≤ x ≤ W, P x = W ≡ ( 1

W
× 0

W dx
Lh(e)(x)

� ) × W ≡ W
Lh(e)eff.

= Lh(e)

Lh(e)eff.
× W

Lh(e)
, (13)

where Lh(e)eff. is the effective minority-hole (electron) diffusion length. Further, from Eq. (9, 13),

the minority-hole (electron) current density injected into the HD[d(a)-GaAs]ER is found to be

determined by:

Jh(e) x, W, Nd(a), rd(a), S, V =− JEno x, W, Nd, rd, S [JEpo x, W, Na, ra, S ] × exp V
nI(II)(V)×VT

− 1 , (14)

where JEn(p)o is the saturation minority-hole (electron) current density,
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JEn(p)o x, W, Nd(a), rd(a), S =
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P(x) +Ι(W,S)×sinh P(x)

sinh P(W) +Ι(W,S)×cosh P(W)
. (15)

Here, the intrinsic carrier concentration ni n(p) is computed by Eq. (A5) of the Appendix A, and the

effective doping density Nd(a)eff. is determined in Eq. (4), the minority-hole (electron) diffusion

coefficient De(h) and minority-hole (electron) diffusion length Lh(e) are given respectively in

Equations (C2, C3, C7) of the Appendix C, and the factor I(W, S) is determined by:

I(W, S) = Dh(e)(Nd(a)o W )
S×Lh(e)(Nd(a)o W )

, (16)

where Nd(a)o W is determined in Eq. (3).

Further, one remarks that: (i) from Equations (12, 14-16) one obtains: u x = 0 ≡ −Jh x=0 [Je x=0 ]
eS×po(x=0)[no(x=0)]

,

which is just the first boundary condition given in Eq. (7), and then, (ii) Eq. (12) yields: u x =

W = exp V
nI(II)(V)×VT

− 1, being the second boundary condition given in Eq. (8).

In the following, we will denote P(W) and I(W, S) by P and I, for a simplicity. So, Eq. (15) gives:

JEn(p)o x = 0, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

sinh P +Ι×cosh P
, (17)

JEn(p)o x = W, W, Nd(a), rd(a), S =
en i n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× cosh P +Ι×sinh P

sinh P +Ι×cosh P
. (18)

Thus, from Equations (14, 17, 18), one gets

Jh(e) x=0,W,Nd(a),rd(a),S,V
Jh(e) x=W, W,Nd(a), rd(a),S,V

≡ JEn(p)o x=0,W,Nd(a), rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1
cosh P +Ι×sinh P

. (19)

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region

by [22]:

Qh(e)eff.(x = W, Nd(a), rd(a)) ≡ 0
W +e( − e) × u x × po(x)[no(x)] × τh(e)E(Nd(a),rd(a))

τh(e)E(ρd(a) x ,rd(a))
� dx , and the

effective minority-hole transit time by: τteff.(x = W, W, Nd(a), rd(a), S) ≡ Qh(e) eff.(x =

W, Nd(a), rd(a))/JEn(p)o x = W, W, Nd(a), rd(a), S , one can define, from Equations (10, 19), the

reduced effective minority-hole transit time:

τteff. x=W,W,Nd(a),rd(a),S
τh(e)E

≡ 1 − JEn(p)o x=0,W,Nd(a),rd(a),S
JEn(p)o x=W,W,Nd(a),rd(a),S

= 1 − 1
cosh P +Ι×sinh P

. (20)

Now, some important results can be obtained and discussed below.
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As P ≪ 1 (or W ≪ Lh,eff. ) and S → ∞ , I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ 0 , from Eq. (20), one has:

τt,eff. x=W,W,Nd(a),rd(a),S
τh(e)E

→ 0, suggesting a completely transparent emitter region (CTER)-case, where,

from Eq. (18), one obtains:

JEn(p)o x = W, Nd(a), rd(a), S → ∞ →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× 1

P(W)
, (21a)

and then, as P ≫ 1 (or W ≫ Lh,eff.) and S → 0, I ≡ Ι(W, S) = Dh(No W )
S×Lh(No W )

→ ∞, from Eq. (20), one

has:
τteff. x=W,W,Nd(a),rd(a),S

τh(e)E
→ 1, suggesting a completely opaque emitter region (COER)-case,

where, from Eq. (18), one gets:

JEn(p)o x = W, Nd(a), rd(a), S → 0 →
eni n(p)

2 ×Dh(e)

Nd(a)eff.×Lh(e)
× tanh P . (21b)

In summary, in the n+(p+) − p(n) junction solar cells, the dark carrier-minority saturation current

density Jo, defined in Eq. (2), is now replaced by JoI(II), for a good presentation, and rewritten by:

JoI(II) W, Nd(a), rd(a), S, Na(d), ra(d) ≡ JEn(p)o(W, Nd(a), rd(a), S) + JBp(n)o(Na(d), ra(d)), (22)

where JEn(p)o and JBp(n)o are determined respectively in Equations (18) and (C1) of the Appendix C.

3. Photovoltaic conversion effect at 300K

Here, in the n+(p+) − p(n) junction solar cells, denoted respectively by I(II), and for physical

conditions:

W = 0.0044 μm, Nd≡As(a≡Ga) = 1019 (1020)cm−3, rd≡As(a≡Ga), S = 1050 cm
s

, Na≡Ga(d≡As) =
1017(1017) cm−3, ra≡Ga(d≡As), (23)

we propose, at given VocI1(2) and VocII1(2), the experimental results of the short circuit current

density JscI(II), fill factor FI(II) , and photovoltaic conversion factor ηI(II) , in order to formulate our

following treatment method of two fixe experimental points [3, 4], for the n+ − p junction,

VocI1(I2) = 980 (1127.2) mV , JscI1(I2) = 27.06 (29.78) mA/cm2 , FI1(I2) = 83.35 (86.7) % ,

ηI1(I2) = 22.07 (29.1) %, and for the p+ − n junction,

VocII1(II2) = 980 (1030) mV , JscII1(II2) = 24.2 (29.8) mA/cm2 , FII1(II2) = 76.4 (86) % , ηII1(II2) =

18.1 (26.4) %. (24)
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First of all, we define the net current density J at T=300 K, obtained for the infinite shunt resistance,

and expressed as a function of the applied voltage V, flowing through the n+(p+) − p(n) junction

of GaAs solar cells, by [1, 2, 5-10]:

J V ≡ Jph. V − JoI(II) × eXI(II) V − 1 , XI(II) V ≡ V
nI(II) V ×VT

, VT ≡ kBT
e

= 25.85 mV, (25)

where the function nI(II) V is the photovoltaic conversion factor, noting that as V = Voc, J V = 0,

the photocurrent density is defined by: Jph. V = Voc ≡ JscI(II) W, Nd(a), rd(a), S, Na(d), ra(d), Voc , for

Voc ≥ VocI(II)1. Therefore, the photovoltaic conversion effect occurs, according to:

JscI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JoI(II) W, Nd a , rd a , S, Na d , ra d × eXI(II) Voc − 1 , (26)

where nI(II)(Voc) ≡ nI(II) W, Nd a , rd a , S, Na d , ra d , Voc , and XI(II) Voc ≡ Voc
nI(II) Voc ×VT

.

Here, one remarks that (i) for a given Voc, both nI(II) and JoI(II) have the same variations, obtained in

the same physical conditions, as observed in many cases, given in Ref. [1], and (ii) the function

eXI(II) Voc − 1 or the PVCF nI(II) , representing the photovoltaic conversion effect, thus converts

the light, represented by JscI(II), into the electricity, by JoI(II).

Further, from Equations (22, 26), we obtain for the n+ − p junction:

nI1(2) W, Nd, rd, S, Na, ra, VocI1(2), JscI1(2) ≡ VocI1(2)

VT
× 1

ln 
JscI1(2)

JoI
+1

≡ nI1(2)(VocI1(2), JscI1(2)),

and we then propose:

nI W, Nd, rd, S, Na, ra, Voc = nI1(VocI1, JscI1) + nI2(VocI2, JscI2) × Voc
VocI1

− 1
1.0825

, (27)

being valid for any values of (W, Nd, rd, S, Na, ra, Voc ≥ VocI1).

Furthermore, for the p+ − n junction,

nII1(2) W, Na, ra, S, Nd, rd, VocII1(2), JscII1(2) ≡ VocII1(2)

VT
× 1

ln 
JscII1(2)

JoII
+1

≡ nII1(2)(VocII1(2), JscII1(2)),

and then,

nII W, Na, ra, S, Nd, rd, Voc = nII1(VocI1, JscI1) + nII2(VocII2, JscII2) × Voc
VocII1

− 1
1.0523

, (28)

being valid for any values of (W, Na, ra, S, Nd, rd, Voc ≥ VocII1).

Therefore, from Equations (23, 24, 27, 28), one obtains, nI1(II1) =0.9505 (0.93323) at VocI1(II1) =

980 (980) mV, and nI2(II2) =1.0906 (0.97584) at VocI2(II2) = 1127.2 (1030) mV, respectively, for

n+(p+) − p(n) junction solar cells.
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Thus, XI defined from Eq. (26) now becomes for the n+ − p junction:

XI W, Nd, rd, S, Na, ra, Voc ≡ Voc
nI W,Nd,rd,S, Na,ra,Voc ×VT

, and therefore, we can determine the values of

the fill factors FI1(I2) at Voc = VocI1(I2) by [1, 2]:

FI1(I2) W, Nd, rd, S, Na, ra, VocI1(I2) = XI W,Nd,rd,S, Na,ra,VocI1(I2) −ln XI W,Nd,rd,S, Na,ra,VocI1(I2) +0.72
XI W,Nd,rd,S, Na,ra,VocI1(I2) +3.38 (1.75)

≡

FI1(I2) Voc = VocI1(I2) , for a presentation simplicity, and further, the fill factor FI can be computed

by:

FI W, Nd, rd, S, Na, ra, Voc = FI1 VocI1 + FI2 VocI2 × Voc
VocI1

− 1
1.716

, (29)

which is valid for any values of W, Nd, rd, S, Na, ra, Voc ≥ VocI1 .

Then, also from Eq. (26), we can define for the p+ − n junction:

XII W, Na, ra, S, Nd, rd, Voc ≡ Voc
nII W,Na,ra,S, Nd,rd,Voc ×VT

, where nII W, Na, ra, S, Nd, rd, Voc is

determined in Eq. (28). Therefore, we can determine the values of the fill factors FII1(II2) at Voc =

VocII1(II2) as:

FII1(II2) W, Na, ra, S, Nd, rd, VocII1(II2) = XII W,Na,ra,S, Nd,rd,VocII1(II2) −ln XII W,Na,ra,S, Nd,rd,VocII1(II2) +0.72
XII W,Na,ra,S, Nd,rd,VocII1(II2) +7.675 (2.3125)

≡

FII1(2) VocII1(II2) , for a presentation simplicity, and further, the fill factor FII is determined by:

FII W, Na, ra, S, Nd, rd, Voc = FII1 VocII1 + FII2 VocII2 × Voc
VocII1

− 1
0.73688

, (30)

being valid for any values of W, Na, ra, S, Nd, rd, Voc ≥ VocII1 .

Then, with physical conditions given in Eq. (23), our numerical calculation shows that we obtain

the same values of JscI1(I2) and FI1(I2) at VocI1(I2) = 980 (1127.2) mV, and JscII1(II2) and FII1(II2) at

VocII1(II2) = 980 (1030) mV , as those given in Eq. (24).

Finally, the efficiency ηI(II) can be defined in the n+(p+) − p(n) junction solar cells, by:

ηI(II) W, Nd a , rd a , S, Na d , ra d , Voc ≡ JscI(II)×Voc×FI(II)

Pin.
, (31)

where, JscI(II) and FI(II) are determined respectively in Equations (26, 29, 30), being assumed to be

obtained at 1 sun illumination or at AM1.5G spectrum (Pin. = 0.100 W
cm2 ) [1, 2, 26-29]. Then, from

Equations (31, 24), we get the numerical results of η , by using this assumption: Pin. = 0.100 W
cm2 ,

and their relative errors in absolute values (RE), calculated by using the experimental results of

ηI1(I2) and ηII1(II2) given in Eq. (24),

-for the n+ − p junction at VocI1(I2) = 980 (1127.2) mV, ηI1(I2) = 22.18 (29.25) % , with
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RE=4.4 × 10−3(5.2 × 10−3) , and

-for the p+ − n junction at VocII1(II2) = 980 (1030) mV , ηII1(II2) = 18.21 (26.53) % , with

RE=6.3 × 10−3(4.86 × 10−3).

4. Numerical results and concluding remarks

We will respectively consider the two following cases, given in 8 n+(p+) − p(n) junction solar

cells: P(B)-B(P), As(Ga)-Ga(As), Sb(Mg)-Mg(Sb), Sn(In)-In(Sn), respectively, in the following.

4.1. �� (P; As; Sb; Sn) − ���� �� − ��[(B; Ga; Mg; In) − ����)] �� −cases

Here, for those 4 (n+ − p) − junctions: (P − B), (As − Ga), (Sb − Mg), (Sn − In) , respectively,

we propose the following physical conditions as:

W = 15 μm, Nd = 1019 cm−3, S = 100 (cm/s ), and Na = 1018 cm−3. (32)

Then, from Eq. (20) , one respectively obtains: τteff.
τhE

=

(0, 0, 0, 0), suggesting the completely transparent

condition, and from Eq. (18), JEno = (2.00, 1.96, 1.80, 1.73) × 10−23 A
cm2 . Further, one

respectively gets from Eq. (C1) of the Appendix C: JBpo = 2.22, 0.64, 0.54, 0.49 × 10−20 A
cm2 .

Then, from Eq. (22), one obtains respectively: JoI = (2.22, 0.64, 0.54,0.49) × 10−20 A
cm2 = JBpo,

and from the following Table 2, for example, at Voc = 1079 mV, nI= (0.998; 0.969; 0.965; 0.963)

and ηI= (30.40; 30.70; 30.74; 30.76) %, suggesting that, with increasing rd(a) , or with decreasing

εd(a) , due to the d(a)-size effect, both JoI and nI decrease, while ηI increases, being new obtained

results.

Table 2. In the HD[(P; As; Sb; Sn)-GaAs] ER-LD[(B; Ga; Mg; In)-GaAs)] BR and for physical conditions given

in Eq. (32), our numerical results of nI , JscI , FI , and ηI , are computed by using Equations (27, 26, 29, 31),

respectively. Here, on notes that, for a given Voc and with increasing rd(a) , the function nI decreases, while other

functions JscI , FI , and ηI increase, being due to the impurity size rd(a) -effect, suggesting thus our new obtained

results.

Voc(mV) n Jsc(
mA
cm2) F(%) η(%)

1130 1.047; 1.017; 1.013; 1.010 29.74; 29.81; 29.82; 29.83 87.7; 88.0; 88.1; 88.1 29.46; 29.66; 29.68; 29.70

1127.2 1.044; 1.014; 1.010; 1.008 29.94; 30.02; 30.03; 30.04 87.5; 87.9; 88.0; 88.0 29.55; 29.76; 29.78; 29.80

1082 1.000; 0.971; 0.968; 0.965 32.68; 32.85; 32.88; 32.89 86.0; 86.3; 86.4; 86.4 30.39; 30.69; 30.73; 30.75
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1079 0.998; 0.969; 0.965; 0.963 32.81; 32.99; 33.01; 33.03 85.9; 86.2; 86.3; 86.3 30.40; 30.70; 30.74; 30.76

1072 0.991; 0.962; 0.958; 0.956 33.08; 33.27; 33.29; 33.31 85.7; 86.0; 86.1; 86.1 30.38; 30.69; 30.73; 30.75

1070 0.989; 0.960; 0.957; 0.954 33.14; 33.34; 33.36; 33.38 85.6; 86.0; 86.0; 86.0 30.36; 30.67; 30.71; 30.74

1000 0.926; 0.899; 0.895; 0.893 31.13; 31.26; 31.27; 31.28 84.3; 84.6; 85.0; 84.7 26.23; 26.46; 26.49; 26.50

990 0.918; 0.891; 0.888; 0.885 29.61; 29.69; 29.70; 29.71 84.2; 84.6; 84.6; 84.6 24.69; 24.86; 24.88; 24.89

980 0.910; 0.884; 0.880; 0.878 27.06; 27.06; 27.06; 27.06 84.2; 84.5; 84.6; 84.6 22.32; 22.42; 22.43; 22.44

4.2. �� (B; Ga; Mg; In) − ���� �� − �� (P; As; Sb; Sn) − ���� �� −cases

Here, for those 4 (p+ − n) − junctions: (B − P), (Ga − As), (Mg − Sb), (In − Sn) , respectively,

we propose the following physical conditions as:

W = 15 μm, Na = 1020 cm−3, S = 100 (cm/s ), and Nd = 1017 cm−3. (33)

Then, from Eq. (20) , one respectively obtains: τteff.
τhE

=

(0, 0, 0, 0), suggesting the completely transparent

condition, and from Eq. (18), JEpo = (2.75, 1.34, 1.22,1.15) × 10−23 A
cm2 . Further, one

respectively gets from Eq. (C1) of the Appendix C:

JBno = 3.46, 3.36, 2.90, 2.71 × 10−20 A
cm2 . Then, from Eq. (22), one obtains respectively:

JoII = (3.46, 3.36, 2.90, 2.71) × 10−20 A
cm2 = JBno, and from the following Table 3, for example,

at Voc = 1345 mV , nII = (1.264; 1.263; 1.258; 1.256) and ηII = (42.67; 42.71; 42.72; 42.73) %,

meaning that, with increasing ra(d), or with decreasing εa(d), due to the a(d)-size effect, both JoII and

nII decrease, according to the increase in ηII, being also new obtained results.

Table 3. In the HD[(B; Ga; Mg; In)-GaAs] ER-LD[(P; As; Sb; Sn)-GaAs)] BR and for physical conditions given

in Eq. (33), our numerical results of nII , JscII , FII , and ηII , are computed by using Equations (28, 26, 30, 31),

respectively. Here, on notes that, for a given Voc and with increasing ra(d) , the function nII decreases, while other

functions JscII , FII , and ηII increase, being due to the impurity size ra(d)-effect, suggesting thus our new obtained

results.

Voc(mV) n Jsc(
mA
cm2) F(%) η(%)

1380 1.298; 1.297; 1.293; 1.290 24.82; 24.82; 24.82; 24.82 121; 121; 121; 121 42.59; 42.63; 42.63; 42.63

1375 1.293; 1.292; 1.288; 1.286 25.01; 25.01; 25.01; 25.01 121; 121; 121; 121 42.61; 42.65; 42.65; 42.66

1366 1.284; 1.283; 1.279; 1.277 25.35; 25.35; 25.35; 25.35 120; 120; 120; 120 42.64; 42.68; 42.68; 42.69

1355 1.274; 1.273; 1.268; 1.266 25.76; 25.77; 25.77; 25.77 119; 119; 119; 119 42.66; 42.70; 42.71; 42.72
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1345 1.264; 1.263; 1.258; 1.256 26.14; 26.14; 26.15; 26.15 118; 118; 118; 118 42.67; 42.71; 42.72; 42.73

1335 1.254; 1.253; 1.248; 1.246 26.52; 26.52; 26.52; 26.53 117; 117; 117; 117 42.66; 42.70; 42.71; 42.72

1030 0.964; 0.964; 0.960; 0.959 29.87; 29.87; 29.89; 29.90 86.2; 86.2; 86.3; 86.3 27.32; 27.35; 27.38; 27.39

1025 0.960; 0.959; 0;956; 0.954 29.53; 29.54; 29.56; 29.57 85.5; 85.5; 85.6; 85.6 26.66; 26.69; 26.72; 26.73

1000 0.939; 0.938; 0.935; 0.933 27.31; 27.32; 27.33; 27.33 81.5; 81.5; 81.6; 81.6 22.94; 22.97; 22.99; 22.99

980 0.922; 0.922; 0.919; 0.917 24.20; 24.20; 24.20; 24.20 76.6; 76.6; 76.7; 76.7 18.74; 18.76; 18.77; 18.77

In conclusion, our new limiting highest efficiency results: 30.76% and 42.73%, given in Tables 2

and 3, can also be compared respectively with other limiting η-results, such as: 29.1% for GaAs-

thin film cell, and 45.7% and 44.4%, respectively for GaInP/GaAs/GaInAs/GaInAs -and-

InGaP/GaAs/InGaAs multijunction cells, being obtained by Green et al. [3].

Acknowledgments: We thank Drs M. Cayrol and J. Sulian for their technical helps.

Appendix

Appendix A. Fermi Energy

In the n(p)-type Gas crystal, the Fermi energy EFn( − EFp), obtained for any T and donor density N,

being investigated in our previous paper, with a precision of the order of 2.11 × 10−4 [39, 40], is

now summarized in the following.

First of all, we define the reduced electron density by:

u ≡ Nd(a)

Nc(v)
, Nc(T) = 2 × 1 × mc×kBT

2πℏ2

3
2 (cm−3), Nv(T) = 2 × 1 × mv×kBT

2πℏ2

3
2 (cm−3). (A1)

Here, Nc(v) is the conduction (valence)-band density of states, respectively, mc is the effective mass

of the electron in n-type GaAs can be defined by [8]:

mc = 0.066 × mo, (A2)

where mo = 9.1096 × 10−28 g is the electron rest mass, the averaged effective mass of the hole in

the p-type GaAs yields [8]:

(mv/mo) = 0.082+0.5
2

= 0.291, (A3)

and finally, Egin(p) T, rd(a) is the intrinsic band gap in the GaAs-crystal, due to the T-dependent

carrier-lattice interaction-effect, by [1, 2, 33, 34]:
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Egin(p) T, rd(a) = Egn(p)(rd(a)) − 5.405×10−4×T2

T+204
. (A4)

Here, Egn(p)(rd(a)) is determined in Eq. (1b), due to the d(a)-size effect.

Furthermore, in the n(p)-type Si, one can define the intrinsic carrier concentration nin(p) by:

ni n(p)
2 (T, rd(a)) ≡ Nc(T) × Nv(T) × exp  −Egin(p) T,rd(a)

kBT
. (A5)

Then, denoting the reduced Fermi energy in the n(p)-type semiconductor, respectively, by
EFn(�)

kBT
( −EFp(�)

kBT
),

being accurate to within 10−7 , we have [39] :

EFn(�)
kBT

( −EFp(�)
kBT

) = G u +AuBF(u)
1+AuB , A = 0.0005372 and B = 4.82842262 (A6)

where

F u = au
2
3 1 + bu−4

3 + cu−8
3

−2
3
, a = (3 �/4) × � 2/3 , b = 1

8
�
a

2
and c = 62.3739855

1920
�
a

4

and

G u ≃ Ln u + 2−3
2 × u × e−du; d = 23/2 1

27
1
27

− 3
16
3
16 > 0.

Here, one notes that: (i) EFn(u≫1)
kBT

( −EFp(u≫1)
kBT

) > 1 , according to the HD[d(a)-GaAs]ER-case, or to

the degenerate case, Eq. (A6) is reduced to the function F(u), and (ii) EFn(u≪1)
kBT

( −EFp(u≪1)
kBT

) <− 1, to

the LD[a(d)-GaAs]BR-case, or to the non-degenerate case, Eq. (A6) is reduced to the function G(u),

respectively.

(i) In the HD[d(a)-GaAs]ER-case for Nd(a) = 1019(1020) cm−3 , we respectively get: EFn
kBT

( −EFp

kBT
) =

10.04 (10.56) > 1, according to degenerate conditions.

(ii) In the LD[a(d)-GaAs]BR-case and for Na(d) = 1018(1017) cm−3 , we respectively obtain:
−EFp

kBT
( EFn

kBT
) =− 1.3 ( − 1.4) <− 1 , according to non-degenerate conditions. Thus, those limiting

values of Na(d) = 1018(1017) cm−3 can be used in the LD[a(d)-GaAs] BR-cases, respectively.

Appendix B. Approximate forms for band gap narrowing and apparent band gap narrowing

First of all, in the n(p)-type GaAs, we define the effective Wigner-Seitz radius rs characteristic of

the interactions by [1, 2]

rsn ≡ rs(Nd, rd) = 1.1723 × 108 × 1
Nd

1/3
× mc

ε(rd)
(B1)
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and

rsp ≡ rs(Na, ra) = 1.1723 × 108 × 1
Na

1/3
× mv

ε(ra)
, (B2)

where mc and mv are given in (A2) and (A3). Therefore, the correlation energy of an effective

electron gas, Ecn(cp) Nd(a), rd(a) , is given by [1, 2, 42]:

Ecn(cp) Nd(a), rd(a) = −0.87553
0.0908+rsn(sp)

+
0.87553

0.0908+rsn(sp)
+ 2 1−ln 2

π2 ×ln (rsn(sp))−0.093288

1+0.03847728×rsn(sp)
1.67378876 . (B3)

Then, in the n-type heavily doped GaAs, the band gap narrowing is found to be given as [1, 2]:

ΔEgn(Nd, rd) ≃ a1 × ε(rAs)
ε(rd)
ε(rAs)
ε(rd) × Nr

1/3 + a2 × ε(rAs)
ε(rd)
ε(rAs)
ε(rd)
ε(rAs)
ε(rd) × Nr

1
3 × 2.503 × [ − Ec rsn × rsn] + a3 × ε(rAs)

ε(rd)

5/4
×

mv
mc

× Nr
1/4 + a4 × ε(rAs)

ε(rd)
× Nr

1/2 × 2 + a5 × ε(rAs)
ε(rd)

3
2 × Nr

1
6, Nr ≡ Nd

9.999×1017 cm−3 , (B4)

where a1 = 3.8 × 10−3(eV) , a2 = 6.5 × 10−4(eV) , a3 = 2.8 × 10−3(eV) , a4 = 5.597 ×

10−3(eV) and a5 = 8.1 × 10−4(eV), and in the p-type heavily doped GaAs, one has [1, 2]:

ΔEgp(Na, ra) ≃ a1 × ε(rGa))
ε(ra)

ε(rGa))
ε(ra) × Nr

1/3 + a2 × ε(rGa))
ε(ra)

ε(rGa))
ε(ra)

ε(rGa))
ε(ra) × Nr

1
3 × 2.503 × [ − Ec rsp × rsp] + a3 × ε(rGa))

ε(ra)

5/4
×

mc
mv

× Nr
1/4 + 2a4 × ε(rGa))

ε(ra)
× Nr

1/2 + a5 × ε(rGa))
ε(ra)

3
2 × Nr

1
6, Nr ≡ Na

9.999×1017 cm−3 , (B5)

where a1 = 3.15 × 10−3(eV) , a2 = 5.41 × 10−4(eV) , a3 = 2.32 × 10−3(eV) , a4 = 4.12 ×

10−3(eV) and a5 = 9.80 × 10−5(eV).

Further, in the donor (acceptor)-GaAs, we define the effective intrinsic carrier concentration nien(p),

by

ni en(p)
2 (Nd(a), rd(a)) ≡ Nd(a) × po(no) ≡ ni n(p)

2 × exp ΔEgan(p)

kBT
, (B6)

where we can define the “effective doping density” by: Nd(a)eff. ≡ Nd(a)/exp ΔEga n(p)

kBT
so that

Nd(a)eff. × po(no) ≡ ni n(p)
2 [8], and also the apparent band gap narrowing, ΔEga n(p), as

ΔEga n(p) ≡ ΔEg n(p) + kBT × ln Nd(a)

��(�)
− EFn( Nd

Nc
)[ − EFp( Na

Nv
)], (B7)

where Nc(v) is defined in Eq. (A1), the Fermi energy is determined in Eq. (A6).

Appendix C. Minority-carrier transport parameters

Here, the minority-electron (hole) saturation current density injected into the LD[a(d)-GaAs]BR,

with an acceptor density equal to Na(d), is given by [1, 2]:
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JBp(n)o Na(d), ra(d) =
e×ni

2(ra(d))×
De(h)(Na(d),ra(d))

τe(h)B(Na(d))

Na(d)
, (C1)

where ni n(p)
2 (rd(a)) is determined in (A5), De(h)(Na(d), ra(d)) is the minority-electron (hole) diffusion

coefficient:

De(Na, ra) = kBT
e

× 200 + 8500−200

1+ Na
1.3×1017cm−3

0.91 × ε(ra)
12.85

2
cm2V−1s−1 , (C2)

Dh Nd, rd = kBT
e

× 130 + 400−130

1+ Nd
8×1017 cm−3

1.25 × ε(rd)
12.85

2
cm2V−1s−1 , (C3)

and τe(h)B(Nd(a)) is the minority-electron (hole) lifetime in the base region:

τeB Na
−1 = 1

10−7 + 3 × 10−13 × Na + 1.83 × 10−31 × Na
2. (C4)

τhB Nd
−1 = 1

10−7 + 11.76 × 10−13 × Nd + 2.78 × 10−31 × Nd
2, (C5)

Further, from (A6), (B4)-(B7)), in the HD[d(a)-GaAs]ER, we can define the following minority-

hole(electron) transport parameter Fh(e) as [8, 22, 25]:

Fh(e) (Nd(a), rd(a)) ≡
ni n(p)

2 (rd(a))
po(no)×Dh(e)

= Nd(a)eff.

Dh(e)
≡ Nd(a)

Dh(e)×exp
ΔEg an(p)

kBT

(cm−5 × s), (C6)

Furthermore, the minority-hole (electron) diffusion length, Lh(e) Nd(a), rd(a) and the minority-

hole(electron) lifetime τh(e)E in the HD[d(a)-GaAs]ER can be determined by

Lh(e)
−2 Nd(a), rd(a) = τh(e)E × Dh(e)

−1 = C × Fn(p)
2 = C × Nd(a)eff.

Dh(e)

2
= C ×

ni n(p)
2 (rd(a))

po(no)×Dh(e)

2

, (C7)

where the constant C is chosen to be 2.0893 × 10−30 (cm4/s), and then, τh(e)E can be computed by:

τh(e)E = 1

Dh(e)× C×Fn(p)
2 . (C8)
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