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Abstract

In the n*(p™) — p(n) crystalline InP-junction solar cells, by basing on a same treatment method,
and for a same heavy (low) doping effect, as those investigate in our recent papers [1, 2], but using
now a new expression, obtained for the static relative dielectric constant e(rd(a)) , determined
exactly in the effective Bohr model, as that given in Eq. (1c), representing the donor (acceptor)
d(a)-radius rye) —effect, or the E(Vd(a)) —effect, suggesting further that, for an increasing ry),
E(Vd(a)) decreases, as showed in Table 1, according to the increase in photovoltaic efficiency n, as
that observed in Tables 2 and 3, we finally get, in our present paper, for highest values of rqc,), the

limiting highest efficiency results of such n*(p*) — p(n) crystalline InP-junction solar cells,

1n1=29.58% (31.26%), respectively.

200



Furthermore, one notes that our present value: n=31.26% can also be compared with the

corresponding one, n1=30.6%, investigated by Raj et al. [4], using a p-i-ZnO sample.

Keywords: donor (acceptor)-size effect; heavily doped emitter region; photovoltaic conversion

factor; open circuit voltage; photovoltaic conversion efficiency

1. Introduction

In our recent papers (RP) [1, 2], by basing on: (i) the heavy doping and impurity size effects, which
affect  the  total  carrier-minority  saturation  current  density  Joi1) = Jen(pyo +
Jp(no: Jen(pyo @Nd Jgp(n)o ~ being the carrier-minority saturation current densities, injected
respectively into the heavily doped donor (acceptor) InP emitter region-and-lightly doped acceptor
(donor) InP base region, HD[d(a)- InP]ER-LD[a(d)- InP]BR, of n*(p™) — p(n) junction solar cells,
(ii) an effective Gaussian donor (acceptor)-density profile Pycq) to determine Jenpyol 1, 2, 13, 18-20,
22], and (iii) the use of two fixed experimental points, we investigated the photovoltaic conversion
factor ny(yy, the short circuit current density Jsciy, the fill factor Fy(jy, and finally the efficiency
Miary [1- 45]. These physical quantities were expressed as functions of the open circuit voltage Vo,
and of various parameters such as: the emitter thickness W, high donor (acceptor) density Nga),

surface recombination velocity S , given in the HD[d(a)- InP]ER, and low acceptor (donor)
density Na(q) , given in the LD[a(d)- InP]BR.

Then, in our present paper, by basing on a same treatment method, and for a same heavy (low)
doping effect, as those given in RP, but using now a new expression, obtained for the relative
dielectric constant S(rd(a)), being determined exactly in the effective Bohr model, as that given in
Eq. (Ic), which represents the donor (acceptor) d(a)-radius Iy — effect or the s(rd(a)) — effect,
suggesting further that, for an increasing Iy, E(rd(a)) decreases, as showed in Table 1, according
to the increase in photovoltaic efficiency 1, as observed in Tables 2 and 3, we finally get, in our
present paper, for highest values of rye, the limiting highest efficiency results of such n™(p*) —

p(n) crystalline InP-junction solar cells, 1=29.58% (31.26%), respectively.

Furthermore, one notes here that our present value: 1=31.26% can also be compared with the

corresponding one, n1=30.6%, investigated by Raj et al. [4], using a p-i-ZnO sample.
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In Section 2, all the results energy-band-structure parameters for d(a)- InP systems are reported in

Table 1, and the expressions for Jgn(p)o are also reported, so that we can determine the total (or dark)
carrier-minority saturation current density Joi1y = Jen(pyo + Jep(n)or JBp(n)o being determined in Eq.
(C1) of the Appendix C. In Section 3, the photovoltaic effect is investigated. Finally, some

numerical results and concluding remarks are given and discussed in Section 4.

2. Energy-Band-Structure Parameters and dark minority-carrier saturation

current density, due to impurity-size and heavy doping effects

Now, we present the effects of donor (acceptor) [d(a)]-size and heavy doping, taken on the energy-
band-structure parameters, and investigate the minority-carrier saturation current densities, as

follows.
2.1. Effect of d(a)-size

In d(a)- InP systems at T=0 K, since the d(a)-radius ryc), in tetrahedral covalent bonds is usually
either larger or smaller than the P(In) atom-radii I'p(ny, a local mechanical strain (or deformation
potential energy) is induced, according to a compression (dilation) for Iy > rpany (Fdga) <
Ipn) = Fdo(ao) = 0.110 (0.144) nm), respectively, due to the d(a)-size effect [42]. Then, we have
shown [8] that this rqc,) -effect affects the changes in all the energy-band-structure parameters,

expressed in terms of the relative dielectric constant €(ry()), as given in the following.

First, we note that in the InP [8] the static relative dielectric constant of the intrinsic silicon is equal

to: €(rpany) = 12.37, the relative effective electron (hole) mass in conduction (valence) bands yield:

0.021+0.39

(m./my) = 0.015 and (m,/m,) = = 0.2055, the unperturbed intrinsic band gap at 0K,

Ego(rdo(ao)) =142¢eV , the effective donor (acceptor)-ionization energy in absolute values:

__13600x(m¢/mg) _ __ 13600x(my/my) _
Eqo(rgo) = T meV = 1.333meV , and E,y(ry) = Te? meV = 18.26 meV ,
and the isothermal bulk modulus are defined, for the n(p)-type InP, by: B, = (4/;% =3.831 x
x(rp
7 2 = Eao — 8 2
107 (N/m<), and finally, B, = TWEPTORE 2.339 x 10° (N/m?).

Therefore, at Fy@y = Fdoao) > the boundary conditions are found to be, for the impurity-atom

volume V, Vyoaao) = (4 /3) % (rdo(ro))s, the pressure p, p, = 0, and the deformation potential

energy or the strain energy o, 0, = 0. Further, the two important equations [42], needed to
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determine the c-variation Ac= 6-0, = , are defined by —=— and = gv giving: W(_ == Then

in the n(p)-type InP, by an integration, one gets:

" Eaoo [ (292) "~ 1] > ()20 (1a)

do(ao) "do(a0)

(Ao)n(p) Bn(p)X(V Vdo(ao))x In (Vdo(ao)

Furthermore, we also shown [42] that, as Fg@) > Fgogao) ( Fd(a) < Fdo(ac)) » the compression
( dilatation) corresponding the repulsive (attractive) force increases (decreases) the energy gap
Egn(gp)(rd(a)) and the effective donor(acceptor)-ionization energy Ed(a)(rd(a)) in absolute values,
obtained in the effective Bohr model, which is represented by: +(—) (A0)n(p) , respectively. That

gives:

2
e(r )
Egn(gp) — Ego = Ed(a) — Edo(ao) = Edo(ao) % [(ﬁig) - 1] =+ (A0)n(p) for ey = ro(ac)> and

€(rdo(ao))

2
Egngp) — Ego = Ed(a) — Edo(ao) = Edo(ao) * [( (@) ) - 1] = (Ao)n(p)a for rg(a) = 'do(ao)- (1b)

Then, from Equations (1a, 1b), the exact expression of static relative dielectric constant €(rg(y)), is
given by:
€(rdo(ao))
() oo
€(Fdo(ao))
[ -tpolezes)
which can be compared with its approximated and simple form, proposed in our recent papers (RP)

[1,2], by:

= = &(T'do(ao))- fOr Td(a) = F'do(ao), and
1+

e(raea))= J

= > £(F'doao))- 0T Fi(a) = Tdo(ao)» (lc)

e(gea))= J

do(ao)

4377 (47)
€ r E(r x
RP( d(a)) ( do(ao)) < rdca) )

, S(rdo(ao) =12.37. (ld)

For example, in the n-type InP and for rgopy = 0.110 nm and ryeyy = 0.140 nm, we obtain
respectively from Equations (1c, 1d), €(rs;)=9.30  €gp(rsy) = 4.30, meaning that €gp(ry(a)), used

in our RP, are found to be inaccurate.

Finally, it should be remarked that, with increasing Fd(a) ,
€(Iqca)), determined in Eq. (1c), decreases, according to the increase in Ego(rd(a)) and Ego(ao)(ra),

determined in Eq. (1b), as those observed in the following Table 1.
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Table 1. Impurity size effects, taken on the effective dielectric constant €(rg(y)), being determined in Eq. (1c), the
effective donor(acceptor)-ionization energy, Ed(a)(rd(a)), in absolute values, and the band gap, Egn(py (Faca)), at

T=0K, determined both in Eq. (1b), and finally, the intrinsic band gap, Egin¢p) (T = 300K, ry(,)) and the intrinsic carrier
concentration Nin) (T = 300K, ry(,)), determined respectively in Equations (A4) and (AS5) of the Appendix A

Donor do, =P As Te Sb Sn

rqg (nm) [8] () 0.110 0.118 0.132 0.136 0.140
g(ry) () 12.37 [8] 12.07 10.46 9.88 9.30
Eq(rg) in meV () 1.33 1.40 1.86 2.09 2.36
Egn(rg) inmeV () 1420 [8] 1420.1 1420.53 1420.75 1421.02
Egin(300K, rq) inmeV () 1323.48 1323.55 1324.01 1324.24 1324.51
Nin (300K, ry) () 2.51 2.51 2.49 248 247
in 106 cm™3

Acceptor a, =In Mg Al Ga

ra (nm) [8] () 0.144 0.140 0.126 0.126

£(ra) () 12.37 [8] 12.41 13.28 13.28

Ea(ra) in meV () 18.26 18.14 15.85 15.85

Egp(ra) inmeV () 1420 [8] 1419.9 1417.6 1417.6

Egip(300K, ry) inmeV () 1323.5 1323.4 1321.1 1321.1

nip (300K, ry) () 2.51 2.52 2.64 2.64

in 108 cm™3

In summary, those effects of Ng(a)-heavy doping and ry,)- impurity size [or the €(rq,)) —effect],
given in the HD[d(a)-InP]ER, and those of Ny(qy-low doping in the LD[a(d)- InP]BR, affect all the

minority-carrier transport properties, as those given in the Appendix A, B and C, and also in the

following equations.

2.2. Total minority-carrier saturation current density at 300K

The total carrier-minority saturation current density is defined by:

Joiany = JEn(pyo * IBp(n)os (2)

where Jgpmyo 18 the minority-electron (hole) saturation current density injected into the LD[a(d)-
InPIBR, being determined in Eq. (C1) of the Appendix C, and Jgn(p)o is the minority-hole

saturation-current density injected into the HD[d(a)- InP]ER.
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In the non-uniformly and heavily doped emitter region of d(a)- InP devices, the effective
Gaussian d(a)-density profile or the d(a) (majority-e(h)) density, is defined in the HD[d(a)- InP]ER-
width W:

x\2
X 2 Nd(a) } [ Nd(a) ]_(W)
= —|— = =X
pd(a)(X) Nacay > exp{ (W) xIn [Nd(a)o(W) Naa) > Nd(ayo(W) » O=x=W,
W 1.066 (0.5) _
Nd(a)o(W) =79 x 10%/ (2 x 105) X exp {— (m) } (Cm 3), (3)

where Pgea)(X = 0) = Nga) is the surface d(a)-density, and at the emitter-base junction, Py (X =
W) = Ngy(ayo (W), decreasing with increasing W [1, 2, 13]. Further, the “effective doping density” is
defined by:

gan(p) (Pd(@) 9, Ird(a))]
b

AE
Nacayefr. (X, Fd(a)) = Pdca) )/€XP [ e

Na(a) — — Ng(ayo(W)
and N f(X=W, r =
oxp| o) (Ma@)oca))| ataeti ) oxp | E2an@) (Na@o ™). e}
kgT J l kgT

Nacayett (X = 0, Fga)) = 4

where AEg, n(p) are determined in Equations (B4, BS) of the Appendix B.

Then, under low-level injection, in the absence of external generation, and for the steady-state case,

we can define the minority-h(e) density by:

Po()[Ne(X)] = ——n__ (5)

Na(ayefr. (% Fdea))’

where nizn(p) is determined in (AS5) of the Appendix A and a normalized excess minority-h(e)

density u(x) or a relative deviation between p(x)[n(X)] and po(X)[ny(X)], by [22, 25]:

)= POIIN(I]—Po ()Mo (CYT)

ulx PNl ©)

which must verify the two following boundary conditions proposed by Shockley as [6]:

A = —hGE0) [ (x=0)]
ux=0)= 5%Po(x=0)[No(x=0)]’ 7

— — v _
U(X = W) = exp (W) 1. (8)

Here, ny;y(V) is a photovoltaic conversion factor determined in Equations (27, 28), S (%) is the

surface recombination velocity at the emitter contact, V is the applied voltage, V1 = (kgT/e) is the

thermal voltage, and the minority-hole (electron) current density Jn(ey(X).
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Further, as developed in RP, from the Fick’s law for minority hole (electron)-diffusion equations [8,

12]:

—e(re)xn? _ duG) _ e+ )P ) | dut)

Iey() = Fhey(¥) dx Nd(ayefr. (X) dx

, ©)

where Ngayerr. is given in Eq. (4), Dpce) and Fpe) are determined respectively in Equations (C3, C2,
C6) of the Appendix C, and from the minority-hole (electron) continuity equation [8, 12]:

dIne) ) _
dx

u(x)
in(p) Fhee) (X)XLE( e)

u(x)

+e) x S,
—e(+e) n? inp) Na(ayefr. ()X Thee)e’

—e(+e)xn?

(10)

where Lpe) and The)e are defined respectively in Equations (C7, C8) of the Appendix C, one

finally obtains the following second-order differential equation as [22]:

d?u(x) _ dFpe)(®) _ du(x)  u(x) _
dx?2 o o Lo (1)

Then, taking into account the two boundary conditions (7, 8), one thus gets the general solution of

this Eq. (11), as [22]:

_sinh(P0))+1(W,S)xcosh(P(x)) Y% _ _  Dn@ey(No(W))
u) = sinh(P(W))+I(W,5)xcosh(P(W)) *\&xp M (V)xVy 1), 1(W.$) = $xLn(e) (No(W))’ (12)

where the function Ny (V) is the photovoltaic conversion factor, determined in Eq. (29). Further,

dp (

since ——= = C X Fpe)(X) = , C=2.0893x 10730 (cm*/s), for the crystalline Si, being an

e)(

empirical parameter, chosen for each crystalline semiconductor, P(x) is thus found to be defined by:

W dx
0 Ly

W L W
yxWs——=—C x— (13)
Lhe)eft.  Lnee)eft.  Lnge)

P(X) = ), 0= X< W,P(x=W) = (5

0 Lh( (X)

where Lpe)efr, 18 the effective minority-hole (electron) diffusion length. Further, from Eq. (9, 13),

the minority-hole (electron) current density injected into the HD[d(a)- InP]ER is found to be
determined by:

\
Iney (% W, Naay: oy S1V) == eno (% W, N T S) Depo % WoNg T )] x (040 (o) =1), - (14)

where Jgn(p)o 18 the saturation minority-hole (electron) current density,

e’ (o) *Dhie) » _CoSh(POO)+I(W,S)xsinh (P())
Ngcayefi XLneey ~ Sinh(P(W))+1(W,S)xcosh(P(W))

Jen(pyo (% W, Nygay, Faqay, S) = (15)
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Here, the intrinsic carrier concentration Ny is computed by Eq. (AS) of the Appendix A, and the
effective doping density Ngeaetr. is determined in Eq. (4), the minority-hole (electron) diffusion
coefficient Dy and minority-hole (electron) diffusion length L) are given respectively in

Equations (C2, C3, C7) of the Appendix C, and the factor I(W, S) is determined by:

Dh(e) (Nd(ayo(W))

(W =
(W.S) $xLn(e) (Nd(ayo(W))’

(16)

where Nga)o (W) is determined in Eq. (3).

—Ih(x=0)[Je (x=0)]
eSxpy(x=0)[Ne (x=0)]

Further, one remarks that: (i) from Equations (12, 14-16) one obtains: u(x = 0) =
which is just the first boundary condition given in Eq. (7), and then, (ii) Eq. (12) yields: u(x =

W) = exp (*) — 1, being the second boundary condition given in Eq. (8).
My (V)=Vr

In the following, we will denote P(W) and I(W, S) by P and I, for a simplicity. So, Eq. (15) gives:

2
_ _ €N5np)*Ph(e) 1
Jengpyo (X = 0, W, Noay: Taa: ) = Na@ett <Lne) - SINN(P) +1xCosh(P) * (17)
2 .
_ __ eNfnpy*Dnee) _ cosh(P)+Ixsinh(P)
JEn(p)O(X - W’ W’ Nd(a)’ rd(a), S) o Nd(a)eff.xl-h(e) x sinh(P)+|><cosh(P)' (18)
Ine) =0 W:Na(ay F@)SV)  _ Jen(ro(X=0.WNdga). fd@)S) _ 1 (19)

In(e) =W, WNg(a), Ta(a)SV) — JEn(po (=W, W.Ng(a) Fa(a).S)  cosh(P)+Ixsinh(P)’

Now, if defining the effective excess minority-hole (electron) charge storage in the emitter region

by [22]:

Th(e)e (Nd(a) Fd(a)) d
The)E(Pd(a) X).rd(a))

w
Qnceyeft. (X = W, Nga), Fa@@)) = o +e(—€) X u(x) x po(X)[Ny(X)] < X, and the

effective  minority-hole  transit time by:  Ter (X = W, W, Ngay, M) S) = Qneey efr. (X =
W, Nd(a)ard(a))/JEn(p)o(X =W,W, Nd(a),rd(a),S) , one can define, from Equations (10, 19), the

reduced effective minority-hole transit time:

Teeft, (x=W,W.Ng(a) Fd(a).S) _ 1— JEn()o(}=OWNa@) ra@S) _ o _ 1 (20)
Th(e)E JEn(p)o(XZW,W,Nd(a),rd(a),S) cosh(P)+Ixsinh(P)’

Now, some important results can be obtained and discussed below.

AsP 1 (or W Lyeg)and S — oo, | = I(W,S) =% - 0, from Eq. (20), one has:

Teeff. (X=W,W,Ng(a) Fd(a).S)
Th(e)E

- 0, suggesting a completely transparent emitter region (CTER)-case, where,

from Eq. (18), one obtains:

207



eni2n(p)><Dh(e) < 1

21
Nd(a)eff. XLh(e) P(W)’ ( a)

JEn(p)O(X = W’ Nd(a): rd(a), S - 00) -
and then, asP 1 (orW  Lpeg)andS - 0,1= I(W,S) = 28 oo, from Eq. (20), one
' SxLi(No(W))

Teet, (X=W.W.Ng(a) Fa(a) S)
Th(e)E

has: - 1, suggesting a completely opaque emitter region (COER)-case,

where, from  Eq. (18), one gets:

en|2n D e
JEn(p)o(X = W, Nd(a), rd(a), S - O) — WXL:((:) X tanh(P) (21b)

In summary, in the n™(p™) — p(Nn) junction solar cells, the dark carrier-minority saturation current

density J,, defined in Eq. (2), is now replaced by Jo i1y, for a good presentation, and rewritten by:

Joraty (W, Naay: Facay: S Nagay: Tacdy) = Jenyo (W, Nagay: Facay S) + Iepenyo (Nagay: Fady)s (22)

where Jen(p)o and Jgpnyo are determined respectively in Equations (18) and (C1) of the Appendix C.

3. Photovoltaic conversion effect at 300K

Here, in the n*(p*) — p(n) junction solar cells, denoted respectively by I(II), and for physical
conditions:

W = 0.0044 pm, Np(m) =10%° (1020)Cm_3, Tp(in) S= 1050ﬂ, NIn(P) = 1017(1016) cm_?’, MineP) (23)

S

we propose, at given V1) and Vog(2), the experimental results of the short circuit current
density Jseiqny, fill factor Fy(jy, and photovoltaic conversion factor Ny, in order to formulate our

following treatment method of two fixe experimental points [3, 4], for the n™ — p junction,

V0C|1(|2) =7299 (909) mV N JSCIl(IZ) = 26.64 (3047) mA/Cm2 N F|1(|2) =77.04 (839) % 5
Ninaz) = 15 (23.24) %, and for the p™ — n junction,

Voeiizaizy = 785 (960) mV ,  Jseizqizy = 30.5 (30.4) mA/cm? | Fyyqizy = 80.1(87.4) % , Nuraiz) =
19.2 (25.5) %. (24)

First of all, we define the net current density J at T=300 K, obtained for the infinite shunt resistance,
and expressed as a function of the applied voltage V, flowing through the n™(p™) — p(n) junction
of InP solar cells, by [1, 2, 5-10]:

v = keT

W 5 T =25.85mV, (25)

T e

IV) = Jon (V) = iy % (M0 — 1), Xy (V) =
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where the function Ny (V) is the photovoltaic conversion factor, noting that as V = V¢, J(V) =0,
the photocurrent density is defined by: Jon (V = Vi) = JSC|(||)(W, Nacay: Fdca): Sr Nacdy: Faca): Vo), for

Voc = Voeqny1- Therefore, the photovoltaic conversion effect occurs, according to:

Jsei(iry (W, Nagay: Fagay: S, Naca: Facay» Voe) = Joiqy (Wi Nagay: Fagay: S, Nacay, Faqy) > (€000 —1),(26)

VOC

where N1y (Voe) = Nign (W, Nacay: Fdcays S Nagay: Fady Voo ) and Xiary (Vo) = PN

Here, one remarks that (i) for a given Vy, both ny¢;y and Jo 1y have the same variations, obtained in
the same physical conditions, as observed in many cases, given in Ref. [1], and (ii) the function
(eX|(||)(V0c) - 1) or the PVCF ny(y, representing the photovoltaic conversion effect, thus converts

the light, represented by Js¢i1y, into the electricity, by Joiqy.

Further, from Equations (22, 26), we obtain for the n* — p junction:

Vocl1(2) 1 _
Vr In (M_._l) |l(2)( ocl1(2): JSCIl(Z)),

Jol

12y (W, Ny, e, S, Na, T, Vogin 2y dsein)) =

and we then propose:

Voo 116621
N (W, Ng, rg, S, Na, Ta, Voe) = iz (Voers Jsein) + M2 (Vocrz, Iseiz) < (Vocll - ) : (27)
being valid for any values of (W, Ny, rg, S, Na, Fa, Voe = Voen)-
Furthermore, for the p* — n junction,
Voc 1 _
M2y (W, Na, T2, S, N, T, Voeinzy Jseiingzy) = \I,Il(z) X — e = e Vo) Jseini )
! In ( Joil +1)
and then,
Voo 113383
Ny (W, Na, £a, S, N, Fa Voo) = M (Vocin sein) + Miz(Vociiz: seiiz) < (Voclll ~ ) ; (28)

being valid for any values of (W, Ny, ra, S, Ng, g, Voe = Voent)-

Therefore, from Equations (23, 24, 27, 28), one obtains, Njy¢ 1y =0.721024 (0.7855) at Voei1qiry =
(785) mV, and Nnjy(12) =0.894876 (0.9607) at Voeipaizy = 909 (960) mV, respectively, for

*(p*) — (n) junction solar cells.

Thus, X, defined from Eq. (26) now becomes for the N™ — p junction:
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Voc
N (WNg,rg,S, Na,ra,Voc) XVt

Xi(W,Ng, rg,S, Ng, ra, Voo) = , and therefore, we can determine the values of

the fill factors Fy1(2y at Voo = Voeir2y by [1, 2]

Xi(WNg.rg.S, NasraVoci1(12)) —IN[X1(W.Ng rg.S, Na.Fa Voci1(i2)) +0.72 |
W,N N V = =
FIl(IZ)( Ng, g, S, Na, I, ocll(IZ)) Xi(W.Ng.rg,S, Na,FaVoci1(12) ) +6.88486 (3.1423)

Fiig2) (Voc = VOC|1(|2)), for a presentation simplicity, and further, the fill factor F| can be computed

by:

Voo )1.782196

Fi(W, N, Fa, S, N Fa, Vo) = Fia (Vooin) + Fiz(Voei2) , (29)

Voci1
which is valid for any values of (W, Ng, rg,S, Na, a, Voe = Voern).

Then, also from Eq. (26), we can define for the p™ — n junction:

VOC

X||(W1 Naa ra: Sa Ndl rdl VOC) = n||(W,Na,ra,S, NdxrdeOC)XVT s

where N (W,Ng, ra S, Ny, rg, Voo) 1S
determined in Eq. (28). Therefore, we can determine the values of the fill factors Fyj1(12) at Voo =
Vocl|1(||2) as:

Xi1(W.Na,ra,S, Ng.ra Voen(ii2)) —In[Xir(W.Na,ra.S, Na.ra Vociiqiizy ) +0.72 |
W,N N V =
F||1(||2)( yNa, ra, S, Ng, g, oc||1(||2)) X (WiNaTaS, NaraVoar(izy)+5.0173 (L3695)

Fii2) (Voclll(IIZ))a for a presentation simplicity, and further, the fill factor F,; is determined by:

1.6541
e ) (30)

Fii(W, Na, 13, S, Ng, g, Vo) = Frin(Voenn) + Fiiz(Vociz2) % ( -1

Voclil

being valid for any values of (W, Ny, ra, S, Ng, g, Voc = Voenn)-

Then, with physical conditions given in Eq. (23), our numerical calculation shows that we obtain

the same values of ‘]SCIl(IZ) and F|1(|2) at VOC|1(|2) =7299 (909) mV, and ‘]SCIIl(IIZ) and F||1(||2) at
Voeniqizy = 785 (960) mV, as those given in Eq. (24).

Finally, the efficiency Ny can be defined in the n*(p™) — p(n) junction solar cells, by:

Jsci i1y *Voc*<F
Miany (W, Naay, Facay: S Nady: Facay: Vo) = Ma (31)

where, Jsi1y and Fy(jy are determined respectively in Equations (26, 29, 30), being assumed to be
obtained at 1 sun illumination or at AM1.5G spectrum (P;, = 0.100 %) [1,2,26-29]. Then, from

Equations (31, 24), we get the numerical results of , by using this assumption: Pj, = 0.100 %,

and their relative errors in absolute values (RE), calculated by using the experimental results of

Mizg2) and Nyqizy given in Eq. (24),
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-for the N — p junction at Vog12) = 729.9 (909) MV, ny12) = 14.981% (23.238%) , with
RE=13x10"3(7.8 x107°) , and

-for the p+ —Nn junction at VOCIIl(IIZ) =785 (960) mV, r]||1(||2) =19.201% (25516%), with RE
=6.2 x 1075(6.2 x 104).

4. Numerical results and concluding remarks

We will respectively consider the two following cases.

41. HD[Sh— | —LD[Ga(Mg,In)— ] —cases

Here, for those 3 (N —p) — junctions: [(Sn — Ga), (Sn — Mg), (Sn —In)], respectively, we

propose the following physical conditions as:
W =15pm, Ny =10¥cm=3,S =100 (cm/s), and N, = 101" cm™3, (32)

Then, fromEg. (20), one respectively obtains: Tt — (0.32,0.33,0.33), according to the lightly

The

transparent condition, and from Eq. (18), Jgno = (0, 0, 0) (cmiz) Further, one respectively gets from

Eq. (C1) of the Appendix C: Jgpo = (3.11,2.66,2.63) x 10719 (Cmiz) Then, from Eq. (22), one

obtains respectively: Jo = (3.11, 2.66, 2.63) x 107%° (iz) = Jgpo, and from the following Table

cm

2, for example, at Vo, =821 mV, n;= (0.803; 0.801; 0.800) and n,= (29.48; 29.57; 29.58) %,
suggesting that, with increasing r,, or with decreasing €,, due to the acceptor-size effect, both J,

and n, decrease, while ), increases, being new obtained results.

Table 2. In the HD[ Sn-InP] ER-LD[Ga (Mg, In)-InP ] BR and for physical conditions given in Eq. (32), our numerical
results of Ny, Js¢1, Fy, and Ny, are computed by using Equations (27, 26, 29, 31), respectively. Here, on notes that, for a
given Vo and with increasing rq(a), the function Ny decreases, while other functions Js¢y, Fy, and N increase, being due

to the impurity size I'q¢a)-effect, suggesting thus our new obtained results.

Voc(mMV) n Il Gr) Fi(%) (%)

960 0.954; 0.954; 0.954 21.21;21.21; 21.21 87.7;,87.7;,87.7 17.87; 17.87; 17.87
909 0.899; 0.895; 0.895 30.46; 30.47; 30.47 83.8;83.9;83.9 23.21;23.24;23.24
900 0.888; 0.885; 0.885 32.24; 32.26; 32.26 83.2;83.3;83.3 24.14; 24.18; 24.18
825 0.807; 0.804; 0.804 45.08; 45.18; 45.18 79.2;79.2;79.3 29.45; 29.54; 29.54
821 0.803; 0.801; 0.800 45.45; 45.54; 45.55 79.0; 79.0; 79.1 29.48; 29.57; 29.58
817 0.799; 0.796; 0.796 45.75; 45.84; 45.85 78.9; 78.9; 78.9 29.47; 29.56; 29.57
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815 0.797; 0.794; 0.794 45.88;45.97; 45.98 78.8; 78.8; 78.9 29.46; 29.55; 29.55
800  0.782;0.779;0.779 46.25; 46.35; 46.36 78.2;78.3;78.3 28.95;29.04; 29.05
785 0.768; 0.765; 0.765 45.40; 45.50; 45.51 77.8;77.9; 77.9 27.73;27.81;27.82
729.9  0.724;0.721;0.721 26.63; 26.64; 26.64 76.9; 77.0; 77.0 14.96; 14.98; 14.98
42. HD[In—=1InP]  —LD[P (As,Sb, Sn) — ] —cases

Here, for those 4 (p™ —n) — junctions: [(In — P), (In — As), (In — Sb), (In — Sn)], respectively,

we propose the following physical conditions as:

W =15pm, N, =10 cm™3S =100 (cm/s), and Ng = 1016 cm3, (33)

. T
obtains: teff. —

The

Then, from Eq. (20) , one respectively

(0,0,0,0), suggesting the completely transparent

condition, and from Eq. (18), Jgpo = (0, 0, 0, 0) (iz) Further, one respectively gets from Eq. (C1)

cm

of the Appendix C: Jgpo = (4.96,4.83,3.85 3.59) x 10719 (iz) Then, from Eq. (22), one

cm

obtains respectively:

Jon = (4.96, 4.83,3.85,3.59) x 107%° (cmiz) = Jgno, and from the following Table 3, for example,

at Voo =868 mV, n; = (0.861; 0.860; 0.855; 0.853) and n;; = (31.16; 31.17; 31.24; 31.26) %,
meaning that, with increasing ry, or with decreasing €4, due to the donor-size effect, both J,;, and n,
decrease, according to the increase in 1, being also new obtained results.

Table 3. In the HD[ In-InP ] ER-LD[ P(As, Sb, Sn)-InP ] BR and for physical conditions given in Eq. (33), our

numerical results of Ny, Js¢i1, Fiy, and Ny, are computed by using Equations (28, 26, 30, 31), respectively. Here, on

notes that, for a given V¢ and with increasing I'y(q), the function Ny decreases, while other functions Jsen» Fir, and Ny

increase, being due to the impurity size Iy(q)-effect, suggesting thus our new obtained results.

Voc(mV) ny Jsenn 55) Fi(%) N (%)

960 0.960; 0.959; 0.954; 0.952 30.39; 30.39; 30.40; 30.40 87.4,87.4;87.5;,87.5 25.64;25.64;25.65;25.65
940 0.937;0.937; 0.932; 0.930 33.71; 33.71, 33.73; 33.74 86.1; 86.1; 86.1; 86.2 27.42;27.42;27.44;27.45
875 0.868; 0.867; 0.862; 0.860 42.84; 42.85;42.94;42.97 82.5;82.5;82.6;82.7 31.12;31.13;31.20; 31.22
868 0.861; 0.860; 0.855; 0.853 43.40; 43.41; 43.50; 43.53 82.2;82.2;82.3;82.4 31.16;31.17; 31.24; 31.26
860 0.852; 0.851; 0.847; 0.845 43.86; 43.87;43.97; 44.00 81.9;81.9;82.0;82.0 31.08;31.09;31.16;31.18
820 0.814; 0.813; 0.808; 0.807 42.07;42.08; 42.16; 42.19 80.6; 80.6; 80.7; 80.7 27.98;27.99; 28.05; 28.07
810 0.805; 0.804; 0.799; 0.798 40.15; 40.16; 40.23; 40.25 80.4; 80.4; 80.5;80.5 26.31;26.32;26.36; 26.38
800 0.796; 0.795; 0.791; 0.789 37.39; 37.40; 37.45; 37.46 80.2; 80.2; 80.3; 80.4 24.15;24.16; 24.19; 24.20
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785 0.785; 0.784; 0.780; 0.779 30.50; 30.50; 30.50; 30.50 80.1; 80.1; 80.2; 80.2  19.29; 19.29; 19.30; 19.30

Acknowledgments: We thank Drs M. Cayrol and J. Sulian for their technical helps.

Appendix
Appendix A. Fermi Energy

In the n(p)-type InP crystal, the Fermi energy Egn( — Epp), obtained for any T and donor density N,
being investigated in our previous paper, with a precision of the order of 2.11 x 1074 [39, 40], is

now summarized in the following.

First of all, we define the reduced electron density by:

3 3
Nd(a) _ mexkgT \2 -3 — myxkgT \2 -3
o No(T) = 2% 1x (") (em™2), Ny(T) = 2% 1x (2477 (em™2), (A1)

2

u=s

Here, Ny is the conduction (valence)-band density of states, respectively, m; is the effective mass

of the electron in n-type InP can be defined by [8]:

m, = 0.015 x m,, (A2)
where m, = 9.1096 x 10728 g is the electron rest mass, the averaged effective mass of the hole in
the p-type InP yields [8]:

0.021+0.39

(my/m,) = = 0.2055, (A3)

and finally, Egin(p) (T, rd(a)) is the intrinsic band gap in the InP -crystal, due to the T-dependent

carrier-lattice interaction-effect, by [1, 2, 33, 34]:

_ 5.405x10™4xT2
Egingo) (T Fa@) = Eonio) (F@) =gz (A4)

Here, Egn(p)(Facay) is determined in Eq. (1b), due to the d(a)-size effect.

Furthermore, in the n(p)-type InP, one can define the intrinsic carrier concentration Njn(yy by:
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—_ _E in (T,r a )
Ny (T Ta) = No(T) X Ny(T) x exp (—2220), (A3)

Then, denoting the reduced Fermi energy in the n(p)-type semiconductor, respectively, by

Ern( ) EFP( )
Ea) ()

being accurate to within 1077 | we have [39] :

Ern() , —Erp() G(w)+AuBF(u)
keT ( kT )= To AL . A =0.0005372 and B = 4.82842262 (A6)
where

2
2 _4 _8\3 1,52 62.3739855 , \4
F(u) = aus (1+bu 3+ Cu 3) ca=[@V /) x PP, b=2() and c=——(3)

and

3
Gu) Lnu)+22xuxedu d=2%2 > 0.

[ﬁ 16

EFn(u 1)( EFP(U )

Here, one notes that: (i) ) > 1, according to the HD[d(a)-InP]ER-case, or to the

Een(u_1) ( Frp(u 1

degenerate case, Eq. (A6) is reduced to the function F(u), and (ii) T T
B B

) <—1, to the
LDJ[a(d)- InP]BR-case, or to the non-degenerate case, Eq. (A6) is reduced to the function G(u),
respectively.

(i) In the HD[d(a)- InP]ER-case for Nggy = 1019(10%°) cm™3, we respectively get: %(%) =
43.66 (14.87) > 1, according to degenerate conditions.

(i) In the LD[a(d)- InP]BR-case and for N, = 1017(10%*) cm™2 , we respectively obtain:

“Erp , Efn
o)

values of Ny¢gy = 1017(10%®) cm™2 can be used in the LD[a(d)-InP] BR-cases, respectively.

=—3.14 (— 1.45) <— 1, according to non-degenerate conditions. Thus, those limiting

Appendix B. Approximate forms for band gap narrowing and apparent band gap narrowing

First of all, in the n(p)-type InP, we define the effective Wigner-Seitz radius rg characteristic of

the interactions by [1, 2]

N
Fan = Ts(Ngy Ta) = 11723 % 108 x () x 2 (B1)
and
1/3
Fep = To(No 1) = 11723 x 10° x () x 2, (B2)
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where m,and m, are given in (A2) and (A3). Therefore, the correlation energy of an effective

electron gas, Ecn(cp)(Nd(a), rd(a)), is given by [1, 2, 42]:

087553 _ (2[1-In(2)] B
Eenceny Ny Fa@)) = e | Tty L2 )N Gonop) 0093288 (B3)
en(ep) \Nd@)r 1d@)J ™ 0,0908+rgn(sp) 1+0.03847728xrL2378870 '

Then, in the n-type heavily doped InP, the band gap narrowing is found to be given as [1, 2]:

1 5/4
&(r, /3 &(r, v
DEg(NaTa) 81 % S8 N;' + 2 x £ x N2 x (2508 [ = Eq(rn) X Fenl) + a3 % [(5] > [itx
3 1
1/4 &(rp) . 172 Pl Ne N = (—Na
N +ay > e(rq) XN x 2+ a5 x [s(rd)] > Np, Ny = (9.999><1017 cm_3)’ (B4)

where a; =38x1073(eV) , a,=65x10"%(eV) , a3=28x10"3(eV) , a, =5597 x
1073(eV) and a5 = 8.1 x 107*(eV), and in the p-type heavily doped InP, one has [1, 2]:

1

AEg(Ng, ) ay > 0 Ni7° + 2, > 20 < NE x (2503 x [ — Eq(rgp)  Fp]) + a

5/4 1
£(rjn) 1/4 &(n) 1/2 e(rn)]2 z 6 — N,
[g(r:) ) \/”T MNP+ 280X [y <N T8 [s(ra) *Np, Ne = (9.999><1017 cm—3)’ (BS)

where a; =3.15x1073(eV) , a, =541 x107%(eV) , a3 =232x1073(eV), a, =4.12 x
1073(eV) and as = 9.80 x 10~°(eV).

Further, in the donor (acceptor)- InP, we define the effective intrinsic carrier concentration Nign(py,

by

NZence) (Naca): Ta@) = Naga) % Po(No) = Ny % exp[ gan(m] (B6)
where we can define the “effective doping density” by: Ngeyesr = Nd(a)/exp[ gan(p)] so that
Naayefr. X Po(No) = nizn(p) [8], and also the apparent band gap narrowing, AEg, n(p), as
BEqan() = BEgngp + kaT x In (%42) = Ecn(M)[ ~ Erp ()], B7)

where Ny is defined in Eq. (A1), the Fermi energy is determined in Eq. (A6).

Appendix C. Minority-carrier transport parameters

Here, the minority-electron (hole) saturation current density injected into the LD[a(d)- InP]BR,
with an acceptor density equal to Ny(q), is given by [1, 2]:
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De(my(Nacdy Fardy)

5 e(h) (Na(d) "a(d)

exnf (ra(d)) " Te()BMNad))
(1)

JBp(n)o(Na(d)l ra(d) ) - Na(d) ’

where nizn(p)(rd(a)) is determined in (A5), Dechy(Nacy, Fac)) is the minority-electron (hole)
diffusion coefficient [8]:

kgT 4500—200 D)2 1
De(Na, Fa) = <E0 [200+ - ] x (52)" (em?vis™), (C2)
* 1.3><1017cm‘3)
ke T 100—80 2 1
Dh(Ng, Fg) = 2% x [80+ > ] x (52)" (cm?vis™), (C3)
1+ 8><10I cm_g)

and Te(n)s (Ny(a)) is the minority-electron (hole) lifetime in the base region:

reB(N)l—F+3><1O 13 x N, + 1.83 x 1073 x N2, (C4)

Tis(Ng) ™t =—=+11.76 x 1072 x Ny + 2.78 x 10731 x N3, (C5)

Further, from (A6), (B4)-(B7)), in the HD[d(a)- InP]ER, we can define the following minority-
hole(electron) transport parameter Fpee) as [8, 22, 25]:

Frer (Naca), Facay) = nizn(p)(rd(a)) Nd(a)eff Nd(a)
) (@) "d(a) po(no)th(e) Dh(e) Dh(e)xexp AEQ an(p)

(cm™ x s), (C6)

Furthermore, the minority-hole (electron) diffusion length, Lh(e)(Nd(a), rd(a)) and the minority-
hole(electron) lifetime Tpe)e in the HD[d(a)- InP]ER can be determined by

2 2 2
-2 _ -1 _ 2 _ Nocayefr. ) _ N nepy (Fd(ay)
i (N o) = [T Bra] = (€ x Fo ) = (C ™ e ) a (C 8 po(nZ)th(E)) - (€7)

where the constant C is chosen to be 2.0893 x 10730 (cm?/s), and then, Th(e)e can be computed by:

1
T = Cg
heE Dine) *(CxFngp) )° (©8)
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