

SCIREA Journal of Physics ISSN: 2706-8862 http://www.scirea.org/journal/Physics October 23, 2022 Volume 7, Issue 5, October 2022 https://doi.org/10.54647/physics14498

# New dielectric constant, due to the impurity size effect, and determined by an effective Bohr model, affecting strongly the Mott criterion in the metal-insulator transition and the optical band gap in degenerate (Si, GaAs, InP)-semiconductors

### H. Van Cong

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

van-cong.huynh@univ-perp.fr; huynhvc@outlook.fr

# Abstract

In the n(p)-type degenerate semiconductors, our expression for the relative static dielectric constant,  $\epsilon(r_{d(a)})$ , is determined by an effective Bohr model,  $r_{d(a)}$  being the donor (acceptor) d(a)-radius, suggesting that, for an increasing  $r_{d(a)}$ , both  $\epsilon(r_{d(a)})$  and the effective Bohr radius  $a_B(r_{d(a)})$ , due to such the impurity size effect, decrease ( $\checkmark$ ), according to the increase ( $\nearrow$ ) in:

(i)the effective d(a)-ionization energy  $E_{d(a)}(r_{d(a)})$  in absolutes values,

(ii) the effective band gap  $E_{gn(gp)}(r_{d(a)})$ , and also

(iii) the critical density  $N_{CDn(CDp)}(r_{d(a)}, 0.25 \le y \le 1)$  in the MIT,

as those showed in Tables 2-4, for the n(p)-type (Si, GaAs, InP)-semiconductors, in which the empirical parameter y has been chosen as: y=0.25 and 0.271. One notes here that y=0.25 was given

in the Mott criterion:  $a_B \times N_{CD}^{1/3} \approx y = 0.25$ . Further, if denoting the d(a)-density by N, the physical condition given for such degenerate semiconductors (or for the metallic phase) is found to be given by:  $N \ge N_{CDn(CDp)}$ . Then, in such the important physical condition, our numerical results of optical band gap (OBG), due to the effects of impurity size and heavy doping, are also investigated and given in Tables 6-8.

In summary, our new expression for  $\epsilon(r_{d(a)})$ , due to such an impurity size effect, strongly affects  $a_B(r_{d(a)})$ ,  $N_{CDn(CDp)}(r_{d(a)}, y)$ , and the OBG, obtained in the n(p)-type (Si, GaAs, InP)- degenerate semiconductors.

**Keywords:** effects of impurity size and heavy doping; degenerate semiconductors; static dielectric constant; critical density in metal-insulator transition; optical band gap

#### 1. Introduction

In the present paper, using an effective Bohr model given in the n(p)-type semiconductors, we determine the relative static dielectric constant  $\epsilon(r_{d(a)})$ , expressed as a function of the donor (acceptor) d(a)-radius, according thus to the impurity effect. As showed in Tables (2-4, 6-8), this function  $\epsilon(r_{d(a)})$  strongly affects the numerical results, obtained for: (i) the effective Bohr radius  $a_B(r_{d(a)})$ , (ii) the effective d(a)-ionization energy  $E_{d(a)}(r_{d(a)})$  in absolutes values, (iii) the effective band gap  $E_{gn(gp)}(r_{d(a)})$ , (iv) the critical density  $N_{CDn(CDp)}(r_{d(a)}, y = 0.25(0.271))$  in the metal-insulator transition (MIT), and finally (v) the optical band gap (OBG),  $E_{gn1(gp1)}(r_{d(a)}, N, y = 0.25(0.271))$ , N being the d(a)-density [1-9]. It should be noted that:

(i) the value: y=0.25 was given in the Mott criterion [1] as:  $a_B \times N_{CD}^{1/3} \approx y = 0.25$ ,

(ii) Pergament [2] used this Mott criterion to obtain, with  $a_B = 1.77$  nm, the value of  $N_{CD} = 2.8 \times 10^{18}$  cm<sup>-3</sup> for vanadium dioxides VO<sub>2</sub>, and

(iii) Edwards and others [3] proposed  $y \ge 0.38$ , explaining the transition to the metallic state for Cs, Rb and H-elements.

In Section 2, the numerical results of energy-band-structure parameters, characteristic of the n(p)type intrinsic (Si, GaAs, InP)-crystals [4, 8] will be presented in Table 1. Then, our expression for  $\epsilon(r_{d(a)})$  will be determined in Section 3. Therefore, in Section 4, our expressions for  $N_{CDn(CDp)}(r_{d(a)}, y)$  and the OBG will be investigated. Then, in Section 5, our numerical results, obtained for  $N_{CDn(CDp)}(r_{d(a)}, y = 0.25(0.271))$  and  $E_{gn1(gp1)}(r_{d(a)}, N, y = 0.25(0.271))$  will be presented, as those given in Tables (2-4, 6-8). Finally, some important concluding remarks will be given in Section 6.

# 2. Energy-band-structure parameters given in the n(p)-type (Si, GaAs, InP)semiconductors

First of all, we present the values of the parameters, characteristic of the n(p)-type (Si, GaAs, InP)semiconductors such as [4, 8]: the effective average numbers of equivalent conduction (valence)band edge,  $g_{c(v)}$ , the relative static dielectric constant,  $\varepsilon_o(r_{do(ao)}) \equiv \varepsilon_o$ , the relative effective electron (hole) mass in conduction (valence) bands,  $(m_{c(v)}/m_o)$ ,  $m_o$  being the free electron mass, and the intrinsic band gap,  $E_{go}(r_{do(ao)})$ . Further, in those semiconductors, the Bohr radius respectively yields:

$$a_{\text{Bno}(\text{Bpo})} \equiv \frac{\varepsilon_0 \times \hbar^2}{(m_{\text{c}(\text{v})}/m_0) \times e^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\varepsilon_0}{(m_{\text{c}(\text{v})}/m_0)},\tag{1}$$

the do(ao)-ionization energy is given by:

$$E_{do(ao)} \equiv \frac{e^4 \times m_{c(v)}}{2\varepsilon_0^2 \times \hbar^2} = \frac{13600 \times (m_{c(v)}/m_0)}{\varepsilon_0^2} \text{ meV},$$
(2)

and for a do(ao)-volume  $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$ , the isothermal bulk modulus is determined respectively for n(p)-type Si, GaAs, InP)-crystals, as:

$$B_{n(p)} \equiv \frac{E_{do(ao)}}{V_{do(ao)}} \,. \tag{3}$$

Furthermore, in the n(p)-type (Si, GaAs, and InP)-doped semiconductors, the critical density (CD) in the metal-insulator transition (MIT) was proposed by Mott [1], as:

$$N_{CDno(CDpo)}(r_{do(ao)}, y = 0.25) \equiv \left(\frac{y}{a_{Bno(Bpo)}}\right)^3 = 6.7168 \times 10^{24} \text{ cm}^{-3} \times \left(\frac{y \times (m_{c(v)}/m_o)}{\epsilon_o}\right)^3,$$
 (4)

noting that the physical condition, used to define the MIT, can be found to be given by:

 $(\text{Insulator}) N \le N_{\text{CDno}(\text{CDpo})}(r_{do(ao)}, y) \le N$  (Metal or degenerate semiconductors), for  $0.25 \le y < 1$ . (5) Then, the values of those parameters, characteristic of the n(p)-type (Si, GaAs, InP)-semiconductors are given in the following Table 1, from which we can choose the value of y so that there is an agreement between our numerical results and the experimental ones. For example, in the n(p)-Si crystal, the best choice is y=0.271, according to such an agreement.

**Table 1.** The parameters, characteristic of the n(p)-type (Si, GaAs, InP)- semiconductors [4], and others are obtained, using Equations (1-4), for y = 0.25 and 0.271, suggesting that in the n(p)-type Si, the obtained values of  $N_{CDno(CDpo)}(r_{do(ao)}, y = 0.271) \approx 3 (4.44) \times 10^{18} \text{ cm}^{-3}$ , in good accordance with those given in literature. Here, its values for  $0.25 \le y \le 1$  are also given, for a coparison.

| Semiconductors                                                                                                      | Si                                 | GaAs                                                      | InP                                                    |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
| g <sub>c(v)</sub> [4]                                                                                               | 6 (2)                              | 1 (1)                                                     | 1 (1)                                                  |
| $r_{do(ao)}$ in nm [4]                                                                                              | $r_{do(ao)} \equiv r_{Si} = 0.117$ | $r_{do(ao)} \equiv r_{As(Ga)} = 0.118 \ (0.126)$          | $r_{do(ao)} \equiv r_{P(In)} = 0.110 \ (0.144)$        |
| ε <sub>0</sub> [4]                                                                                                  | 11.4±0.3                           | 13.13±0.3                                                 | 12.37±0.3                                              |
| m <sub>c(v)</sub> /m <sub>o</sub>                                                                                   | 0.3216 (0.3664) [8]                | $0.066 \left( \frac{0.082 + 0.5}{2} = 0.291 \right)  [4]$ | $0.073 \left(\frac{0.078+0.4}{2} = 0.239\right) \ [4]$ |
| E <sub>g0</sub> in eV [4]                                                                                           | 1.17                               | 1.52                                                      | 1.42                                                   |
| a <sub>Bno(Bpo)</sub> in nm                                                                                         | 1.88 (1.65)                        | 10.54 (2.39)                                              | 8.98 (2.74)                                            |
| E <sub>do(ao)</sub> in meV                                                                                          | 33.7 (38.3)                        | 5.2 (23)                                                  | 6.49 (21.24)                                           |
| $B_{n(p)}$ in 10 <sup>8</sup> (N/m <sup>2</sup> )                                                                   | 8.04 (9.16)                        | 1.212 (4.389)                                             | 1.86 (2.72)                                            |
| $N_{CDno(CDpo)}(r_{do(ao)}, y = 0.25)$<br>in $10^{16}$ cm <sup>-3</sup>                                             | 235.63 (348.5)                     | 1.33 (114.3)                                              | 2.16 (7.57)                                            |
| $\begin{split} N_{CDno(CDpo)}(r_{do(ao)}, y = 0.271 \\ & \text{in } 10^{16} \text{ cm}^{-3} \end{split}$            | .) 300.15 (443.8)                  | 1.70 (145.5)                                              | 2.75 (96.4)                                            |
| $N_{CDno(CDpo)}(r_{do(ao)}, y = 0.38)$<br>in $10^{18}$ cm <sup>-3</sup>                                             | 8.27 (12.24)                       | 0.047 (4.01)                                              | 0.076 (2.66)                                           |
| $N_{CDno(CDpo)}(r_{do(ao)}, y = 0.50)$<br>in $10^{18}$ cm <sup>-3</sup>                                             | 18.85 (27.88)                      | 0.011 (9.14)                                              | 0.17 (6.06)                                            |
| $\begin{split} N_{\text{CDno(CDpo)}}(r_{\text{do(ao)}}, y = 1) \\ & \text{in } 10^{18} \text{ cm}^{-3} \end{split}$ | 150.8 (223.01)                     | 0.85 (73.12)                                              | 1.38 (48.45)                                           |

Those numerical values given in this Table 1 will be used to determine various physical quantities, investigated in the following.

# 3. Our expression for $\varepsilon(\mathbf{r}_{d(a)})$ , due to the impurity size effect

In the [d(a)-semiconductors]-systems at T=0 K, since  $r_{d(a)}$ , given in tetrahedral covalent bonds, is usually either larger or smaller than  $r_{do(ao)}$ , a local mechanical strain (or deformation potential energy) is induced, according to a compression (dilation) for  $r_{d(a)} > r_{do(ao)}$  ( $r_{d(a)} < r_{do(ao)}$ ), respectively, due to the d(a)-size effect [5]. Then, we have shown [5] that this  $r_{d(a)}$ -effect affects the changes in all the energy-band-structure parameters, expressed in terms of the relative static dielectric constant  $\epsilon(r_{d(a)})$ .

Now, at  $r_{d(a)} = r_{do(ao)}$ , the boundary conditions are found to be, for the impurity-atom volume V,  $V_{do(ao)} = (4\pi/3) \times (r_{do(ro)})^3$ , the pressure p,  $p_o = 0$ , and the deformation potential energy or the strain energy  $\sigma$ ,  $\sigma_o = 0$ , according the absence of the impurity size effect.

Further, the two important equations [5], needed to determine the  $\sigma$ -variation  $\Delta \sigma \equiv \sigma - \sigma_0 = \sigma$ , are defined by:

$$\frac{dp}{dV} \equiv -\frac{B_{n(p)}}{V} \text{ and } p \equiv -\frac{d\sigma}{dV}, \text{ giving: } \frac{d}{dV} \left( \frac{d\sigma}{dV} \right) = \frac{B_{n(p)}}{V}, \tag{6}$$

where the isothermal bulk modulus  $B_{n(p)}$  is determined in Eq. (3).

Then, in the n(p)-type doped semiconductors, by an integration, from Equations (2, 3, 6), one gets in the Bohr model:

$$(\Delta\sigma)_{n(p)} = B_{n(p)} \times (V - V_{do(ao)}) \times \ln\left(\frac{V}{V_{do(ao)}}\right) = E_{do(ao)} \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0.$$
(7)

Furthermore, at T=0K, we also shown [5] that, as  $r_{d(a)} > r_{do(ao)}(r_{d(a)} < r_{do(ao)})$ , the compression (dilatation) corresponding the repulsive (attractive) force increases (decreases) the energy gap  $E_{gn(gp)}(r_{d(a)})$  and the effective donor(acceptor)-ionization energy  $E_{d(a)}(r_{d(a)})$  in absolute values, obtained in such an effective Bohr model, being represented by:  $\pm (\Delta \sigma)_{n(p)}$ , respectively. That gives:

$$E_{gn(gp)} - E_{go} = E_{d(a)} - E_{do(ao)} = E_{do(ao)} \times \left[ \left( \frac{\varepsilon_o}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = + (\Delta \sigma)_{n(p)}, \text{ for } r_{d(a)} \ge r_{do(ao)}, \text{ and}$$

$$E_{gn(gp)} - E_{go} = E_{d(a)} - E_{do(ao)} = E_{do(ao)} \times \left[ \left( \frac{\varepsilon_o}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = - (\Delta \sigma)_{n(p)}, \text{ for } r_{d(a)} \le r_{do(ao)}. \tag{8}$$

Then, from Equations (7, 8), we obtain:

$$\epsilon(\mathbf{r}_{d(a)}) = \frac{\epsilon_{o}}{\sqrt{1 + \left[\left(\frac{\mathbf{r}_{d(a)}}{\mathbf{r}_{do(ao)}}\right)^{3} - 1\right] \times \ln\left(\frac{\mathbf{r}_{d(a)}}{\mathbf{r}_{do(ao)}}\right)^{3}}} \le \epsilon_{o}, \text{ for } \mathbf{r}_{d(a)} \ge \mathbf{r}_{do(ao)}, \text{ and}$$

$$\epsilon(\mathbf{r}_{d(a)}) = \frac{\epsilon_{o}}{\sqrt{1 - \left[\left(\frac{\mathbf{r}_{d(a)}}{\mathbf{r}_{do(ao)}}\right)^{3} - 1\right] \times \ln\left(\frac{\mathbf{r}_{d(a)}}{\mathbf{r}_{do(ao)}}\right)^{3}}} \ge \epsilon_{o}, \text{ for } \mathbf{r}_{d(a)} \le \mathbf{r}_{do(ao)}, \tag{9}$$

being an essential result of the present paper.

As a result, using Eq. (9), the expressions given in Equations (1, 2, 8) become effective as:

 $a_{Bn(Bp)}(r_{d(a)}) = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)})}{(m_{c(v)}/m_{o})},$ (10)

$$E_{d(a)}(r_{d(a)}) = E_{do(ao)} \times \left(\frac{\varepsilon_{o}}{\varepsilon(r_{d(a)})}\right)^{2} = \frac{13600 \times (m_{c(v)}/m_{o})}{\varepsilon_{o}^{2}} \text{ meV} \times \left(\frac{\varepsilon_{o}}{\varepsilon(r_{d(a)})}\right)^{2}, \text{ and}$$
(11)

$$E_{gn(gp)}(r_{d(a)}) = E_{go} + E_{do(ao)} \times \left(\frac{\varepsilon_o}{\varepsilon(r_{d(a)})}\right)^2 = E_{go} + \frac{13600 \times (m_{c(v)}/m_o)}{\varepsilon_o^2} \text{ meV} \times \left(\frac{\varepsilon_o}{\varepsilon(r_{d(a)})}\right)^2.$$
(12)

Here, in the n(p)-type (Si, GaAs, InP)-semiconductors, the important values of  $(m_{c(v)}/m_o)$ ,  $\varepsilon_o$  and  $E_{go}$  are given in Table 1 [4, 8].

### 4. Our expressions for the critical density in the MIT and optical band gap

Here, replacing  $\varepsilon_0$  by  $\varepsilon(r_{d(a)})$ , obtained in Eq. (9), into Eq. (4), our expression for the critical density in the MIT is now determined by:

$$N_{\text{CDn}(\text{NDp})}(r_{d(a)}, y) \equiv \left(\frac{y}{a_{\text{Bn}(\text{Bp})}(r_{d(a)})}\right)^3 = 6.7168 \times 10^{24} \text{ cm}^{-3} \times \left(\frac{y \times (m_{c(v)}/m_o)}{\epsilon(r_{d(a)})}\right)^3, \text{ for } 0.25 \le y < 1.$$
(13)

Then, in the n(p)-type (Si, GaAs, InP)- semiconductors, all the numerical results for energy-bandstructure parameters and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$ , expressed as functions of  $r_{d(a)}$ -radius, are calculated, using Equations (9, 10, 11, 12, 13), and given respectively in following Tables 2, 3 and 4.

**Table 2.** In the n(p)-type Si, in which  $(m_{c(v)}/m_o) = 0.3216 (0.3664) [4]$ , all the numerical results for the energyband-structure parameters and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$ , expressed as functions of  $r_{d(a)}$ -radius, are respectively obtained, using Equations (9, 10, 11, 12, 13), suggesting that, with an increasing  $r_{d(a)}$ , both  $\epsilon(r_{d(a)})$  and  $a_{Bn(Bp)}(r_{d(a)})$ decrease, while  $E_{d(a)}(r_{d(a)})$ ,  $E_{gn(gp)}(r_{d(a)})$  and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$  increase.

| Donor                                                                   | Р              | r <sub>do</sub> | As            | Te         | Sb                  | Sn                  |
|-------------------------------------------------------------------------|----------------|-----------------|---------------|------------|---------------------|---------------------|
| r <sub>d</sub> (nm) [4] ∧                                               | 0.110          | 0.117           | 0.118         | 0.132      | 0.136               | 0.140               |
| ε(r <sub>d</sub> ) γ                                                    | 11.58          | 11.4            | 11.396        | 10.59      | 10.16               | 9.69                |
| $a_{Bn}(r_d)$ in nm $\searrow$                                          | 1.91           | 1.88            | 1.878         | 1.75       | 1.67                | 1.59                |
| $E_d(r_d)$ in meV $\nearrow$                                            | 32.6           | 33.7            | 33.71         | 39         | 42.3                | 46.6                |
| $E_{gn}(r_d)$ in meV $\checkmark$                                       | 1168.9         | 1170            | 1170.02       | 1175.31    | 1178.67             | 1182.9              |
| $N_{CDn}[r_d, y = 0.25(0.271)]$<br>in 10 <sup>18</sup> cm <sup>-3</sup> | ] / 2.25(2.86) | 2.36(3.0)       | 2.3601(3.004) | 2.94(3.74) | 3.32( <b>4.23</b> ) | 3.84( <b>4.89</b> ) |
| Acceptor                                                                | В              | r <sub>ao</sub> | Ga            | Al         | Mg                  | In                  |
| r <sub>a</sub> (nm) [4] ∧                                               | 0.088          | 0.117           | 0.126         | 0.126      | 0.140               | 0.144               |
| ε(r <sub>a</sub> ) ν                                                    | 15.98          | 11.4            | 11.1          | 11.1       | 9.69                | 9.19                |

| $a_{Bp}(r_a)$ in nm $\searrow$                                | 2.31              | 1.65                | 1.60                | 1.60                | 1.40       | 1.33       |
|---------------------------------------------------------------|-------------------|---------------------|---------------------|---------------------|------------|------------|
| E <sub>a</sub> (r <sub>a</sub> ) in meV ∧                     | 19.5              | 38.3                | 40.5                | 40.5                | 53.1       | 59         |
| $E_{gp}(r_a)$ in meV $\nearrow$                               | 1151.2            | 1170                | 1172.1              | 1172.1              | 1184.7     | 1190.6     |
| $N_{CDp}[r_a, y = 0.25(0.271)]$ in $10^{18}$ cm <sup>-3</sup> | <b>1.27(1.61)</b> | 3.48( <b>4.44</b> ) | 3.78( <b>4.81</b> ) | 3.78( <b>4.81</b> ) | 5.67(7.23) | 6.65(8.47) |

**Table 3.** In the n(p)-type GaAs, in which  $(m_{c(v)}/m_o) = 0.066 (0.291) [4]$ , all the numerical results for the energyband-structure parameters and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$ , expressed as functions of  $r_{d(a)}$ -radius, are obtained respectively, by using Equations (9, 10, 11, 12, 13), suggesting that, with an increasing  $r_{d(a)}$ , both  $\epsilon(0.271)$  and  $a_{Bn(Bp)}(r_{d(a)})$  decrease, while  $E_{d(a)}(r_{d(a)})$ ,  $E_{gn(gp)}(r_{d(a)})$  and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$  increase.

| Donor                                                                            | Р           | As           | Te           | Sb           | Sn           |
|----------------------------------------------------------------------------------|-------------|--------------|--------------|--------------|--------------|
| r <sub>d</sub> (nm) [4] ∧                                                        | 0.110       | 0.118        | 0.132        | 0.136        | 0.140        |
| $\epsilon(r_d)$ >                                                                | 13.4        | 13.13        | 12.33        | 11.86        | 11.33        |
| $a_{Bn}(r_d)$ in nm $\searrow$                                                   | 10.76       | 10.54        | 9.90         | 9.52         | 9.10         |
| E <sub>d</sub> (r <sub>d</sub> ) in meV ∧                                        | 5.0         | 5.2          | 5.91         | 6.38         | 7.00         |
| $E_{gn}(r_d)$ in meV $\nearrow$                                                  | 1519.8      | 1520         | 1520.7       | 1521.2       | 1521.8       |
| $N_{CDn}[r_d, y = 0.25(0.271)] \nearrow$<br>in 10 <sup>16</sup> cm <sup>-3</sup> | 1.25(1.60)  | 1.33(1.70)   | 1.61(2.05)   | 1.81(2.30)   | 2.08(2.64)   |
| Acceptor                                                                         | В           | Ga           | Al           | Mg           | In           |
| r <sub>a</sub> (nm) [4] ∧                                                        | 0.088       | 0.126        | 0.126        | 0.140        | 0.144        |
| ε(r <sub>a</sub> ) ν                                                             | 24.38       | 13.13        | 13.13        | 12.42        | 11.99        |
| $a_{Bp}(r_a)$ in nm $\searrow$                                                   | 4.44        | 2.39         | 2.39         | 2.26         | 2.18         |
| $E_a(r_a)$ in meV $\checkmark$                                                   | 6.66        | 23           | 23           | 25.7         | 27.5         |
| $E_{gp}(r_a)$ in meV $\nearrow$                                                  | 1503.7      | 1520         | 1520         | 1522.7       | 1524.5       |
| $N_{CDp}[r_a, y = 0.25(0.271)]$ // in 10 <sup>17</sup> cm <sup>-3</sup>          | 1.78(10.41) | 11.43(14.55) | 11.43(14.55) | 13.50(17.19) | 15.00(19.07) |

**Table 4.** In the n(p)-type InP, in which  $(m_{c(v)}/m_o) = 0.073 \ (0.239) \ [4]$ , all the numerical results for the energy-bandstructure parameters and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$ , expressed as functions of  $r_{d(a)}$ -radius, are obtained respectively, by using Equations (9, 10, 11, 12, 13), suggesting that, with an increasing (decreasing)  $r_{d(a)}$ , both  $\epsilon(r_{d(a)})$ and  $a_{Bn(Bp)}(r_{d(a)})$  decrease (increase), while  $E_{d(a)}(r_{d(a)})$ ,  $E_{gn(gp)}(r_{d(a)})$  and  $N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$  increase (decrease), respectively.

| Donor                          | $d_o \equiv P$ | As    | Te    | Sb    | Sn    |  |
|--------------------------------|----------------|-------|-------|-------|-------|--|
| r <sub>d</sub> (nm) [4] ∧      | 0.110          | 0.118 | 0.132 | 0.136 | 0.140 |  |
| ε(r <sub>d</sub> ) ν           | 12.37          | 12.07 | 10.46 | 9.88  | 9.30  |  |
| $a_{Bn}(r_d)$ in nm $\searrow$ | 8.98           | 8.77  | 7.59  | 7.17  | 6.75  |  |

| $E_d(r_d)$ in meV $\nearrow$                                             | 6.49            | 6.81       | 9.07       | 10.16 11.47        | 1   |
|--------------------------------------------------------------------------|-----------------|------------|------------|--------------------|-----|
| $E_{gn}(r_d)$ in meV $\nearrow$                                          | 1420            | 1420.3     | 1422.58    | 1423.67 1424.      | 98  |
| $N_{CDn}[r_d, y = 0.25(0.271)] \nearrow$<br>in $10^{16} \text{ cm}^{-3}$ | 2.16(2.75)      | 2.32(2.95) | 3.57(4.54) | 4.23(5.39) 5.07(6. | 46) |
| Acceptor                                                                 | $a_o \equiv In$ | Mg         | Al         | Ga                 |     |
| r <sub>a</sub> (nm) [4] ъ                                                | 0.144           | 0.140      | 0.126      | 0.126              |     |
| $\epsilon(r_a)$ $\nearrow$                                               | 12.37           | 12.41      | 13.28      | 13.28              |     |
| $a_{Bp}(r_a)$ in nm $\nearrow$                                           | 2.74            | 2.75       | 2.94       | 2.94               |     |
| $E_a(r_a)$ in meV $\searrow$                                             | 21.24           | 21.10      | 18.43      | 18.43              |     |
| $E_{gp}(r_a)$ in meV $\searrow$                                          | 1420            | 1419.8     | 1417.2     | 1417.2             |     |
| $N_{CDn}(r_a)$ in 10 <sup>17</sup> cm <sup>-3</sup> >                    | 7 57(0 64)      | 7 40(0 54) | 6 12(7 70) | 6 12(7 79)         |     |

In Table 2, it should be concluded that for the n-type Si semiconductor, our obtained numerical results,

 $N_{CDn}[r_P(r_{do}), y = 0.271] = 2.86 (3) \times 10^{18} \text{ cm}^{-3},$ 

are found to be in good agreement with the corresponding experimental ones, given in the literature [4]. Further, one note that they strongly depend on the used values of  $m_c/m_o$ ,  $\varepsilon_o$  and  $r_P(r_{do})$ , being taken in Refs. [4, 8], and also on the chosen value of the parameter y.

Finally, in the n(p)-type heavily doped (Si, GaAs, and InP)-crystals at very low temperature, the optical band gap can be determined by:

$$E_{gn1(gp1)}(N, r_{d(a)}) \equiv E_{gn(gp)}(r_{d(a)}) - \Delta E_{gn(gp)}(N, r_{d(a)}) + E_{Fn(Fp)}(N),$$
(14)

where  $E_{gn(gp)}(r_{d(a)})$  is determined in Eq. (12), the Fermi energy  $E_{Fn(Fp)}(N, T)$  [6], expressed as functions of d(a)-density N and temperature T, and the band gap narrowing  $\Delta E_{gn(gp)}(N, r_{d(a)})$  [7], are determined respectively in Equations (A2, B4, B5) of the appendix A and B.

Now, in the n-type heavily doped Si, the numerical results of  $E_{gn1}(N, r_d)$ , are calculated by using Eq. (14), for  $(m_c/m_o) = 0.3216$  [8]. Then, they can be compared with  $E_{gn1} - data$ , obtained by Wagner and Alamo [9], as observed in the following Table 5, giving rise to a reasonable maximal relative deviation, obtained in absolute value, |MRD|=3.19%.

**Table 5.** In n-type P-Si system, in which  $E_{gn}(r_P) = 1.1689 \text{ eV}$ , as that given in Table 2, and for  $(m_c/m_o) = 0.3216$ , the numerical results of  $E_{gn1}(N, r_P)$  are obtained, using Eq. (14) and also compared with  $E_{gn1} - \text{data}$  [9], giving the relative deviations in absolute values |RD|.

| N in $10^{18} \text{ cm}^{-3}$ | 4 | 8.5 | 15 | 50 | 80 | 150 |  |
|--------------------------------|---|-----|----|----|----|-----|--|
|--------------------------------|---|-----|----|----|----|-----|--|

| 8.65   | 14.3                                   | 20.9                                                                                                                | 46.6                                                                                                                                                                        | 63.7                                                                                                                                                                                                                                  | 96.9                                                                                                             |
|--------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 33.9   | 46.9                                   | 60                                                                                                                  | 102.6                                                                                                                                                                       | 126.9                                                                                                                                                                                                                                 | 169.1                                                                                                            |
| 1.1437 | 1.1364                                 | 1.1298                                                                                                              | 1.113                                                                                                                                                                       | 1.1058                                                                                                                                                                                                                                | 1.0968                                                                                                           |
| 1.138  | 1.133                                  | 1.129                                                                                                               | 1.131                                                                                                                                                                       | 1.132                                                                                                                                                                                                                                 | 1.133                                                                                                            |
| 0.5    | 0.3                                    | 0.07                                                                                                                | 1.59                                                                                                                                                                        | 2.31                                                                                                                                                                                                                                  | 3.19                                                                                                             |
|        | 8.65<br>33.9<br>1.1437<br>1.138<br>0.5 | 8.65       14.3         33.9       46.9         1.1437       1.1364         1.138       1.133         0.5       0.3 | 8.65       14.3       20.9         33.9       46.9       60         1.1437       1.1364       1.1298         1.138       1.133       1.129         0.5       0.3       0.07 | 8.65       14.3       20.9       46.6         33.9       46.9       60       102.6         1.1437       1.1364       1.1298       1.113         1.138       1.133       1.129       1.131         0.5       0.3       0.07       1.59 | 8.6514.320.946.663.733.946.960102.6126.91.14371.13641.12981.1131.10581.1381.1331.1291.1311.1320.50.30.071.592.31 |

So, in the n(p)-type (Si, GaAs, InP)-degenerate semiconductors, and for the physical condition:  $N \ge N_{CDn(CDp)}[r_{d(a)}, y = 0.25 \ (0.271)]$ , and with use of the numerical values of all the parameters given in Table 1, we obtain the numerical results of  $E_{gn1(gp1)}(N, r_{d(a)})$ , using Eq. (14), as those given in following Tables 6, 7 and 8.

**Table 6.** Using the physical condition,  $N \ge N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)]$ , the values of OBG,  $E_{gn1(gp1)}(N, r_{d(a)})$ , calculated using Eq. (14) for the n(p)-type degenerate Si-semiconductor are obtained, as functions of N and  $r_{d(a)}$ .

| N in 10 <sup>18</sup> cm <sup>-3</sup> | 4                              | 8.5                     | 15           | 50    | 80    | 150   |
|----------------------------------------|--------------------------------|-------------------------|--------------|-------|-------|-------|
| In <b>P-Si</b> crystal, where ε(       | $(r_P) = 11.58 \text{ an}$     | $d E_{gn}(r_P) = 1.$    | 1689 eV      |       |       |       |
| $E_{gn1}(N, r_P)$ (eV)                 | 1.144                          | 1.136                   | 1.130        | 1.113 | 1.106 | 1.097 |
| In As-Si crystal, where a              | $e(r_{As}) = 11.396$           | and $E_{gn}(r_{As})$    | = 1.17002 eV |       |       |       |
| $E_{gn1}(N, r_{As})$ (eV)              | 1.1443                         | 1.137                   | 1.130        | 1.113 | 1.106 | 1.096 |
| In <b>Te-Si</b> crystal, where a       | $e(r_{Te}) = 10.595$           | and $E_{gn}(r_{Te})$    | = 1.1753 eV  |       |       |       |
| $E_{gn1}(N, r_{Te})$ (eV)              | 1.148                          | 1.140                   | 1.132        | 1.113 | 1.105 | 1.093 |
| In Sb-Si crystal, where a              | $e(r_{Sb}) = 10.17$            | and $E_{gn}(r_{Sb}) =$  | 1.179 eV     |       |       |       |
| $E_{gn1}(N, r_{Sb})$ (eV)              | 1.150                          | 1.142                   | 1.134        | 1.114 | 1.104 | 1.092 |
| In <b>Sn-Si</b> crystal, where a       | $e(r_{Sn}) = 9.69 an$          | nd $E_{gn}(r_{Sn}) = 1$ | 1.183 eV     |       |       |       |
| $E_{gn1}(N, r_{Sn}) (eV)$              | 1.153                          | 1.144                   | 1.136        | 1.114 | 1.104 | 1.091 |
| N in $10^{18}  \text{cm}^{-3}$         | 4                              | 8.5                     | 15           | 50    | 80    | 150   |
| In <b>B-Si</b> crystal, where ε(       | $(r_B) = 15.98 an$             | $E_{gn}(r_B) = 1.$      | .1512 eV     |       |       |       |
| $E_{gp1}(N, r_B)$ (eV)                 | 1.148                          | 1.151                   | 1.156        | 1.180 | 1.199 | 1.237 |
| In Ga-Si crystal, where                | $\varepsilon(r_{Ga}) = 11.092$ | 7 and $E_{gn}(r_{Ga})$  | = 1.1721 eV  |       |       |       |
| $E_{gp1}(N, r_{Ga})$ (eV)              | 1.163                          | 1.164                   | 1.167        | 1.185 | 1.200 | 1.232 |
| In Mg-Si crystal, where                | $\varepsilon(r_{Mg}) = 9.69 a$ | and $E_{gn}(r_{Mg}) =$  | = 1.185 eV   |       |       |       |
| $E_{gp1}(N, r_{Mg})$ (eV)              |                                | 1.173                   | 1.175        | 1.190 | 1.203 | 1.234 |
| In In-Si crystal, where ε              | $(r_{In}) = 9.43 an$           | $d E_{gn}(r_{In}) = 1$  | .188 eV      |       |       |       |
| $E_{gp1}(N, r_{In}) (eV)$              |                                | 1.178                   | 1.179        | 1.193 | 1.206 | 1.235 |

| N in $10^{18} \text{ cm}^{-3}$         | 4                                                  | 8.5                         | 15                            | 50    | 80    | 150   |
|----------------------------------------|----------------------------------------------------|-----------------------------|-------------------------------|-------|-------|-------|
| In P-GaAs crystal, where               | $e \epsilon(r_{\rm P}) = 13.40$                    | and $E_{gn}(r_P)$ =         | = 1.5198 eV                   |       |       |       |
| $E_{gn1}(N, r_P)$ (eV)                 | 1.621                                              | 1.698                       | 1.790                         | 2.159 | 2.410 | 2.901 |
| In As- GaAs crystal, who               | ere $\varepsilon(r_{As}) = 13.2$                   | 13 and $E_{gn}(r_A)$        | <sub>as</sub> ) = 1.5207 eV   |       |       |       |
| $E_{gn1}(N, r_{As})$ (eV)              | 1.620                                              | 1.697                       | 1.789                         | 2.158 | 2.409 | 2.898 |
| In Te- GaAs crystal, who               | ere $\varepsilon(r_{Te}) = 12.2$                   | 33 and $E_{gn}(r_T)$        | $(r_e) = 1.15207 \text{ eV}$  |       |       |       |
| $E_{gn1}(N, r_{Te})$ (eV)              | 1.619                                              | 1.696                       | 1.787                         | 2.154 | 2.403 | 2.892 |
| In Sb- GaAs crystal, who               | ere $\varepsilon(r_{Sb}) = 11.8$                   | 86 and $E_{gn}(r_S)$        | <sub>b</sub> ) = 1.1512 eV    |       |       |       |
| $E_{gn1}(N, r_{Sb})$ (eV)              | 1.618                                              | 1.694                       | 1.785                         | 2.151 | 2.400 | 2.887 |
| In Sn- GaAs crystal, who               | ere $\varepsilon(\mathbf{r}_{\mathrm{Sn}}) = 11.2$ | 33 and $E_{gn}(r_S)$        | (n) = 1.5218  eV              |       |       |       |
| $E_{gn1}(N, r_{Sn})$ (eV)              | 1.617                                              | 1.693                       | 1.784                         | 2.148 | 2.396 | 2.882 |
| N in 10 <sup>18</sup> cm <sup>-3</sup> | 4                                                  | 8.5                         | 15                            | 50    | 80    | 150   |
| In B- GaAs crystal, when               | re $\varepsilon(r_B) = 24.38$                      | and $E_{gn}(r_B)$           | = 1.5037 eV                   |       |       |       |
| $E_{gp1}(N, r_B) (eV)$                 | 1.519                                              | 1.533                       | 1.550                         | 1.622 | 1.671 | 1.770 |
| In Ga- GaAs crystal, wh                | ere $\varepsilon(r_{Ga}) = 13$ .                   | 13 and E <sub>gn</sub> (r   | <sub>Ga</sub> ) = 1.520 eV    |       |       |       |
| $E_{gp1}(N, r_{Ga})$ (eV)              | 1.527                                              | 1.538                       | 1.553                         | 1.615 | 1.660 | 1.749 |
| In Mg- GaAs crystal, wh                | here $\varepsilon(r_{Mg}) = 12$                    | 2.42 and E <sub>gn</sub> (1 | $r_{Mg}) = 1.5227 \text{ eV}$ |       |       |       |
| $E_{gp1}(N, r_{Mg}) (eV)$              | 1.529                                              | 1.540                       | 1.554                         | 1.615 | 1.659 | 1.748 |
| In In- GaAs crystal, whe               | ere $\varepsilon(r_{In}) = 11.9$                   | 9 and $E_{gn}(r_{In})$      | ) = 1.5245 eV                 |       |       |       |
| $E_{gp1}(N, r_{Mg})$ (eV)              | 1.530                                              | 1.541                       | 1.555                         | 1.615 | 1.659 | 1.747 |

| N in $10^{18} \mathrm{cm}^{-3}$             | 4                                      | 8.5                               | 15          | 50    | 80    | 150   |   |
|---------------------------------------------|----------------------------------------|-----------------------------------|-------------|-------|-------|-------|---|
| In <b>P-InP</b> crystal, where a            | $\epsilon(r_{\rm P}) = 12.37$          | and $E_{gn}(r_P) = 1$             | 1.420 eV    |       |       |       |   |
| $E_{gn1}(N, r_P)$ (eV)                      | 1.513                                  | 1.582                             | 1.664       | 1.994 | 2.218 | 2.657 |   |
| In As- InP crystal, where                   | $\epsilon \epsilon(r_{As}) = 12.0$     | $07 \text{ and } E_{gn}(r_{As})$  | = 1.4203 eV |       |       |       |   |
| $E_{gn1}(N, r_{As})$ (eV)                   | 1.513                                  | 1.581                             | 1.663       | 1.992 | 2.216 | 2.655 |   |
| In Te- InP crystal, where                   | $\epsilon \epsilon(r_{Te}) = 10.4$     | 46 and $E_{gn}(r_{Te})$           | = 1.4226eV  |       |       |       |   |
| $E_{gn1}(N, r_{Te})$ (eV)                   | 1.513                                  | 1.580                             | 1.660       | 1.985 | 2.207 | 2.641 |   |
| In Sb- InP crystal, where                   | $\epsilon \epsilon(r_{Sb}) = 9.88$     | $B \text{ and } E_{gn}(r_{Sb}) =$ | = 1.4237 eV |       |       |       |   |
| $E_{gn1}(N, r_{Sb})$ (eV)                   | 1.513                                  | 1.579                             | 1.659       | 1.982 | 2.203 | 2.636 |   |
| In Sn- InP crystal, where                   | $\epsilon \epsilon(r_{\rm Sn}) = 9.30$ | $D \text{ and } E_{gn}(r_{Sn}) =$ | = 1.4250 eV |       |       |       |   |
| $E_{gn1}(N, r_{Sn})$ (eV)                   | 1.513                                  | 1.579                             | 1.658       | 1.979 | 2.199 | 2.630 |   |
| $\overline{\rm N \ in \ 10^{18} \ cm^{-3}}$ | 4                                      | 8.5                               | 15          | 50    | 80    | 150   | - |

In Ga- InP crystal, where  $\epsilon(r_{Ga})=13.28$  and  $\,E_{gn}(r_{Ga})=1.4172eV$ 

| $E_{gp1}(N, r_{Ga}) (eV)$               | 1.432                  | 1.448                    | 1.468     | 1.551 | 1.610 | 1.727 |
|-----------------------------------------|------------------------|--------------------------|-----------|-------|-------|-------|
| In Mg- InP crystal, where $\epsilon($   | $(r_{Mg}) = 12.41 a$   | nd $E_{gn}(r_{Mg}) = 1$  | 1.4198 eV |       |       |       |
| $E_{gp1}(N, r_{Mg})$ (eV)               | 1.433                  | 1.449                    | 1.468     | 1.551 | 1.609 | 1.725 |
| In In- InP crystal, where $\epsilon(r)$ | $I_{In}$ ) = 12.37 and | $d E_{gn}(r_{In}) = 1.4$ | 20eV      |       |       |       |
| $E_{gp1}(N, r_{Mg})$ (eV)               | 1.434                  | 1.449                    | 1.469     | 1.551 | 1.609 | 1.725 |

Finally, from the Tables 2, 3 and 4, we can justify the physical application condition (PAC):  $N \ge N_{CDn(CDp)}[r_{d(a)}, y = 0.25 (0.271)]$  imposed for our numerical results of  $E_{gn1(gp1)}(N, r_{d(a)})$ , being obtained in those Tables 6, 7 and 8, as follows.

(i) From the Tables 2 and 6, in various d(a)-Si systems, since  $N \ge 4 \times 10^{18} \text{ cm}^{-3} > N_{\text{CDn(CDp)}}[r_{d(a)}, y = 0.25(0.271)]$ , the PAC is justified, except, it is only satisfied,

-in the (Sb, Sn)-Si systems, respectively for:

$$N \ge 8.5 \times 10^{18} \text{ cm}^{-3} > N_{CDn} [r_{(Sb,Sn)}, y = 0.271] = (4.23, 4.89) \times 10^{18} \text{ cm}^{-3},$$

- in the (Mg, In)-Si systems, respectively for:

 $N \ge 8.5 \times 10^{18} \text{ cm}^{-3} > N_{CDp} [r_{(Mg,In)}, y = 0.25] = (5.67, 6.65) \times 10^{18} \text{ cm}^{-3}$ , and finally

- in the (Ga, Mg, In)-Si systems, respectively for:

$$N \ge 8.5 \times 10^{18} \text{ cm}^{-3} > N_{CDp} [r_{(Ga,Mg,In)}, y = 0.271] = (4.81,7.3, 8.47) \times 10^{18} \text{ cm}^{-3}.$$

(ii) However, from the Tables 2, 7 and 8, in all the d(a)-(GaAs, InP) systems, the PAC is well justified since

 $N \ge 4 \times 10^{18} \text{ cm}^{-3} > N_{CDn(CDp)}[r_{d(a)}, y = 0.25(0.271)].$ 

#### 5. Concluding remarks

By using an effective Bohr model given in the n(p)-type semiconductors, we have determined the relative static dielectric constant  $\epsilon(r_{d(a)})$ , expressed as a function of the d(a)-radius, according to the impurity size effect.

Then, as showed in Tables (2-4, 6-8), this function  $\varepsilon(r_{d(a)})$  strongly affects the numerical results for: (i) the effective Bohr radius  $a_B(r_{d(a)})$ , (ii) the effective d(a)-ionization energy  $E_{d(a)}(r_{d(a)})$  in absolutes values, (iii) the effective band gap  $E_{gn(gp)}(r_{d(a)})$ , (iv) the effective critical density  $N_{CDn(CDp)}(r_{d(a)}, y = 0.25(0.271))$  in the MIT, and finally (v) the OBG,  $E_{gn1(gp1)}(r_{d(a)}, N, y = 0.25(0.271))$ . One notes here that:

(i) the value: y=0.25 was given in the Mott criterion [1] as:  $a_B \times N_{CD}^{1/3} \approx y = 0.25$ ,

(ii) Pergament [2] used this Mott criterion to obtain the value of  $N_{CD}$  ( = 2.8 × 10<sup>18</sup> cm<sup>-3</sup>) for VO<sub>2</sub>, with  $a_B = 1.77$  nm,

(iii) Edwards and others [3] proposed  $y \ge 0.38$ , explaining the transition to the metallic state for Cs, Rb and H-elements.

One notes here that, in the n(p)-Si crystal, the best choice is found to be given by: y=0.271, according to an agreement between our numerical results of  $N_{CDn(CDp)} = 3(4.44) \times 10^{18} \text{ cm}^{-3}$ , as given in Table 1, and the experimental ones given in the literature [4]. Further, other choice of  $y \in [0, 1]$  can be proposed, depending on the considered systems (or elements).

# Appendix

#### Appendix A. Fermi Energy

In the n(p)-type (Si, GaAs, InP)-crystals, the Fermi energy  $E_{Fn}(-E_{Fp})$ , obtained for any T and donor (acceptor) density N, being investigated in our previous paper, with a precision of the order of 2.11 × 10<sup>-4</sup> [6], is now summarized in the following.

First of all, we define the reduced electron density by:

$$u \equiv \frac{N}{N_{c(v)}}, N_{c}(T) = 2 \times g_{c} \times \left(\frac{m_{c} \times k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (cm^{-3}), N_{v}(T) = 2 \times g_{v} \times \left(\frac{m_{v} \times k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (cm^{-3}),$$
(A1)

where  $N_{c(v)}$  is the conduction (valence)-band density of states, and the values of  $g_{c(v)}$  and  $m_{c(v)}$  are defined and given in Table 1. Then, the reduced Fermi energies in the n(p)-type semiconductor are determined respectively by [6]:

$$\frac{E_{Fn}(u)}{k_BT}\left(\frac{-E_{Fp}(u)}{k_BT}\right) = \frac{G(u) + Au^BF(u)}{1 + Au^B}, A = 0.0005372 \text{ and } B = 4.82842262.$$
(A2)

Here, 
$$F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$$
, with  $a = [(3\sqrt{\pi}/4) \times u]^{2/3}$ ,  $b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2$ ,  $c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4$ , and  $G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}$ ;  $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0$ .

#### Appendix B. Approximate forms for band gap narrowing (BGN)

First of all, in the n(p)-type doped (Si, GaAs, InP)-semiconductors, we define the effective Wigner-Seitz radius  $r_{sn(sp)}$ , characteristic of the interactions, by [7]

$$r_{sn} \equiv r_s(N, r_d) = 1.1723 \times 10^8 \times \left(\frac{g_c}{N}\right)^{1/3} \times \frac{m_c/m_o}{\varepsilon(r_d)}$$
(B1)

and

$$\mathbf{r}_{\rm sp} \equiv \mathbf{r}_{\rm s}(\mathbf{N}, \mathbf{r}_{\rm a}) = 1.1723 \times 10^8 \times \left(\frac{g_{\rm v}}{\rm N}\right)^{1/3} \times \frac{m_{\rm v}/m_{\rm o}}{\epsilon(\mathbf{r}_{\rm a})},\tag{B2}$$

where the values of  $g_{c(v)}$  and  $(m_{c(v)}/m_o)$  are defined and given in Table 1.

Therefore, the correlation energy of an effective electron gas,  $E_c(r_{sn(sp)})$ , is found to be given by [3]:

$$E_{cn(cp)}(r_{sn(sp)}) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}}.$$
 (B3)

Then, in the n-type heavily doped (Si, GaAs, InP)-semiconductors, in which the values of the dielectric  $\varepsilon_o$  of the intrinsic (Si, GaAs, InP)-semiconductors are given in Table 1, the BGN is determined by [7]:

$$\Delta E_{gn}(N, r_{sn}, r_d) \simeq a_1 \times \frac{\varepsilon_0}{\varepsilon(r_d)} \times N_r^{1/3} + a_2 \times \frac{\varepsilon_0}{\varepsilon(r_d)} \times N_r^{\frac{1}{3}} \times (2.503 \times [-E_c(r_{sn}) \times r_{sn}]) + a_3 \times \left[\frac{\varepsilon_0}{\varepsilon(r_d)}\right]^{5/4} \times \sqrt{\frac{m_v}{m_c}} \times N_r^{1/4} + a_4 \times \sqrt{\frac{\varepsilon_0}{\varepsilon(r_d)}} \times N_r^{1/2} \times 2 + a_5 \times \left[\frac{\varepsilon_0}{\varepsilon(r_d)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}}, N_r \equiv \left(\frac{N_d}{9.999 \times 10^{17} \, \text{cm}^{-3}}\right), \text{ (B4)}$$

where  $a_1 = 3.8 \times 10^{-3} (eV)$ ,  $a_2 = 6.5 \times 10^{-4} (eV)$ ,  $a_3 = 2.8 \times 10^{-3} (eV)$ ,  $a_4 = 5.597 \times 10^{-3} (eV)$  and  $a_5 = 8.1 \times 10^{-4} (eV)$ , and in the p-type heavily doped ones, one has [7]:

$$\Delta E_{gp}(N, r_{sp}, r_{a}) \simeq a_{1} \times \frac{\varepsilon_{0}}{\varepsilon(r_{a})} \times N_{r}^{1/3} + a_{2} \times \frac{\varepsilon_{0}}{\varepsilon(r_{a})} \times N_{r}^{\frac{1}{3}} \times (2.503 \times [-E_{c}(r_{sp}) \times r_{sp}]) + a_{3} \times \left[\frac{\varepsilon_{0}}{\varepsilon(r_{a})}\right]^{5/4} \times \sqrt{\frac{m_{c}}{m_{v}}} \times N_{r}^{1/4} + 2a_{4} \times \sqrt{\frac{\varepsilon_{0}}{\varepsilon(r_{a})}} \times N_{r}^{1/2} + a_{5} \times \left[\frac{\varepsilon_{0}}{\varepsilon(r_{a})}\right]^{\frac{3}{2}} \times N_{r}^{\frac{1}{6}}, N_{r} \equiv \left(\frac{N_{a}}{9.999 \times 10^{17} \text{ cm}^{-3}}\right), \quad (B5)$$

where  $a_1 = 3.15 \times 10^{-3} (eV)$ ,  $a_2 = 5.41 \times 10^{-4} (eV)$ ,  $a_3 = 2.32 \times 10^{-3} (eV)$ ,  $a_4 = 4.12 \times 10^{-3} (eV)$  and  $a_5 = 9.80 \times 10^{-5} (eV)$ .

# References

- [1] N. F. Mott, "Metal-Insulator Transitions," London: Taylor and Francis, 1974.
- [2] A. Pergament, "Metal-insulator transition: the Mott criterion and coherence length," J. Phys.: Condense Matter, vol. 15, pp. 3217-3223, 2003.
- [3] P. P. Edwards et al., "The metal-insulator transition: a perspective," Phil. Trans. R. Soc. London A, vol. 356, pp. 5-22, 1998.
- [4] C. Kittel, "Introduction to Solid State Physics, pp. 84-100. Wiley, New York (1976).
- [5] H. Van Cong et al., "Size effect on different impurity levels in semiconductors," Solid State Communications, vol. 49, pp. 697-699, 1984; H. Van Cong, "Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems," Physica B, vol. 487, pp. 90-101, 2016.
- [6] H. Van Cong, and G. Debiais, "A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., vol. 73, pp. 1545-15463, 1993.
- [7] H. Van Cong, "Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures," American Journal of Modern Physics, vol. 7, pp. 136-165, 2018; H. Van Cong et al., "28.68% (29.87%)- Limiting Highest Efficiencies obtained in n<sup>+</sup>(p<sup>+</sup>) p(n) Crystalline Silicon Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size, "SCIREA J. Phys., vol.7, pp. 160-179, 2022; H. Van Cong et al., "30.76% (42.73%)- Limiting Highest Efficiencies obtained in n<sup>+</sup>(p<sup>+</sup>) p(n) Crystalline GaAs Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size, "SCIREA J. Phys., vol.7, pp. 160-179, 2022; H. Van Cong et al., "30.76% (42.73%)- Limiting Highest Efficiencies obtained in n<sup>+</sup>(p<sup>+</sup>) p(n) Crystalline GaAs Junction Solar Cells at 300K, Due to the Effects of Heavy (Low) Doping and Impurity Size, "SCIREA J. Phys., vo.7, pp. 180-199, 2022.
- [8] M. A. Green, "Intrinsic concentration, effective density of states, and effective mass in silicon," J. Appl. Phys., vol. 67, 2944-2954, 1990.
- [9] J. Wagner and J. A. del Alamo, J. Appl. Phys., vol. 63, 425-429, 1988.