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Abstract

This article considers the mode of excitation of sub harmonic oscillations of the third order in

a three-phase circuit consisting of active, capacitive and inductive elements having a common

magnetic bond, which are analogous to the power line "line - unloaded transformer".

Equations of motion are derived from the method of averaging with the corresponding phases.

From the condition of the existence of the periodic solution, phase relations are determined

that are different from the phase ratios for three-phase circuits with group Ferro magnetic

elements. In the stationary mode, the conditions of excitation, the scope of existence, the

dependence of the output values on the parameters of the circuit and the applied effect are

determined.
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Introduction

Currently, in various branches of the electric power industry: automation devices,

telemechanics, inpharmation and measuring equipment, pre-transcending equipment and

others, various kinds of energy converters, phase numbers and frequencies based on self-

oscillating phenomena in three-phase nonlinear circuits with concentrated parameters are

widely used.

These devices, unlike existing energy converters, made mainly on the basis of single-phase

nonlinear circuits, having phase-discrete features, are reliable and easy to operate. These

qualities are especially clearly revealed when using three-phase circuits in the mode of

excitation of subharmonic oscillations in combination with semiconductors incompletely

controlled devices. The excitation of subarmonic oscillations and the control of the phases of

the resulting oscillations with the help of these devices make it possible to create various

kinds of alternating current switching devices that differ fundamentally from the existing ones

by the phase-sensitivity of the equilibrium state [1,2,3].

On the other hand, three-phase nonlinear systems are to some extent schemes for replacing a

power line, the main elements of which are: capacitors of longitudinal compensation,

transverse compensation reactors, increasing and lowering transformers with nonlinear

characteristics. In fact, three-phase self-oscillating circuits are physical models of power lines.

[1,4,6].

The study of physical models, the development of methods for calculating internal

overvoltages make it possible to determine the basic patterns of overvoltages of power lines

of partial and fullcompensation.

One of the special overvoltages is the excitation of subharmonic oscillations in the power line

that occur after a short-circuit shutdown behind the longitudinal compensation capacitor.

Exceeding several times the nominal values of the voltage of the equipment, the resulting

fluctuations lead to various kinds of accidents of consumers and false operation of relay

protection and automation [1,2,4,6,7,8,9]
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Analysis of the conditions of excitation of subharmonic modes of three-phase nonlinear

systems, depending on the parameters of the circuit, and the applied effect, allows to identify

the main patterns of overvoltages in power lines and possible measures to prevent or reduce

them to permissible values.

1. Conclusion at the alignment of motion

The three-phase circuit to be observed, each phase of which consists of a series-connected

three-phase ferromagnetic element, capacitance and active resistance, is presented in Fig. 1.

The processes in such a system are described by the following Integra-differential equations

in matrix form.

� = �� + �∗ ��� + ���∗��� (1)

Where:

� =
�1 −�2 0
0 �2 −�3

−�1 0 �3

; �∗ =
�1

−1 −�2
−1 0

0 �2
−1 −�3

−1

�1
−1 0 �3

−1
;

�∗ =
1 −1 0
0 1 −1

−1 0 1
−

-square special matrices of the strand λ (λ-number of

phases);

�, �, �� ��, �� –columnmatrices of instantaneous values of linear stresses of symmetric source

of three-phase voltage, currents of all branches, integrals of current of all phases and

derivative of magnetic induction of each rod of three-phase ferromagnetic element;

�1, �2,�3 И�1,�2, �3-Active resistances and capacitances according to the phases.

Since a three-phase unloaded transformer is considered as a ferromagnetic element, the

current of each of its windings of high voltage and magnetic strength about the field of the

rods are connected by the following relations:

�∗�� = �∗�h ( 2)
where, h,� -lies the column matrix of instantaneous values of the magnetic field strength of

the rods of the three-phase Ferro of the magnetic element and its diagonal matrix of the

corresponding average lengths of the rods; W- is the number of turns of the windings of each

rod.

Fig.1. Three-phase ferroresonance circuits with
common magnetic inputs
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By introducing generally accepted restrictions, i.e., taking the core material of the

ferromagnetic elements isotropic; neglecting the active resistance of the windings, the

dependence of the magnetic field strength on induction is approximated by an incomplete

polynomial.

Н = �� + ��3 (3)
Where:� − ����[�� , � − ����[��] − diagonal matrices of coefficients of the approximating

function, В3 −column matrix of induction to the cubic degree.

Expressing the linear voltages of the power supply through the phase ones and introducing the

notation �1 = ��2 = ��3�1 = ��2 = ��3 � , and then performing elementary

transformations over the parameter matrices (r, D*) of the original equation (1), similarly to

the transformation of the matrix A* , we write the equation of motion (1) as

−3� = �1(� + �)ί + 1
�1

(� + �) �� �� + � �(� + �∗)�� (4)

Where, u-is the column matrix of instantaneous values of phase stresses of a symmetric three-

phase voltage source;

�, � −Square matrices, the elements of which are coefficients that take into account the ratios

of the electrical parameters of the system:

� =
−3 (р − 1) (� − 1)
0 −(2р + 1) (q − 1)
0 (р − 1) −(2� + 1)

; .� =
−3 −(� − 1)/� −(� − 1)/�
0 −(n + 2)/n −(� − 1)/�
0 −(n − 1)/n −(� + 2)/�

The expression (3) is substituted in (4) and after some mathematical transformations passing

to the new time� = ��
�
, where, χ-is the order of sub harmonic oscillations, we obtain a system

of nonlinear differential equations in the matrix form of the following form:

�� + �2��
�2�1

�'� + �2��
�2�1

(�' + �'')�3 + ����
�

�'�� + ����
�

(3�' + �'')�2�� = ���� (5)

where:
�' = �∗−1��; �'' =− 1

3
�∗−1��; �' = �∗−1��; �'' =− �∗−1EA- square matrices of order �.

� = �1/�2�;� = 1/���
The last equation is the equation of motion of the three-phase system, presented in Fig. 1. In

the special case, this equation easily turns into the equation of a symmetric three-phase system

with group ferromagnetic elements� = � = � = � = � = 1 [1,2].In addition, the resulting

equation (5) allows you to write the equations for each phase separately, containing terms

with second derivatives of the induction of the corresponding phases and the first derivatives

of the induction of all phases.
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The above algorithm for deriving the equation of motion makes it possible to obtain equations

of a kind in the "standard" form, which are not subject to any preliminary transformation

when applying the averaging method.

2. Analysis of stationary mode and conditions of existence of sub harmonic

oscillations

The solution of the equation of motion (5) of the system, in the mode of excitation of sub-

harmonic oscillations of the third order (� = 3), we will look for in the form of:

В� = ������[3� − 2�
3

(� − 1)] + ��3����(� + ��3) + µ���(�) (6)

Where: �����3���3 − slow-changing amplitudes and phases of induction of the main and

sub-harmonic components of oscillations; µ��(�) −amendment to decisions.

The desired solution will obviously be of the form (6) in the event that the function remains

small for a sufficiently long period of time. The periodic decision condition for an amendment

imposes the following restrictions on it ��(�) µ��(�)

1
2π 0

2πНλ� τ → Cos 3τdτ = 0, Sin 3τdτ = 0 (7)
1

2π 0
2πНλ� τ → Cos τdτ = 0, Sin τdτ = 0 (8)

Integrating equations (5) taking into account the ratios (6) can be brought to the form:

�� �3 = 1
2
�0� + 9��

2ѡ2С
�����

2 + ����3�
2 − (�����3��3 − П����3��3)�����3� (9)

�� �3 =− 1
2
�0���3� − 9��

2ѡ2С
(�����3��3 + П����3��3)����2

�3�],

Where, �0��0�- coefficients that take into account the racesand losses in the system.

Equating the left parts of equations (9) to zero and squared, we obtain the following algebraic

equations that allow us to determine in stationary mode the amplitude-frequency, input-output

characteristics of the sub harmonic mode of the third order of the original nonlinear system

(5).

��
2��

2 + ��
2��

2 + 2���� − ��
2П�

2 ���� + 2���0�
�2�1

9�� �� +

+2���0�
�2�1
9��

�� ++ ( �2�1
9��

)2(�0�
2 + �0�

2 ) = 0, (10)

Where:�� = В�
2; У� = В�3

2

These equations describe second-order curves [1,2,10], whose invariants are defined by the

following expressions:

�� = (��
2 + П�

2)���� − ( ��
2+ П�

2

2
)2;
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�� = ��
2Р�

2 ; (11)

∆� = (
�2�1

9�� )2[���0�
2 − (

��
2+ П�

2

2 )2�0�
2 ]

The variables X and Y are squares of the amplitudes of the main and sub harmonic

components. For the existence of a sub harmonic mode in the system, it is necessary that the

curve describing the mode in question be in the first square of the X0U plane. If the

conditions are met

∆� < 0 (12)
Equation (11) describes the real ellipses (Fig. 2) located in the first square, the coordinates of

the centers and lengths of the semi-axes of which are determined by the expressions:

�0� =− �� �2�1
2��9��

��(�)�0� > 0; �0� =− �� �2�1
2��9��

��(�) �0� > 0 ;

�� = �2�1
9��

��
2+ ��

2

2��(��+ ��
2−4��

> 0; �� = �2�1
9��

��
2−4����

2

2��(��− ��
2−4��

> 0; (13)

Where:�� = ��
2 + П�

2

The semi-axes of the ellipses are turned relative to the axes of the coordinates at the

appropriate angles. These angles depend only on the ratios of the average lengths (k) of the

magnetic cores of the ferromagnetic element.

It follows from (13) that for the existence of a sub harmonic mode in the system, it is

necessary that the coordinates of the centers and the length of the semi-axes of the ellipses be

greater than zero [10], sub harmonic oscillations will exist under the condition:

а) Mode "A".

�01 =− 1 + 9�а
�2�1

( 13+3.5�
18

) < 0;

�02 =− 1 + 9�а
�2�1

( 5+5.5�
9

) < 0;

�03 =− 1 + 9�а
�2�1

( 8−2�
9

) < 0;

b) Mode "B".

�01 = �02 = �03 =− 1 + 9�а
�2�1

( 1+2�
3

) < 0; (14)

с) Mode "C".

�01 =− 1 + 9�а
�2�1

( 16−4�
9

) < 0;

�02 =− 1 + 9�а
�2�1

( 10+11�
9

) < 0;

�03 =− 1 + 9�а
�2�1

( 26−7�
18

) < 0;

And for all modes and expressions (13, 14.) you can see:
�0� < ��

2 ��
�0� (15)

From where it should come from:
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-sub harmonic oscillations exist at negative values of the resistance, i.e., provided that the

characteristics of the linear capacitive resistances in phases at the sub harmony frequency

cross the volt-ampere characteristic of the ferromagnetic element at the same frequency;

-Sub harmonic oscillations exist only at certain dissipation values;

-At dissipation values above critical, defined expressions (14),there are no sub harmonic

fluctuations for any applied effect.

On Fig. 2 shows in general the calculated ratios of solutions (10), in particular, for mode "A"

at the values of the system parameters corresponding to the conditions of existence (14), (15)

of sub harmonic oscillations.

In all three phases, sub harmonic oscillations are excited simultaneously at a certain value of

the input effect. With an increase in the input effect, the amplitudes of the oscillations that

have arisen decrease, and at a certain value there is a failure of oscillations.

The capture area of sub harmonic oscillations at different values of the circuit parameters is

different. In particular, with an increase in the upset area increases, and with an increase in

dissipation, it decreases (Fig. 2)

Conclusion

1. The proposed algorithm for the formation of the equation of motion of the process in three-

phase nonlinear circuits with common ferromagnetic elements, in contrast to the forming the

equation using only independent equations, allows us to obtain equations of motion in

standard form without any preliminary transformations.

Fig.2. Input-output characteristics of the third order sub harmonic oscillations depending on the

change in tuning at U=80B, C=25 μf, R=5Om, α = 1.2 and β = 0.4
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2. Sub harmonic oscillations �
2
in three-phase nonlinear circuits with three-phase ferromagnetic

elements, as in other circuits with energy-intensive elements, are excited "rigidly", but unlike

three-phase circuits with group ferromagnetic elements, oscillations in all phases are excited

simultaneously.

3. With the same values of capacitance and active resistance in phases, the area of existence

of sub harmonic oscillations on the input effect will be greater in circuits with common

ferromagnetic elements than in three-phase circuits with group ones.
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