

SCIREA Journal of Medicine http://www.scirea.org/journal/PM April 1, 2018

Volume 2, Issue 1, February 2018

# Transformation of the Davenport Diagram to a Computerized Artificial Neural Network

## TIMOTHY J SMITH, RPH, PHD

Department of Physiology and Pharmacology, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California 95211

E-Mail:tsmith@pacific.edu

(209)946-3168

## Abstract

The Davenport diagram, which illustrates the interactions of pH, bicarbonate and pCO<sub>2</sub> as related to respiratory/metabolic phases of acidosis/alkalosis was transformed into a computerized neural network. This transformation enables computer-assisted prediction of acidosis/alkalosis subtypes on the basis of any two factors from pH, bicarbonate and pCO<sub>2</sub>. Furthermore, this neural network can eventually be trained to predict changes in acid-base balance on the basis of additional factors; illustrating the utility of neural network analysis as a dynamic predictive tool in healthcare.

Keywords: Davenport diagram, neural network, nomogram, acidosis, alkalosis

#### Introduction

Many artificial intelligence techniques are useful tools in healthcare. Among these are computerized artificial neural networks, which facilitate prediction of outcomes based upon two or more independent variables. A simple, yet flexible application of neural network analysis is the development of a neural network based upon a nomogram. These nomogram transformations can expand the utility of the nomogram, since additional factors can be used to train the computer to modify predictions beyond the capability of the basic two-dimensional nomogram. Examples of these transformations have been published previously [1,2]. The purpose of this report is to illustrate a neural network transformation based upon the Davenport diagram as a template.

#### Methods

The Davenport diagram illustrates the interactions of pH, bicarbonate and pCO<sub>2</sub> as related to respiratory/metabolic phases of acidosis/alkalosis [3]. While there are many variants of this diagram, the various subtypes of respiratory/metabolic phases of acidosis/alkalosis are illustrated in Figure 1 [4]. Points from each acidosis/alkalosis subtype area, including areas of transition between these subtypes were entered into a Microsoft Excel<sup>TM</sup> (Redmond, WA) spreadsheet, where the independent variables for pH, bicarbonate and pCO<sub>2</sub> were linked to the corresponding acidosis/alkalosis subtype as the dependent category variable for prediction (a total of 160 points). Since any two independent variables in will define a region in the diagram as with any nomogram, two variables were presented for training of the network. Additional variables, such as changes in pCO<sub>2</sub>, may be added to enhance the dynamic predictive power of the network, which is an important property of the Davenport diagram [1]. A segment of this spreadsheet is shown in Table 1. For transformation into a neural network, the software package NeuralTools 7 was obtained from Palisade Corporation (Ithaca, New York). This program utilizes the Microsoft Excel<sup>TM</sup> spreadsheet as the interface for data entry and analysis.

#### Results

Following training and software-based testing of the network, points not in the database were used to assess the predictive utility of the network. Points were selected from the various

2

acidosis/alkalosis subtypes within the diagram and the neural network predictions were obtained. Examples are shown in Table 2. Note that in each case, the network predicted the correct acidosis/alkalosis subtype defined in the diagram.

### Discussion

While the transformation of the diagram into a neural network was successful, as noted previously, additional independent variables can expand the utility of this predictive tool. There are many factors that can alter acid/base balance. Since pCO<sub>2</sub> is one of the features of the Davenport diagram, this is the next logical element for extending the utility of the neural network [1]. Additional factors are renal function and drug therapy [5,6]. With additional data, clinicians can modify and retrain this neural network to enhance the utility of the network.

## Acknowledgements

The author wishes to thank the Global Consortium for Life Systems Research for their input into this work and intramural support from the University of the Pacific.

## References

 Padar, S. and Smith, TJ. Transformation of an acetaminophen toxicity nomogram to an artificial neural network. International Journal of Clinical Pharmacology and Therapeutics 1999;37:446-448.

https://www.ncbi.nlm.nih.gov/pubmed/?term=int+J+Clin+Pharmacol+Ther+37%3A446-448+1999+

- [2] Smith, TJ. Transformation of a Nomogram for Drug-induced QT-Prolongation to a Computerized Neural Network, SCIREA Journal of Pharmacy. 2017;2(1):1 - 6.
  http://www.scirea.org/journal/PaperInformation?PaperID=299
- [3] Davenport, HW. The ABC of Acid-Base Chemistry: The Elements of Physiological Blood-Gas Chemistry for Medical Students and Physicians (Sixth ed.). Chicago: The University of Chicago Press. 1974.

http://press.uchicago.edu/ucp/books/book/chicago/A/bo3622345.html

[4] Acid-base nomogram, Wikipedia; November 9, 2017.
<u>https://en.wikipedia.org/wiki/Acid%E2%80%93base\_homeostasis#/media/File:Acid-</u>

base\_nomogram.svg

 [5] Hamm, LL, Nakhoul, N and Hering-Smith, KS. Acid-Base Homeostasis. <u>Clin J Am Soc</u> <u>Nephrol</u>. 2015;10(12): 2232–2242.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670772/

[6] Kitterer D1, Schwab M, Alscher MD, Braun N, Latus J. Drug-induced acid-base disorders. Pediatr Nephrol. 2015;30(9):1407-23.

https://www.ncbi.nlm.nih.gov/pubmed/25370778

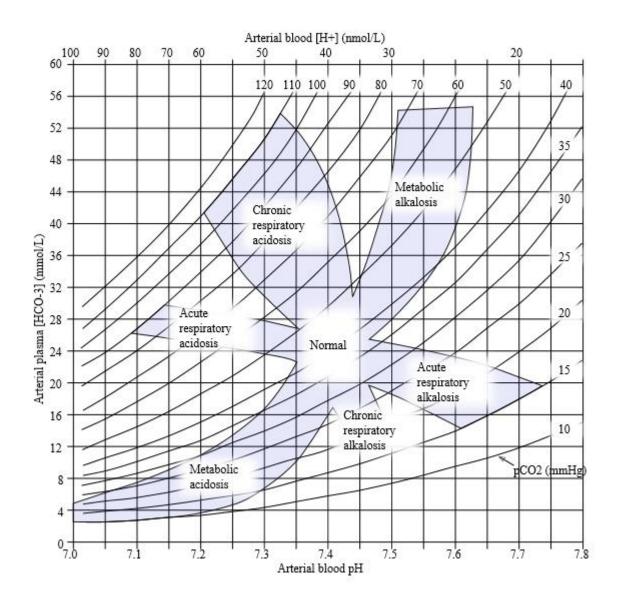



Figure 1. The Davenport Nomogram illustrating the relationship of arterial blood pH, bicarbonate and pCO<sub>2</sub> in the characterization of respiratory/metabolic acidosis/alkalosis. (adapted from Wikipedia, [4])

https://en.wikipedia.org/wiki/Acid%E2%80%93base\_homeostasis#/media/File:Acidbase\_nomogram.svg

| HCO <sub>3</sub> - | рН    | Physiologic Status               |
|--------------------|-------|----------------------------------|
| 54                 | 7.6   | Metabolic Alkalosis              |
| 48                 | 7.5   | Metabolic Alkalosis              |
| 54                 | 7.325 | Chronic Respiratory Acidosis     |
| 28                 | 7.35  | Chronic Respiratory Acidosis     |
| 26                 | 7.1   | Acute Respiratory Acidosis       |
| 23                 | 7.34  | Acute Respiratory Acidosis       |
| 11                 | 7.2   | Metabolic Acidosis               |
| 6                  | 7.3   | Metabolic Acidosis               |
| 14                 | 7.49  | Chronic Respiratory Alkalosis    |
| 16                 | 7.48  | Chronic Respiratory Alkalosis    |
| 20                 | 7.74  | Acute Respiratory Alkalosis      |
| 25                 | 7.5   | Acute Respiratory Alkalosis      |
| 36                 | 7.45  | Chr Resp Acid to Met Alk         |
| 40                 | 7.45  | Chr Resp Acid to Met Alk         |
| 32                 | 7.175 | Acute Resp Acid to Chr Resp Acid |
| 34                 | 7.2   | Acute Resp Acid to Chr Resp Acid |
| 20                 | 7.25  | Acute Resp Acid to Met Acid      |
| 20                 | 7.3   | Acute Resp Acid to Met Acid      |
| 12                 | 7.4   | Met Acid to Chr Resp Alk         |
| 8                  | 7.4   | Met Acid to Chr Resp Alk         |
| 16                 | 7.5   | Acute Resp Alk to Chr Resp Alk   |
| 13                 | 7.55  | Acute Resp Alk to Chr Resp Alk   |

| 20 | 7.525 | Acute Resp Alk to Met Alk |
|----|-------|---------------------------|
| 32 | 7.58  | Acute Resp Alk to Met Alk |
| 22 | 7.38  | Normal                    |
| 22 | 7.4   | Normal                    |
| 22 | 7.42  | Normal                    |

Table 1. Sample points from the nomogram arranged as a dataset in Excel. A physiologic state between metabolic/respiratory acidosis/alkalosis is represented as one physiologic state *to* another. Acid = acidosis, alk = alkalosis, chr = chronic, met = metabolic, resp = respiratory.

| НСО3- | рН   | Predicted Physiologic Status  |
|-------|------|-------------------------------|
| 40    | 7.3  | Chronic Respiratory Acidosis  |
| 46    | 7.55 | Metabolic Alkalosis           |
| 26    | 7.25 | Acute Respiratory Acidosis    |
| 14    | 7.35 | Metabolic Acidosis            |
| 18    | 7.45 | Chronic Respiratory Alkalosis |
| 18    | 7.65 | Acute Respiratory Alkalosis   |
| 32    | 7.7  | Acute Resp Alk to Met Alk     |
| 50    | 7.45 | Chr Resp Acid to Met Alk      |

Table 2. Predictions of physiologic status based upon neural network analysis. Input values (HCO<sub>3</sub><sup>-</sup> and pH) not in the dataset were used to test predictions. For abbreviations, see Table 1.