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Abstract

Thermal expansion is related to the atomic vibration amplitude. Owing to the anisotropy in

the lattice, the amplitude will vary with the crystallographic direction, causing strain in the

lattice. The strain caused by thermal expansion induces a force large enough to initiate plastic

deformation of the metal at the beginning of melting. Deformation begins with the gliding of

atoms along the gliding direction between two densely packed planes and corresponds to a

certain atomic vibration amplitude in that specific direction. Two-dimensional clusters begin

to form, and with the input of more energy, melting continues through the formation of three-

dimensional clusters and lattice breakage. The heat of fusion corresponds to the energy

required to rotate the clusters. When the lattice breaks down, strain energy in the solid is

released. This causes a significant decrease in the binding energy between atoms in the liquid

state compared to those in the solid state. The volume change during melting is related to

changes in the binding energy between atoms in the solid and liquid states. The melting

temperature is determined using this theory. The effects of stirring, pressure and gravity on

the size of the clusters and melting point are discussed.
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1. Introduction

Thermodynamics has often been used to analyse different types of phase transformations

since the early days of Gibs. The field is based on strict mathematical relations in which

experimental data are inserted to allow the analysis of transformations over a large range of

variables. Thermodynamics is often used to analyse different solidification processes. The

heating and melting of metals are less complex than the solidification process; however, there

is no theory explaining the volume changes during melting nor the melting point.

Defining the melting point has been challenging for several years. In the late 19th century,

Southerland (Southerland, 1890) presented a hard-sphere model of melting and discussed it as

an effect of an increase in vibrational energy. Later, Lindemann (Lindemann, 1910) used the

melting points of different species to discuss the amplitudes and frequencies of vibrations

using Einstein’s theory of heat capacity. Gilvarry (Gilvarry, 1956) used the Lindemann´s

theory to determine the melting points of various species. The model states that when the

amplitude of the vibrations exceeds a certain value, the bonds between atoms are broken. The

value of the amplitude has been evaluated and is in the range of 10–20% of the atomic

distances and it varies for different species. Gilvarry’s analysis was later refined by Wallace

(Wallace 1991) who obtained a good description of the melting points of several metals using

this model.

Vibrations in the lattice cause strain. The effect of lattice strain on melting was discussed and

analysed by Brillouin (Brillouin, 1938) and Born (Born, 1919); however, these lines of

investigation were not followed up. Thermal expansion causes a strain in the lattice. This

strain energy is stored in the material which was analysed by Gruneisen (Gruneisen, 1912),

and is used to explain the difference between the heat capacity at constant volume, �� , and at

constant pressure, ��.

Most metals are strongly anisotropic and exhibit different properties along different

crystallographic directions. In particular, the shear modulus exhibits strong anisotropy. This

anisotropy, along with thermal expansion, causes stress in the lattice. These stresses were

analysed and related to the melting process. This analysis is based on the fact that the strain

energy is a result of the difference in thermal expansion in different crystallographic

directions. When the strain reached the plastic deformation threshold, melting of the species

begin. The melting temperature and volume expansion during melting will be analysed. and

determined theoretical. The heat of fusion and heat capacity of the liquid were analysed.
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2. Thermal expansion

The thermal expansion and heat capacity of metals have been experimentally investigated.

Figure 1a illustrates the heat capacity as a function of metal temperature. Figure 1b shows ��

of platinum up to its melting point. Figure 2 shows the principle of thermal expansion as a

function of temperature. These figures show that the curves are identical at low temperatures

and linear at temperatures above Debey’s temperature. At temperatures lower than the Debey

temperature, Gruneisen (Gruneisen, 1912) theoretically analysed the relationship between

heat capacity and thermal expansion and derived a linear relationship between the two.

Figure 1a. Heat capacity as a function of temperature.

Figure 1b. Heat capacity as a function of temperature for platinum.
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Figure 2. Thermal expansion as a function of temperature.

The expansion differed for different crystallographic directions and moduli. Such a difference

should give rise to deformation of the unit cells in the species. However, X-ray analysis

demonstrate that this is not the case. �� , and �� are equal below the Debye temperature, the

effect of anisotropy on the expansion begins first at temperatures above the Debye

temperature. Below this temperature, the atomic vibrations are not completely developed, and

the longest wavelength are not in use. Expansion in the most important crystallographic

directions and for cubic metals are expressed as follows:

��100
���/��� = �(� − �) (1)

��110
���/��� = 2

1
2� � − � (2)

��111
���/��� = 3

1
2�(� − �) (3)

where:

��100
���/���= thermal expansion in Body centred-(BCC) or Face centred-metals (FCC) in the

<100> direction.

��110
���= thermal expansion in BBC/FCC-metals in the <110> direction

��111
���/��� = thermal expansion in BBC/FCC-metals in the <111> direction

� = thermal expansion coefficient

� = temperature in Kelvin

� = Debye temperature
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3. Thermal strain and stress

Thermal expansion during heating accounts for a fraction of the work. Gryneisen used

traditional thermodynamics to describe energy stored in a material. He described this using

the following relation:

������ = 1
2

�2��
� � − � 2G (4)

where:

������ = thermal strain energy according to Gryneisen

β = volume expansion coefficient

��
� = molar volume at the Debye temperature.

G = shear modulus

Gryneisen assumed that this energy describes the difference between �� and �� , and the

relationship between them is expressed as follows:

�� − ��= �2��
� (� − �)�. (5)

The heat capacity can be easily determined experimentally, and the measured values can be

used to compare the measured and calculated stored energy according to equation x. At the

Debey temperature, �� and �� are both equal to 3R. From the Debey temperature to the

melting point, the measurements demonstrated a linear increase in ��, as shown in Figure 1b,

whereas �� is constant. The thermal energy, which is the difference between �� and ��, stored

in the species from the Debey temperature to the melting point, can now be expressed as

follows:

��ℎ����� = (��
� − ��)(�−�)2 2(��−�) (6)

where:

��ℎ����� = thermal energy at heating related to the measured value of ��

T= temperature, K

��= liquid temperature, K

��= heat capacity at the Debye temperature, J/mol
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��
� = heat capacity at melting point, J/mol

This relationship is based on the fact that �� increases linearly from the Debey temperature to

the melting point (Figure 1b), which is assumed to be the case for most metals. According to

the Gryneisens theoretical model, Equation 4 can be compared with the measured values

described in equation 6. tables 2 and 3 summarize the energies at the melting points of some

elements. The theory presented by Gryneisen provides a lower value of stored energy than

that calculated from the heat capacity measurements. This is particularly true for elements

with high stiffness. In the table, the calculations based on the shear modulus instead of the

elastic modulus indicate that the strain energy calculated using the Gryneisens relation does

not consider all the vibrations in the lattice, and it is most likely that the relations describe the

transverse vibrations in the lattice. It is interesting to note that the values of the energy are

close to the same at the melting point for most metals. The results listed in the table are used

for determining volume changes during melting and for further analysis of the strain and

stresses in the lattice.

TABLE 1. Physical constants.

Element Structure Volume

thermal

expansion

10-6

Debey

temperature

K

Melting

temperature

K

Molar volume

10-6

m3/mole

Na

K

Mo

Al

Ni

Cu

Pd

Pb

BCC

BCC

BCC

FCC

FCC

FCC

FCC

FCC

70.6

83

4.98

23.1

12.7

16.7

11.6

29

158

91

450

428

450

343

274

105

371

337

2890

934

1726

1356

1825

601

23.69

45.3

9.31

9.99

6.59

7.09

8.85

18.23
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TABLE 2. Strain energies related to bulk and shear modulus.

Element Bulk

modulus

1010 N/M2

Strain energy

due to bulk

modulus

Shear modulus

1010 N/M2

Strain energy due

to shear modulus

Na

K

Mo

Al

Ni

Cu

Pd

Pb

Mg

Zn

Zr

Sb

Si

6.9

3.2

33

7.36

19

13.35

18.44

4.38

1664

2713

2058

452

1479

1220

2377

743

13

2.6

8

4.6

4.4

0.54

810

159

622

420

567

92

TABLE 3. Strain energy at the melting point, based on measurements of heat capacity.

Element Heat Capacity

at melting

J/mol

Difference in

Heat capacity

Cp - Cv

Strain

Energy

Equation (4)

J/mol

Na

K

Mo

Al

Ni

31.93

32.26

52.35

33.69

36.15

6.99

7.3

27.30

8.75

11.22

1488

1796

66758

4427

14316
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Cu

Pd

Pb

Mg

Zn

Zr

Sb

Si

33.31

35.5

30.7

32.22

29.55

31.35

30.93

28.29

8.37

11.05

5.9

7.29

4.66

6.40

5.90

3.37

8478

17138

2926

3785

2395

3329

3112

1744

These relationships show that the strain energy is stored in the material during heating,

resulting in changes in the potential energy. The Gryneisens relation does not consider the

anisotropy of the material. As discussed previously, the expansion and modulus differ in

different crystallographic directions, resulting in strain and stress in the lattice. However,

owing to the symmetry of the lattice, a balance exists between these forces. The analysis will

be concentrated on FCC and BCC metals.

The thermal expansion coefficient, �, describes the increase in the unit cell size. The thermal

expansion was the lowest in the most densely packed direction. The thermal expansion is

larger in all other directions. The expansion work varies in different directions. The smallest

restriction of atom movements, which will start the melting process, will be in the Burgers

vector’s direction This analysis concentrated on determining the stress and strain difference

between the densely packed directions and the two next densely packed directions. The

difference was calculated from the Debey temperature up to the melting point and used to

discuss the melting temperature.

For BCC metals, the most densely packed plane is {110}, and the most densely packed

direction was <111>. This direction along with the <110> direction is analysed. The

difference in the expansion between the nearest-neighbour atoms in this direction is as follows:

��110/111
��� = ��110

���−��111
��� = (2

1
2 − 31/2/2)�(� − �) (7)

where:

��110/111
��� = length difference between the <110> and <111> direction in BCC lattice
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The thermal strain from the Debey temperature to the melting point for different BCC metals

was calculated for different elements using the above equations and is presented in Figure 4a.

The data used in the calculations are listed in Table 4.

TABLE 4. Shear modulus, strain, and stress related to the lattice for BCC-metals

Element Modulus

in <100> direction

1010 N/m2

Modulus in

<110>

direction

Modulus in <111>

direction 1010 N/m2

Stress

110/100

108

Strain

110/100

Na

K

Mo

0.59

0.26

10.9

0.07

0.045

14.05

0.24

0.115

13

1.1

2.1

0.082

0.0112

0.0067

This results in stress strains in this direction and compressive strains in the <111> direction. It

would be interesting to calculate the change in stress in this crystallographic direction. The

force or stress difference between two neighbouring atoms in the two directions is expressed

as follows:

��110/111
��� = (2

1
2�110

��� − 31/2/2�111
���)�(� − �) (8)

where:

��110/111
��� = stress difference in the most densely packed direction, <111>, the unit cell length,

and the unit cell diagonal in BCC metals.

�110
��� = shear modulus in the <110> direction in BCC metals

�111
��� = shear modulus in the <111> direction for BCC metals

In Table 4, the stress and strain differences for the same BCC metals are summarized. Notably,

the high stress inside the lattice is balanced by the lattice symmetry.

For the FCC metals the strain and the stress of interest, will be the <110> direction, which is

the direction of Burgers vector. The largest effect on the strain in that direction will be given

by the <100> direction all other directions have a much lower binding energy. The strain

differences in these two directions are expressed as follows:
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��100/110
��� = �100

��� − �110
��� = (1 − 1/21/2)�(� − �) (9)

where:

��100/110
��� = length difference between the <100> and <110> directions in FCC lattice

The stress difference is now given by the following relations for FCC metals

��100/110
��� = (�100

��� − 1/21/2�110
���)�(� − �) (10)

where:

��110/100
��� = stress difference between the mostly densely packed direction, <110>, and the

unit cell length for FCC metals.

�100
��� = shear modulus in the <100> direction for FCC metals

�110
��� = shear modulus in the <110> direction in FCC metals

Table 5 lists the strain and stress difference between the directions for some FCC metals. In

addition, it is evident that the stress inside the lattice is a percentage of the modulus. Notably,

the strains are almost equal for all the FCC metals

TABLE 5. Shear modulus, strain, and stress related to the lattice for FCC-metals

Element Modulus

in <100> direction

1010 N/m2

Modulus in

<110>

direction

Modulus in <111>

direction 1010 N/m2

Stress

110/100

108

Strain

110/100

Al

Ni

Cu

Pd

Pb

2.82

12.35

7.54

7.17

1.49

2.30

5.04

2.35

2.55

0.36

2.48

9.12

4.08

4.4

0.54

1.4

1.42

0.74

0.74

1.

0.0034

0.0047

0.0049

0.0053

0.0042
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4. Melting

The lattice vibrations differed in different crystallographic directions. The squared amplitude

provides a relationship that describes kinetic energy. According to the equipartition relation,

kinetic energy is equal to the potential energy given by the strain and stress in the lattice. The

calculations listed in Table 5 demonstrate that the strain at melting points is almost equal for

all FCC metals. For BCC metals, the strain is somewhat larger and has a larger difference;

however, they are still very similar. The strain provided a certain value of the amplitude. It

was concluded that the strain and amplitude reached certain values large enough to break the

lattice.

Atoms, with an amplitude large enough in the direction with the smallest activation energy for

flow, will start to move into other defects in the lattice. The plastic deformation of the lattice

begins, the ordered atomic structure changes to a more unordered state, and the species start to

melt. Most metals are plastically deformed by dislocations. Dislocations move along slip

planes, where the activation energy of motion is very low. It is well known that in close-

packed metals, the slip plane is the most densely packed {111} plane, and the slip direction

for dislocations is along the <110> direction; for bcc, the slip plane is {110} and the slip

direction is <111>. A previous study (Cottrell 1995) reported that the movement of

dislocations starts at a stress range of 0.001–0.0001 of the elastic modulus. Near the melting

point, all metals exhibited the same strain and energy values. These values were significantly

large that they were expected to induce plastic deformation. The stress values listed in Table 4

also indicate that the stresses were large enough such that plastic flow began.

Thus, it can be concluded that melting occurred at a certain internal strain owing to the stress

caused by thermal expansion. This strain corresponded to the amplitude in a certain direction.

At a certain value of these amplitudes or a certain stress, the movement of the atoms begins,

and two-dimensional (2D) clusters are formed inside the slip planes moving circularly. The

same was true for the tensile tests of single crystals. Additional energy necessary for complete

melting must be added to fully develop the clusters into three-dimensional (3D) clusters

consisting of 10–11 atoms in the group. However, the internal energy induced by the thermal

stress is released first. This energy corresponded to the energy related to the transverse wave

energy in the lattice because liquids cannot undergo strain and they exhibit no transverse

vibrations.
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5. Volume expansion

It is well known that most liquid metals have larger volume than respective solids. During

melting, the solid lattice was completely relaxed, and all the strains developed during thermal

expansion were used to decrease the bonds between atoms. A new unordered cluster structure

was formed, and additional energy was added to the system to rotate the clusters. The strain

energy stored in the solid and released during the transformation was used to change the

binding energy and increase the volume. The released strain energy is used in the work

necessary to expand the volume. The following relationship is used to determine the

expansion:

∆� = ( �������
�∗��

)1/2 (11)

where:

∆� = volume difference between liquid and solid states.

Test calculations were performed for some elements and the results were compared with the

measured values (Table 5). The strain energy values were obtained using the Gryneisen

equation, and a reasonably good agreement was observed. The calculations were based on the

bulk modulus of the solid. Part of the expansion occurred in a structure closer to the liquid,

and a reduction in the bulk modulus by a factor of less than ten gives close-to-perfect

agreement. The volume change corresponds to a change in the potential energy during

melting. The kinetic energy is provided by the rotation of the clusters, and according to

equipartition theories, is equal to the change in the potential energy or strain energy used for

the volume expansion.

6. Heat capacity

The internal vibrational energies and heat capacities of solids are reasonably well understood,

and the Einstein and Debye models are generally accepted theories that agree well with

extensive experimental results. This situation is completely different from that of the heat

capacity of liquids. The Einstein–Debye model is based on the anisotropy of the vibrations of

atoms in the lattice. Because liquids are isotropic, atoms can vibrate freely in a liquid, and the

temperatures reported by Einstein and Debye are significantly low. In contrast, solids exhibit

fully developed vibrational energies above the Debye temperature. Here, it is assumed that the



27

vibration energy is the same in the liquid and solid states at high temperatures and is

abbreviated as 3R.

Neither strain energy nor energy from the transverse waves affected the energy of the liquid.

The liquid consisted of clusters that rotate, and the total rotational energy was 3/2RT. As

previously discussed. The clusters rotate continuously in the liquid and provide a heat

capacity corresponding to 3/2R. Thus, it can be concluded that �� is equal to (4 ½)R (3R;

from vibrations and 3/2R; from rotations). Comparison of this with the measured values at the

melting point showed reasonably good agreement, as summarized in Table 6.

TABLE 6. Heat capacity of liquid. Volume changes during melting.

7. Discussion

Lindemann’s melting model is based on the fact that the lattice breaks down at a certain

amplitude of vibration. This model is frequently used and has been thoroughly analysed

theoretically by Wallace (Wallace, 1991).

The model presented in this study is based on Gruneisen’s theory, which states that vibrations

build up strain in the lattice during heating. The strain energy is stored in the lattice and varies

in different crystallographic directions. At a certain temperature, the strain supersedes the

level of plastic flow. Plastic deformation begins in the direction where the activation energy

for the flow is the least and the lattice is broken down. Deformations begin in the glide planes,

Element Heat Capacity

of liquid

J/mol

Fraction of

Volume change on Melting

Measured

Calculated

Volume change

Equation (11)

Na

Mo

Al

Ni

Cu

Pd

Pb

31.81

34.23

31.73

43.05

32.6

30.59

0.025

0.06

0.046

0.04

0.042

0.03

0.025

0.024

0.034

0.055

0,038

0.03
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and 2D clusters are formed. With the addition of heat, 3D clusters and cluster liquids were

formed.

The general problem of determining the internal vibrational energies and heat capacities of

liquids can be solved using the cluster model. A cluster is a permanent group of atoms held

together by interatomic forces, which are weaker than the forces between atoms in crystals but

are otherwise analogous. However, clusters do not exist permanently; they change over time,

and the distance between atoms changes during vibrations. As discussed by Fredriksson

(Fredriksson, 2005), this induces a rotational mechanism in the clusters. The increase in

energy with temperature was described by one vibrational term and one rotational term, and

the heat capacity was 41/2R (3R from the vibrations inside the clusters and 3/2R from the

rotation of the clusters).

The lattice collapsed during melting, and the bonds between the atoms weakened. The stored

strain energy was released and used to change the ordered solid state into a more unordered

liquid state. The released strain energy corresponded to the volume change during melting.

Thermal analysis of the large metal samples showed differences between the heat capacities

evaluated from the heating and cooling curves. This phenomenon can be explained as follows;

during heating, the strain energy accumulates in the metal and is released during melting.

During cooling from the melting point, no strain energy accumulates in the material. During

heating, the experiments yielded the �� , which denotes the value at a constant pressure.

Cooling yielded the �� , the heat capacity at a constant volume. This difference is given by

Gruneisen’s law (Gruneisen, 1910).

Anisotropy in a solid lattice provides the forces for the internal strain necessary to melt a

metal. However, several liquids transition to the amorphous state when cooled to a certain

temperature. The amorphous phase was mostly formed by clusters in the melt. During cooling,

the clusters were more stable and did not form crystals. Amorphous materials are typically

subjected to strain. This was likely due to the formation of clusters with interacting atomic

structures. This type of cluster formation might be very difficult for pure elements such as

metals. This explains why no pure metals were observed to form amorphous structures

directly in the liquid.

The melting point increased with pressure, following the classical thermodynamics described

by the Clausius–Clapeyron law. Based on the model described above, it can be concluded that,

with increasing pressure, the atoms come closer to each other, and it becomes more difficult
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for the atoms to start gliding between the densely packed planes. Pressure reduces the strain

forces between the atomic directions in the lattice, making it more difficult for the atoms

between the planes to rotate.

In the melting section, it was assumed that the atoms began to rotate during melting. Rotation

was assumed to occur because of the atomic clusters. Clusters contain different fractions of

atoms and their centre of mass is not necessarily at the spatial centre. Thus, gravity affects the

relative movement of different clusters, and rotation decreases with decreasing gravity.

Recently, a study on the effect of gravity on the heat of fusion and melting temperature was

reported (Fredriksson, 2022). As previously discussed, an increase in the vibration amplitude

resulted in the formation of larger clusters because of the decrease in the rotation rate with

decreasing gravity. Note that the viscosity of a liquid is influenced by gravity.

8. Concluding remarks

The strain caused by thermal expansion during heating induces a force that causes gliding

along the gliding direction between the two densely packed atomic planes. The strain

corresponds to a certain amplitude of the atoms in a certain direction, and provides the

possibility of moving in a direction where the activation energy for movement is sufficiently

small. 2D rotation begins and, with increasing temperature, the lattice breaks down into

clusters. The heavy point or electrically neutral point in the clusters was not equalised,

creating a rotation of the clusters. The rotational energy corresponds to fusion heat. The

volume change during melting was determined from the change in the binding energy of the

liquid corresponding to the strain energy. This change causes volume expansion during

melting.
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