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Abstract: Polymer melts are viscoelastic fluids and extremely complex fluids due to the existence of very

high density of polymer molecules. Polymer melt rheology aims to understand and quantify the viscous

and elastic properties of a polymer. In this work, the Integrated Radial Basis Function based Brownian

configuration fields (IRBF - BCF) is further developed to simulate the dynamic behaviours of polymer melt

flows. For the method, a polymer melt is governed by the macro-micro governing equations, which is

processed for the solution of the primitive variables (velocity and pressure fields, and the kinetic

behaviours of polymer melt for the flow’s stress tensor). In this paper, polymer melt is modelled using

"single-segment" reptation models or tube models where the polymer stress is averagely computed from

an ensemble of thousands of tube segments at each grid point. The use of a Cartesian grid-based 1D-

Integrated RBF (IRBF) approximation not only helps to avoid any complex meshing process but also to

ensure a fast convergence rate for the solution of macro-micro governing equations. Furthermore, the

use of BCF maintains the correlation of polymer stress fields in the simulation and hence enhances the

numerical stability of the method. As an illustration of the method, the start-up Couette polymer melt

flow and the polymer melt flow over a cylinder in a channel are investigated using four classical reptation

models including the Doi-Edwards, Curtiss-Bird, Reptating Rope and Double Reptation models.
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1. Introduction

Polymer melts and concentrated polymer solutions are extremely complex fluids due to the existence of

very high density of polymer molecules. The behaviours of solutions or molten polymers have become

increasingly relevant to their engineering processing techniques, requiring the development of efficient

simulation methods. In polymer melts, the motion of a molecule is very difficult because of the

movement restraint by other ones. Thus, a polymer chain only can move along its backbone and the

motion in the perpendicular direction to the backbone is mostly limited by surrounding polymers [1] .

Therefore, the motion of a molecule in an undiluted polymer system is assigned to a so-called reptational

motion [2]. In a publication on the use of reptation theory to model undiluted polymer systems, Doi and

Edwards assumed each polymer chain in a highly concentrated system reptates in a fictitious tube

created by its neighbouring molecules [3]–[5] . Based on the reptation concept, Curtiss and Bird (CB)

model uses an anisotropic friction tensor instead of using the "tube" constraint to describe the limit of

the sideways motion of polymers in the DE model [6]–[9]. Furthermore, other reptation based models for

the simulation of undiluted polymers such as Reptating Rope (RR) and Double Reptation (DR) models

were developed. While the former one considers the interaction between segments in each polymer

chain [10], [11] , the latter one takes into account of the effect of the constraint release mechanism [12].

Recently, Ottinger developed the theory of stochastic processes which relates to kinetic theoretical

models governed by a corresponding diffusion equation [13][14]. In this approach, the diffusion equation

is transformed into the stochastic differential equation whose physical meaning is completely maintained

while the numerical simulation method for kinetic models is very elegant.

Over the last two decades, the stochastic macro-micro methods have been contributing significantly into

the simulation of viscoelastic flows including dilute polymer solutions, liquid crystals and polymer melts.

Basically, the "macro-micro" term based on the fact that the governing conservation equations in

continuum mechanics are coupled with the coarse-grained molecular models of kinetic theory for the

solution of viscoelastic flow problems. Ottinger and co-workers proposed the ‘Calculation of Non-

Newtonian Flow: Finite Elements and Stochastic Simulation Technique’ (CONNFFESSIT) method [15]. One

of the noticeable characteristics of the CONNFFESSIT is that the polymer stress field is calculated from

the configuration distribution of coarse-grained molecules (dumbbells) instead of using a constitutive

equation. Due to this great advantage, the method has become a preferable choice for rheologists in

finding out the dynamics characteristics of polymer flows without the need of a closed form constitutive

equation [16]. The Eulerian approach of this method named Brownian configuration field (BCF) [17] uses

an ensemble of continuous configuration fields which are convected and deformed by the drift

components including the velocity gradient of the flows, elastic forces and the Brownian diffusion motion

in the simulation. In an alternative approach, Tran-Canh and Tran-Cong developed an RBF-based
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stochastic macro-micro mesh-free method using both Lagrangian and Eulerian approaches to simulate

dilute polymer solutions [18], [19]. Follow the approach, the domain under consideration is discretised by

a set of uniform or random collocation points instead of using an element-based method. Thus, it is more

flexible than the CONNFFESSIT for the solution of problems with complex geometries, moving boundary

and free surface. High performance computing with domain decomposition and parallel computation

was also applied efficiently in the method to deal with the large-scale feature of problems [20] . The

method has been further developed with the use of the integrated RBF (IRBF) [21], [22] in discretising

partial differential governing equations of the system to enhance the convergence rate as well as reduce

the white noise of the multiscale method [23]–[25] . In this paper, the IRBF-BCF-based coarse-grained

method [25]–[27] is further developed and extended to simulate polymer melt systems using reptation

models in transient flows.

The paper is organized as follows. The conservation equations of mass and momentum for a polymer

melt flow are presented in Section 2. Section 3 is a review of several key "single-segment" reptation

models used in the simulation. Also, the micro governing equations and the extra stress formula for each

model are presented. A general system of macro-micro governing equations is presented in section 4.

The present IRBF – BCF based stochastic multiscale method for the simulation of polymer melts is

detailed in section 5 together with several noticeable points of the present algorithm. The numerical

examples of the start-up Couette flow and the benchmark flow past a cylinder are illustrated in section 6.

Finally, the paper is closed by a conclusion in section 7.

2. Governing equations of a polymer melt flow

The flow of an incompressible and isothermal polymer melt is governed by the following conservation

equations of mass and momentum

0, u (1)

,p
D p
Dt

   
u τ (2)

Where  D
Dt

 is the material derivative and defined by       ,D
Dt t


  


u   u the velocity field; p

the hydrostatic pressure; ρ the polymer melt density; pτ the polymer stress tensor. It is worth noting that

since the melt density is very high, the motion of polymer molecules is strictly constrained from other

ones. Thus, the behaviour of polymer melt flow are mostly dominated by the viscous component rather

than inertia one and the motion equation of polymer melt flows is rewritten as

0pp  τ (3)
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Polymer melts behave like an inertialess flow without any contribution from solvent viscosity. However,

its numerical solution is very difficult to be obtained because the macro velocity field becomes oscillating

in the absence of the solvent viscosity. This instability in simulations of molten polymer system was

mentioned by [28] [29] . In their papers, a "numerical damping term" was added into the inertialess

momentum equation to make sure that a large change between two iterations cannot occur. So, the

momentum equation for molten polymer flow is now modified as [29]

 2
0 0,P Pp D     u u τ (4)

where DP is the numerical damping parameter in a polymer melt simulation; p, pτ and u0 the known

pressure, polymer stress and velocity fields, respectively, of the previous time step and u the unknown

current velocity field. It should be noted that when the velocity field achieves the stable state, that is

ou u , the "damping term" disappears and Eq. (4) returns its original inertialess momentum equation

for polymer melt Eq. (3).

In the macroscopic approach the system (1) and (4) is usually closed by a constitutive equation using

several models of polymer melts such as K-BKZ [30] [31]), PTT model [32] or Pom-Pom models [33] for

the polymer-contributed stress pτ . In contrast, pτ is here numerically determined via a coarse-grained

technique [1], [34] using reptation models. An overall microscopic procedure is described in the next

section.

3. Review on stochastic macro-micro method for polymer melt flows using reptation models

For this approach, the determination of polymer stress tensor is performed through two steps: (i) the

first step is to derive the diffusion equation or Fokker-Planck equation for the configurational distribution

function, which is the probability density of the polymer configuration, presented by the unit vector (P),

occurring at time (t); and (ii) the second step is to develop an expression for the stress tensor

corresponding to reptation models [34] . The stochastic simulation is based on the relationship between

the diffusion equation and the stochastic differential equation (SDE). In polymer kinetic theory, polymer

melts and concentrated polymer solutions are often represented in the form of tube or reptation models

[35]. For the reptation concept, the evolution of tube configurations is determined and the polymer melt

stress tensor is updated at each and every time step based on the obtained configurations of the tube

model. In this paper, "single-segment" tube models including the DE, CB, RR and DR models are

considered using BCF based stochastic simulation technique.

For this approach, two characteristics of the segment monitored by the unit vector P along the segment

and the position of the segment on the tube S, with S ∈[0, 1] where S = 0 and S = 1 are two ends of the

tube. It is worth noting that, the two characteristic quantities P and S of the stochastic process are
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governed by two separate differential equations. The stochastic and deterministic differential equations

and the polymer stress formula of reptation models are briefly presented in the next sub-sections.

3.1. Doi-Edwards and Curtiss-Bird models

The DE and CB models are based on the diffusion equation for a probability density function ψ (p, s, t) as

follows (Doi and Edwards, 1978a)

            2

2

ψ , ψ ,1: ψ , ,
t

T Ts,t s,t
t t s,t

s
             

p p
u p u ppp p

u
(5)

where p is a 3-D unit vector describing the direction of polymer at the position s (s ∈[0,1]);  Tu the

transposed velocity gradient tensor and λ a characteristic or reptation time constant. The boundary

condition for s = 0 and s = 1 is  ψ ,0,tp =  ψ ,1,tp =  -1 4 p where δ is the Dirac delta function.

The system of deterministic and stochastic differential equations of a stochastic process (P, S)

corresponding to the DE and CB models derived from Eq. (5) is given by ([29])

            , t , t , t dt , t , t dt,
T

d -     P x I PP u x P x u x P x (6a)

 2dS dW ,t


 (6b)

where I is the identity matrix or tensor; W(t) the 1-D time-dependent Wiener process; and P and S (S

∈[0,1]) are the unit vector and real value associated with p and s, respectively. Since two characteristics P

and S of the stochastic process are governed by two separate differential equations (6a) and (6b),

respectively, when S goes beyond the limits (S < 0 or S >1). A refection needs to be done as follows: S → -

S for S < 0, and S → (2 – S) for S >1. In such cases, the configuration field P's is randomly re-initialized.

The polymer stress tensor associated with the DE and CB models is given by

     1
1 : S 1 S
3

t T
p p BNn k T l          

τ I PP u PPPP (7)

where T is the absolute temperature; kB the Boltzmann constant; np the density of polymers; N the

number of beads of a Kramers chain; PP the statistical average of PP; and l1 (l1 ∈[0,1]) the link tension

coefficient [6],[7]. The stress tensor presented in Eq. (7) is for the DE model with l1 = 0.

3.2. Reptating Rope model

In the RR model, each polymer molecule is considered as an elastic rope moving in a constraining tube

and the interaction between segments within a single chain plays an important role in the simulation of
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polymer melt flows. Thus, two reptation processes (P, S) and (P', S') governed by Eqs. (6a)-(6b) are

simultaneously processed to simulate flows of molten polymer [14] . The stress tensor of the model is

determined as follows.

  1 ,t
3p p B pNn k T       

τ I PP τ (8)

where pτ ( t) is given by

   ' ' ' ' '1 T : S S S S 2SS .
2

T
p p Bn k        τ u PPPP (9)

It is be noted that S and S' are two separate segments within the same polymer chain; P and P' denote

the direction of the two segments S and S', respectively.

To consider the correlation between the two reptation processes, a length parameter δ (0 ≤ δ ≤1) is

introduced into the simulation [34] . If the difference |S - S'| is larger than δ, the processes have no

correlation and the directions of P and P' are independent with each other. Otherwise, their directions

are coincident.

3.3. Double Reptation model

In the DR model, a constraint release mechanism is introduced into the evolution of P. The system of

deterministic and stochastic differential equations is now given by [34].

       
2 2

2 2
2d , dt d t dt dt,

3 3
T l lt -  

 
          

P x I PP u P W P u P (10a)

 1
2dS dW ,t


 (10b)

where l2 is the real number related to the reptation coefficient l'; W2 the 3-D Wiener process describing

the effect of constraint release which was introduced into the DE and CB models. The corresponding

stress tensor for the DR model is determined as follows.

       1 3
1 : S 1 S : ,
3

T T
p p BNn k T l lt           

τ I PP u PPPP u PPPP (11)

where l3 is the dimensionless parameter defined from experimental or theoretical methods; and others

defined above. It is worth emphasising that the system Eq. 10.a&b can be considered as the general form

for classical reptation models.

4. A coupled macro-micro multiscale system for molten polymer flows using the reptation models
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Collecting the differential conservation equations Eq. (1) & (4), the BCF stochastic differential equations

of tube segments, the Brownian motion of the random walker and the stress tensor using the classical

reptation models yields a macro-microscopic multiscale system as follows,

0, u (12a)

 2
0 ,0p pD p    u u τ (12b)

       
2 2

2 2
2d , d d d d ,

3 3
T l lt - t t t t 

 
          

P x I PP u P W P u P (12c)

 1
2dS dW ,t


 (12d)

     1 3 4
1 : S 1 S : ,
3

T T
p p B pNn k T l l l            

τ I PP u PPPP u PPPP τ (12e)

All parameters in Eqs. (12)a, b, c, d and e were defined in previous sections. It is worth noting that the

system of macro-micro equations (12) is generally developed for all reptation models. Specifically, with l1

= l2 = l3 = l4 = 0 the equations are for the DE model; l2 = l3 = l4 = 0 for the CB model; l1 = l2 = l3 = 0 for the

RR model; and l4 =0 for the DR model.

Let Uc and Lc be the characteristic velocity and length, respectively; tc c cL U the macroscopic

characteristic time; 2τ p   the characteristic relaxation time of reptation models used in this work.

Dimensionless variables corresponding to pressure (p), stress tensor ( pτ ), velocity (u) and time (t) are

given by [29]

** * *

0 0

tp p , , , t
t

c c
p p

c c c c

L L
U U U 

   
uτ τ u (13)

where 0 is the zero-shear-rate viscosity. Other parameters were defined before. The dimensionless

Weissenberg numberWe is defined as 2

τ .
t
d c

c c

UWe
L




 

The stochastic multiscale system Eqs. (12a) - (12e) are rewritten in dimensionless form as

* * 0,  u (14a)

   2* * * * * * * *
0 0,P pD p     u u τ (14b)

     
2 2

* * * * * * * *2 2
2d , d d d d ,

33
T l lt - t t t

WeWe
           

P x I PP u P W P u P (14c)
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*
12

2dS dW ,
We



(14d)

     ** 2 * * 2 * * *
1 3 4

1 : S 1-S : ,
3

T T

p p B pNn k T l We l We l              
τ I PP u PPPP u PPPP τ

(14e)

Where *
pτ is given by

   ** 2 * * ' ' ' ' '1 : S+S S - S 2SS .
2

T

p p Bn k T We       τ u P P PP (15)

In Eqs. (14) - (15), the asterisk symbol (*) indicates the dimensionless form of variables. It should be

pointed out that [NnpkBT]* and [npkBT]* depict the dimensionless form of NnpkBT and npkBT (stress

dimension), respectively. Henceforth, all variables will be written in the dimensionless form and the

asterisk symbol will be removed for simplicity.

5. Present numerical method for polymer melts using reptation models

In this section, the spatial and temporal discretisations for the hybrid system of macro-micro governing

equations are presented in detail. In the macro procedure, the 1D-IRBF scheme is applied to spatially

discretise the conservation equations (14a) & (14b). For the micro procedure, the stochastic differential

equations (14c) & (14d) are advanced with respect to time using a simple Euler explicit scheme coupled

with IRBF scheme.

5.1. IRBF based projection method for solving the macroscopic governing equations

5.1.2. Review on 1D-IRBF based spatial discretisation scheme

At each time step, consider a second-order partial differential equation. On an x-gridline which consists

of Nx collocation points, the 1D-IRBF scheme is used to construct the expressions for the second

derivative, the first derivative and the original function u as follows ([27] [36]

     
2

[2]
2

1 1

u
G

x xN N

i i i
i

i
i

x x
x

w g w
x  


 

   (16a)

   [1]

1
1

u
G

xN

i i
i

x
x Cw

x 







 (16b)
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    1 2
[0]

1
u G

xN

i i
i

x,t w x C x C


  (16c)

where  1
xN

i iw


is the set of unknown RBF weights which need to be determined;    1

xN
i i
g x


is the set of

Multi-quadric RBFs (MQ-RBFs) which are directly calculated from the coordinates of collocation points;

   [1] [2]G Gi ix x dx  ,    [0] [1]G Gi ix x dx  and C1 and C2 are the unknown constants of integration.

The MQ-RBFs are given by

   2 2x =i i ig x c a  (17)

Where   1
xN

i ic


and   1
xN

i ia


are the sets of centres and RBF widths, respectively. The centres coincide with

the set of collocation point on the x-gridline.

A set of algebraic equations is obtained by applying equations (16a), (16b) and (16c) on all collocation

points   1
xN

i ix

,

2
[2]

2

ˆ ˆ
x

ˆ



u G w , (18a)

[1]ˆ ˆ ˆ
x




u G w , (18b)

[0]ˆˆ ˆu G w , (18c)

where  1 1 1 2ˆ , , , , ,
x

T

Nw w w C Cw  is a unknown vector consisting of the RBF weights and the two

constants of integration; the other matrices and vectors are given by (Nguyen et al., 2015)

        1 2 1 2ˆ , , , ,
x x

T T

N Nu x u x u x u u u u   (19a)

1 2
uˆ u u

x x x x
x

Tkk kk
N

k k k k

  
       

u  k = {1,2} (19b)

   
   

   

[2] [2]
1 1 1

[2] [2]
1 2 2[2]

[2] [2]
1

G G 0 0

G G 0 0ˆ

G G 0 0

x

x

x x x

N

N

N N N

x x

x x

x x

 
 
 

  
 
 
 

G





    



(19c)
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   
   

   

[1] [1]
1 1 1

[1] [1]
1 2 2[1]

[1] [1]
1

G G 1 0

G G 1 0ˆ

G G 1 0

x

x

x x x

N

N

N N N

x x

x x

x x

 
 
 

  
 
 
 

G





    



(19d)

   
   

   

[0] [0]
1 1 1 1

[0] [0]
1 2 2 2[0]

[0] [0]
1

G G 1

G G 1ˆ

G G 1

x

x

x x x x

N

N

N N N N

x x x

x x x

x x x

 
 
 

  
 
 
 

G





    



(19e)

The constants of integration are produced automatically from the IRBF-based approximation process.

Thus, in order to get extra information from the system, one can easily incorporate additional constraints

such as nodal derivative values into the algebraic equations as follows.

(20)

where ˆ ˆ ˆf Lw are the additional constraints. For the convenience, the network-weight space in the

above equation should be converted into the physical space as follows

1
ˆˆˆ ˆ

  
  

 

u
w C

f
(21)

where 1ˆ C is the conversion matrix. Based on the conversion in Eq. (21), the second and the first

derivatives of u at each collocation point are rewritten as follows.

2

2 22

u ˆx xkx


 


D u (22a)

1 1
u ˆx xkx


 


D u (22b)

where D1x and D2x are the known vectors of length Nx; and k1x and k2x are scalars determined by f̂ .

Applying Eqs. (22a) and (22b) on all collocation points on the x-grid-line yields

(23a)

(23b)
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Where 1
ˆ

xD and 2
ˆ

xD are the known matrices of dimension x xN N ; 1
ˆ

xk and 2
ˆ

xk are the known vectors

of length Nx.

A similar process is done for all collocation points on the y-gridline in order to obtain the values of the

second and the first order derivatives of u. Details can be found in [23].

5.1.2. Temporal discretisation technique using the projection method for solution of primitive variables in

macro procedure

The macroscopic governing equations (14a) - (14b) of a polymer melt is solved using the projection

method and the algorithm includes 3 steps as follows

 Step 1: An intermediate velocity u is calculated by solving Eq. (14b) with neglecting the pressure

gradient term and incompressibility.

 2

t

n
n n

p pD
   


u u u u τ (24)

where Δt is the time step; un and n
pτ the known velocity vector and stress tensor, respectively, in

the previous time step nt n t  . The Dirichlet boundary conditions nu u are imposed on

boundaries. Eq. (24) together with boundaries is solved using 1D-IRBF approximated scheme (see

section 5.1.1)

 Step 2: Solve the Poisson equation for the pseudo pressure ϕ,

2 1 ,
t

  


u (25)

Where ϕ relates to the pressure p by the expression:
2 2

2 2pp D t
x y
 

  
      

. The Neumann

boundary condition for the solution of Eq. (25) is determined by

 1 n

t
   


n n u u (26)

Where n is the outward normal vector of the boundary. It is seen that the mass conservation

equation (14a) is satisfied by the introduction of Eq. (25). The boundary value problem Eq. (25) is

solved using 1D-IRBF scheme.

 Step 3: Determine the velocity field un+1 at the current time step tn+1 = (n+1) Δt,

1 tn     u u (27)
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5.2.BCF-based simulation technique for the evolution of polymer melt configurations

5.2.1. BCF algorithm for the simulation of a reptation process

In the present BCF-IRBFN multiscale approach, the analysis domain is discretised by a set of N collocation

points instead of using a mesh of elements in the element based methods. At each collocation point,

generate set of Nf tube segments Pi(x, t) (i = 1, 2, 3, ..., Nf) attached to the point in the course of

simulation. Therefore, there are N sets of Nf tube segments in total on the whole domain. Pi (x, t) named

as a configuration field is defined as a set of the tube segments having the same index i on the domain or,

in other words, a configuration field consists of N tube segments indexed i on N collocation points. An

illustrative example with N = 9 and Nf = 2 is presented in Fig. 1.

Figure 1. A typical example of configuration fields with N = 9 and Nf = 2. N: Number of collocation points;

Nf: number of tube segments attached at each collocation point. Thus, there are two configuration fields:

P1(x, t) and P2(x, t).

At the initial time, Nf configuration fields are uniformly initiated on all collocation points

   0, 0 1, 2,3, ,i i fi N P x P  (28)

The initializing of a uniform tube configuration field yields an identical stress field on the whole domain,

which reduces the numerical instability of the stress field in the simulation. The evolution of the

configuration field is governed by the equation (14c) which is solved with the boundary condition

of  S 0,1i  . However, since each tube segment makes a random walk S governed by Eq. (14d) through

the reptation process, the initial correlation of the stress field is more likely to be degraded by the

stochastic process. In order to fix this issue van Heel et al., (1999) proposed that each configuration field

 , tiP x associates with only one random walk Si. When Si is reflected at a boundary, a random unit

vector is generated and assigned to all tube segments in the configuration field  , tiP x .

5.2.2 The Euler explicit method for temporal discretisation of the stochastic differential equations

The evolution of the polymer melt configuration in Eqs. (14c) and (14d) using the Euler explicit scheme is

given for the characteristic S by
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1
12

2 tS S W ,n n n
i i iWe
 
  (29)

where t is the time step; 1Sni
 and Sn

i values of S at two successive time steps  1t 1 tn n    and

t tn n  , respectively; 1W i a single Gaussian random number and i presents the configuration field as

described in the previous sub-section, and for the characteristic P by

   
2

1 2 2 ,
33

Tn n n n n n n n n n
i i i i i i i i

l t lt t t
WeWe

  
            

 
P P I P P u P W P u P (30)

where nu and nu are the velocity and velocity gradient at the time step n, respectively.

The Euler discretisation causes a significant error unless using sufficiently small time steps. Indeed, at

time step tn , if Sn is out of [0, 1], an observed reflection at boundaries is carried out. Otherwise, Sn

could go beyond the limit [0, 1] during the time period (tn = nΔt, tn+1 = (n+1)Δt). Thus, Ottinger (1989)

proposed a treatment at boundaries S = 0 and S = 1 in the simulation of polymer melt flows using an

unobserved reflection. The conditional probability to happen an unobserved reflection is given by

  2 1S S

t ,
n n
i iWe b b

urP e
  


 (31)

where b is a boundary at which an unobserved reflection happens and determined as

1

1

0 if S S 1,
1 if S S 1.

n n
i i
n n
i i

b
b





   
   

(32)

The unobserved reflection algorithm associated with the BCF approach for the treatment of stochastic

process (P, S) is presented in Fig. 2.

5.3.Algorithm of the present method

The algorithm of the present Integrated RBF-BCF based macro-micro multiscale method for different

reptation modelled polymer melts can be summarised as follows.

a) The simulation starts with Nf initial configurations of tube segments  0 , 1, 2, ,i fi NP  which are

generated and uniformly distributed on every collocation point for the microscopic procedure. A set

of Nf values of Si in [0, 1] is also initiated corresponding with 0
iP .
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b) The stress tensor at every-point on the considered domain is calculated from a set of Nf tube

segments assigned to each collocation point. A uniform polymer stress field is obtained at the first

iteration because the initial molecular configurations are identical.

c) The projection method, presented in Sections 5.1, is applied to solve the conservation equations

(14a) - (14b) for the new velocity and pressure fields.

d) The polymer configuration fields are processed by advancing the stochastic differential equations

(14d) and (14c) of reptation models with respect to time using the improved algorithm presented in

Fig. 2. The correlation of configurations is maintained at each time step because each configuration

field associates with only one random walk S.

Figure 2. The BCF based unobserved reflection algorithm for the treatment of stochastic process (P, S). (*)

nrand is a single uniformly distributed random number in the interval (0, 1)
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6. Numerical examples

In order to investigate and evaluate the present method for polymer melts, the start-up Couette flow and

the flow past a cylinder in a long channel of polymer melts modelled by different reptation models are

simulated. While results obtained by the simulation of the former problem are compared with those

performed by [34], the solutions of the latter problem are verified with those by [29] for the DE model.

6.1 Start-up Couette flow of polymer melts with reptation models

The start-up Couette flow problem is presented in Fig. 3. It consists of two parallel plates, where the top

plate is fixed while the bottom plate constantly moves with a velocity Uc = 1. The distance between two

plates is scaled as Lc = 1.

Figure 3. The start-up Couette flow problem. The collocation points and the velocity profile are

schematically presented.

From the characteristic of the Couette flow problem of polymer melts, a system of stochastic macro-

micro equations (12a, b, c, d, e) is developed as follows.
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Where  2 2 2W ,W ,Wx y z and  P , ,P Px y Z are 3 components of vectors W2 and P, respectively; ,τ p xx ,

,τ p yy , ,τ p zz and ,τ p xy the normal and shear stress components of pτ . ,τ p xx , ,τ p yy , ,τ p zz and ,τ p xy

are components of the stress contribution characterised by the RR model; and expressed by (see Eq. (15))
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where 'Px ,
'Py and

'Pz are three components of the unit segment P’; S’ the position of P’ in a rope model,

and  the correlation length parameter related to the link tension coefficient 1l and given by

11 (2 )l N  [34]

It is noted that while the Couette flow problem is a 1-D space, the micro configuration fields are

processed in 3-D one. Hence, the time discretisation of the macro-microscopic governing equations (33),

(34) and (35) using the numerical schemes presented in Section 5 yields

2 1 2
,1

2 2

τ
u +u u u nn n

p xyn n
P P

ddD t D t t
d d
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
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where t is the time step size for both macro and micro procedures, the superscripts (n+1) and n depict

the two successive time steps as tn+1 = (n+1) t and tn = n t , respectively. The numerical damping

parameter DP is defined as DP = G t , where G = NnpkBT is the rigidity modulus of the reptation model

([29]

6.1.1. Numerical results and discussion for the polymer melt flow using the DE model

For the simulation, polymer melt parameters include the fluid density ρ = 1, the zero-shear-rate viscosity

0 1DE  and the relaxation time λ = 50 and Weiseenberg number of the polymer melt flow is defined as

2 2

50 5c

c

UWe
L


 

   .

In this work, this problem, studied by [37] using the CONNFFESSIT approach, is simulated with the time

step size  = 0.001t for both macro and micro procedures, the number of collocation points Ny = 21 and

the number of configuration fields Nf = 2500 at each collocation point. Results by the present method

shows a very good agreement with those by [37] using finer meshes (40 elements) and finer time step

( t = 0.0001), evidenced by the following details.

 Fig. 4 depicts the evolution of the velocity profile in the considered domain: at the very early

time (t = 0.25), the plate motion causes a perturbation on the velocity field at the region near the

plate. Then, the momentum caused by the plate motion is successively transferred to next layers

of polymer melt along the y-direction with a propagating speed c given by ([37]

2 012 ,
DE

c 


 (41)

where 0 / 60DE
p BNn k T  is the zero-shear-rate viscosity for the DE model and other

parameters are defined as before. As a result, the polymer layer near the wall (see Fig. 3 - top

plate) starts moving after t = 2 of the flow's start-up (see Fig. 4 at t = 2) using Eq. (41). The

velocity then gradually decreases until reaching a stable state.
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Fig. 4 also shows the existence of two separate shear regions at the stable state of a polymer

melt Couette flow: (i) one area dominates most of the flow field (  y 0.1,1 ) with very low

velocity gradient and (ii) a narrow one near the moving plate (  y 0, 0.1 ) is influenced by a very

high velocity gradient (see Fig. 5). This characteristic distinguishes polymer melt from dilute

solutions in a shear flow as stated in [38][37][39][40].

 Due to the existence of two different shear rate zones in the flow, the velocity evolution at

different locations are very distinct as shown in Fig. 6 where the evolution of velocity at locations

y = 0.05, 0.1, 0.4 and 0.8 is presented. To be more specific, the velocity in the high shear-rate

region at location y = 0.05 is significantly higher than ones in the low shear-rate zone at locations

y = 0.1, 0.4 and 0.8. Furthermore, the overshoot of the velocity is always observed before

reaching a stable value.

Figure 4. The start-up Couette flow simulation of polymer melt using the DE model: The evolution of

velocity profile on whole domain.

Figure 5. The start-up Couette flow simulation of polymer melt using the DE model: The velocity gradient

with respect to time in the high shear-rate region at location y = 0.05 and the low shear-rate region at

location y = 0.1, 0.4 and 0.8.
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Figure 6. The start-up Couette flow simulation of polymer melt using the DE model: The evolution of

velocity at locations y = 0.05, 0.1, 0.4 and 0.8

Figure 7. The start-up Couette flow simulation of polymer melt using the DE model: a) The evolution of

the shear stress; and b) the first and second normal stress difference at in the high-shear-rate zone at

location y = 0.05, 0.1, 0.4 and 0.8.

 The evolution of the shear stress and the first normal stress difference at locations y = 0.05, 0.1,

0.4 and 0.8 is shown in Figs. 7a & 7b, respectively. Results show that the shear stress is the nearly

same at different positions (Fig. 7a) whereas the first normal stress difference is very distinct in

the two shear rate areas (Fig. 7b). This typical behaviour of polymer melt in the start-up Couette

flow was confirmed in [38] . Furthermore, the overshoot also appears in the evolution of shear

stress at any location of the domain (Fig. 7a) whereas it only appears for the first normal stress

difference in the low-shear-rate region (Fig. 7b). Results on the stresses' evolution in the high and

low-shear-rate regions highlighted in Fig. 8 show that the second normal stress difference is

always negative in both high and low-shear-rate regions, which agrees with experimental

observations presented in [41] & [42].
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Figure 8. The start-up Couette flow simulation of polymer melt using the DE model: Shear stress and the

first and second normal stress differences in the high-shear-rate zone at location y = 0.05 (Fig. 8a) and in

the low-shear-rate zone at location y = 0.4 (Fig. 8b).

6.1.2. Numerical simulation of the flows using the DE, CB, RR and DR models

This section presents the use of the present macro-micro multiscale method to simulate the Couette flow

of polymer melt modelled by several other reptation models including the CB, RR and DR to find possible

differences by introducing several physical interactions of polymer chains. For instant, the interaction

between segments in a single chain by the correlation parameter Δ and the link tension parameter l1 tis

considered for the RR model whereas the DR model focuses on the constraint release mechanism with

the parameters l1, l2 and l3.

As presented in Section 4, a polymer melt of the classical reptation models is governed by the system of

macro-micro equations (14a)-(14e) with l1 = l2 = l3 = l4= 0 for the DE model; l2 = l3 = l4 = 0 for the CB model;

l1 = l2 = l3 = 0 for the RR model; and l4 = 0 for the DR model. Hence, the start-up Couette flow of polymer

melt is successively simulated using the CB, RR, DR models whose parameters are given and derived from

those of the DE model in Section 6.1.1.

The simulating cases together with parameters given in Table 1 where the modulus of rigidity G (G =

NnpkBT, see the last column) is determined for the DE, CB, RR and DR models, respectively as follows [34]

0
1 ,
60

DE
p BNn k T  (42a)

0 1
1 21 ,
60 3

CB
p Bl Nn k T    

 
(42b)

 2 2 3
0 1

1 21 4 6 4 ,
60 3

RR
p Bl Nn k T           

(42c)
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Table 1. Simulation of the start-up Couette flow of polymer melt using the DE, CB, RR, DR models.

Parameters of 16 different cases including six cases of the CB model (CBT1 -> CBT6), six cases of the RR

model (RRT1 -> RRT6) and three cases of the DR model (DRT1 -> DRT3) are derived from the DE model as λ =

50, ηo = 1 and ł3 = 0; G = NnpkBT: the rigidity modulus of models. Parameters were defined in previous

sections.

Cases Model l1 L2 Δ G
1 DE 0.00 0 0 1.200
2 CBT1 0.01 0 0 1.192
3 CBT2 0.05 0 0 1.161
4 CBT3 0.10 0 0 1.125
5 CBT4 0.25 0 0 1.029
6 CBT5 0.50 0 0 0.900
7 CBT6 1.00 0 0 0.720
8 RRT1 0.01 0 0 1.200
9 RRT2 0.01 0 0.10 1.200
10 RRT3 0.01 0 0.25 1.199
11 RRT4 0.01 0 0.50 1.196
12 RRT5 0.01 0 0.75 1.194
13 RRT6 0.01 0 1 1.192
14 DRT1 0.00 0.25 0 1.274
15 DRT2 0.00 0.50 0 1.495
16 DRT3 0.00 0.75 0 1.862

Fig. 9 shows the velocity profiles of the Couette flow simulation of CB modelled polymer melts using the

present macro-micro multiscale method for a range of values of  1 0.01,1l  as presented in Table 1

(column 3). The results confirm that the coefficient l1 reflects the appearance of "two different shear rate

regions" which is a distinctive feature of a polymer melt system. Numerical results show that when the

value of 1l increases, the steady velocity of polymer melt system reaches a Newtonian flow (l1 = 0.5 and 1,

Fig. 9). Therefore, an efficiently small value of l1 (l1 = 0.01 in this simulation) is necessary to characterise

this typical behaviour of polymer melt systems as confirmed by [34].
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Figure 9. The start-up Couette flow of CB modelled polymer melt using the present multiscale method:

The steady velocity profiles of the flow with a range of values of the link tension coefficient l1 = {0.01,

0.05, 0.1, 0.25, 0.5, 1}. Other parameters of the simulation are given in Section 7.1.1 and in Table 1.

For the RR-modelled polymer melt, the start-up Couette flow is investigated using the present method

with the link tension coefficient l1 of 0.01 and a range of correlation parameter values Δ {0, 0.1, 0.25,

0.5, 0.75, 1} (table 1, column 5). The velocity profile by the simulation for all cases of the flow in Fig. 10

depicts that for the RR modelled polymer melt, the correlation parameter only impacts the shape of the

high-shear-rate zone in a shear flow. Indeed, the velocity gradient increases with the increment of Δ.

Figure 10. The start-up Couette flow of RR modelled polymer melt: The simulating steady velocity profiles

of the flow with a range of values of the correlation length parameter Δ = {0, 0.1, 0.25, 0.5, 0.75, 1} and

the link tension coefficient l1 = 0.01 using the present method. Other parameters of the simulation are

given in Section 7.1.1 and in Table 1.

For the DR modelled polymer melt flows governed by Eqs. (14a)-(14e) with l1 = l3 = 0, the problem is

examined with a range of the parameter l2  {0.25, 0.5, 0.75} (table 1, column 4). The simulating velocity

profile by Fig. 11 depicts that the high-shear-rate zone is enlarged with the increment of l2.
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Figure 11. The start-up Couette flow of polymer melt using the DR model: The simulating steady velocity

profiles of the flow with l2 = {0.25, 0.5, 1} and l1 = l3 = 0 using the present method. Other parameters of

the simulation are given in Section 7.1.1 and in Table 1.

Finally, the simulation of the start-up Couette flow of polymer melt modelled by four reptation models:

DE, CBT1, RRT4 and DRT1, whose parameters are given in table 1, is carried out using the present method in

order to possibly highlight typical differences using different models. Numerical results are observed as

follows,

 The velocity profiles at the steady state of the flow using the four models presented in Fig.12a

show that while there is not any significant change in the low-shear-rate zone, the velocity

gradient is stiffer in the order of the RR, CB, DE and DR models in the high-shear-rate zone.

Furthermore, the evolution of velocity at location y = 0.5 is also investigated in the high-shear-

rate zone (Fig. 12b). Results show that an overshoot is observed in all models at 3t  and the

velocity then reached nearly the same steady value after different elapsed times as 11, 12, 13

and 18 for the DE, DR, CB and RR models, respectively. In order words, the velocity of the flow

needs much more time to reach a steady state for the RR model.

 Last but not least, the evolution of shear stress ( τ xy ) and the first normal stress difference 1ψ at

location y = 0.5 for the four models are shown in Figs. 13. Results confirm that unlike the velocity

field, there is no significant difference of the stresses by the simulation using the four reptation

models.
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Figure 12. The start-up Couette flow of polymer melt using reptation models DE, CB, RR and DR: a) The

steady velocity profiles of the flow; and b) the evolution of the velocity at location y = 0.5 using the

present method.

Figure 13. The start-up Couette flow of polymer melt modelled by DE, CB, RR and DR reptation models: a)

The evolution of the shear stress ( xy ); and b) the evolution of the first normal stress difference ( 1ψ ) at

the location y = 0.5 using the present multiscale method.

6.2. Flow of DE modelled polymer melt past a circular cylinder in a channel

A polymer melt flow past a cylinder in a channel is described in Fig. 14 is simulated using the present

method. Owing to the geometrical symmetry, a half of the flow's domain is considered, where L = 30 is

the total length of the channel; LU = 15 and LD = 15 the upstream and downstream lengths, respectively;

Rc = 1 the cylinder's radius and H = 2 a half of height of the channel. The benchmark problem was studied

by [29] using the BCF coupled finite element method (FEM).
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Figure 14. The flow past a circular cylinder in a channel: geometrical parameters of the problem.

6.2.1. Governing equations and boundary conditions

The stochastic macro-micro governing equations Eq. (12a) - Eq. (12e) of the problem in 2-D Cartesian

coordinate are developed as follows.
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where parameters and variables are defined in previous sections. The boundary conditions are

determined correspondingly to ones by [29] as
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 At the inlet AB , the fully developed velocity profile u is set up. The velocity profile is pre-

determined by simulating the corresponding Poiseuille flow through a long channel using the

same polymer melt model with a parabolic velocity profile  2 2u 1.5 1 y H  and v = 0 where

u and v are the velocity components along the x and y directions, respectively, and other

parameters are defined as before. Meanwhile the boundary condition for pressure is calculated

at each time step as presented in section 5.1.2.

 At the outlet CD , the fully developed velocity profile u is also set up as presented for the inlet, v

= 0 and pressure p = 0.

 On the channel wall BC and the cylinder wall FE , the non-slip boundary conditions for the

velocity: u = v = 0 are set up whereas the boundary condition of pressure is calculated at each

time step as presented in section 5.1.2.

 On the centreline AF and ED , the symmetrical boundary condition of the velocity field is

applied as u 0y   and v = 0 and the Neumann boundary condition for pressure is determined

at each time step as mentioned in section 5.1.2.

A pseudo time method combined with the projection technique presented in section 5.1 is used to

temporally discretise Eqs. (44) whereas the explicit time discretisation method is applied to Eqs. (46).

These discretisations of Eqs. (44) and Eqs. (46) yield, respectively
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The velocity and velocity gradient in the micro process governed by Eqs. (49) are known and given by the

solution of Eqs. (48) of the macro process.

For the present method, the time step size is chosen Δt = 0.001 as used in [29]. The parameters of fluid

include Nf = 2000, λ = 1, We =λ/π2, 0 1DE  and the rigidity modulus G and damping parameter DP for the

DE model which are determined, respectively as follows.

0

0

60 60, 0.06,
DE

p B P DE

G tG Nn k T D
 


     (50)

where the parameters are defined as before.

6.2.2. Numerical results and discussion

Firstly, a grid convergence study is performed using 3 non-uniform Cartesian grids of collocation points

whose parameters are detailed in Table 2 and Fig. 15. The three grids are labelled as M1, M2 and M3

where M1 is the coarsest and M3 is the finest.

Table 2. The flow past a circular cylinder in a channel. The parameters of the three grids of collocation

points M1, M2 and M3. Δx1: the grid spacing in x-direction    15, 5 5,15x     , Δx2

   5, 2 2,5x     , Δx3    2, 1 1, 2x     ; Δy: the grid spacing in y-direction    0, 2 5,15y   ,

Ncyn: the number of collocation points on the cylinder's surface and N: the number of collocation points

on the whole domain.

Grid
1x 1x 1x 1x Ncyn N

M1 0.5 0.3 0.1 0.1 17 1649

M2 0.5 0.3 0.1 0.1 25 1991

M3 0.4 0.2 0.0625 0.0625 33 3761
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Figure 15. The schematic non-uniform Cartesian grids of collocation points at the region around the

cylinder for 3 cases M1 (a), M2 (b) and M3 (b) as detailed in table 2.

The numerical experiment by the present method shows that the convergence of the velocity field

reached in the simulation of the problem using the 3 grids M1, M2 and M3 (see Fig. 16).

Figure 16. The flow past a circular cylinder in a channel: The convergence measure of the velocity field

with grid refinement.

The results by the present method confirm a very good agreement with those by [29] using FEM with the

same time step (Δt = 0.001). Details are presented as follows.

 The velocity profile in the gap between the wall and the cylinder is shown in Fig. 17. The

numerical result of Newtonian fluid included in the figure shows the difference between polymer

melt and Newtonian flows. A symmetrical parabolic shape is for the Newtonian profile whereas

an asymmetrical bell-shaped profile is observed in the simulation of polymer melt flow. That can
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be explained as the velocity gradient at the region near the cylinder wall is steeper than one near

the channel wall for the polymer melt flows as observed in Fig. 18 whereas it is linear for the

Newtonian fluid.

Results by Fig. 17 also show that the maximum values of the velocity profiles at the middle point

of the gap are approximate 2.9 and 2.7 for the Newtonian and the polymer melt flows using

mesh M3, respectively. The obtained results are in excellent agreement with those stated in Figs.

6 and 7 by [29].

Furthermore, the distribution of velocity field by contours in the considered domain depict a

smooth change of the velocity components u, v around the cylinder in Figs. 19a and 19b,

respectively and the velocity field describing the flow movement around the cylinder in Fig. 19c.


Figure 17. The flow past a cylinder in a channel: The velocity profile in the gap between the wall and the

cylinder for polymer melts with the 3 grids (M1, M2 and M3) of collocations and for Newtonian fluid

using M3.



- 55 -

Figure 18. The flow past a cylinder in a channel: The velocity gradient /u y  in the gap between the

wall and the cylinder for polymer melts with the 3 grids of collocations (M1, M2 and M3) and for

Newtonian fluid using grid of collocations M3.

Figure 19. The flow past a cylinder in a channel using Mesh M3: (a) the contour value of velocity

component u; (b) the contour value of velocity component v; and (c) the distribution of the velocity

around the cylinder.
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Figure 20. The flow past a cylinder in a channel: (a) the distribution of P Px x ; (b) the distribution

of P Px y ; and (c) the distribution of P Py y of the orientation tensor PP along the centreline y = 0

and the cylinder's surface.

 Since the distribution of stresses of polymer melt flows in the considered domain are determined

based on the orientation tensor PP as shown by Eqs. (47), the distribution of the components

of PP along the centreline and the cylinder's surface is studied and presented in Figs. 20(a),

20(b) and 20(c) for P Px x , P Px y , P Py y , respectively with the three different grids of

collocation points on the range of  1,1x  . The simulating results by the present method

confirmed a very good agreement with those presented in [29] using the BCF-finite element

method with a finer mesh. In addition, the contours with 20 levels of the P Px x , P Px y , P Py y

components around the cylinder by the present method are also presented in Figs. 21(a), (b) and

(c), respectively. One of them, the P Px x -contours studied by a benchmark paper of [29] (Fig. 8)

are in very good agreement with results described in Fig. 21(a) of this work.
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Figure 21. The flow past a cylinder in a channel using Mesh M3: The contour levels of the xx (a), xy (b)

and yy (c) components of the tensor PP around the cylinder.

 The pressure distribution on the cylinder's surface is also studied and simulated using our

present multiscale method with three meshes M1, M2 and M3. The results by Fig. 22 show that

the pressure gradually increases from the starting point E (θ = 0) to the end point F (θ = π) of the

cylinder (see Fig. 14) where θ is the angle defining the position of the collocation point on the

cylinder's surface. Also, the pressure distribution on the cylinder's surface corresponding to the

Newtonian fluid is simulated and included in the figure for the comparison. Results by Fig. 22

show that the pressure gradient of the Newtonian fluid is steeper than one of the polymer melts.

Indeed, starting from nearly the same pressure (p ~ 9) within  θ 0, / 4 , the pressure of the

Newtonian flow increases to reach a maximum value of p = 59 versus p = 49 for the polymer

melts at θ = π.
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Figure 22. The flow past a cylinder in a channel: The distribution of pressure on the cylinder's surface for

polymer melts with the 3 grids of collocations (M1, M2 and M3) and for Newtonian fluid using grid of

collocations M3.

 It is worth noting that together with pressure, it is necessary to determine the drag force per unit

length while polymer melt moves over a cylinder in a channel. The force of the fluid exerts on the

cylinder is given by [43]

 , ,
0

= -2 -  + τ cosθ τ sin θ dθ D p xx p xy r R
F p R




   . (51)

The dimensionless drag force per a unit length K is calculated as 0/ DE
D cK F U , where cU is

the characteristic velocity and other parameters were defined before. cU and 0
DE are chosen as

1 in this work.

The evolution of the dimensionless drag force K using three grids of collocation points M1, M2

and M3 by Fig. 23 shows the drag force K increases quickly and reaches stable value at 93 for the

polymer melt flow. The results by the present method are in very good agreement with one by

van Heel et al. [29], except a small fluctuation observed for the use of the coarse grid M1.

Figure 23. The flow past a cylinder in a channel: The evolution of the drag force per unit length exerted

on the cylinder for polymer melts using three grids of collocation points M1, M2 and M3.

Finally, it is worth noting that the present Integrated RBF based stochastic multiscale simulation method

enhances the computation time compared with the previous stochastic simulation ones (for example, the

CONNFFESSIT approach [37] ) by possibly using coarse grids of collocation points and/or a bigger time

step size (0.001 instead of 0.0001, see section 6.1) owing to the high order RBF approximation functions.
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7. Conclusions

The IRBF-BCF based stochastic multiscale method is further developed and investigated to simulate

polymer melt flows using different reptation models in this paper. For our present method, the macro

procedure governed by conservation equations is solved for the primitive variables including the velocity

and pressure using 1D-IRBFN scheme, whereas the IRBF coupled BCF coarse-grained approach is used to

determine polymer stress matrix from the obtained stochastic processes associated with a reptation

model. The numerical results by the simulation of the start-up planar Couette flow and specially the

benchmark flow past a cylinder in a channel of polymer melts modelled by different reptation models, for

example, the DE, CB, RR and DR models presented in Section 6 confirm the method efficiency on both the

enhanced convergence rate of the solution and the stability of a stochastic process.
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