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Abstract

An active form-grinding method is proposed to obtain excellent and stable contact

performance of cylindrical gears by designing modification forms based on a predesigned

controllable second-order transmission error function. First of all, a predesigned second-order

transmission error polynomial function is assigned to the gear drive. Mathematical models of

modified tooth surfaces that can describe their local deviation and ease-off topography are

then obtained with the predesigned second-order transmission error function. Moreover, the

form-grinding wheel’s profile equation, the coordinate transformation matrix during form-

grinding, and settings of computer numerical control form-grinding programs for this active

design method can be determined. This approach is ultimately conducted on three involute

cylindrical gear pairs to demonstrate its feasibility and effectiveness.
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1 Introduction

Involute gears, spur and helical ones, are widely applied in gearboxes, planetary gear trains,

transmissions and many other industrial applications [1-2]. Evolution of the design and

manufacture of such gears by hobbing, shaping, and grinding has been impressive. Geometry,

design and manufacture of helical gears was the subject of research represented in the works

[3-4] and many others.

Many works are concerned with evaluation of gear contact behavior to improve quality of

gear transmission. Kolivand and Kahraman [5] presented a computationally efficient load

distribution model for both face milled and face hobbed hypoid gears produced by format and

generate process. Fan et al. [6] described a new method to correct tooth flank form errors,

utilizing the universal motions and the universal generation model for spiral bevel and hypoid

gears. Simon [7] presented a method for the determining an optimal polynomial function for

applying the variations to the machine tool setting used in cutting the pinion such that the

transmission error of a mismatched spiral bevel gear pair can be reduced. Stadtfeld and Gaiser

[8] described the generality of the face hobbing cutting process and applied it to spiral bevel

gears. This method is proposed for the direct determination of relations between the pitch

cone angles and spiral angles in hypoid gears with face hobbed teeth of uniform depth. Kato

and Kubo [9] developed a calculation procedure to determine the tooth bearing and

transmission errors of the gears obtained from cutters with different diameter and to clarify

the quantitative effects of the cutter diameter on the gear performance.

A methodology was proposed to formate the conjugated pinion tooth flank with a predesigned

fourth-order transmission error and path of contact by Wang and Fong [10]. A form-grinding

method for cyliderical gears was developed based on a fourth-order TE model [11], and a

error sensitivity analysis method was proposed to decribe deviations of contact patterns of

tooth surfaces due to misalignments. A real tooth surface This error sensitivity analysis

method was used to evaluate mesging performance of a hypoid gear pair in [12]. In order to

analyze manufacturing error on tooth surfaces, a modeling approach of digital real tooth

surfaces for hypoid gears was developed in [13] based on non-geometric-feature segmentation

algorithm. Artoni [14] presented a method to applying corrective machine tool settings to

restore the designed functional properties of hypoid gears which contain tooth deviations from

theoretical tooth flank during the machining process. Liu et al. [15] proposed an approach to

figure out the machine tool settings of a pinion by reverse engineering without having known

the theoretical tooth surfaces and the corresponding machine tool settings. Gosselin et al. [16]
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presented a method to correct machine tool settings to match a theoretical tooth surface to real

tooth surface, which is established by the measurement data. Simon [17] proposed a method

to investigate of the tooth contact properties of hypoid gears with different manufacture errors

and misalignments.

Application of modern CNC for form grinding method is introduced new concepts in design

and formed of involute gears with modifications. The study describes a new function-oriented

form grinding method based on a predesigned second-order transmission error function. The

proposed method is based on the kinematical modeling of the basic machine settings and

motions of a virtual generating rack cutter.

This work focus on the design of gear drives with reduced noise is based on application of a

predesigned parabolic function of transmission errors. A predesigned parabolic function of

transmission errors absorbs linear functions of transmission errors caused by misalignment,

and it is achieved the precontrol on its dynamic performance.

2 Functions of Second-Order Transmission Errors

It has been already recognized by researchers that the main source of vibration and noise are

transmission errors [1-3]. Reduction of transmission errors and controlling the shape of the

function of transmission errors are able to improve the dynamic performance of gear meshing

and reduce vibration.

Conventionally, the function of transmission errors can be represented as

(0) (0)1
2 2 2 1 1

2

( ) ( )z
z

         \* MERGEFORMAT (1)

where φ1 and φ2 are the real rotation angles of the driving gear and driven gear, respectively,

z1 and z2 are the number of teeth for the driving gear and driven gear, respectively and φ1(0)

and φ2(0) are the theoretical rotation angles for the driving gear and driven gear, respectively.

Eq. (1) is a periodic function with period T=2π/z1. A predesigned second-order parabolic

function of transmission error is applied to reduce or eliminate gear noise and increase gear

strength for forming grinding method of involute gears. As shown in Figure.1, the second-

order polynomial function is represented as
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2 0 1 1 2 1b b b       XY \* MERGEFORMAT (2)
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where X = [b0 b1 b2]T and Y = [1 φ1 φ12]T. As shown in Figure 1, the geometry of the second-

order polynomial function is represented as

1 2= + /2,   T       \* MERGEFORMAT (3)

1 2= /2,   T        \* MERGEFORMAT (4)

1 2= ,   =0    \* MERGEFORMAT (5)

where ε and δ are parameters that can be used to control the shape of the second-order

polynomial function. Equations (3) - (5) are applied to control the geometric characters of the

second-order polynomial function of transmission error Δφ2. And Eqs. (3)-(5) can be

represented in the following matrix form:

AX B \* MERGEFORMAT (6)

where
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The coefficient vector X can be solved as follows:

1X A B \* MERGEFORMAT (7)

Substituting Eq. (7) into Eq. (2) yields

1 T
2

  A BY \* MERGEFORMAT (8)

By substituting Eq. (8) into Eq. (1), the rotation angle of the driven gear φ2 can be represented

as

1 T 1
2 1

2

z
z

  A BY \* MERGEFORMAT (9)

Equation (9) is the constraint equation of the rotation angle of the driving gear φ1 and the

rotation angle of the driven gear φ2. As long as the rotation angles φ1 and φ2 are restrained by

Eq. (9), the gear pair is able to reproduce the predesigned second-order polynomial function

of transmission error Δφ2.
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Figure 1. The second-order function of transmission error.

3 Model of the Hypothetical Generator

3.1 Hypothetical generating rack cutter

Based on the theory of gearing, the involute tooth face can be generated by a rack cutter with

a planar tooth face. As shown in Figure 2, the generating rack cutter translates horizontally

when the generated gear rotates about a fixed axis. The reference circle of the gear rolls

without sliding with respect to the pitch line of the rack cutter. Coordinate systems Sa(xa, ya,

za) and Sb(xb, yb, zb) are applied to connect rigidly to the generating rack cutter. Sc(xc, yc, zc) is

the movable coordinate system. The position vector and the unit normal vector of the

hypothetical generating rack cutter are represented as follows:
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where uc and lc are surface coordinates of the generating rack cutter blade, β is the spiral

angle, αn is the pressure angle, am is half of the face width, dp is position of the parabolic pole,

and ac is parabolic modification coefficient of the cutter tooth profile.
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(a) (b)

Figure 2. Coordinate systems of the hypothetical generating rack cutter.

3.2 Mathematical model of the tooth surface of the driving gear

A general mathematical model for the generation of tooth surfaces of the driving gear is

adopted as shown in Figure 3. Coordinate systems Sm(xm, ym, zm) and Sp(xp, yp, zp) are rigidly

attached to work piece that is the driving gear in this study. In the coordinate system Sp, the

driving gear rotates φ1, the generating rack cutter moves r1φ1, where r1 is the radius of base

circle of the driving gear.

Based on the theory of gearing, the necessary condition for the existence of an envelope to the

rack cutter surface can be determined as

c c c c c c

cx cy cz

X x Y y Z z  
 

n n n
\* MERGEFORMAT (12)

where Xc, Yc, and Zc are coordinates of the axis I-I in coordinate system Sc on the generating

rack cutter, xc, yc, and zc are coordinates of the contact point in coordinate system Sc, and ncx,

ncy, and ncz are normal vectors of the contact point.

The surface Σp of the generated driving gear tooth surface is represented as follows

1( , ) ( ) ( , )p c c pc c c cu l u lr M r \* MERGEFORMAT (13)

1( , ) ( ) ( , )p c c pc c c cu l u ln L n \* MERGEFORMAT (14)

where Mpc and Lpc are transformation matrixes from coordinate Sc to Sp.
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Figure 3. The coordinate systems of the driving gear.

3.3 Mathematical model of the tooth surface of the driven gear

When the driving gear rotates with the angular ϕ1, the driven gear is constraint to rotate with

the angular ϕ2. ϕ1 and ϕ2 are restrained by Eq.(9).

As shown in Figure 4, the tooth surface Σp of the driving gear is regarded as the generating

surface of the tooth surface Σg of the driven gear. In Sg, Σp forms a family of surfaces the

position vector of which can be determined by

     
     

2 1

2 1

r , M r ,
n , L n ,
g c gp p c c

g c gp p c c

u u l
u u l
 
 

 
 

\* MERGEFORMAT (15)

where Mgp and Lgp are transformation matrixes from coordinate Sp to Sg.

Figure 4. The coordinate systems of the driven gear.
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4 Determination of the Grinding Wheel with the Second Order

Transmission Error

In the form grinding progress of helical gears, the contact line between the surface Σw of the

grinding wheel and the surface of the workpiece (the gear) is a space spiral curve. The

formation of the forming grinding wheel surface Σw is achieved by the contact line rotary

around the grinding wheel axis. Therefore, according to the relationship of the relative

position and movement between the grinding wheel and the gear, the coordinate system Sw(xw,

yw, zw) is established, as shown in Figure 5.

4.1 Coordinate systems of the form grinding wheel

As shown in Figure 5, coordinate systems Sw(xw, yw, zw) and Sg(xg, yg, zg) rigidly connect the

form grinding wheel and the driven gear, respectively; Zg-axis is the rotation axis of the

driven gear, and Zw-axis is the rotation axis of the from grinding wheel, a is the center

distance, Σ is the included angle between Zg-axis and Zw-axis. The transformation relationship

between coordinate Sg and Sw is represented as

Figure 5. Coordinate systems of the form grinding wheel.
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\* MERGEFORMAT (16)
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4.2 The mathematical model of the form grinding wheel

The position that the helicoid grinding wheel surface and the workpiece tangent contact is

along the contact line. Therefore, based on the theory of gearing, the necessary constraint to

normal vector ng(uc, ϕ2) and the relative velocity vgw is

2( , ) v 0gwg cu   n \* MERGEFORMAT (17)

where
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       
     

n
n n L

n
\* MERGEFORMAT (18)

In the coordinate system Sw, projections of the angular velocity ω of form grinding wheel

rotation on coordinate axis are

 Tω 0 sin cos     \* MERGEFORMAT (19)

With Eqs.(16)-(19), one has

( cot ) n ( ) (n cot n ) 0yg zgxgg g gZ Y X a         

\* MERGEFORMAT (20)

There are two parameters in Eq.(20), uc and ϕ2. Based on Newton-Raphson Method, we

generate the discrete points recursively by choosing step size  uc,  ϕ2 respectively. The

section profile of the form grinding wheel is formed by these discrete points, as shown in

Figure 6.

Figure 6. Section profile of the form grinding wheel.
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5 Case Study

In order to verify the consistency between actual transmission error and predesigned

transmission error of the form grinding gear. Three examples of numerical analysis are shown

in Table 1.

Table 1. Settings of parameters for numerical analysis.

Parameters Example 1 Example 2 Example 3

z1 31 31 31

z2 81 81 81

mn / (mm) 3 3 3

αn / (°) 20 20 20

β / (°) 15 15 15

ε / (″) 3.873 2.502 2.476

T / (rad) 0.203 0.203 0.203

δ / (rad) 0.000 0.000 0.000

Table 2. The modification coefficients

Parameters ac1 ac2

Case 1 0.002 0.000

Case 2 0.0025 -0.0015

Case 3 0.002 -0.001

Based on second-order predesigned of involute gear transmission error method, the

modification coefficients of the numerical analysis can be obtained, as shown in Table 2. And

according to the forming algorithm for section profile of grinding wheel, we can complete

forming grinding process of examples in Table 1, as shown in Figure 7.
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Figure 7. The form grinding testing.

Figure 8. The comparison for transmission errors of Case 1.

Figure 9. The comparison for transmission errors of Case 2.
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Figure 10. The comparison for transmission errors of Case 3.

According to the above method, the numerical analysis results are shown in Figures 8-10. The

maximum error among the predesigned transmission error curve and the numerical analysis

results is 1.19 ". Through the predesigned transmission error, we can realize to contain

complex modification request of involute gear design, and achieving the precontrol on its

dynamic performance.

6 Conclusions

In principle, the function-oriented form grinding method for involute gears proposed in this

paper that based on the predesigned second-order transmission error, is not limited to the

involute tooth profile, and is applicable to all types of gears. Because of the light load cases

can reflect more gear noise problems. Especially, involute gears with time-varying meshing

stiffness are difficult to adjust amount of modification. Therefore, on the basis of the obtained

results, the following conclusions can be made:

1. By the predesigned second-order transmission error function, it is realized with very

complex modification conditions forming grinding involute gear tooth modification process

parameters adjustment.

2. Through a hypothetical generative algorithm by a generating rack, the mathematical model

of the section profile of the form grinding wheel is realized based on the second-order

transmission error.

3. The advantage of application of a predesigned parabolic function of transmission errors is

confirmed by numerical analysis of the transmission errors caused by typical function of

transmission errors of gear drives. This can be achieved ahead of the manufacturing process

of a designed gear drive.
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