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abstract

This study applies the anharmonic correlated Einstein model to the spectra of extended x-ray

absorption fine structure (EXAFS) to study how pressure and temperature affect the

cumulants and thermodynamic parameters of copper, silver, and their alloys. The parameters

for the effective interatomic potential are derived by using the second-cumulant

approximation, which includes contributions from all nearest neighbors of the absorbing and

scattering atoms. The calculated thermodynamic parameters and effective anharmonic

potential are consistent with those obtained experimentally and from other theories. The

results prove that the anharmonicity of the thermal vibration of atoms is an essential

contribution to the thermodynamic parameters and the EXAFS second cumulant at high

temperature for ambient pressures up to 14 GPa. Increasing pressure reduces the EXAFS

amplitude by reducing the atomic mean-square relative displacement (MSRD), which

characterizes the EXAFS second cumulant (i.e., the Debye–Waller factor).
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I. Introduction

Extended x-ray absorption fine-structure spectroscopy has developed into a powerful probe

of atomic structure and the high-temperature thermodynamics of substances due to

anharmonicity.1, 2 Numerous methods have been developed to investigate how temperature

affects the EXAFS cumulants, such as path-integral effective-potential theory,3 the statistical

moment method,4 the ratio method,5 the Debye model,6 the Einstein model,7 and the

anharmonic correlated Einstein model (ACEM).8 Several groups have applied ACEM theory

to EXAFS to study how the doping ratio affects the dependence of thermodynamic properties

on temperature.9–12 However, no reports yet exist that discuss how the thermodynamic

parameters and the second cumulants depend on temperature and pressure for copper (Cu)

doped with silver (Ag) for the ratio in the alloy CuAg72. The CuAg alloy contains elemental

Cu and Ag, with the Ag atoms referred to as the substitution atoms and the Cu atoms referred

to as the host atoms. The formula CuAg72 indicates a ratio of 72% Ag and 28% Cu (± 1%)

atoms in the alloy and is also referred to as CuSil or UNS P0772. It is a eutectic alloy

primarily used for vacuum brazing (note CuSil; not to be confused with Cusil-ABA, which

has the composition 63.0% Ag, 35.25% Cu, 1.75% Ti).9

This study uses the effective anharmonic potential in ACEM theory applied to EXAFS8 to

investigate how the cumulants that contain the second cumulant [or Debye–Waller factor

(DWF)] depend on temperature when subjected to high pressure. In addition, the study

investigates the thermodynamic parameters, effective force constants, thermal expansion

coefficient, correlated Einstein frequency, and correlated Einstein temperature, and how these

parameters of the CuAg72 alloy depend on temperature under ambient pressure and high

pressure. The numerical results are compared with experimental results and with the results

of other studies.

II. Formalism

The EXAFS oscillation function is usually derived by using the cumulant-expansion

approach, which contains the second cumulant 2 (or DWF) corresponding to the parallel
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mean-square relative displacement (MSRD).5 The second cumulant is an important factor in

the analysis by EXAFS because the thermal lattice vibrations strongly influence the EXAFS

amplitudes through the function 222 ke  .1,13 One method to investigate how temperature

affects the EXAFS cumulant is to combine ACEM with EXAFS,8 which gives results that are

consistent with experiments. The ACEM uses the effective interaction potential

  ...xkxk
2
1xV 3

3eff
2

effE  , (1)

where effk is effective spring force constant, eff3k is the effective cubic parameter that

produces the anharmonicity that leads to asymmetry in the pair-distribution function,

0rrx  is the net departure of the instantaneous bond length between intermediate atoms

from the equilibrium length or from the location of the minimum interaction potential, r is the

spontaneous bond length between absorbing and backscattering atoms, and r0 is the

equilibrium value of r. The ACEM is determined by the vibration of single pairs of atoms,

with 1M and 2M being the mass of the absorber and backscattering atom, respectively. The

oscillation of the absorber and backscattering atom depends on their neighbors, so the

interaction potential in Eq. (1) is written in the form of an anharmonic effective interaction

potential )x(VE :
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where V(x) describes the interaction potential between absorbing and backscattering atoms,

the sum i is over absorber ( 1i  ) and backscattering ( 2i  ) atoms, the sum j is over all

nearest neighbors whose contributions are described by the term V(x), excluding the absorber

and backscattering atoms themselves, iM is the atomic mass of atom i,  is the reduced

atomic mass, and R̂ is the unit vector for the bond. Therefore, this effective pair potential

describes not only the interaction between absorber and backscattering atoms but also how

the nearest-neighbor atoms affect such interactions, which is the difference between the

effective potential used herein and the single-pair potential14 and single-bond potential,7

which only consider each pair of immediate-neighboring atoms [i.e., only V(x)] without

considering the remaining terms on the right-hand side of Eq. (2). The atomic vibration is

calculated by using a quantum statistical approach with an approximate quasi-harmonic
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vibration in which the system Hamiltonian includes a harmonic term 0H with respect to the

equilibrium at a given temperature plus an anharmonic perturbation:

)a(V)a(VHH EE0  . (3)

Here, the interaction potential )a(VE and anharmonic perturbation )a(VE are

3
eff3

2
effE ak2/ak)a(V  , 2
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eff3effE yky)ak3k()a(V  ,

where a is the thermal expansion coefficient with 0y,axy,xa  . Equation (3)

leads to the ACEM interactive potential

)y(Vyk)a(V)x(V E
2

effEE  . (4)

The ACEM interactive potential is the anharmonic potential of Morse pairs, which is

appropriate for approximating the structure of cubic crystals. The Morse anharmonic

potential is

   xx2)rr()rr(2 e2eDe2eD)r(V 00    , (5)

where  0rV)eV(D  is the dissociation energy and 12 (Å−1) is the width of the potential.

We expand Eq. (5) in x to obtain the third-order term that describes approximately the cubic

structure of doped crystals. At the same time assume, when only considering crystals with

orderly doping, the lattice is not corrupted, and we designate Cu as the host atom with

indicator 1 and Ag as the substituted atom with indicator 2. The ACEM uses the Morse

anharmonic pair potential to describe the pair interaction between atoms:

   ...xx1D)e2e(DxV 33
12
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xx2
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For simplicity, we approximate the parameters of the Morse potential in Eq. (6) at a given

temperature by ,)DD/()DD(,DcDcD 21
2
22

2
1112221112   where 21 c,c are the

doping ratios (%) of the alloy. We calculate the sums in the second term of Eq. (2) and

compare the results with the terms of Eqs. (1) and (6) to obtain the effective force constant
2
1212eff D5k  of the effective anharmonic potential. At ambient pressure, the effective force

constant is 4/D23k 2
1212

0
eff  .

To derive analytical expressions for the cumulants containing the second cumulant, we use

perturbation theory.13 Atomic vibrations are quantized as phonons, and the phonon-phonon



39

interaction leads to anharmonicity, with the phonon vibration frequency (i.e., the dispersion

relation) taking the form

  0012
0
eff a/q,2/qasin/k2)q(   , (7)

where 0a is the lattice constant at temperature T , and q is the phonon wave number. The

correlated Einstein frequency and correlated Einstein temperature at ambient pressure are

respectively
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By using these results in first-order thermodynamic perturbation theory,12 we obtain the

following cumulants under ambient-pressure conditions:

- The first cumulant or net thermal expansion is
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- The second cumulant (DWF) or MSRD is
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- The third cumulant is
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- The thermal-expansion coefficient of the doped metal is
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- The anharmonic factor at ambient-pressure is
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The second cumulant 2 contribution to the MSRD determining the anharmonic contribution

to the EXAFS amplitude, )1( , )3( contribution to the phase shift of the EXAFS due to

anharmonicity. Note that )1( , )3( , and T contain the anharmonicity parameter eff3k and
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only exist when this parameter is included, which is why )1( , )3( , and T must be

considered when calculating the anharmonic effects in EXAFS. Under ambient-pressure

conditions, the factor  is proportional to the temperature and inversely proportional to the

shell radius, which is consistent with the anharmonicity obtained in experimental research

into catalysis15 if R is considered as the particle radius. In Eqs. (9)–(13),  T/expz 0
E is

the heat function, which describes how the cumulants, the thermal expansion coefficient, and

the anharmonic factor depend on the absolute temperature T and pressure applied to the

doped metals.

III. Results and discussion

For Cu-Cu and Ag-Ag pure metals and the alloy CuAg72, Table I gives the calculated and

experimental16 parameters of the Morse potential, 12D and 12 , respectively.

TABLE I. Parameter of Morse potential for pure metals and their crystalline alloy.

Crystal )eV(D12 )eV(D .texp
12 )Å( 1

12
 )Å( 1.Exp

12


Cu-Cu 0.3429 0.3528 1.3588 1.4072

Ag-Ag 0.3323 0.3253 1.3690 1.3535

CuAg72 0.3381 1.3634

Substituting the parameters 12D and 12 from Table I into Eq. (8), with the Boltzmann

constant 15
B eVÅ10617.8k  and Planck’s constant s.eV105822.6 16 , we calculate

the values of the local force constant, Einstein frequency, and Einstein temperature at

ambient pressures up to 14 GPa for Cu-Cu, Ag-Ag, and CuAg72 crystals. Table II lists the

results, where .texp
effk is the local force constant deduced from results of Okube et al.17,18

TABLE II. Effective parameters describing anharmonicity.

Crystal )eVA(k 2
eff )eVA(k 2.Expt

eff )eVA(k 20
eff )Hz10( 13

E )Hz10( 130
E )K(E )K(0E

Cu-Cu 3.1655 3.4931 3.6403 3.0889 4.7710 236 364

Ag-Ag 3.1139 2.9797 3.5810 3.3933 3.6585 176 279
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CuAg72 3.1423 3.6138 2.6874 4.3623 207 333

Inserting the thermodynamic parameters from Tables I and II into Eqs. (1) and (9)–(13) gives

the effective anharmonic potential )x(VE as a function of the departure x from equilibrium

bond length (see Fig. 1). The cumulants )n()n( , including the second cumulant or DWF,

depends on the absolute temperature T and are influenced by pressure up to 14 GPa (see Figs.

2–5). Figure 6 shows the thermal expansion coefficient )p,T( as a function of absolute

temperature T and for various ambient pressures. Finally, Fig. 7 shows the anharmonic factor

)p,T( .

Figure 1 compares the calculated anharmonic effective Morse potential )(xVE for the CuAg72

alloy at 300 K, 0.1 MPa (solid lines) with results from the theories of Okube et al.18 (dotted

curve) and Okube and Yoshiasa17 (dashed curve) at the same temperature and pressure. The

curves calculated for the Morse potential align closely with those obtained from the theories

of Refs. [17,18], indicating that the coefficients keff, k3eff, and 0
effk calculated by using the

ACEM (given in Table II) are in reasonable agreement with measurements and the

calculations of Okube et al. for CuAg72 alloy.

Figure 2 shows our calculation of the second cumulant or DWF as a function of doping ratio

(DR) at 300 K and an ambient pressure of 14 GPa for the crystalline alloy CuAg72. These

results illustrate that, for DRs of 0% to 50% and from 50% to 100%, the DWF values are

FIG. 1. Anharmonic effective potential VE(x) of
CuAg72 as a function of departure x from
equilibrium bond length. The result of the
present theory is compared with results from
other theories.

FIG. 2. Second cumulant 2σ (DWF) for
CuAg72 as a function of doping ratio
DR.
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linear in DR (with different slopes in each range). For DR = 100% (i.e., where the Ag content

is 0% and the Cu content is 100%) the calculated values are in good agreement with

experimental values determined at 300 K (see symbols *, □).19–21 However, there are

breakpoints in the lines at 50% DR, which means that we do not have ordered atoms at DR =

50%. Thus, the Cu-Ag alloy does not form an ordered phase at the molar composition of 1:1

(i.e., the alloy CuAg50 does not exist).

This result is consistent with the findings of Kraut and Stern.10 As the ambient pressure

increases up to 14 GPa, the DWF decreases. For 0% Ag, 100% Cu, and 101 Kpa - normal

atmospheric pressure (14 GPa) ambient pressure, DWF = 0.2330 Å2 (0.2241 Å2). With 100%

Ag, 0% Cu, and 101 Kpa (14 GPa) ambient pressure, DWF = 0.1796 Å2 (0.1718 Å2). At the

breakpoints, DWF = 0.2005 Å2 and 0.1928 Å2 at 101 Kpa and 14 GPa ambient pressure,

respectively. Thus, increasing the ambient pressure decreases the EXAFS amplitude by

reducing the atomic mean-square relative displacement that characterizes the EXAFS second

cumulant (or DWF).

Figure 3 shows the calculated first cumulant or net thermal expansion coefficient )1( as a

function of temperature for Cu, Ag, and CuAg72 at normal pressure and at ambient pressures

up to 14 GPa. At approximately the zero point with 101 Kpa normal atmospheric pressure

and 14 GPa ambient pressure, 0027.0)1(  and 0047.0)1(  Å, respectively. At 700 K,

0184.0)1(  Å and 0201.0)1(  Å, respectively. Thus, as the pressure increases, the net

thermal expansion coefficient also increases, but at low temperature the net thermal

FIG. 3. First cumulant as a function of
temperature for Cu, Ag, and CuAg72 at
normal pressure and at 14 GPa ambient
pressure.

FIG. 4. Second cumulant (DWF) as a function
of absolute temperature for Cu, Ag, and
CuAg72 at 14 GPa ambient pressure.
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expansion coefficient deviates more, meaning that the pressure causing the net thermal

expansion is more pronounced at low temperatures.

Figure 4 shows the calculated second cumulant )2( or DWF as a function of absolute

temperature for Cu-Cu, Ag-Ag, and CuAg72 and compares these results with experimental

results19,20 obtained at ambient pressure. The calculated values for the first cumulant (Fig. 3)

and the DWF (Fig. 4) for different DRs and for an ambient pressure up to 14 GPa are

proportional to temperature above about 100 K.

Consider the change in the second cumulant (DWF) for different temperatures: At

approximately 0 K, the DWF increases from )2( = 0.0026 Å2 to )2( = 0.0046 Å2 as the

pressure increases from normal atmospheric pressure up to 14 GPa. At 700 K, the DWF

increases from )2( = 0.018 Å2 to )2( = 0.0197 Å2 as the pressure increases from normal

atmospheric pressure up to 14 GPa. At low temperatures, the DWF changes more than at

high temperatures because the change in ambient pressure from 101 Kpa to 14 GPa causes a

greater relative mean-square displacement of atoms (MSRD or second cumulant )2( ) at low

temperature than at high temperature. Furthermore, Fig. 4 shows that, from room temperature

upward, the DWF remains almost constant as the ambient pressure increases, so the ambient

pressure has a stronger effect at low temperatures. At low temperatures, )2( is very small

and contains zero-point contributions that result from an asymmetry of the atomic interaction

potential of these crystals due to anharmonicity.

Figure 5 shows the calculated third

cumulant )3( for Cu-Cu, Ag-Ag, and

CuAg72 alloy as a function of absolute

FIG. 5. Third cumulant for Cu, Ag, and
CuAg72 as a function of absolute
temperature and for various ambient
pressures.

FIG. 6. Net thermal expansion coefficient for
Cu, Ag, and CuAg72 as a function of absolute
temperature and for various ambient
pressures.
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temperature and at normal atmospheric pressure of 101 KPa and at an ambient pressure of 14

GPa. The calculated results for Cu-Cu and Ag-Ag are consistent with experimental results19–

21 at normal atmospheric pressure. At 0 K, for both 101 Kpa and 14 GPa ambient pressure,

the third cumulant )3( ≈ 0 but, as the temperature increases, )3( for CuAg72 have value

decrease when pressure increase: at 700 K, )3( = 0.0026 Å3 at 101 Kpa and 0.0023Å3 at 14

GPa. Thus, high ambient pressure reduces the asymmetry of the atomic interaction potential

at higher temperatures.

The results shown in Figs. 3–5 for CuAg72 at all pressures are very similar to the results for

Cu-Cu, demonstrating the consistency between theoretical and experimental results. The

calculated first three cumulants contain zero-point contributions at low temperatures, even if

the results at high pressure are consistent with established theories.1,7,8,13

Figure 6 shows our calculated thermal expansion coefficient T for Cu-Cu, Ag-Ag, and

CuAg72 as a function of absolute temperature with effects of ambient pressures. The

calculated results for Cu-Cu are consistent with experimental results19 at normal atmospheric

pressure; however, the result for CuAg72 is deflected from 70 to 400 K when the ambient

pressure is 14 GPa, which shows that, due to effect at high pressure, the thermal expansion

coefficient T for CuAg72 is significantly reduced in the room-temperature range. However,

the thermal expansion coefficient for CuAg72(T) and CuAg72 (T,p) changes very little at

high pressure when the temperature exceeds 700 K.

The graph of T has the form of the specific heat VC even at ambient pressure, thus

reflecting the fundamental principle of solid-state theory, which states that thermal expansion

results from anharmonic effects and is proportional to the specific heat VC .13 Our calculated

values of T approach the constant value 0
T at high temperatures and vanish exponentially

with T/E at low temperatures, which is consistent with the results of previous research.20,21
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FIG. 7. Anharmonic factor for CuAg72 as a function of absolute temperature and for different

ambient pressures.

Figure 7 shows the anharmonic factor )T( as a function of absolute temperature and for

different ambient pressures for CuAg72. For both normal and high pressure (14 GPa), )T(

is negligibly small at low temperature and increases strongly when the temperature exceeds

the Einstein temperature. At normal atmospheric pressure, E = 176 K for Ag, E = 236 K

for Cu, and E = 207 K for CuAg72. At high pressure 0
E = 279 K for Ag, 0

E = 364 K for Cu

and 0
E = 333 K for CuAg72. The results shown in Fig. 7 are consistent with experimental

results,19 which demonstrates that our calculations for CuAg72 are appropriate for normal

atmospheric pressure. At temperatures above the Einstein temperature and for increasing

ambient pressure, the anharmonic factor )T(0 is less than at normal pressure [ )T( ], in

other words, )T(0 = 0.3125 )T( at 100 K, )T(0 = 0.7439 )T( at 300 K, and )T(0 =

0.898 )T( at 700 K. Thus, the anharmonic factor describes the temperature dependence of

the anharmonic effects in EXAFS theory under influence of high ambient pressure.

IV. Conclusions

In this work, based on quantum statistical theory and by applying the effective anharmonic

correlated Einstein model to extended x-ray absorption fine structure spectra, we derive

analytical expressions for the temperature dependence of the cumulants and thermodynamic

parameters of crystalline Cu, Ag, and their alloy CuAg72 at ambient pressures up to 14 GPa.

The expressions for the second cumulant, the thermodynamic parameters, the effective force

constant, the correlated Einstein frequency, and the correlated Einstein temperature for Cu,
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Ag, and CuAg72 all agree with the known properties for these quantities. The expressions for

calculations involving orderly doped crystals have forms similar to those for pure crystals.

Figures 1–7 show the cumulants and thermodynamic parameters for doped crystals as

functions of absolute temperature and for ambient pressure. The results reflect the effect of

anharmonicity in EXAFS and are consistent with results obtained in previous studies. The

calculated results are also consistent with experimental results of other studies of Cu and Ag,

and the results for the CuAg72 alloy are coherent. Thus, the method developed herein, which

is based on applying the ACEM to EXAFS, is appropriate for calculating and analyzing the

cumulant and thermodynamic properties of doped crystals.
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