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Abstract

This paper firstly proves that the generalized syllogism HMO-3 is valid according to the

relevant definitions, facts and rules, and then shows that at least the other 21 valid generalized

syllogisms can be deduced from the syllogism HMO-3 with the common generalized

quantifiers ‘most’ and ‘at most half of the’. The main conclusion of this paper is that there are

reducible relationships between/among valid generalized syllogisms. Since all conclusions are

obtained by means of deductive reasoning, therefore the results are consistent. The reason

why valid generalized syllogisms can be mutually reduced is that: Aristotelian quantifiers can

be mutually defined each other, and so can the four generalized quantifiers studied in this

paper. This study provides the theoretical support for knowledge mining in artificial

intelligence.
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1. Introduction

It is commonly known that syllogism reasoning has a long history and is widely applied in human life.

There are many types of syllogisms in natural language, for instance, Aristotelian syllogisms (Moss, 2010;

Xiaojun, 2018; Cheng, 2022; Yijiang, 2023), Aristotelian modal syllogisms (Johnson, 1989; Thom, 1996;

Malink, 2006; Xiaojun, 2020; Cheng, 2023), generalized syllogisms (Endrullis and Moss, 2015; Liheng,

2024), and generalized modal syllogisms (Jing and Xiaojun, 2023), etc.

There is little literature on generalized syllogisms, and this paper mainly studies knowledge mining based

on the validity of the generalized syllogisms with the generalized quantifiers ‘most’ and ‘at most half of

the’. More specifically, this paper demonstrates the reducible relationships between/among valid common

generalized syllogisms, and reveals the process of knowledge representation and knowledge reasoning for

this type syllogisms in natural language.

2. Knowledge Representation for Generalized Syllogisms

In this paper, let k, r and v be lexical variables, and their domain is denoted by D. The sets composed of k, r

and v are respectively K, R, and V. ‘K∩V’ represents the cardinal of the intersection of sets K and V. Let ,

,  and  be well-formed formulas (shorted as wff). Q stands for a quantifier, Q for its outer negative

quantifier and Q for its inner one. ‘ =def’ states that  can be defined by . ‘⊢’ means that  is provable.

‘iff’ represents if and only if. ‘’, ‘’, ‘’, ‘’, and ‘’ are the common symbols in classical first-order

logic (Hamilton, 1978).

The generalized syllogisms studied in this paper involves the four Aristotelian quantifiers: no, some, all,

and not all, and the following four generalized quantifiers: most, at most half of the, fewer than half of the,

and at least half of the. The eight propositions are composed of the above eight quantifiers as follows: no(b,

x), some(b, x), all(b, x), not all(b, x), most(b, x), at most half of the(b, x), fewer than half of the(b, x) and at

least half of the(b, x). The eight propositions are shorted as Proposition E, I, A, O, M, H, F and S,

respectively. A non-trivial generalized syllogism includes at least one of Proposition M, H, F, and S.

The definitions of figures in generalized syllogisms are similar to those of ones in Aristotelian syllogisms

(Bo, 2020). This paper provides a unified and consistent research paradigm for knowledge mining based on

valid generalized syllogisms by studying the reducibility of the non-trivial generalized syllogism HMO-3.

An instance of the syllogism HMO-3 is as follows:

Major premise: At most half of dogs can catch rats.

Minor premise: Most dogs are domesticated pets.

Conclusion: Not all domesticated pets can catch rats.

Let r be a lexical variable that represents dogs, v be a lexical variable denoting things that catch rats, and k

be a lexical variable that stands for domesticated pets. Then the above example can be formalized as at
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most half of the(r, v)most(r, k)not all(k, v), and abbreviated as HMO-3. Others are similar to this.

3. Formal System of Generalized Syllogisms with the Generalized

Quantifier ‘most’

This formal system includes the following relevant initial symbols, definitions, axioms, and

rules.

3.1 Primitive Symbols

(1) lexical variables: k, r, v.

(2) quantifiers: most, all.

(3) operators: ,, .

(4) brackets: (, ).

3.2 Formation Rules

(1) If Q is a quantifier, k and v are lexical variables, then Q(k, v) is a wff.

(2) If  is a wff, then so is .

(3) If  and  are wffs, then so is .

(4) The formulas formed only by above three rules are wffs.

3.3 Basic Axioms

A1: If  is a valid formula in classical first-order logic, then ⊢.

A2: ⊢at most half of the(r, v)most(r, k)not all(k, v) (that is, the syllogism HMO-3).

3.4 Deductive Rules

Rule 1(subsequent weakening): From ⊢() and ⊢() infer ⊢().

Rule 2(anti-syllogism): From ⊢() infer ⊢() or ⊢().

3.5 Relevant Definitions

D1 (conjunction): ()=def()

D2 (bi-condition): () =def ()()

D3 (inner negation): (Q)(k, v)=defQ(k, Dv)
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D4 (outer negation): (Q)(k, v)=def It is not that Q(k, v)

D5 (truth value): all(k, v)=defKV;

D6 (truth value): some(k, v)=defK∩V;

D7 (truth value): no(k, v)=defK∩V=;

D8 (truth value): not all(k, v)=defK⊈V.

D9 (truth value): most(k, v) is true iff K∩V0.5K is true;

D10 (truth value): fewer than half of the(k, v) is true iff K∩V0.5K is true;

D11 (truth value): at most half of the(k, v) is true iff K∩V0.5Kis true;

D12 (truth value): at least half of the(k, v) is true iff K∩V0.5K is true.

3.6 Relevant Facts

On the basis of classical first-order logic, generalized quantifier theory (Peters & Westerståhl,

2006) and set theory (Halmos, 1974), it can be obtained the following relevant facts.

Fact 1 (Inner negation):

(1.1) all(k, v)no(k, v);

(1.2) no(k, v)all(k, v);

(1.3) some(k, v)not all(k, v);

(1.4) not all(k, v)some(k, v);

(1.5) most(k, v)fewer than half of the(k, v);

(1.6) at least half of the(k, v)at most half of the(k, v);

(1.7) at most half of the(k, v)at least half of the(k, v);

(1.8) fewer than half of the(k, v)most(k, v).

Fact 2 (Outer negation):

(2.1) all(k, v)not all(k, v);

(2.2) not all(k, v)all(k, v);

(2.3) no(k, v)some(k, v);
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(2.4) some(k, v)no(k, v);

(2.5) most(k, v)at most half of the(k, v);

(2.6) at least half of the(k, v)fewer than half of the(k, v);

(2.7) at most half of the(k, v)most(k, v);

(2.8) fewer than half of the(k, v)at least half of the(k, v).

Fact 3 (Symmetry):

(3.1) some(k, v)some(v, k);

(3.2) no(k, v)no(v, k).

Fact 4 (Subordination) :

(4.1) ⊢no(k, v)not all(k, v);

(4.2) ⊢all(k, v)some(k, v);

(4.3) ⊢all(k, v)most(k, v);

(4.4) ⊢most(k, v)some(k, v);

(4.5) ⊢all(k, v)at least half of the(k, v);

(4.6) ⊢at least half of the(k, v)some(k, v);

(4.7) ⊢fewer than half of the(k, v)not all(k, v);

(4.8) ⊢at most half of the(k, v)not all(k, v).

4. Knowledge Mining Based on the Reducibility of the Generalized

Syllogism HMO-3

In the following, in order to prove the reduction relationships between/among different

syllogisms, the strategy is firstly to prove the validity of syllogism HMO-3 in Theorem 1, and

then the other syllogisms can be derived from HMO-3. For example, ‘HMO-3AMM-1’ in

Theorem 2 says that the latter can be deduced from the former.

Theorem 1 (HMO-3): The Generalized Syllogism at most half of the(r, v)most(r, k)not

all(k, v) is valid.
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Proof: Assumed that at most half of the(r, v) and most(r, k) are true, then R∩V0.5Ris

true by Definition D11, and R∩K   0.5 R  is true by Definition D9. It can be easily

concluded that K⊈V. Thus, not all(k, v) is true by Definition D8. This can be easily proved by

reductio ad absurdum. Supposed that K⊈V is not true, that is, KV is true. And it has been

known that R∩V0.5R is true by Definition D11 Then, it can be easily obtained that

R∩K0.5R, which contradicts with R∩K0.5R is true by Definition D9 So KV is

not true, which means that K⊈V is true. Therefore, it follows that at most half of the(r,

v)most(r, k)not all(k, v) is valid, as expected.

Theorem 2: There are at least the following 21 valid generalized syllogisms can be inferred

from the syllogism HMO-3:

(1) ⊢HMO-3AMM-1

(2) ⊢HMO-3AMM-1AMI-1

(3) ⊢HMO-3AMM-1AMI-1MAI-4

(4) ⊢HMO-3AMM-1AMI-1EMO-3

(5) ⊢HMO-3AMM-1AMI-1EMO-3EMO-4

(6) ⊢HMO-3AMM-1AMI-1AEH-2

(7) ⊢HMO-3AMM-1AMI-1AEH-2AEH-4

(8) ⊢HMO-3AMM-1AMI-1AEH-2EAH-2

(9) ⊢HMO-3AMM-1AMI-1AEH-2EAH-2EAH-1

(10) ⊢HMO-3AHH-2

(11) ⊢HMO-3AHH-2AHO-2

(12) ⊢HMO-3AHH-2AHO-2HAO-3

(13) ⊢HMO-3AHH-2AHO-2AAM-1

(14) ⊢HMO-3AHH-2AHO-2AAM-1EAF-1

(15) ⊢HMO-3AHH-2AHO-2AAM-1EAF-1EAF-2

(16) ⊢HMO-3AHH-2AHO-2AAM-1EAF-1ESO-2

(17) ⊢HMO-3AHH-2AHO-2AAM-1EAF-1ESO-2ESO-1
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(18) ⊢HMO-3SMI-3

(19) ⊢HMO-3SMI-3MSI-3

(20) ⊢HMO-3SMI-3EMF-1

(21) ⊢HMO-3SMI-3EMF-1EMF-2

Proof:

[1] ⊢at most half of the(r, v)most(r, k)not all(k, v) (i.e.HMO-3, AxiomA2 )

[2] ⊢not all(k, v)most(r, k)at most half of the(r, v) (by [1] and Rule 2)

[3] ⊢all(k, v)most(r, k)most(r, v) (i.e.AMM-1, by [2], Fact (2.2) and (2.7))

[4] ⊢all(k, v)most(r, k)some(r, v) (i.e.AMI-1, by [3], Fact (4.4))

[5] ⊢all(k, v)most(r, k)some(v, r) (i.e.MAI-4, by [4], Fact (3.1))

[6] ⊢some(r, v)most(r, k)all(k, v) (by [4] and Rule 2)

[7] ⊢no(r, v)most(r, k)not all(k, v) (i.e.EMO-3, by [6], Fact (2.1) and (2.4))

[8] ⊢no(v, r)most(r, k)not all(k, v) (i.e.EMO-4, by [7] and Fact (3.2))

[9] ⊢some(r, v)all(k, v)most(r, k) (by [4] and Rule 2)

[10] ⊢no(r, v)all(k, v)at most half of the(r, k) (i.e.AEH-2, by [9], Fact (2.4) and (2.5))

[11] ⊢no(v, r)all(k, v)at most half of the(r, k) (i.e.AEH-4, by [10] and Fact (3.2))

[12] ⊢all(r, Dv)no(k, Dv)at most half of the(r, k)

(i.e.EAH-2, by [10], Fact (1.1) and (1.2), Definition D3)

[13] ⊢all(r, Dv)no(Dv, k)at most half of the(r, k) (i.e.EAH-1, by [12] and Fact (3.2))

[14] ⊢not all(k, v)at most half of the(r, v)most(r, k) (by [1] and Rule 2)

[15] ⊢all(k, v)at most half of the(r, v)at most half of the(r, k)

(i.e.AHH-2, by [14], Fact (2.2) and (2.5))

[16] ⊢all(k, v)at most half of the(r, v)not all(r, k) (i.e.AHO-2, by[15] and Fact (4.8))

[17] ⊢not all(r, k)at most half of the(r, v)all(k, v) (by [16] and Rule 2)

[18] ⊢all(r, k)at most half of the(r, v)not all(k, v) (i.e.HAO-3, by [17] Fact (2.1) and (2.2))
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[19] ⊢not all(r, k)all(k, v)at most half of the(r, v) (by [16] and Rule 2)

[20] ⊢all(r, k)all(k, v)most(r, v) (i.e.AAM-1, by [19], Fact (2.2) and (2.7))

[21] ⊢all(r, k)no(k, v)fewer than half of the(r, v) (by [20], Fact (1.1) and (1.5))

[22] ⊢all(r, k)no(k, Dv)fewer than half of the(r, Dv)

(i.e.EAF-1,by [21] and Definition D3)

[23] ⊢all(r, k)no(Dv, k)fewer than half of the(r, Dv) (i.e.EAF-2, by [22] and Fact (3.2))

[24] ⊢fewer than half of the(r, Dv)no(k, Dv)all(r, k) (by [22] and Rule 2)

[25] ⊢at least half of the(r, Dv)no(k, Dv)not all(r, k)

(i.e.ESO-2, by [24], Fact (2.1) and (2.8))

[26] ⊢at least half of the(r, Dv)no(Dv, k)not all(r, k) (i.e.ESO-1, by [25] and Fact (3.2))

[27] ⊢at least half of the(r, v)most(r, k)some(k, v) (by [1], Fact (1.4) and (1.7))

[28] ⊢at least half of the(r, Dv)most(r, k)some(k, Dv)

(i.e.SMI-3, by [27] and Definition D3)

[29] ⊢at least half of the(r, Dv)most(r, k)some(Dv, k)(i.e.MSI-3, by [28] and Fact (3.1))

[30] ⊢some(k, Dv) most(r, k)at least half of the(r, Dv) (by [28] and Rule 2)

[31] ⊢no(k, Dv) most(r, k)fewer than half of the(r, Dv)

(i.e.EMF-1, by [30], Fact (2.4) and (2.6))

[32] ⊢no(Dv, k) most(r, k)fewer than half of the(r, Dv)

(i.e.EMF-2, by [31] and Fact (3.2))

It has been proved that the above 21 valid generalized syllogisms can be obtained from the

syllogism HMO-3 through the above 32 reductive steps.

5. Conclusion and FutureWork

Theorem 1 proves that the generalized syllogism HMO-3 is valid according to the relevant

definitions, facts and rules. Then Theorem 2 shows that at least the other 21 valid generalized

syllogisms can be deduced from the syllogism HMO-3 on the basis of classical first-order
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logic, set theory and generalized quantifier theory. The main conclusion of this paper is that

there are reducible relationships between/among valid generalized syllogisms. Due to the fact

that all conclusions are obtained by means of deductive reasoning, the results are consistent.

The reason why valid generalized syllogisms can be mutually reduced is that: Four

Aristotelian quantifiers (that is, some, not all, no and all) can be mutually defined each other,

and so can the four generalized quantifiers (that is, most, at most half of the, fewer than half of

the and at least half of the). This study provides the theoretical support for knowledge mining

in artificial intelligence.

How to establish a complete axiomatic system for the fragments of generalized syllogisms

studied in this paper? This question is left to study in the future.

Acknowledgement

This work was supported by the National Social Science Fund of China under Grant

No.21BZX100.

References

[1] Bo, C. Introduction to Logic (4th Edition), China Renmin University of Press, 2020. (in

Chinese).

[2] Cheng, Z. The Remaining 23 Valid Aristotelian Syllogisms can be Deduced only from

the Syllogism IAI-3, SCIREA Journal of Computer, 7(5), 2022, 85-95.

[3] Cheng, Z. How to Deduce the Other 91 Valid Aristotelian Modal Syllogisms from the

SyllogismIAI-3, Applied Science and Innovative Research, 7(1), 2023, 46-57.

[4] Endrullis, J. and Moss, L. S. “Syllogistic Logic with ‘Most’.” In: V. de Paiva et al. (eds. ),

Logic, Language, Information, and Computation, 2015, 124-139.

[5] Hamilton, A. G. Logic for Mathematicians. Cambridge: Cambridge University Press,

1978.

[6] Halmos, P. R. Naive Set Theory, New York: Springer-Verlag, 1974.

[7] Jing, X. and Xiaojun Z. How to obtain valid generalized modal syllogisms from valid

generalized syllogisms, Applied Science and Innovative Research, 7(2), 2023, 45-51.



- 10 -

[8] Johnson, F. Models for modal syllogisms. Notre Dame Journal of Formal Logic, (30),

1989, 271-284.

[9] Liheng, H. Knowledge Reasoning Based on the Generalized Syllogism AHH-2, SCIREA

Journal of Computer, 9(1), 2024, 1-8.

[10] Malink, M. A Reconstruction of Aristotle’s Modal Syllogistic. History and Philosophy of

Logic, (27), 2006, 95-141.

[11] Moss, L. S. Syllogistic Logics with Verbs. Journal of Logic and Computation, 20(4),

2010, 947-967.

[12] Peters, S. and Westerståhl, D. Quantifiers in Language and Logic, Claredon Press,

Oxford, 2006.

[13] Thom, P. The Logic of Essentialism: An Interpretation of Aristotle’s Modal Syllogistic.

(Synthese Historical Library 43), Dordrecht: Kluwer, 1996.

[14] Xiaojun, Z. Axiomatization of Aristotelian syllogistic logic based on generalized

quantifier theory. Applied and Computational Mathematics, 7(3), 2018, 167-172.

[15] Xiaojun, Z. Screening out All Valid Aristotelian Modal Syllogisms, Applied and

Computational Mathematics, 8(6), 2020, 95-104.

[16] Yijiang, H. The Reductions between/among Aristotelian Syllogisms Based on the

Syllogism AII-3, SCIREA Journal of Philosophy, 3(1), 2023, 12-22.


