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Abstract

Given that we have two independent random samples, each of which follows a normal

distribution, the main objective of this paper is to estimate the overlapping Weitzman

coefficient ∆. This coefficient is widely used and is defined as the area under two probability

density functions. The proposed estimation technique is based on the rules of integral

numerical approximation such as trapezoidal rules and Simpson's rules. Simulation results

showed the effectiveness of the proposed technique over some of the methods found in the

literature.
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1. Introduction

There are three overlapping (OVL) coefficients, namely Matusita (1955) coefficient (ρ),

Morisita (1959) coefficient (λ) and Weitzman (1970) coefficient ( Δ ). These different

coefficients represent the degree of similarity or closeness between two phenomena. Our main
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interest in this paper is to estimate the Weizmann coefficient Δ under the assumption that

there are two normal distributions without using any constraints on the parameters of these

distributions. Let �1(�) and �2(�) are two continuous probability density functions, the

Weitzman OVL coefficient is defined as follows,

Δ = ��� �1 � , �2 � ��� .

Noting that the values of Δ fall in the interval [0,1]. If its value is close to zero, it means that

there is no common area between �1(�) and �2(�). On the other hand, if its value is close to 1,

it indicates a perfect match for �1(�) and �2(�).

There are many applications of OVL coefficients, in particular the Weitzmann coefficient,

which has been used in the fields of environment (Pianka, 1973), income (Gastwirth, 1975),

and genetic (Federer et al., 1963).

In the literature, there are two methods to estimate OVL, the parametric method and the

nonparametric method (see Eidous and Al-Talafheh, 2022 and Eidous and Ananbeh, 2024).

Several authors considered the parametric method to estimate different OVL coefficients (see

Eidous and Daradkeh, 2022 and Eidous and Al-Hayja’a, 2023a and the reference therein).

Inman and Bradly (1989) derived the maximum likelihood (ML) estimator of Δ under the

assumption that the two densities are normal with equal variances and different means. Under

the normality assumption with equal variance, Reiser and Faraggi (1999) constructed a

confidence interval for Δ . Eidous and Al Shourman (2022) used the numerical integral

method to estimate Matusita overlapping measure in the case of two normal distributions.

There are other studies in the literature to estimate the Weismann coefficient under the

assumption of continuous distributions other than the normal distribution, such as Weibull,

Gamma and Pareto distributions (See, Madhuri et al., 2001, Eidous and Al-Hayja’a 2023b and

Wang and Tian, 2017).

It should be noted here that all the previously mentioned studies that used two-parameter

distributions placing restrictions on the parameters of the distributions (i.e. the condition of

equal location or equal scale or equal shape parameters). If there is some doubts about the

validity of the model assumption or if the model assumption is difficult to be determine then

the nonparametric method can be used instead of the parametric method. Some authors have

studied the nonparametric method to make inferences about overlapping coefficients, (see for

example, Clemons and Bradley, 2000 and Eidous and Al-Talafha, 2022).
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The main contribution of this paper is to develop new estimators for Δ in the case of pair

normal distributions without using any assumptions on the parameters of the pair distributions.

This objective can be achieved by approximating the integral that appears in the formula of Δ

and then estimating the obtained approximations using the ML method. Accordingly, this

paper is organized as the following: Section (2) introduces the existing parametric estimators

of Δ under pair normal distributions. In Section (3), some approximations of Δ based on

numerical integration methods are given. The proposed estimation technique for Δ is given in

Section (4) and three new estimators are derived. Section (5) gives a simulation study to

investigate the properties of the proposed estimators and to compare them with the estimator

of Δ that suggested by Eidous and Al-Daradkeh (2023).

2. Weitzman coefficient Δ for two normal distributions

Let �1~�(�1, �1
2) and �2~�(�2, �2

2) , where �1 and �2 are two independent random

variables. Under the assumption that the two variances are equal (i.e. �1
2 = �2

2 = �2 , say),

Inman and Bradley (1989) derived the formula of ∆ , which is given by

∆ = 2Φ −
�1 − �2

2� ,

where Φ � is the cumulative standard normal distribution at a point �. If �11, �12, …. �1�1

and �21, �22, …. �2�2 are two independent random samples taken from �(�1, �2) and

�(�2, �2) respectively, then Inman and Bradley (1989) gave the maximum likelihood (ML)

estimator of ∆, which is given by

∆��� = 2Φ − ��1−��2
2S

,

where ��� = �=1
�1 �1�� /��, (� = 1, 2) are the ML estimators of �1 and �2 respectively, and S is

the square root of �2, which is the maximum likelihood estimator of �2, given by

�2 = �=1
�1 (�1� − ��1)2 +� �=1

�2 (�2� − ��2)2�
�1 + �2

.

Now, under the assumption �1 = �2 = (� , say), Mulekar and Mishra (1994) derived the

formula of Δ, which is given by

∆ = 1 − 2Φ � + 2Φ C� if 0 < � < 1
1 + 2Φ � − 2Φ C� if C ≥ 1 ,
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where � = σ1 �2 and � = −��(�2) 1−�2 . Their corresponding estimator of ∆ is,

∆��� =
1 − 2Φ �� + 2Φ ���� if 0 < �� < 1
1 + 2Φ �� − 2Φ ���� if �� ≥ 1

,

where �� = �2
�1

�=1
�1 (�1�−��)2�

�=1
�2 (�2�−��)2�

, �� = �1��1+�2��2
�1+�2

and �� = −��(��2) 1−��2 .

In order to be able to use any of the previous two estimators, the corresponding study to each

of them requires some restrictions on the parameters of the two distributions. The first study

assumes that the two scale parameters are equal, while the second study requires that the

location parameters are equal. Without using these assumptions, neither the estimator ∆��� nor

∆��� can be used to estimate ∆. To overcome this problem and without using any assumptions

about the distributions parameters, Eidous and Al-Daradkeh (2023) expressed the formula of

∆ as follows,

� =
1
2

�
��� �1 �1 , �2 �1

�1 �1
+ �

��� �1 �2 , �2 �2

�2 �2
.

and they gave the following estimator for �,

���� =
1
2

1
�1 �=1

�1
��� �1 �1� ; ��1, ��1

2 , �2 �1� ; ��2, ��2
2

�1 �1� ; ��1, ��1
2�

+
1
�2 �=1

�2
��� �1 �2� ; ��1, ��1

2 , �2 �2� ; ��2, ��2
2

�2 �2� ; ��2, ��2
2�

where �1 and �2 are two normal distributions, such that,

�� ��� ; �� �, ���
2 = 2����

2 −1/2 �− ��� −���
2/2���

2
, � = 1, 2 .

Also, ��1 = ��1 , ��2 = ��2, ��1
2 = �=1

�1 �1� − ��1
2� /�1 and ��2

2 = �=1
�2 �2� − ��2

2� /�2 are the

ML estimators of �1, �2, �1
2 and �2

2 respectively.

3. Approximations for Weitzman coefficient �

In this section, we give three approximations for the Weitzman coefficient ∆ based on some

integral approximation rules and in the next section we will give the estimators of these
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approximations based on the two independent random samples �11, �12, …. �1�1 and

�21, �22, …. �2�2 .

Define the function � � = ��� �1 �, �1, �1
2 , �2 �, �2, �2

2 , where �� �; ��, ��
2 , � = 1, 2

are defined in the previous section. The Weitzman coefficient ∆ can be written as the

following,

∆ =
−∞

∞
�(�)���

Let �(�) be any continuous increasing function in � and consider the transformation � =

�(�), then � = �−1 � = (� � , ���) and �� = �'(�)�� . Therefore, ∆ can be expressed as

follow,

∆ = �(� � )�'(�)���

In particular, we interest the case where �(�) is a continuous cumulative distribution function,

so that lim
�→−∞

� � = 0 and lim
�→∞

� � = 1. Therefore,

∆ =
0

1
�(� � )�'(�)��� .

For more simplicity, let

ℎ � = �(� � )�'(�)

= ��� �1 � � , �1, �1
2 , �2 � � , �2, �2

2 �'(�)

then,

∆ =
0

1
ℎ � ��� .

To approximate the last integral, the interval (0, 1) is divided into � subintervals each of

length 1/� . Let �� = �/�, � = 0, 1, 2, …, � then the bounds of the � subintervals are as

follows,

0 = �0 < �1 < �2 < … < �� = 1 ,

Now, ∆ = 0
1 ℎ � ��� can be approximated by using the following three interested numerical

integral rules known as, trapezoidal, Simpson 1/3 and Simpson 3/8 rules (Atkinson, 1989),

 The approximation of ∆ by using trapezoidal rule (denoted by ∆1) is,
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∆1 ≅
1

2�
lim
�→0

ℎ � + 2
�=1

�−1

ℎ ��� + lim
�→1

ℎ �

 The approximation of ∆ by using Simpson 1/3 rule (denoted by ∆2) is,

∆2 ≅
1

3�
lim
�→0

ℎ � + 4
�=1

�/2

ℎ �2�−1� + 2
�=1

�/2−1

ℎ �2�� + lim
�→1

ℎ �

 The approximation of ∆ by using Simpson 3/8 rule (denoted by ∆3) is,

∆3 ≅
3

8�
lim
�→0

ℎ � + 3
�=1

�≠3�

�−1

ℎ ��� + 2
�=1

�
3−1

ℎ �3�� + lim
�→1

ℎ � , � ∈ �0.

The above approximation expressions of � are still depending on unknown quantities. To use

the above three expressions in practice, two quantities are to be determined. The first one is

the transformation �(�) and hence � � . The second quantity is the number of partitions �. In

this paper, our special interest is to take � to be any continuous cumulative distribution

function with support ( − ∞, ∞) . Let � be a continuous random variable with cumulative

distribution function �� � given by,

�� � = 1 −
1

1 + �� α , − ∞ < � < ∞, α > 0.

That is, � has a generalized Logistic distribution with ���,

�� � =
α�−αx

1 + �� α+1 , − ∞ < � < ∞ , α > 0.

In this case, � = 1 − 1 + �� −α with inverse transformation � = � � = �� 1 − � −1
� −

1 and �'(�) = 1
α 1−� 1− 1−� 1 � .

The parameter � in the above transformation is under user control. Mathematically, any

selection for � > 0 is possible. However, to examine its practical effect on the performance of

the proposed estimators, the two values � = 1.0 and = 0.5 were taken into account in our

simulation study in the next section.

The second quantity to be determined is �. A preliminary simulation study indicates that the

selection of � = min �1, �2 is very satisfactory, which was used in the simulation study in

the next section.
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4. Estimation of �

Let �� �; �� �, ���
2 = 2����

2 −1/2 �− �−���
2/2���

2
be the ML estimator of �� �; ��, ��

2 =

2���
2 −1/2 �− �−��

2/2��
2, � = 1, 2 . Also, let ℎ� � =

��� ��1 � � ; ��1, ��1
2 , ��2 � � ; ��2, ��2

2 �' � be the ML estimator of ℎ � . If the

transformation �� � is considered to be the generalized Logistic distribution as described in

the previous section then lim
�→0

ℎ � = lim
�→1

ℎ � = 0 . Therefore, the proposed estimators of Δ

are as shown below,

 The proposed estimator of Δ based on Trapezoidal rule is,

∆����� =
1
�

�=1

�−1

ℎ� �/�� .

 The proposed estimator of Δ based on Simpson 1/3 rule is,

∆����1 =
1

3�
4

�=1

�/2

ℎ� (2� − 1)/�� + 2
�=1

�/2−1

ℎ� 2�/�� .

 The proposed estimator of Δ based on Simpson 3/8 rule is,

∆����2 =
3

8�
3

�=1
�≠3�

�−1

ℎ� �/�� + 2
�=1

�/3−1

ℎ� 3�/�� , � ∈ �0

5. Simulation study and results

In this simulation study, the four estimators ∆���, ∆�����, ∆�����1 and ∆�����2 of ∆ are

considered. The estimator ∆��� that developed by Eidous and Al-Daradkeh (2023) (see Section

2) is considered in this study. The other estimators in Section (2) cannot be considered unless

the required assumptions are valid. Therefore, we only studied the ∆��� estimator for the

purpose of comparison with the proposed estimators.

Assume that we have two independent random samples �11, �12, …, �1�1 of size �1 and

�21, �22, …, �2�2 of size �2 , where the first sample is generated from �(�1 = 0, �1
2 = 1) and

the second sample is simulated from � �2, �2
2 , where �2, �2

2 =

−0.2,1.1 , 2.5,4 , 3.5,1.5 , (10,2.5). These values of �1, �1
2 �2, �2

2 were chosen to vary

the exact values of ∆ between 0 and 1.
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From each pair of distributions, 1000 samples of sizes �1, �2 = 24,30 ,

54,54 , 96,180 were simulated independently from the two normal distributions

�(�1, �1
2) and �(�2, �2

2) with selected parameters as given above (see also, Table 1). The

values of the sample sizes were selected so that they are divisible by 2 and 3 so that we can

calculate the estimators ∆�����1 and ∆�����2 respectively and the number of partitions � is taken

to be � = min �1, �2 .

The empirical results are given in Table (1). For each estimator, we computed the relative bias

(RB), relative root mean square error (RRMSE) and efficiency (EFF). These measures are

defined as follows:

Let �� be a specific estimator for a parameter � (exact value), and let ��(�) be the observed value

of �� based on iteration �, � = 1, 2, …, � = 1000, then,

�� =
�� �� − �

�
,

����� =
���� ��

�

and the efficiency of the proposed estimator (Prop) with respect to Eidous and Al-Daradkeh

(2022) estimator (∆���) is defined by,

��� =
����(∆���)

���� (����)
,

where �� �� = �=1
� ��(�)�

�
and ���� �� = �=1

� ��(�)−�
2

�

�
.

All simulation results are calculated by using Mathematica, Version 11. Based on these,

which presented in Table (1), the general conclusions are:

1. It is clear that the |RBs| and RMSEs of the different estimators decrease as the sample sizes

increases. This result is very clear if we compare the values of |RB|s and RRMSE for the

different estimators when �1, �2 = 24,30 with their values when �1, �2 = 96, 180 .

This indicates that the various estimators are consistent estimators.

2. The proposed estimators are more efficient than the estimator suggested by Eidous and Al-

Daradkeh (2023) in most considered cases. This can be depicted if one examines the

corresponding values of the RRMSE and EFF especially when the exact values of ∆ become

small toward 0.
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3. By comparing the performances of the proposed estimators of ∆ together, it is clear that

their performances are close to each other. Also, their performance coincided for large sample

sizes. This indicates that the three numerical integration rules; trapezoidal, Simpson 1/3, and

Simpson 3/8 rules give the same results in estimating ∆.

4. By examining and comparing the results corresponding to the two transformations 1 −

1 + �� −1 (i.e. � = 1.0) and 1 − 1 + �� −1/2 (i.e. � = 1/2), we find that there is no better

transformation than the other for all considered cases. Although, there is a preference for � =

1.0 over � = 1/2 in some cases, but the converse occurs in other cases. However, it appears

that the proposed estimators are sensitive to how the suitable transformation is chosen and one

should take a care when deciding to choose the transformation. At least and depending on the

simulation results, the above two transformations work well in estimating the OVL coefficient

∆.

Table (1). The RB, RRMSE and EFF of the estimators ����, ������ , �����1 and �����2 when the data are simulated from pair

normal distributions a) � 0,1 and �( − 0.2,1.1) b) � 0,1 and � 2.5,4 c) � 0,1 and � 3.5,1.5 d)

� 0,1 and � 10,2.5 and e) � 0,1 and � 10,2.5 .

a) The exact Δ = 0.9151

α = 1/2α = 1

Δ����2Δ����1Δ�����Δ����Δ����2Δ����1Δ�����Δ���(�1, �2)

-0.066-0.067-0.067-0.066-0.074-0.074-0.074-0.074RB

(24, 30) 0.1070.1070.1070.1070.1130.1130.1130.114RRMSE

1.0010.9970.9991.0001.0151.0141.0151.000EFF

-0.035-0.035-0.035-0.035-0.034-0.034-0.034-0.034RB

(54, 54) 0.0730.0730.0730.0730.0710.0710.0710.071RRMSE

0.9991.0001.0001.0001.0051.0051.0051.000EFF

-0.012-0.012-0.012-0.012-0.014-0.014-0.014-0.014RB

(96, 180) 0.0470.0470.0470.0480.0480.0480.0480.049RRMSE

1.0061.0061.0061.0001.0031.0031.0031.000EFF

b) The exact Δ = 0.6099

α = 1/2α = 1

Δ����2Δ����1Δ�����Δ����Δ����2Δ����1Δ�����Δ���(�1, �2)

-0.021-0.022-0.025-0.022-0.022-0.022-0.022-0.020RB(24, 30)
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0.1390.1390.1380.1450.1370.1360.1360.142RRMSE

1.0841.0781.0951.0001.0791.0831.0931.000EFF

-0.012-0.012-0.012-0.012-0.012-0.010-0.010-0.012RB

(54, 54) 0.0960.0960.0960.1010.0950.0950.0950.100RRMSE

1.1101.1101.1131.0001.1131.1141.1141.000EFF

-0.001-0.001-0.001-0.001-0.004-0.004-0.004-0.004RB

(96, 180) 0.0620.0620.0620.0640.0610.0610.0610.064RRMSE

1.0541.0551.0541.0001.1021.1021.1011.000EFF

c) The exact Δ = 0.3577

α = 1/2α = 1

Δ����2Δ����1Δ�����Δ����Δ����2Δ����1Δ�����Δ���(�1, �2)

-0.011-0.014-0.019-0.021-0.027-0.027-0.028-0.033RB

(24, 30) 0.1640.1660.1610.1950.1590.1590.1580.186RRMSE

1.4251.3911.4641.0001.3631.3641.3841.000EFF

-0.012-0.011-0.011-0.010-0.007-0.007-0.007-0.006RB

(54, 54) 0.1070.1070.1070.1280.1140.1140.1140.1398RRMSE

1.4221.4231.4291.0001.4841.4851.4851.000EFF

-0.005-0.005-0.005-0.005-0.008-0.008-0.008-0.009RB

(96, 180) 0.0700.0700.0700.0810.0710.0710.0710.085RRMSE

1.3341.3351.3361.0001.4171.4171.4161.000EFF

d) The exact Δ = 0.1573

α = 1/2α = 1

Δ����2Δ����1Δ�����Δ����Δ����2Δ����1Δ�����Δ���(�1, �2)

-0.006-0.006-0.006-0.013-0.004-0.007-0.006-0.013RB

(24, 30) 0.3400.3400.3400.3600.3500.3500.3490.372RRMSE

1.1201.1201.1191.0001.1291.1311.1371.000EFF

-0.018-0.018-0.018-0.0210.0030.0030.0030.001RB

(54, 54) 0.2460.2460.2460.2590.2580.2580.2580.270RRMSE

1.1091.1091.1091.0001.0881.0881.0881.000EFF
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000-0.003000-0.005RB

(96, 180) 0.1490.1490.1490.1560.1660.1660.1660.173RRMSE

1.0951.0941.0951.0001.0901.0891.0901.000EFF

e) The exact Δ = 0.0039.

α = 1/2α = 1

Δ����2Δ����1Δ�����Δ����Δ����2Δ����1Δ�����Δ���(�1, �2)

0.3120.3050.308-0.1750.3640.4100.274-0.002RB

(24, 30) 1.3641.3571.3591.6251.3601.4091.2681.808RRMSE

1.4191.4341.4301.0001.7651.6442.0331.000EFF

0.1190.1190.119-0.0830.1570.1450.157-0.054RB

(54, 54) 0.7960.7960.7951.2520.8620.8630.8661.310RRMSE

2.4742.4732.4771.0002.3082.3022.2841.000EFF

0.0570.0570.057-0.0110.0720.0690.071-0.025RB

(96, 180) 0.4480.4480.4480.8120.4700.4690.4700.783RRMSE

3.2793.2803.2781.0002.7682.7822.7741.000EFF
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