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Abstract

Carry Select Adder (CSLA) is the most popular choice for multiply and accumulate

operations because of its high performance in fast computations. However, the major

drawback for CSLA is resource utilization as it occupies more area and power when

compared to Ripple Carry Adder (RCA). Low Power and area efficiency can be achieved by

using multiplexer based adders as the switching activity reduces the resource utilization. The

proposed architecture is designed by using two bit adders using 4:1 multiplexers and

synthesized in cadence RTL compiler using 90nm technology. The performance evaluation

of the proposed architecture in terms of area and power is compared with Square Root Carry

Select Adder (SQRT CSLA), Square Root Carry Select Adder using Kogge-stone Adder

(SQRT-KSA), Square Root Carry Select Adder using Binary to Excess-1 Converter
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(SQRTCSLA-BEC),Kogge-stone Square Root Carry Select Adder using Binary to Excess-1

Converter (SQRTKSA-BEC)architectures for different bit depths ranging from 16 bits to 64

bits. The Proposed architecture is proved to be efficient both in terms of area and power

when compared to SQRTCSLA, SQRT-KSA, SQRTCSLA-BEC, SQRTKSA-BEC

architectures

Keywords: Carry Select Adder (CSLA), Multiplexer Based Adder,Area and Power

Efficient, Two Bit Adder.

1. Introduction

The egress Internet of Things (IoT) [1]-[2] demands the digitization because of its pliancy.

Signal Conditioning circuits are necessary in order to eliminate the repellent noises and

retardations [3]–[10]. Finite-Impulse-Response (FIR) filter accomplished attention in IoT

because of its enticing characteristics such as linear phase property and low coefficient

sensitivity. But the implementation cost of FIR Filter is high when compared with IIR Filter

approaching the identical magnitude response specifications because of multiplier and adder

cost. If the order of the filter is increased, then the cost of multiplier and adder is also further

increased. Enhancements in the implementation of multiplier and adder can be achieved by

switching techniques during run-time. Switching action between different constants and their

mapping to the FPGA is best performed by multiplexers [11]. Major components in the

implementation of multipliers are partial product generators and adders. The generated partial

products are added by using reduction techniques. Many approaches have been proposed for

reducing the number of adders in the multipliers. The most commonly used adders are Ripple

Carry Adder (RCA), Kogge-stone adder, Square Root Carry Select Adder (SQRT CSLA).

Among these, RCA occupies less area but the speed of the adder is very less. In order to

improve the speed, CSLA is designed but the area is very high. In order to scale down the

area in CSLA, one stage of RCA with input carry is equal to ‘one’ is replaced with binary to

an excess-1 converter. In all these adders, the major digital components are XOR gates, AND

gates, OR gates. Multiplexer based adders [12]-[15] gained popularity because of less gate

count when compared to XOR gate. In this Paper, Low Power and Area-Efficient VLSI
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Architecture for Carry Select Adder using Multiplexer Based Adders are proposed. The rest

of the paper is structured as follows. Section 2 deals with CSLA using Multiplexer Based

Adder. Section 3 presents the simulation results. Section 4 presents the synthesis results.

Finally, the work is concluded in Section 5.

2. Proposed Architecture

The design of VLSI architecture for each of the building blocks of the proposed adder is

described in this section. The Proposed adder for 16-bit CSLA is designed by using two-bit

adders using 4:1 Multiplexer with input carry is equal to ‘zero’ and input carry is equal to

‘one’ and multiplexers as shown in Fig.1.The adder consists of total 8 groups. Group1

consists of the two-bit adder with inputs a (1:0) and b(1:0) and the input carry Cin. Outputs

from the Group1 are sum (1:0) and C (1). From Group2 onwards each group consists of 2

sets of two-bit adders and multiplexer .1st set consists of two-bit adder using 4:1 multiplexer

with input carry is equal to ‘zero’ and 2nd set consists of two-bit adder using 4:1 multiplexer

with input carry is equal to ‘one’. Carry from the preceding group is given a selection input

for the next group multiplexer i.e. group n Selection line is from group n-1, where n is a

natural number. Depending on the carry the final sum and carry are selected either from set1

or set2. Similarly, n-bit adder consists of n/2 groups and each group consists of Two-bit

adders and a multiplexer. The architecture is further extended to 64 bits. The basic building

blocks for this architecture are explained below.
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Fig.1. CSLA using Multiplexer Based Adders

2.1 Two bit adder using 4:1 Multiplexer with Input Carry Is Equal To ‘Zero’:

Fig.2. Two bit adder with input Carry is equal to ‘Zero’

Fig.3. Multiplexer unit for generation of S(0) and C(1)
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Fig.4. Multiplexer unit for generation of S1(1) and C1(1)

Fig.5. Multiplexer unit for generation of S(1) ,C1(1) and C(2)

Two-bit adder with input Carry is equal to ‘Zero’ consists of half adder and the full adder as

shown in Fig.2.The proposed two-bit adder is designed using 4:1multiplexers.Selection lines

for the first and second multiplexers are a(0) and b(0).The inputs to the first multiplexer at

selection input 0,input 1,input 2,input 3 are taken as 0,1,1,0 in order to obtain sum S(0).The

equations for obtaining S(0) and C(1) is shown in Eq.(1) and Eq.(2). During runtime, any one

of the paths is active depending on the selection lines. The inputs to the second multiplexer at

selection input 0, input 1, input 2, input 3 are taken as 0,0,0,1 in order to obtain carry C(1) as

shown in Fig.3. Selection lines for the third and fourth multiplexers are a(1) and b(1). The

inputs to the third multiplexer at selection input 0, input 1, input 2, input 3 are taken as

0,1,1,0 in order to obtain S1(1). The inputs to the fourth multiplexer at selection input 0,input

1,input 2,input 3 are taken as 0,0,0,1 in order to obtain C1(1) as shown in Fig.4. The
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equations for obtaining S1(1) and C1(1) is shown in Eq.(3) and Eq.(4). Selection lines for the

fifth and sixth multiplexers are S1(1) and C(1). The inputs to the fifth multiplexer at

selection input 0, input 1, input 2, input 3 are taken as 0,1,1,0 in order to obtain S(1). The

inputs to the sixth multiplexer at selection input 0, input 1, input 2, input 3 are taken as

0,0,0,1 in order to obtain carry C1(2). Selection lines for the seventh multiplexer are C1(1)

and C1(2). The inputs to the seventh multiplexer at selection input 0, input 1,input 2,input 3

are taken as 0,1,1,1 in order to obtain carry C(2) as shown in Fig.5. The equations for

obtaining S(1), C1(2) and C(2) is shown in Eq.(5), Eq.(6) and Eq.(7). The final architecture

for two-bit adder using 4:1 multiplexers with input Carry is equal to ‘Zero’ is shown in Fig.6.

� � � � �� ���� � �� ���� � 쾀 � �� ���� � � �� 쾀 � � �� �� ���� � 쾀 � � �� � �� � � �� ���� � � 쾀
� � �� �� ����� (1)

� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� �
� � �� � (2)

�� � � � �� ���� �� �� ��� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� � � �� ���� �� � 쾀
� � �� �� ���� (3)

�� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� �
� � �� � (4)

� � � �� �� ������ �� �� ���� �� 쾀 �� �� ������ �� � �� 쾀 �� � �� �� ���� �� 쾀 �� � �� � �� � �� �� ������ �� � 쾀
�� � �� �� ���� � �� � � � � � � � � � � � � � (5)

�� � � �� �� ������ �� �� ���� �� 쾀 �� �� ������ �� � �� 쾀 �� � �� �� ���� �� 쾀 �� � �� � �� � �� � �� � �
� �� ���� �� � 쾀 � � �� �� ���� �� � (6)

� � � �� �� ������ ��� �� ������ �� 쾀 �� �� ������ ��� � �� 쾀 �� � ��� �� ������ �� 쾀 �� � ��� � �� � �� � 쾀
�� � � � � � � 쾀 ������ ����� �� � 쾀 � � �� �� ���� �� � � � � �� � 쾀 � � � � �� ���� �� � 쾀
� �� ���� �� � �� � � � � � � 쾀 � � 쾀 � �� ���� �� � �� � � � � � � 쾀 � � � � 쾀
� �� ���� �� � �� � � � � � � 쾀 � � 쾀 � �� ���� �� � � � � � � � � 쾀 � � � � 쾀
� � � � (7)
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Fig.6. Two bit adder using 4:1 Multiplexers with input Carry is equal to ‘Zero’

2.2 Two bit adder using 4:1 Multiplexer with input carry is equal to ‘one’

Two bit adder with input Carry is equal to ‘one’ consists of full adders as shown in Fig.7.The

proposed two bit adder is designed using multiplexers. Selection lines for the first and second

multiplexers are a(0) and b(0).The inputs to the first multiplexer at selection input 0,input

1,input 2,input 3 are taken as 0,1,1,0 in order to obtain sum S1(0). The inputs to the second

multiplexer at selection input 0,input 1,input 2,input 3 are taken as 0,0,0,1 in order to obtain

carry C1(0) as shown in Fig.8. The equations for obtaining S1(0) and C1(0) is shown in

Eq.(8) and Eq.(9).Selection lines for the third ,fourth and fifth multiplexers are S1(0) and

Cin. The inputs to the third multiplexer at selection input 0,input 1,input 2,input 3 are taken

as 0,1,1,0 in order to obtain S(0).The inputs to the fourth multiplexer at selection input

0,input 1,input 2,input 3 are taken as 0,0,0,1 in order to obtain C2(0). The inputs to the fifth

multiplexer at selection input 0,input 1,input 2,input 3 are taken as 0,1,1,1 in order to obtain

C(1) as shown in Fig.9. The equations for obtaining S(0) , C2(0) and C(1) is shown in

Eq.(10), Eq.(11) and Eq.(12).Selection lines for the sixth and seventh multiplexers are a(1)
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and b(1). The inputs to the sixth multiplexer at selection input 0,input 1,input 2,input 3 are

taken as 0,1,1,0 in order to obtain S2(0). The inputs to the seventh multiplexer at selection

input 0,input 1,input 2,input 3 are taken as 0,0,0,1 in order to obtain carry C3(0) as shown in

Fig.10.The equations for obtaining S2(0) and C3(0) are shown in Eq.(13) and Eq.(14).

Fig.7. Two bit adder with input Carry is equal to ‘One’

Fig.8. Multiplexer unit for generation of S1 (0), C1(0) .
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Fig.9. Multiplexer unit for generation of S(0) ,C2(0) and C(1).

Fig.10. Multiplexer unit for generation of S2(0) and C3(0).

Fig.11. Multiplexer unit for generation of S(1) ,C4(0) and C(2).
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Selection lines for the eighth, ninth multiplexers are S2(0) and C(1). The inputs to the eighth

multiplexer at selection input 0,input 1,input 2,input 3 are taken as 0,1,1,0 in order to obtain

carry S(1). The inputs to the ninth multiplexer at selection input 0,input 1,input 2,input 3 are

taken as 0,0,0,1 in order to obtain carry C4(0). The inputs to the tenth multiplexer at

selection input 0,input 1,input 2,input 3 are taken as 0,1,1,1 in order to obtain carry C(2) as

shown in Fig.11. The equations for obtaining S(1),C4(0) and C(2) are shown in Eq.(15) ,

Eq.(16) and Eq.(17). The final architecture for two bit adder using 4:1 multiplexers with

input Carry is equal to ‘One’ is shown in Fig.12.

�� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� � � �� ���� �� � 쾀
� � �� �� ���� (8)

�� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� � ������ � (9)

� � � �� �� ������ ����� ��� �� 쾀 �� �� ������ ������ 쾀 �� � ����� ��� �� 쾀 �� � ������ � �� �� ������ ���� 쾀
�� � ����� ��� � �� � � ��� � � � � � � � ��� (10)

�� � � �� �� ������ ����� ��� �� 쾀 �� �� ������ ������ 쾀 �� � ����� ��� �� 쾀 �� � ������ � �� � ���� �
� � � � �� ��� ���� 쾀 � �� ���� �� � ���� � � � � � � ���� (11)

� � � �� �� ������ ��� �� ������ �� 쾀 �� �� ������ ��� � �� 쾀 �� � ��� �� ������ �� 쾀 �� � ��� � �� � �� � 쾀
�� � � � � �� � 쾀 䳌� � � � �� ��� 쾀 � ��� �� �� � ���� � � � �� � 쾀 � � � � �� ��� ���� 쾀
� �� ���� �� � ���� � � � � � 쾀 ��� 쾀 � �� ���� �� � ���� � � � � � 쾀 � � ���쾀
� �� ���� �� � ���� � � � � � 쾀 � � 쾀 � �� ���� �� � ��� � � � � � 쾀 � � 쾀
� � ��� � � � � � 쾀 � � ��� 쾀 � � ���� (12)

�� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� � � �� ���� �� � 쾀
� � �� �� ���� � � � � � � (13)

�� � � � �� ���� �� �� ���� �� 쾀 � �� ���� �� � �� 쾀 � � �� �� ���� �� 쾀 � � �� � �� � ������ � (14)

� � � �� �� ������ �� �� ��� �� 쾀 �� �� ������ �� � �� 쾀 �� � �� �� ��� �� 쾀 �� � �� � �� � �� �� ������ �� � 쾀
�� � �� �� ��� � �� � � � � � ����� ����� ���� (15)

�t � � �� �� ������ �� �� ��� �� 쾀 �� �� ������ �� � �� 쾀 �� � �� �� ��� �� 쾀 �� � �� � �� � �� � �
� � ������ (16)

� � � �� �� ������ ��t �� ������ �� 쾀 �� �� ������ ��t � �� 쾀 �� � ��t �� ������ �� 쾀 �� � ��t � �� � �� � 쾀
�t � � � � �� � 쾀 䳌� � � � �� ���� 쾀 � �� ���� �� � ����� � � � �� � 쾀 � � � � �� ���� ����� 쾀
� �� ���� �� � ����� � � � � � 쾀 � � 쾀 � �� ���� �� � ����� � � � � � 쾀 � � ���� 쾀
� �� ���� �� � ����� � � � � � 쾀 � � 쾀 � �� ���� �� � ���� � � � � � 쾀 � � 쾀
� � ���� � � � � � 쾀 � � ���� 쾀 � � ����� (17)
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Fig.12. Two bit adder using 4:1 Multiplexers with input Carry is equal to ‘One’

2.3 Simulation Results

Fig.13.Simulation results for 16 bit CSLA using Multiplexed Based Adders

Fig.14.Simulation results for 32 bit CSLA using Multiplexed Based Adders
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Fig.15.Simulation results for 32 bit CSLA using Multiplexed Based Adders

QThe proposed architecture and internal sub-modules are simulated and synthesized using

Vivado2017.3. The proposed architecture for CSLA for 16 bit is simulated for which inputs

are a(15:0),b(15:0) and cin. The resultant sum s(15:0) and cout for various combinations are

as shown in the Fig.13. The proposed architecture for CSLA for 32 bit is simulated for which

inputs are a(31:0),b(31:0) and cin. The resultant sum s(31:0) and cout for various

combinations are as shown in the Fig.14. The proposed architecture for CSLA for 64 bit is

simulated for which inputs are a(63:0),b(63:0) and cin. The resultant sum s(63:0) and cout for

various combinations are as shown in the Fig.15.

3. Results & Discussion

The proposed adder and the conventional architectures for data width ranging from 16 bit to

64 bit are synthesized in cadence Encounter RTL compiler using the slow library of 90nm

standard cell technology. The proposed architecture consumes less area and power when

compared to conventional architectures for various word sizes. 2 bit Conventional RCA with

input carry is equal to ‘zero’ consists of 1 Half adder and 1 Full adder. Each full adder is

designed using 2 Half adders and 1 OR gate. Thus 2 bit RCA with input carry is equal to

‘zero’ is designed using 3 Half adders and 1 OR gate. Half adder consumes 12 units of cell

area since multiplexer based XOR gate consumes 6 units of area and AND gate consumes 6

units of area. Similarly 6 units of cell area for OR gate during synthesis. Thus the overall cell

area occupied by 2 bit RCA with input carry is equal to ‘zero’ is 12*3+5=41 units of cell area.

2 bit RCA with input carry is equal to ‘one’ consists of 2 Full adders. Each full adder is

designed using 2 Half adders and 1 OR gate. Thus 2 bit RCA with input carry is equal to

‘one’ is designed using 4 Half adders and 2 OR gates.Thus the overall cell area occupied by

2 bit RCA with input carry is equal to ‘one’ is 12*4+2*5=58 units of cell area. Similarly

multiplexer based 2 bit adder with input carry is equal to ‘cin’ occupies 39 units of cell area

during synthesis since multiplexer based XOR gate consumes 6 transistors and multiplexer

based OR gate and AND gate consumes 4 units of cell area. Thus the overall area is reduced

for multiplexer based adder when compared to RCA. Table I indicates the cell area and delay



31

results for both Normal and Modified Architectures. The area calculations are evaluated in

terms of the cell area. Area for 16 bit Proposed architecture is reduced by 44.8877658

%,19.7007087%,10.4737132% when compared to Conventional SQRT CSLA, SQRT-KSA,

SQRTCSLA-BEC architectures and increased by 0.7538689 % when compared to

SQRTKSA-BEC architecture. Area for 32 bit Proposed architecture is reduced by

53.98997%, 26.80797 %,15.83536% and 3.366533 % when compared to Conventional

SQRT CSLA, SQRT-KSA,SQRTCSLA-BEC ,SQRTKSA-BEC architectures. Area for 64 bit

Proposed architecture is reduced by 59.35164%, 39.86908%,18.79677% and 14.7444%

when compared to Conventional SQRT CSLA, SQRT-KSA,SQRTCSLA-BEC ,SQRTKSA-

BEC architectures. Performance evaluation for the proposed architecture with respect to

different CSLA Architectures in terms of cell area is shown in Fig.16. Performance

evaluation for the proposed architecture with respect to different CSLA architectures in terms

of delay is shown in Fig.17.

Table I Comparison of Area and Delay for different CSLA Architectures

Adder

/Parameter Area(µm2) Delay (psec)

Word Size 16-Bit 32-Bit 64-Bit 16-Bit 32-Bit 64-Bit

SQRT-CSLA[20] 879.518 1869.543 3869.273 3832 4644 6029

SQRT-KSA[21] 726.624 1539.535 3396.21 3840 4652 6038

SQRTCSLA- BEC

[20] 670.613 1406.32 2884.546 3817 4627 6010

SQRTKSA-BEC

[21] 602.492 1254.94 2786.149 3836 4660 6255

PROPOSED 607.034 1214.068 2428.135 4817 7641 13291



32

Fig.16.Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of cell area.

Fig.17. Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of delay.

Table II & III indicates the Leakage Power, Dynamic Power and Total Power for different

CSLA Architectures. The total Power is the sum of Leakage power and Dynamic Power.

Leakage Power for 16 bit Proposed architecture is reduced by

97.13535%,37.499974%,38.816802%, 8.8625051% when compared to Conventional SQRT

CSLA, SQRT-KSA, SQRTCSLA-BEC and SQRTKSA-BEC architectures. Leakage Power

for 32 bit Proposed architecture is reduced by

109.7318%,42.44941%,43.31021%,10.06154% when compared to Conventional SQRT

CSLA, SQRT-KSA, SQRTCSLA-BEC and SQRTKSA-BEC architectures. Leakage Power

for 64-bit proposed architecture is reduced by 117.1699%, 68.05759%, 45.53647%, and

33.67389 % when compared to Conventional SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC

and SQRTKSA-BEC architectures. The usage of multiplexer based adders in the Proposed
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architecture reduces the leakage power since the probability of a getting a direct path from

VDD to ground is very less [16]-[19]. Performance evaluation for the proposed architecture

with respect to different CSLA Architectures in terms of Leakage Power is shown in

Fig.18.Dynamic Power for 16 bit Proposed architecture is reduced by 36.11468%,30.37478

%,15.39073%,16.47633% when compared to Conventional SQRT CSLA, SQRT-

KSA,SQRTCSLA-BEC and SQRTKSA-BEC architectures. Dynamic Power for 32 bit

Proposed architecture is reduced by 52.25854 %, 45.0262 %, 27.16637 %, 26.85307% when

compared to Conventional SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC and SQRTKSA-

BEC architectures. Dynamic Power for 64-bit proposed architecture is reduced by

56.74388%, 69.17959%, 27.9172%, and 47.47071% when compared to Conventional SQRT

CSLA, SQRT-KSA, SQRTCSLA-BEC and SQRTKSA-BEC architectures. Performance

evaluation for the proposed architecture with respect to different CSLA Architectures in

terms of Dynamic Power is shown in Fig.19.Total Power for 16 bit Proposed architecture is

reduced by 43.8077%,31.27307%,18.34276%,15.51644% when compared to Conventional

SQRT CSLA, SQRT-KSA,SQRTCSLA-BEC and SQRTKSA-BEC architectures. Total

Power for 32 bit Proposed architecture is reduced by 59.45213 %, 44.70368 %, 29.187 % and

24.75137% when compared to Conventional SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC

and SQRTKSA-BEC architectures. Total Power for 64-bit proposed architecture is reduced

by 64.34607%, 69.03764%, 30.13349% and 45.73408% when compared to Conventional

SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC and SQRTKSA-BEC architectures.

Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of total Power is shown in Fig.20.

Table II Comparison of Leakage Power, Dynamic Power for different CSLA Architectures

Parameter Leakage Power (nW) Dynamic Power (nW)

Data Width 16-Bit 32-Bit 64-Bit 16-Bit 32-Bit 64-Bit

SQRT-CSLA [20] 6638.803 14126.01 29253.98 31775.03 71677.62 146695.8

SQRT-KSA [21] 4630.5 9594.358 22638.28 30435.09 68272.91 158334.3

SQRTCSLA-

BEC [20] 4674.846 9652.335 19604.56 26937.17 59865.17 119717.1
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SQRTKSA-BEC

[21] 3666.094 7412.946 18006.61 27190.59 59717.68 138017.1

PROPOSED 3367.637 6735.274 13470.55 23344.31 47076.26 93589.51

Table III Comparison of Total Power for different CSLA Architectures

Parameter Total Power (nW)

Data Width 16-Bit 32-Bit 64-Bit

SQRT-CSLA [20] 38413.83 85803.64 175949.8

SQRT-KSA [21] 35065.59 77867.26 180972.6

SQRTCSLA- BEC [20] 31611.65 69517.5 139321.6

SQRTKSA-BEC [21] 30856.69 67130.62 156023.7

PROPOSED 26711.95 53811.53 107060.6

Fig.18. Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of Leakage Power.
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Fig.19. Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of Dynamic Power.

Fig.20. Performance evaluation for the proposed architecture with respect to different CSLA

Architectures in terms of Total Power.

4. Conclusion

In this paper, a Low power and area efficient VLSI Architecture are Proposed. ASIC

implementation of the proposed adder for bit depths ranging from 16 bits to 64 bits proved

that the architecture is efficient in terms of area and power. Area for the proposed adder for

64 bit is reduced by 59.35164 %, 39.86908 %, 18.79677 %, 14.7444 % when compared to

Conventional SQRT CSLA, SQRT-KSA,SQRTCSLA-BEC,SQRTKSA-BEC architectures.

Leakage Power for the proposed adder for 64 bit is reduced by 117.1699%, 68.05759%,
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45.53647%, 33.67389% when compared to Conventional SQRT CSLA, SQRT-KSA,

SQRTCSLA-BEC, SQRTKSA-BEC architectures. Dynamic Power for the proposed adder

for 64 bit is reduced by 56.74388%, 69.17959%, 27.9172%, 47.47071% when compared to

Conventional SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC, SQRTKSA-BEC architectures.

Total Power for the proposed adder for 64 bit is reduced by 64.34607%, 69.03764%,

30.13349%, 45.73408% when compared to Conventional SQRT CSLA, SQRT-KSA,

SQRTCSLA-BEC, SQRTKSA-BEC architectures. Thus the Proposed adder is area efficient

and power efficient when compared to SQRT CSLA, SQRT-KSA, SQRTCSLA-BEC,

SQRTKSA-BEC architectures which is apt for designing area and power efficient FIR filter
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