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Abstract

We present a self-reconfiguring scheme for N × N mesh-connected processor arrays (PAs) with

N spares where faulty PEs are directly replaced by spare PEs functionally located on the

diagonals which may be moved. This replacement is formalized as a matching problem in graph

theory. Then, the necessary and sufficient condition that all the faulty PEs in a PA are replaced

(repaired) at the same time is given. Using the condition, a restructuring algorithm is given. By

computer simulation, it is shown that the survival rates and the probabilities of the arrays

increase so much, comparing with those of the existing network structures with the same

number of spare PEs. The scheme is realized by digital circuits which can be built in a PA. The

scheme may be useful in enhancing especially the run-time reliability and availability of PAs in

mission critical applications where first self-reconfiguration is required without an external host

computer and manual maintenance operations.
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1. Introduction

Recently, high-speed and high-quality technologies for processing many kinds of information

have become essential and will become more and more necessary in the future. For such

needs, as VLSI technology has developed, how to realize massively parallel computing

systems has been studied in the literature, e.g., [4]-[9], [22]-[26], and so on, where entire or

significant parts of PEs and interconnections among them are implemented on a single chip or

wafer. Therefore, the yield and/or reliability of the system may become drastically low.

In these situations, one of the most important and fundamental issues that must be addressed

for such PAs is defect/fault tolerance. If a single PE fails to perform its assigned task correctly,

due to some defects/faults, the entire computation will result in failure.

This manuscript concerns fault-tolerant systems consisting of many processor elements (PEs),

that is, mesh-connected parallel computer systems.

A mesh-connected processor array (PA) is a kind of form of massively parallel computing

systems. Mesh-connected PAs consisting of processing elements (PEs) have regular and

modular structures which are very suitable for most signal and image processing algorithms.

To restore the correct computation capabilities of PAs with faults, it must be reconfigured

appropriately so that the defective PEs are eliminated from the computation paths, and the

working PEs maintain correct logical connectivity among them. Various strategies to

reconfigure a faulty physical system into a fault-free target logical system are described in the

literature, e.g., [4]-[9], [22]-[26]. Some of these techniques employ very powerful

reconfiguring systems that can repair a faulty PA with almost certainty, even in the presence

of clusters of multiple faults. However, the key limitation of these techniques is that they are

executed in software programs to run on an external host computer and they cannot be

designed and implemented efficiently within a PA chip as dedicated circuits. If a faulty PA

can be reconfigured by a built-in circuit, the system down time of the PA is significantly

reduced. Furthermore, the PA will become more reliable when it is used in such an

environment where the fault information cannot be monitored externally through the

boundary pins of the chip and manual maintenance operations are difficult.
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As far as we know, the first attempts to develop self-restructuring systems (SRSs) were made

by Negrini et al. [10] and Sami and Stefanelli [11]. The design approach of their repair control

scheme begins with a heuristic algorithm that involves only some local reconnection

operations. Mazumder et al. [12] developed an automatic SRS using an analog neural network

for mesh-connected PAs with spares on one row and one column by which faulty PEs are

directly replaced. Takanami et al. also developed automatic SRSs [13], [14] for mesh-

connected PAs using single track switches (STSs) proposed by Kung et al. [4]. The arrays

they dealt with have two rows and two columns of spares, i.e., four linear arrays of spares

around a PA to cope with faults of low reliable PEs.

On the other hand, if PEs are fairly reliable, it is expected that the smaller number of spares

will be sufficient for retaining the reliability of an array so high and additional control

schemes as well as control circuits will become simple. From this expectation, the authors

proposed SRSs for PAs with spares in one row and one column [17]–[20]. In these schemes,

2N spares are used for arrays with size of N × N. Further, the case where the number of spares

is less, that is, N, was discussed for STS structure in [21].

This paper deals with the case that the number of spares is N for an N × N array. As an

arrangement of N spares for this case, a simple one is to locate them on a side of an array

called singe-side spare scheme (SS scheme). Another to be presented here is to locate them on

the diagonal of an array, which is called a diagonal spare scheme (DS scheme). Since how

faulty PEs are replaced in SS scheme is simple and further its array reliability is less than that

of DS scheme as shown in Fig. 2, in Section II, we describe how faulty PEs are replaced in

DS scheme. For this scheme, two methods which are called direct replacement (DR) and STS

will be considered. STS method was discussed in [21]. STS method has an advantage in that

physical distances among logically adjacent PEs after reconfiguration (compensation) are

bounded by a constant while those in DR method are proportional to the array sizes. On the

other hand, as seen in Sect. 4, DR method realizes much higher reconfiguration probabilities

than STS method. So, here we focus on DR method.

In Sect. 2, we present the fixed diagonal case of DR method and the moved diagonal one as

its valiant. In Sect. 3, we formalize the strategies for deciding that by which healthy spares

faulty PEs should be replaced as a matching problem in graph theory and present an algorithm

for reconfiguring the arrays with faulty PEs in a convenient form to realizing built-in circuits

for reconfiguration. In Sect. 4, the survival rates (successfully reconfigured rates) and array

reliabilities (successfully reconfigured probabilities) as the measures to evaluate the proposed
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method are shown. In Sect. 5, the built-in circuits to realize the proposed method is presented.

Sect. 6 is a conclusion.

2. DS scheme andmoved diagonal method

Fig. 1(a) shows SS scheme in which a faulty PE is replaced by a spare in the same row. Fig.

1(b) shows how PEs with spares are arranged in an array for DS scheme. If a PE pij located at

the i-th row and j-th column is faulty, it is compensated for by either the spare Si or Sj. For this

arrangement, several compensation methods may be considered according to how an array is

restructured using spares. Here, two methods are introduced. One is to directly replace a

faulty PE with a spare, which is called DR method. Another is to replace a faulty PE with a

spare by shifting PEs as in [4] and [9], which is called STS method.

Figure 1. Arrangement of PEs and spares

STS method has an advantage in that physical distances among logically adjacent PEs after

reconfiguration (compensation) are bounded by a constant while those in DR method are

proportional to the array sizes. On the other hand, as seen in Sect. 4, DR method realizes

much higher reconfiguration probabilities than STS method. So, here we focus on DR method.

In DR method, the replacement of faulty PEs by spares on diagonal will be characterized

using a bipartite graph in graph theory.

Hereafter, we give some notations.

Notation 1:

• PE(i, j) (1 ≤ i ≤ N) (1 ≤ j ≤ N) denotes the PE located at location (i, j), i.e., the i-th row

and j-th column of an N × N PA.
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• Sj (1 ≤ j ≤ N) denotes a spare on a diagonal of PA whose location is assigned in the

moving process to be described later. Sj is denoted as PE(0, j) for convenience of explanation.

• fij (0 ≤ i ≤ N) (1 ≤ j ≤ N) denotes the faulty state of PE(i, j) where fij = 1 and = 0 means

that PE(i, j) is faulty (healthy), respectively.

• If a faulty PE is replaced by a spare PE, it is said to be repaired, otherwise

unrepaired.

• For a set of faulty PEs (including spares) which is called a fault pattern, if all the

faulty PEs in the set can be repaired at the same time, the fault pattern as well as the array

with the fault pattern is said to be repairable, otherwise unrepairable. Note that a faulty spare

is repaired by itself.

For DR method, we formalize a strategy for deciding that faulty PEs should be replaced by

which healthy spares as a matching problem in graph theory.

For the array in Fig. 1(b), we construct the following bipartite graph G called a compensation

graph for a fault pattern P.

Let Vf = {pij | 0 ≤ i ≤ N,1 ≤ j ≤ N, PE(i, j) is faulty}, Vs = {p01, ..., p0N} which is a (vertex) set

of spares on the diagonal of the array. Then, G = (V, E), where V = Vf ∪ Vs, E = {(pij, p0i), (pij,

p0j) | 0 ≤ i ≤ N,1 ≤ j ≤ N, PE(i, j) is faulty}. Vf is called a (vertex) set of faulty PEs and E a set

of edges implying replacement relation, respectively. Note that a faulty spare PE is considered

to be replaced by itself.

It is clear that the following holds.

Lemma 1 A fault pattern P is repairable by replacement if and only if a matching from Vf to

Vs exists. For such a matching M, faulty PE(i, j) is replaced by spare Sj if (pij, p0i) ∈ M, and

by spare Sj if (pij, p0j)∈ M.

Notation 2:

Let G = (V, E) be a bipartite graph where V = V1 ∪ V2 and V1∩V2= ϕ. For S ( V1), let ψ(S) =

{v ∈ V2 | (w, v) ∈ E, w ∈ S}. The degree of a vertex u which is the number of edges

incident to u is denoted as deg(u).

It is seen that the degree of any faulty vertex in a compensation graph is equal to or less than

two. Using the fact, the repairability condition is given as follows [19].
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Theorem 1 (Repairability theorem): Let G = (V, E) be a bipartite graph such that V = V1∪V2,

V1 ∩ V2 = ϕ and E V1 × V2 where the degree of any vertex in V1 is equal to or less than two.

We partition the maximal subgraph of G with the vertex set V1 ∪ ψ(V1) into connected

components and denote the vertex sets in V1 of the connected components as C1, C2, ..., Cm

(for each Cp, Cp V1, ψ(Cp) V2, and for i ≠ j, (Ci∪ψ(Ci)) ∩ (Cj∪ψ(Cj)) = ϕ). Then, the

repairability condition is as follows.

There exists a matching from V1 to V2 if and only if |Ci| ≤ |ψ(Ci)| for all Ci holds, where |C|

means the number of elements in C. □

Proof: see [19].

According to Theorem 1, we can judge whether a PA is repairable. Theorem 1 is also

expressed in a convenient form for restructuring a PA, which is used in the algorithm

MDRALG to be presented in Sect. 3.

Theorem 2: (i) For any vertex v of degree 1 in V2 and (w, v) ∈ E, let G′ = (V ′, E′) be the

graph obtained by removing {w, v} from V and the edges incident to w or v. Then, there exists

a matching from V1 to V2 in G if and only if there exists a matching from V1 – {w} (= V1′) to V2
– {v} (= V2′) in G′. (ii) Let the degree of any vertex in ψ(Ci) be equal to or greater than two.

Then,

1. For some Ci, if there is a vertex in ψ(Ci) whose degree is greater than two, there exists

no matching from V1 to V2.

2. For some Ci, if the degree of every vertex in ψ(Ci) is two and there exists a vertex of

degree 1 in Ci, there exists no matching from V1 to V2.

3. For all Cis, if the degree of every vertex in ψ(Ci) is two and there exists no vertex of

degree 1 in Ci, there exists a matching from V1 to V2. □

Proof: see [19].

Property 1:

(i) If a nonspare faulty PE(i, j) is at the same location as that of a spare, deg(pij) is one

and otherwise two. Further, the degree of a faulty spare is one.

(ii) For any v ∈ V1, deg(v) does not change before and after the operation (i) in Theorem

2 has been executed since edges incident to v are untouched.
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3.Moved diagonal restructuring algorithm (MDR-ALG)

We present a method to logically move positions of spares for an N × N PA. For k (1 ≤ k ≤ N),

a location to which Sj (1 ≤ j ≤ N) is assigned is defined by the equation below and denoted as

Lock(Sj).

Lock Sj =
j - k+1, j for k ≤ j
N - k+1+j, j for j < k (1)

Table 1 illustrates Lock(Sj)’s for k’s (1 ≤ k ≤ 4) and j’s 1 ≤ j ≤ 4. For k, a set of Lock(Sj)’s is

called a moved diagonal with index k and denoted as DA(k).

Table 1. Lock(Sj)’s for the case of N = 4

k Lock(S1) Lock(S2) Lock(S3) Lock(S4)

1 (1, 1) (2, 2) (3, 3) (4, 4)

2 (4, 1) (1, 2) (2, 3) (3, 4)

3 (3, 1) (4, 2) (1, 3) (2, 4)

4 (2, 1) (3, 2) (4, 3) (1, 4)

Fig. 2(a) visually shows the moved diagonal DA(k). If the parts I and III in Fig. 2(a) are

moved to the right sides of the parts II and IV, Fig. 2(b) is obtained. Then, Fig. 2(b) has the

same structure as Fig. 1(b) as well as the replacing relation. So, a faulty PE is replaced by one

of the spares which are located in horizontal and vertical directions of the location of the

faulty PE. This is called a moved diagonal method (MD-method). The network structure for

moving logical position of spares will be presented in Sect. 5

Figure 2. Arrangement of spares on the moved diagonal (DA(k))
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A restructuring algorithm for MD-method to be introduced in the following is called a moved

diagonal restructuring algorithm (shortly written as MDR-ALG) which is executed to PA

with logically moved spares as in Fig. 2.

Notation 3:

• A PA with spares on DA(k) is denoted as PA(DA(k)).

• For PA(DA(k)), let Lock(Sj) = (r, c). Then, the r-th row and c-th column of PA(DA(k))

are denoted as R(Skj) and C(Skj), respectively. For example, R(Sk1) is the (N – k + 2)-th row

and C(Sk1) is the 1-st column in Fig. 2(a).

• The number of unrepaired faulty PEs (including Sj) through the row R(Skj) and column

C(Skj) is denoted as nf(Skj). For simplicity, nf(Sjk) are often written like nf(Sj) if no confusion

occurs.

• A nonspare PE at the location Lock(Sj) is denoted as PE(Lock(Sj)).

MDR-ALG

• Let the size of PA be N × N.

• Let P be a fault pattern including faulty spares.

Step 1: Set k to 1.

Step 2: Construct the compensation graph G = (V, E) for PA(DA(k)) with P.

Step 3: Let V1′= Vf, V2′= Vs and E′= E. Let M = ϕ (empty set).

Step 4: While there is a vertex v with deg(v) = 1 in V2′, do this step.

For (w, v) ∈ E′, let M = M∪ {(w, v)}, E� = {(w, v�) | (w, v�) in E′}, E′ = E′ − E�, V1′ = V1′ – {w}

and V2′ = V2′ – {v} (i.e., match w with v, and delete all the edges incident to w together with w

and v).

Step 5: If V1′ = ϕ, M is a matching from V1 to V2. Then, go to Step 8.

Step 6: If there is a vertex v in V2′ whose degree is more than 2 or there is a vertex v in V1′

with deg(v) = 1 and k < N, increase k by 1 and go to Step 2. Otherwise, it is judged that there

is no matching and go to Step 8.

Step 7: Let G� be the compensation graph obtained. Then, there is a matching in G� and find a

closed cycle in each derived connected component Ci� , from which just two different matching
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in Ci� are derived. Choose one of them which is denoted as Mi. Let M = M ∪ {∪i Mi}. Then

M is a matching from Vf to Vs.

Step8: The algorithm ends.

The following is the detailed process for executing MDR-ALG by hardware, where spare PEs

are physically located on the upper side as shown in Fig. 5.

(Execution of MDR-ALG (shortly written as EMDR-ALG) for an N × N PA)

Step I: Set k to 1.

Step II: Set a diagonal to DA(k).

Step III: While there is an unrepaired faulty PE through R(Sj) and C(Sj) with nf(Sj) = 1 for

some Sj, do (i) below.

(i) For each spare Sj, get nf(Sj). This is done in parallel for all the spares Sj’s. Then, replace

(repair) a faulty PE through R(Sj) and C(Sj) with nf(Sj) = 1 by the spare Sj and set nf(Sj) to 0.

This step corresponds to Step 4 in MDR-ALG.

Step IV: For some Sj, if nf(Sj) ≥ 3 or (for nf(Sj) = 2, Sj or the PE(Lock(Sj) is faulty and

unrepaired) and k < N, increase k by 1 and go to Step II. Otherwise, the PA with faults is

unrepairable and go to Step VI.

This step corresponds to Step 6 in MDR-ALG.

Step V: The array is repairable. Then, proceed to find closed cycles and determine directions

of replacement for the unrepaired faulty PEs in the cycles.

Step VI: The algorithm ends.

Figure 3. Flows of compensation graphs together with nf(Sj)’s for PA(DA(k)) (k=1 and 2)
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Fig. 3 shows the flow of the compensation graphs for a fault pattern P = {X1, X2, X3, X4} in

execution of MDR-ALG where the red lines denote the matched pairs and t the number of

times that (i) in Step III has been executed. Fig. 3(c) shows the flow of nf(Sj)’s (1 ≤ i ≤ 4)

where nf(Sj)’s with circle mark imply that Sj’s or PE(Lock(Sj))s are faulty, from which it can

be judged that the pattern can’t be repaired by the spares in DA(1) (i.e., k = 1)) but DA(2) (i.e.,

k = 2).

This suggests that MD-method may increase the survival rates and array reliabilities.

4. Evaluation

In this section, to estimate the performance of MDR-ALG, we have executed Monte Carlo

simulations using a PC with Borland C++ Compiler 5.5. Here, it is assumed that all the PEs

including spares may become uniformly faulty. Then, 106 random fault patterns each with k

faulty PEs for 1 ≤ k ≤ Ns are generated provided that each PE in an array has the same

reliability p, where Ns is the number of spare PEs. Then, we have evaluated survival rates

(SVs) and array reliabilities (ARs), comparing with those of the existing algorithms for arrays

with the same number of spares. Here, SV (k) is the ratio of the number of repairable fault

patterns each with k faulty PEs to the number of fault patterns each with k faulty PEs

examined, which is the probability estimated by simulation that fault patterns each with k

faulty PEs are repaired. The array reliability AR(p) is defined as the sum of all the

probabilities each of which is computed as the product of probability that a fault pattern is

repaired and one that the pattern occurs under the condition that each PE may be healthy with

equal probability p, as below. Then, SV (k) and AR(p) are given as

SV(k) = Nrep(k)
Npat(k)

,

AR k =
k = 0

Ns

NaCk ∙ SV(k)� ∙ pNa - k ∙ 1 - p k,

where Nrep(k), Npat(k), and Na are the number of fault patterns which have k faulty PEs and are

judged to be repairable, the number of examined fault patterns which have k faulty PEs, and

the number of all PEs, respectively. Note that pNa − k · (1 − p)k is the probability that a fault

pattern with k faulty PEs occurs, NaCk =
Na!

�� − � ! �!
the number of fault patterns each with k

faulty PEs.
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Fig. 4 shows SVs and ARs of PAs with size of 8 × 8, where ‘-mov’ denotes one for MDR-

ALG, ‘-fix’ for MDR-ALG with diagonal fixed to DA(1), -STS for STS method and ‘-ss’ for

ss-scheme, respectively. It is seen that the ARs and SVs for MDR-ALG (denoted as 8x8-mov)

are much higher than those for STS as well as the MDR-ALG with DA(1), i.e., for

PA(DA(1)).

Figure 4. Survival rates and array reliabilities for 8 x 8 arrays
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5. Hardware realization

Fig. 5 is an illustration of the network structure for PA(DA(1)) in which the spares are

physically located on the upper side and the switches around each PE. To see a scene that

faults are replaced by spares, it is shown that the PE with mark X1 is replaced by the spare S1

through the red lines. A PE together with the switches surrounded with the dotted square line

is called a PE module (shortly written as PE-M) which is depicted as in Fig. 6. Then, the

structure in Fig. 5 is concisely depicted as in Fig. 8. The switches in a PE-M consist of H-, V-

and D-switches (denoted as H-, V- and D-sw’s). D-sw’s are ON if the PE-M is logically

located on the diagonal, otherwise OFF. The states of the switches (H- and V-sw’s) denoted

by circular marks around a PE are determined and depicted as shown in Fig. 7, depending on

whether the PE in the PE-M is healthy or faulty and the directions in which it is replaced by a

spare.

Figure 5. (a) Network structure with spares on DA(1) where PEs with (without) x marks

are faulty(healthy) where in (b) and (c), those in the left side are the simplified

expressions of those in the right side
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Figure 6. PE Module (PE-M)

Figure 7. The states of switches with circular marks around a PE according to the

directions in which it is replaced
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Figure 8. The concise expression of the network structure by PE-Ms

Then, it is seen that the following property holds. This property is effectively used in

designing NET-1 to be described.

Property 2:

(i) The states of the H- and V-sw’s for UP, DOWN and JUST directions are the same,

where JUST means that the logical address of a PE is the same as that of a spare, which is

called ‘UDJ-sw state’.

(ii) The states of the H- and V-sw’s for Right and Left directions are the same, which is

called ‘LR-sw state’.

MDR-ALG will be realized by digital circuits for the network structure shown in Fig. 5. This

is done by two circuits. One is NET-1 and another is NET-2. First, NET-1 outputs a signal

whether a PA with faulty PEs is repairable, i.e., all the faulty PEs are replaced by healthy

spare PEs at the same time. If the array is not repairable, ‘1’ is output from the terminal
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UNRP, otherwise “0” is output. When UNRP = 0, NET-2 determines a direction toward a

spare by which each unrepaired faulty PE in the closed cycles obtained in Step V of EMDR-

ALG should be replaced.

The following is the more detailed outline of hardware realization for an N × N PA.

(Detailed outline of hardware realization)

• Let P be a fault pattern for an N × N PA in which Si’s (1 ≤ i ≤ N) are spare PEs

physically located on the upper side.

Step I: Set k to 1.

Step II: Set UNREC to 1.

Step III: While (k ≤ N and UNREC = 1), for PA(DA(k)) do from Steps IV to VI.

Step IV: Set UNREC to 0.

Step V: For PA(DA(k)), get nf(Sj) (1 ≤ j ≤ N). This is done in parallel for all the j’s. If nf(Si)

= nf(Sj) = 1 (i ≠ j), (i) single faulty PE is in R(Si) and C(Sj), or (ii) in C(Si) and R(Sj). Then, we

make it be replaced by Sj for the case (i) and Si for the case (ii), and set nf(Si) and nf(Sj) to 0s.

Note that if a spare Sk is faulty, it is replaced by itself. This step corresponds to Step III in

EMDR-ALG.

Step VI: For some Sj, if (a) nf(Sj) ≥ 3 or (b) for nf(Sj) = 2, Sj or the PE(Lock(Sj)) is faulty and

unrepaired, increase k by 1 and set UNREC to 1 and go to Step III. This step corresponds to

Step IV in EMDR-ALG.

Step VII: If UNREC = 1, the array with the faults is unrepairable and the process is ended.

Otherwise, repairable and proceed to the next step.

Step VIII: Each unrepaired faulty PE in closed cycles described in Step 7 in MDR-ALG is

replaced as follows. This step corresponds to Step V in EMDR-ALG.

To begin with the leftmost column, do the following.

(i) Check whether there are unrepaired faulty PEs in the column. This is done by sending

a signal “1” from the lowest row in the column toward the upper. If it is confirmed that there

is none, go to the column next to the right. Otherwise, there are unrepaired one or two faulty

PEs but not more than two in the column. Let denote the start of the cycle by A and the end

by B. Then, six location patterns of A and B as in Fig. 9 are possible where the oblique lines

show PEs on diagonal. In designing a circuit, we make the location pattern (d) in Fig. 9 not
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occur. The PE A which receives the signal “1” from the lower sends signal “1”s to the left and

right and is replaced by a spare PE logically located on the diagonal.

• A faulty PE which has received a signal “1” from the upper or lower sends signal “1”s

to the right and left. Then, the sw’s around the PE are set to UDJ-sw state, and it is replaced

by a proper spare PE on the diagonal.

• A faulty PE which has received a signal “1” from the left or right sends signal “1”s to

the upper and lower. Then, the sw’s around the PE are set to LR-sw state, and it is replaced by

a proper spare PE on the diagonal.

• A healthy or repaired PE only passes the signal which it has received.

(ii) Finally, a signal “1” will reach the PE B. If the column checked is the rightmost

column, this process is ended. Otherwise, go to the column next to the right and go to (i).

Figure 9. Possible location patterns of A and B in a cycle where arrows are implied

directions of replacement

First, we show a digital circuit NET-1 which realizes from Steps I to VII above. Next, we

show a digital circuit NET-2 which decides the directions of replacements for faulty PEs in

closed cycles in Step VIII above.

Fig. 10 shows NET-1 which consists of modules MPE, MSP and Dg-sw where MPE is shown

in (b) and MSP in (c). The fault signal of a nonspare PE (spare PE) is input to the terminal F

of MPE (MSP) as shown in Fig. 10.
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Figure 10. NET-1

Notation 4:

• PE(x,y) (including a spare PE) denotes the PE in the x-th row and y-th column, where

PE(0,y) denotes the spare PE on the upper side of an array.
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• Input signal to a terminal number n is denoted as in. The output signal from a terminal

number m is denoted as om. These symbols are also used as the terminal names if no confusion

occurs.

• i(x,y) and o(x,y) denote the input and output to/from MPE(x,y).

We explain the functions of the modules and Dg-sw in the following.

• The function of AD

AD is used to count the number of faulty PEs through R(Si) and C(Si) for each spare Si to

check whether nf(Si) > 2. To do so, AD adds binary numbers (x1x0)2 and (0f)2, and outputs a

binary number (y1y0)2 but the sum is upper-limited to 3, that is, (11)2 if it is greater than 2, as

shown in Fig. 10(a).

• The function of MPE

1. When nf(Si) = 1, the fault state of PE(a, b) = x0 · y0 for (a, b) in RC(Si) where x0 and y0
are the signal values of the terminals of C1 in MPE(a, b).

2. If the signals i9 = i11 = 1 (so initially as will be described in 1 of the behavior of NET-

1), of = iF, otherwise of = 0.

3. If Dg = 0, i.e., PE is not on the diagonal, (o8o7)2 = (i6i5)2 + (0f)2 and (o4o3)2 = (i1i2)2 +

(0f)2. If Dg = 1, i.e., PE is on the diagonal, (o8o7)2 = (i6i5)2 and (o4o3)2 = (i1i2)2+ (0f)2.

4. LR and UDJ are defined as in Table 2. Then, we have LR = i13· i15 and UDJ = i13. The

data of either of LR or UDJ are held correspondingly when either of them is 1.

Table 2. Truth table for LR and UDJ

f i13 i15 LR UDJ

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 0 1

0 * * 0 0

• The function of MSP
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1. i8(0, y) = 1 if and only if PE(Si) with Dg = 1 is faulty where Si = PE(0, y).

2. When FF1 is rest, o5 = 1. When 1rp = 1 and 1ck is fed, the output Q of FF1 becomes 1

and hence, Q becomes 0. Table 3 is the truth table for unrp and 1rp which is obtained from

Steps V and VI in the detailed outline. From Table 3, it is seen that 1rp = 1 if and only if iF =

0 and (i2i1)2 = 1, and unrp = 1 if and only if (a) (i2i1)2 ≥ 3 or (b) iF = 1 and (i2i1)2 = 1 or (c) i8 =

1 and (i2i1)2 = 2. (In Table 3, the subscripts (a), (b) and (c) are attached to the corresponding

rows like (iv)(a), (vi)(b), (xi)(c)) and so on.

Table 3. Truth table for unrp and 1rp (∗ ’s are ‘don’t care’)

i8 F i2 i1 unrp 1rp i8 F i2 i1 unrp 1rp

(i)

(ii)

(iii)

(iv)(a)

(v)

(vi)(b)

(vii)(a)

(viii)(a)

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

0

0

0

0

0

0

(ix)

(x)

(xi)(c)

(xii)(a)

(xiii)

(xiv)(a)

(xv)(a)

(xvi(a))

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

*

0

1

1

*

1

1

1

*

1

0

0

*

0

0

0

From Table 3, the logical equations of unrp and 1rp are give by

unrp = (F + i2) (i8 + i1) + F· i2,

1rp = F · i2· i1.

• The function of Dg-sw

Fig. 11 illustrates the state of Dg-sw to determine the positions of DA(∗ ) for a 4 × 4 PA.

Through the Dg-sw, the terminals 8, 7, 15 and 11 of the MPE’s in the rightmost column are

connected to the terminals 2, 1, 14 and 10 in the MPE’s in the lowest row, respectively,

according to the positions at which the Dg signals are given to the MPE’s at the top row.
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Figure 11. States of Dg-sw according to DA(i)s (1 ≤ i ≤ 4)

(The behavior of the circuit NET-1)

1. Initially, all the flip-flop FFs in MPE’s and the shift-registers are reset, i.e., o5 of each

MSP is 1. Then, i9 of each MPE is 1, and (i2i1)2 of each MSP shows nf(SP) excluding the fault

state of SP, though it is upper-limited to 3.

2. The behavior of NET-1 is controlled by the clocks input to the terminals 1ck’s of

MSP’s.

3. If 1RP = 1, there is an MSP (= MPE(0, y)) whose output o1rp is 1. Let the logical

address of SP be (x, y). Then, the o1rp is fed to i13(1, y), which is output from o14(N, y) which is

input to i15(x, N) through Dg-sw. The signal 1 passes y-th column (i.e., C(SP)) and x-th row

(i.e., R(SP)). Then, there is a single faulty PE whose physical address is (a, y) or (x, b). Let it

denote as (a′, b′). Then, the output of either G5 or G6 in MPE(a′, b′) becomes 1. In this situation,

when a clock through 1ck is input to NET-1, the FF1 of the MSP is set to 1 and o5(0, y)

becomes 0, which is input to the terminal i9 of MPE(1, y) which passes y-th column

(C(SP))and x-th row (R(SP)) through Dg-sw. Then, a faulty PE(a′, b′) is replaced by the SP

where the direction of replacement is determined by the output of either G5 or G6 (see Table 2).

4. If UNREP = 0, unrp’s of all MSP’s are 0’s, which indicates that the array with the

faults is repairable. Next, if there is Sk such that nf(Sk) = 2, go to the process to find closed

cycles (even if there may not be such cycles) together with the directions of replacing

unrepaired faulty PEs in the cycles. This process corresponds to Step VIII in the detailed

outline and is executed by NET-2 shown in Fig. 15.

NET-2 is a network consisting of CPE’s, a shift-register, flip-flops and gates as shown in Fig.

15, and decides the directions of replacing unrepaired faults with spares in executing Step

VIII in the detailed outline.
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• The function of CPE

CPE has three subcircuits whose functions are switched according to the cases of (F = 1 and Dg

= 0), (F = 0 and Dg = 0) and Dg = 1.

1. The terminal f of MPE in NET-1 is connected to the terminal F of CPE.

2. If iF (= of) is 0, the internal structure becomes as shown in Fig.12(b), i.e., the signals

pass through.

3. If iF= 1 and Dg = 0, the internal structure becomes as shown in Fig. 12(a). Then,

(i) (a) the signal through x3 from the top or (b) x1 or v1 from the bottom are transferred to

the left through y4 and the right through y2, and the signal is stored in the flip-flop FFLR

which indicates that the direction of replacement is to the left or right. This scene is seen in

Fig. 13(i).

(ii) (a) The signal through x4 from the left or (b) x2 from the right are transferred to the

lower through y1 and the upper through y3, and the signal is stored in the flip-flop FFUDJ

which indicates that the direction of replacement is the top or down. This scene is seen in Fig.

13(ii).

4. If Dg = 1, the internal structure becomes as shown in Fig. 12(c). Then,

(i) If v1 = 0, the signal through xi (i = 1, 2, 3 or 4) is transferred to three yj’s (j ≠ i), where

the case of i = 1 is shown in Fig. 14(iii).

(ii) If v1 = 1, the signal through x1 is transferred only to y3 as shown in Fig. 14(iv). The

signals through x2, x3 and x4 are transferred only to y1 (see Fig. 12(c) in which the circles in

the cross points of the vertical and horizontal lines mean that the logical ORed signals from

the horizontal directions are transferred to the vertical directions, e.g., y1= x2+ x3+ x4).
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Figure 12. Inner-structure of module CPE

Figure 13. Signal flow of inputs and outputs in the case of F = 1 and Dg = 0

Figure 14. Signal flow of inputs and outputs in the case of Dg = 1
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(The behavior of the circuit NET-2)

NET-2 operates when a given fault pattern is repairable, i.e., UNREP = 0. Note that the

internal structure of CPE becomes as shown in Fig. 12(b) if a PE is healthy or has been

repaired in NET-1 and as shown in Fig. 12(a) if it has not yet been repaired and is in a closed

cycle. Further, note that there are one or two unrepaired faulty PEs in a row or column in a

closed cycle.

1. Initially, all the flip-flops are reset.

2. Signal ‘1’ in the shift-register is shifted from the left to the right at the time when the

output of G1 is 0 and a clock pulse is fed to CLK-1.

3. Increasing i from 1 to N, the following is performed.

(i) A clock is fed to all the flip-flops in Fig. 15 through CLK-2 except ones in the shift-

register.

(ii) If Qi of the shift-register becomes 1, this signal ‘1’ is input to v1 of CPE in the bottom

row of i-th column. At the time, the output of the gate G1 becomes 1 and hence a clock to

CLK-1 is inhibited to be supplied to the shift register. While a clock to CLK-1 is not supplied,

the signal ‘1’ input to the i-th column behaves as follow.

• If there is no unrepaired faulty PE in the i-th column, the signal ‘1’ passes through all

the CPEs in the column, turns back to the CPE in the top row of the column (note that the

terminals x5 and y3 are connected) and reaches the terminal y5 of the CPE in the bottom row of

the column.

• If there are unrepaired faulty PEs, there are unrepaired one or two faulty PEs but not

more than two in the column. Let denote the start of the cycle by A and the end by B. Then,

six location patterns of A and B are possible as shown in Fig. 9. As mentioned before, the

location pattern (d) in Fig. 9 does not occur. The signal ‘1’ is fed to A and propagates in a

closed cycle as mentioned in Step VIII in the detailed outline of hardware realization, finally

reaches B and the terminal y5 or y1 of the CPE in the bottom row of the column.

• The signal ‘1’ which reaches y1 or y5 of the CPE in the bottom row as above is

memorized in the D-FF by a clock to CLK-2 and fed to the gate G2. Then, the outputs of G2

and G1 become 0s, and hence, a clock to CLK-1 can pass through the gate Gck.

The above will be seen in Fig. 15 as an instance for a 4×4 PA(DA(3)) where the arrows show

the flow of the signal ‘1’.
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From the explanation so far, it is seen that NET-1 and NET-2 exactly execute each step in

EMDR-ALG.

5. Conclusion

It has been shown that system lifetime extremely increases by introducing the moved diagonal

method. Further, it has been shown that the proposed approach can be realized by the digital

network consisting of comparatively simple digital modules which can easily be embedded in

a target PA to recover from the faults without the aid of a host computer for reconfiguration.

This implies that the proposed method is so useful in enhancing especially the run-time

reliabilities and availabilities of PAs in mission critical systems where first self-

reconfiguration is required without an external host computer or manual maintenance

operations.

Figure 15. NET-2 for deciding the directions of replacement while executing Step VII
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