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Abstract

This paper first formalizes classical modal syllogisms from the perspective of knowledge
representation. Subsequently, it employs modal logic and generalized quantifier theory to
prove the validity of the classical modal syllogism [JAI<>I-3. Finally, making best of some
rules and facts in first-order logic and the definitions of inner and outer negation for classical
quantifiers in generalized quantifier theory, at least the other 37 valid classical modal
syllogisms can be derived from the validity of the syllogism [JAI<>I-3. The method is not
only concise and elegant, but also universally applicable to the study of various types of
syllogisms. Undoubtedly, this research is beneficial for the further development of knowledge

mining in artificial intelligence.
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1. Introduction

There are various types of syllogisms in natural language, such as classical syllogisms (Patzig,
1969; Long, 2023; Hui, 2023), classical modal syllogisms (Lukasiewicz, 1957; Cheng, 2023),
and generalized syllogisms (Xiaojun and Baoxiang, 2021), and so on. This paper mainly

discusses classical modal syllogisms.

Classical modal syllogisms have been studied by many scholars. For example, Xiaojun
(2020a, 2020b) and Cheng (2023) provide a formal study of classical modal syllogisms from
the perspective of modern logic. Protin (2022) proposes a new deductive system to explain the
validity of classical modal syllogisms. However, a consensus among scholars indicates that
the current body of research fails to provide a coherent explanation of classical modal

syllogisms.

This paper endeavors to offer a coherent explanation of classical modal syllogisms. To this
end, on the basis of relevant definitions, facts, and reasoning rules, this paper first proves
the validity of the modal syllogism [JAI<>I-3, and then deduces other 37 valid syllogisms
from the modal syllogism CJAI<I-3.

2. Knowledge Representation for Classical Modal Syllogisms

In the following, let O be any of the four classical quantifiers (namely, all, some, no, not all),
— Q be its outer negation quantifier and Q — be its inner one. Let z, £ and b be lexical
variables, and D be their domain. The sets composed of z, k and b are respectively Z, K, and
B. ‘=4’ means that the left can be defined by the right. Let A, 6, p, and © be well-formed
formulas (abbreviated as wff). ‘+ ¢’ indicates that the formula ¢ is provable. The other cases
are similar. The operators discussed in the paper represent fundamental symbols within the
realms of set theory and modal logic, for instance, —, —, A, <>, [J and < are operators of

negation, conditionality, conjunction, bicondition, necessity and possibility, respectively.

Classical syllogisms involve 4 kinds of propositions as follows: ‘all zs are bs’, ‘some zs are
bs’, ‘no zs are bs’ and ‘not all zs are bs’, which can be respectively formalized as all(z, b),
some(z, b), no(z, b), and not all(z, b). These four propositions are respectively called
Proposition 4, I, E, O. Classical syllogisms comprise four distinct figures, which are defined

as usual.
A classical modal syllogism is obtained from a classical syllogism by adding necessary
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modalities ( [0 ) and/or possible ones (<>). More specifically, in addition to the four
propositions previously mentioned, non-trivial modal syllogisms also encompass at least one
of the following eight categories of propositions: [lall(z, b), Ulsome(z, b), Uno(z, b), Lnot
allz, b), $all(z, b), Osome(z, b), Ono(z, b), and not all(z, b). And they are respectively
called Proposition (1A, LII, JE, OO, CA, <1, OFE, and <O. Then, for example, the
expansion of the syllogism [JAI < 1-3 is that Jall(k, b) Asome(k, z) —> < some(z, b). An

instance of the syllogism is as follows:

Major premise: All drugs passing strict scrutiny are necessarily safe.

Minor premise: Some drugs passing strict scrutiny are new anti-cancer drugs.
Conclusion: Some new anti-cancer drugs are possibly safe.

Let k be the variable of a drug that passes strict scrutiny, b be that of a safe drug, and z be that
of a new anti-cancer drug. Then, this instance can be formalized as U all(k, b) A some(k,

z)—><>some(z, b), which is abbreviated as CJAI<I-3. Other representations are similar to this.

3. Formal System of Classical Modal Syllogistic

This formal system is composed of the following: initial symbols, formation rules, related

definitions, basic axioms and deductive rules.
3.1 Initial Symbols

[1] lexical variables: z, k, b

[2] quantifier: all, some

[3] modality: [

[4] operators: —, —

[5] brackets: (, )

3.2 Formation Rules

[1] If O is a quantifier, z and b are lexical variables, then QO(z, b) is a wif.
[2] If 7 is a wff, then so are —rt and [n.

[3] If p and &t are wffs, then so is p—m.

[4] Only the formulas constructed based on the above three rules are wifs.
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3.3 Basic Axioms

[1]A1: If «w is a valid formula in first-order logic, then - .

[2]1 A2: = Oall(k, b)rsome(k, z)—<>some(z, b) (that is, the syllogism [JAI<I-3).
3.4 Rules of Deduction

Rule 1 (antecedent strengthening): From F (AAB—p) and = (n—A) infer = (mAB—p).
Rule 2 (subsequent weakening): From - (AAO—p) and = (u—m) infer - (AAO—T).
Rule 3 (anti-syllogism): From F (AAO—p) infer = (—puAl——0).

3.5 Relevant Definitions

D1 (conjunction): (AAB)=dget—(A——0);

D2 (bicondition): (A<>0) =gcf (A>0)A(0—N);

D3 (inner negation): (O—)(z, b)=dt Q(z, D-b);

D4 (outer negation): (—Q)(z, b)=a.tlt is not that Q(z, b);

D5 (truth value): some(z, b)is true iff ZNB=J is true in any real world,

D6 (truth value): Lall(z, b) is true iff ZCB is true in any possible world,

D7 (truth value): $some(z, b) is true iff ZNB#J is true in at least one possible world.
3.6 Relevant Facts

Fact 1 (inner negation):

[1.1]1+ all(z, b)<>no—(z, b);

[1.2]+ no(z, b)<>all—(z, b);

[1.3]F some(z, b)<>not all—(z, b);

[1.4] F not all(z, b)<>some—(z, b).

Fact 2 (outer negation):

[2.1]+ —all(z, b)<>not all(z, b);

[2.2] = —mnot all(z, b)<>all(z, b);

[2.3]F —no(z, b)<>some(z, b);
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[2.4]+ —some(z, b)<>no(z, b).
Fact 3 (symmetry):

[3.11+ some(z, b)<>some(b, z);
[3.2]+ no(z b)<>no(b, z).

Fact 4 (subordination) :

[4.11+ all(z, b)—somef(z, b);
[4.2]+ no(z b)—not all(z, b);
[4.3]1+ DO b)—0( b);
[4.4]F 0Oz b)>O0G b);
[4.51+ Q(z b)><OQeG, b).

Fact 5 (dual):

[5.11F =0z, b)«>00(, b);
[5.2]F —=0-0(, b)<><0z, b);
[5.3]1+ =00 b)«>O—0(z, b);
[5.4]F =<O0(z, by O-0(, b).

These facts are well-known within the domains of first-order logic and generalized quantifier

theory. So we omit their proofs.

4. Knowledge Reasoning Based on the Classical Modal Syllogism [JAT<T-3

In the following, Theorem 1 proves that the syllogism [ AI <& I-3 is valid. [2.1]
‘+ OAICI-3—OAII-1” in Theorem 2 suggests that the validity of the latter can be proved

based on that of the former. In other words, there is a reducible relationship between them.

Theorem 1 ((JAI<I-3): The classical modal syllogism [lall(k, b) asome(k, z)—<>some(z, b)

1s valid.

Proof: Suppose that Uall(k, b) and some(k, z) are true, then KB is true at any possible world
and KNZ#Y is true at any real world in line with Definition D6 and D5, respectively. Because
all real worlds are possible worlds. It follows that ZNB#(J is true in at least one possible
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world. Hence $somelz, b) is true in the light of Definition D7. This proves that the syllogism
Olall(k, b)asome(k, z)—<>some(z, b) is valid, just as expected.

Theorem 2: There are at least the following 37 valid classical modal syllogisms inferred from

the syllogism CJAI<T-3:

[2.1]1F DAIOL3OAIOL-

[2.2] - OAIOL3IOAOL3

[2.3]F OAIOI350AACI3

[2.4]F OAIOL35OAOIOL3

[2.5] OAIOI3OEIOC0-3

[2.6] - OAIOL3OEIOO-1

[2.7]+ OAIOL3—OEDAE-2

[2.8]F DAIOI3OAIOT-1IOAO-4
[2.9]F DAIOL35OAIO1»OAAOI-
[2.10] - OAICI3—-OAICL-1->OAOICI-
[2.11]+ DAIOI30AIOI-1—>OADEE-2
[2.12] F DAIOL3SIOAOI3>ATAOL3
[2.13]F OAIOI3I0ACI-3500A00-3
[2.14] F OAIOL3I0AO1-3OEIO0-2
[2.15] F OAIOL35I0AO1-3—OEDAE-1
[2.16] F DAIOI30AAOI3OADAOL-3
[2.17] - OAIOL35O0AAOL-3>0OEACO-3
[2.18] F DAIOL3OAAOI-3OEAOO-1
[2.19] F OAIOL35OAAOL-350EOAO-2
[2.20] F DAIOL35OAOICI35OI0A O3
[2.21]F DAIOL3»OAOIOI3»OEOIC0-3
[2.22]F OAIOL3»OAOIOI35OEOICO-1
[2.23]F DAIOL3OAOICI-3>OEOAOE2

[2.24] + OAIOI-3—OEIO0-3»0OEIO0-4
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[2.25] + OAICIB3-5OAICT-15I0ACT-4->AOA T4

[2.26] - OAICI-3->OAICI-1-IOACT-4->OI0AO-4

[2.27] F OAIOI-3-OAIOL-1510A Ol-4—OADEE-4

[2.28] - OAICI-3->OAIC-1->OAACT-1-OAOACI-1

[2.29] + OAICI-3-OAICT-1-0AACI-1-0AOEO-2

[2.30] F OAIOLI-3>OAIO-1»OAOICT-1>OAOEOE-2

[2.31]F OAICI-35I0ACI-35>A0AOI-3>EOAOO-3

[2.32] F OAICI-3SIOAOCI-3->A0ACI-3-5>HOEACO-2

[2.33] F OAIOI-35I0ACI-3>A0AOI-3»OEOAO-1

[2.34] + OAICI-3-IOAOI-3-00AC0-3—-000A<S0-3

[2.35] + OAICI-3-IOACI-3-00A S 0-3->0A0C0-2

[2.36] - DAICI-35I0AOT-3>00AC0-3>0A0AA-1

[2.37]+ OAICI-3-IOAOI-3—-OEIC0-2—HEOIC0-2

Proof:

[11+ Oall(k, b)rsome(k, z)—< somelz, b)
(2]~ Oalltk, b)rsome(z, k)—>somefz, b)
131+ Oalltk, b)rsome(k, z)—><some(b, 2)
[4]+ Oalltk, b)rall(k, z)—<some(z, b)
(5]~ Oalitk, b)ATOsome(k, z)—<some(z, b)

[6]+ Ono—(k, b)rsome(k, z)—><>not all—(z, b)

[71+ Ono(k, D-b)rsome(k, z)—<not all(z, D-b)

[8]1+ —Osome(z, b)rsome(k, z)—>—Olall(k, b)
[9]1+ O-some(z, b)rsome(k, z)—><>—all(k, b)
[10] = Ono(z, b)rsome(k, z)—not all(k, b)
[11]1F =some(z, b)AQall(k, b)——some(k, z)
[12] + U—=some(z, b)Allall(k, b)—>—some(k, z)
[13]1 - Ono(z, b)alall(k, b)—no(k, z)

[14] = Oali(k, b)rsome(z, k)—<>some(b, z)

(i.e. OJAIOI-3, Basic Axiom Al)
(i.e. JAICI-1, by [1] and Fact [3.1])
(i.e. IOA<I-3, by [1] and Fact [3.1])

(i.e. JOAAI-3, by [1], Fact [4.1] and Rule 1)

(i.e. OADIOL-3, by [1], Fact [4.3] and Rule 1)

(by [1], Fact [1.1] and [1.3])
(i.e. JEI<0-3, by [6] and Definition D3)
(by [1] and Rule 3)

(by [8], Fact [5.4] and [5.3])
(i.e. OEIOO-1, by [9], Fact [2.4] and [2.1])
(by [1] and Rule 3)
(by [11] and Fact [5.4])

(i.e. OECJAE-2, by [12] and Fact [2.4])

(i.e. IOA<I-4, by [2] and Fact [3.1])
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[38]
[39]+

[40] -

Oall(k, b)rall(z, k)—><>some(z, b) (i.e. JAACI-1, by [2], Fact [4.1] and Rule 1)

Oall(k, b)AOsome(z, k)—>>some(z, b) (i.e. OAOIOI-1, by [2], Fact [4.3] and Rule 1)

—some(z, b)AOall(k, b)——some(z, k) (by [2] and Rule 3)
U—some(z, b)aUOlall(k, b)——some(z, k) (by [17] and Fact [5.4])
Uno(z, b)aUQlall(k, b)—no(z, k) (i.e. JAUIEE-2, by [18] and Fact [2.4])
Oall(k, b)rall(k, z)—<>some(b, z) (i.e. ADAI-3, by [3], Fact [4.1] and Rule 1)
Olall(k, b)anot all—(k, z)—><>not all—(b, z) (by [3] and Fact [1.3])

Oali(k, b)anot all(k, D—z)—><>not all(b, D—z) (i.e. OTJA<>0O-3, by [21] and Definition D3)

—some(b, z)asome(k, z)—>—all(k, b) (by [3] and Rule 3)
O—some(b, z) nsome(k, z)—<—ali(k, b) (by [23], Fact [5.4] and €[5.3])
Ono(b, z)rsome(k, z)—><not all(k, b) (i.e. OEIC0-2, by [24], Fact [2.4] and [2.1])
—some(b, z)AQall(k, b)—>—some(k, z) (by [3] and Rule 3)
U—some(b, z)AQlall(k, b)—>—some(k, z) (by [26] and Fact [5.4])
Uno(b, z)AOall(k, b)—no(k, z) (i.e. LJELJAE-1, by [27] and Fact [2.4])
Oali(k, b)AQOall(k, z)—><>some(z, b) (i.e. OAOAI-3, by [4], Fact [4.3] and Rule 1)

Ono—(k, b)nall(k, z)—>not all—(z, b) (by [4], Fact[1.1] and [1.3])

Ono(k, D-b)nali(k, z)—><not all(z, D-b) (i.e. JOEA<O-3, by [30] and Definition D3)

—~Osomel(z, b)aall(k, z)—s—Dall(k, b) (by [4] and Rule 3)
O—some(z, b)rall(k, z)—<>—all(k, b) (by [32], Fact [5.4] and [5.3])
Doz, bjrall(k, z)—not all(k, b) (ie. JEAOO-1, by [33], Fact [2.4] and [2.1])
—Osome(z, b)AOall(k, b)—>—all(k, z) (by [4] and Rule 3)
O—some(z, b)ADlall(k, b)—>—all(k, ) (by [35] and Fact [5.4])
Uno(z, b)aOlall(k, b)—not all(k, z) (i.e. OEOJAO-2, by [36], Fact [2.4] and [2.1])
Oall(k, b)AOsome(k, z)—<some(b, z) (i.e. OIOAI-3, by [5] and Fact [3.1])
Ono—(k, b)aOsome(k, z)—not all—(z, b) (by [5], Fact [1.1] and [1.3])
Ono(k, D—b) AlIsome(k, z)—<not all(z, D-b)

(i.e. OECIO0-3, by [39] and Definition D3)

[41]+

—some(z, b)AOsome(k, z)——lall(k, b) (by [5] and Rule 3)
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[42] = O—some(z, b)AOsome(k, z)—<—ali(k, b)

(by [41], Fact [5.4] and [5.3])

[43]1+ Ono(z, b)aOsome(k, z)—not all(k, b)  (i.e. OEOIGO-1, by [42], Fact [2.4] and [2.1])

[44] = —some(z, b)AOlall(k, b)—>—Usome(k, z)
[45]1 + O—some(z, b)AQdall(k, b)—<—some(k, z)
[46] - Ono(z, b)aOall(k, b)—no(k, 2)

[47]1+ Ono(D-b, k)rsome(k, z)—><not all(z, D-b)

(by [5] and Rule 3)
(by [44], Fact [5.4]and [5.3])
(i.e. OECJA<E-2, by [45] and Fact [2.4])

(i.e. JEIC0O-4, by [7] and Fact [3.2])

[48]1+ Oall(k, b)rall(z, k)—some(b, z) (i.e. ADAI-4, by [14], Fact [4.1] and Rule 1)

[49] + Oall(k, b)AOsome(z, k)—><>some(b, z)  (i.e. OIOAI-4, by [14], Fact [4.3] and Rule 1)

[50] + —some(b, z)AQall(k, b)——some(z, k)
[51]+F O=some(b, z)AQlall(k, b)——some(z, k)

[52]+ Uno(b, z)AQall(k, b)—no(z, k)

(by [14] and Rule 3)
(by [50] and Fact [5.4])

(i.e. JALIEE-4, by [51] and Fact [2.4])

[53]1+ Oallk, b)aOall(z, k)—><some(z, b) (i.e. OAOAI-1, by [15], Fact [4.3] and Rule 1)

[54]1 - =some(z, b)AOlall(k, b)——all(z, k)

[55]+ U=some(z, b)AQall(k, b)——all(z, k)

(by [15] and Rule 3)

(by [54] and Fact [5.4])

[56] F Uno(z, b)allall(k, b)—not all(z, k) (i.e. AUJEO-2, by [55], Fact [2.4] and [2.1])

[57]1+ —=some(z, b)AOlall(k, b)——Usome(z, k)
[58]+ O—some(z, b)Adall(k, b)—<—some(z, k)
[59]+ Ono(z, b)alall(k, b)—><no(z, k)

[60] + Oall(k, b)ano—(k, z)—<not all—(b, z)

(by [16] and Rule 3)
(by [57], Fact [5.4] and [5.3])
(i.e. JOACOE<E-2, by [58] and Fact [2.4])

(by [20], Fact [1.1] and [1.3])

[61]+ Oali(k, b)ano(k, D—=z)—<>not all(b, D-z) (i.e. EDA<O-3, by [60] and Definition D3)

[62]+ —some(b, z)rall(k, z)—>—Olall(k, b)

[63]+ O—some(b, z)rall(k, z)—><—all(k, b)

(by [20] and Rule 3)

(by [62], Fact [5.4] and [5.3])

[64] - Ono(b, z)rall(k, z)—>not all(k, b) (i.e. JEA<0-2, by [63], Fact [2.4] and [2.1])

[65]+ —some(b, z)AQall(k, b)——all(k, z)

[66] - O—some(b, z)ADlall(k, b)—>—all(k, z)

(by [20] and Rule 3)

(by [65] and Fact [5.4])

[67]+ Ono(b, Z)AQall(k, b)—not all(k, z) (i.e. OEOJAO-1, by [66], Fact [2.4] and [2.1])

[68]+ Oall(k, b)Alnot all(k, D—z)—<>not all(b, D—z)
(i.e. JOOOAO-3, by [22], Fact [4.3] and Rule 1)
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[69] = —not all(b, D—z)Anot all(k, D—z)——Oall(k, b) (by [22] and Rule 3)
[70]1+ O=not all(b, D—z)Anot all(k, D—z)—><>—all(k, b) (by [69], Fact [5.4] and [5.3])
[711+ Oall(b, D—=)Anot all(k, D—z)—><>not all(k, b)

(i.e. JAO<0-2, by [70], Fact [2.2] and [2.1])

[72]1 = —=<not all(b, D—=z)AOali(k, b)——not all(k, D—z) (by [22] and Rule 3)
[73]+ U=not all(b, D—z)AUall(k, b)—>—not all(k, D—=z) (by [72] and Fact [5.4])
[74] + Uall(b, D—z)AUall(k, b)—all(k, D—=) (i.e. JALJAA-1, by [73] and Fact [2.2])

[75]+ Ono(b, z)AOsome(k, z)—><not all(k, b)  (i.e. OEOIO0-2, by [25], Fact [4.3] and Rule 1)

At this point, the other 37 valid classical modal syllogisms have been derived from the
validity of the syllogism [JAI<>I-3. By continuing to apply similar reasoning methods, one
can deduce other valid syllogisms. Similar to Theorem 1, the validity of these newly derived

syllogisms can also be proved through relevant definitions.

5. Conclusion

Making best of modal logic, set theory and generalized quantifier theory, this paper initially
proves the validity of the classical modal syllogism [JAI<>I-3. Subsequently, with the aid of
the relevant definitions, facts, and reasoning rules, it derives the other 37 valid classical modal
syllogisms from the validity of the syllogism [1 AI <> I-3. The results obtained by these
deductive methods are logically consistent. This approach is not only concise and elegant, but

also universally applicable for studying other types of syllogisms.
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