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Abstract

All valid Aristotle’s modal syllogisms can be obtained by adding modal operators to 24 valid

classical syllogisms. On the basis of the 20 valid modal syllogisms obtained by adding modal

operators to valid classical syllogisms AAA-1 and EAE-1, this paper not only shows that the

validity of the other 326 Aristotle’s modal syllogisms can be derived by making full use of

truth definition and symmetry of Aristotelian quantifiers in generalized quantifier theory, and

propositional deformation rules in proof theory, but also shows that there are reducible

relations between/among Aristotle’s modal syllogisms. These innovative results are embodied

in the 29 theorems proposed in this paper. The research methods used in the paper provide a

simple and reasonable mathematical model to study generalized modal syllogisms. It is hoped

that these innovative achievements will make contributions to further research on Aristotle’s

and generalized modal syllogistic logic, and to promote knowledge representation and
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knowledge reasoning in computer science, and natural language information processing.

Keywords: generalized quantifier theory; Aristotle’s modal syllogisms; reducible relations;

validity

1. Introduction

Syllogistic reasoning is the most intensively researched due to the role they have played in

human reasoning from Aristotle onwards. The focus of Aristotle’s discussion of syllogisms is

Aristotle’s system of modal syllogisms. It has been open to public inspection for over 2300

years, and has had many consistently bad reviews ([9], p.247). The prevailing view is that

modal syllogsitic is incomprehensible due to its many faults and inconsistencies ([10], p.95).

The formal system, ŁA, proposed by Łukasiewicz ([5]) is designed to capture that Aristotle’s

judgments of “assertoric syllogism” are valid or invalid. Aristotle’s modal syllogisms can not

be expressed well in modal propositional logic with quantifiers, ŁM, developed by

Łukasiewicz ([5]). McCall([`2], pp.31-32) points out that Łukasiewicz’s modal system, ŁM,

yields highly unAristotelian results. The L-X-M calculus, a formal system, developed by

McCall(1963) has given any chance of matching Aristotle’s judgments about which of the

n-premised (for n  2) “apodeictic syllogisms” are valid or not. Geach([3]) illustrates two

approaches to understand Aristotle’s work on modal syllogistic. The system proposed by

Geach([4]) can not deal with the apodeictics syllogisms well. Johnson([6]) gives a semantics

for McCall’s L-X-M, and shows that asserted wffs in L-X-M are valid and rejected sentences

are invalid. Johnson([7][8]) provides variants of McCall’s L-X-M that are sound and complete

system.

Benefiting from comments about McCall’s L-X-M in Thom([15]) and Thomason([16][17]),

Johnson([9]) turns to McCall’s work on the “contingent syllogisms”, and develops a modified

system, QLXM'. The system provides formal countermodels for many invalid apodeictic,

assertoric, or contingent syllogisms. Although interpreters have try to find some interpretation
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of the modal syllogistic so as to consistently cover the whole modal syllogistic developed, the

outcomes of such attempts have been disappointing ([10], p.95). So Malink([10], [11]) try to

find a consistent formal model for Aristotle’s modal syllogistic.

Patterson([13]) tries to deal with Aristotle’s modal logic through the eyes of modern modal

monadic first order predicate logic. And classical syllogisms has already been researched

from the perspective of generalized quantifier theory, such as Benthem([18]),

Westerståhl([19]), and Zhang ([20][21][22]). It is natural to try to view Aristotle’s modal logic

through the eyes of modern modal logic, possible world semantics, and generalized quantifier

theory. The paper attempts to do this. It is known that there are reducible relations

between/among classical and generalized syllogisms ([21][22])). The other 22 valid classical

syllogisms can be derived from the valid classical syllogisms ‘Barbara’ AAA-1 and ‘Celarent’

EAE-1 in the light of generalized quantifier theory([14]). The following paper sets out not

only to show that the validity of one modal syllogism can be derived by the validity of another

modal syllogism, but also to show that there are reducible relations between/among

Aristotle’s modal syllogisms. In this paper, reducible relation between two valid syllogisms

means that one valid syllogism can be derived from another valid syllogism.

In the following paper,  ,  ,  ,  ,  , and are signs of negation, conjunction,

conditionality, biconditionality, necessity, and possibility, respectively. Similar to classical

syllogisms, a Aristotle’s modal syllogism has two premises and one conclusion, and is a

particular instantiation of a syllogistic scheme. An Aristotle’s modal syllogism can be

interpreted as the following example:

All animals are necessarily mortal.

All horses are animals.

Some horses necessarily are mortal.

The syllogism means that the one below the line can be derived from the sentences above the

line semantically. It has the form Q1(M, P)  Q2(S, M) Q3(S, P), where S is the set of things

or stuff that the subject term denotes, P is the set of things or stuff that the predicate term

signifies, and M is the set of things or stuff that the middle term expresses, each of Q1, Q2, Q3
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in a Aristotle’s modal syllogism is one of the following 12 generalized quantifiers all, no,

some, not all, all, no, some, not all,all,no,some and not all. In the above

example, Q1=all, Q2=all, and Q3=some, so the modal syllogism can be denoted asall(M,

P)  all(S, M)some(S, P). The other cases are similar.

2. Preliminaries

A quantified sentence including Aristotelian quantifiers ‘Q Ss are P’ is denoted by Q(S, P), in

which Q is one of Aristotelian quantifiers all, some, no, and not all. For example, a quantified

sentence ‘All children are eating’ is denoted by all(S, P), where S is the set of children in a

given universe, P is the set of things that are eating in the universe, and the quantifier all is a

relation between sets which is a particularly simple relation to describe: SP.

Let S, P be an arbitrary set, the relations which Aristotelian quantifiers stand for can be given

in standard set-theoretic notations as the following:

Definition 1:

(1) all(S, P) SP; (2) no(S, P) S∩P=；

(3) some(S, P) S∩P; (4) not all(S, P) SP.

For the sake of simplicity, the universal affirmative and negative proposition ‘All Ss are P’

and ‘No Ss are P’ are denoted by all(S, P) and no(S, P), and abbreviated by A and I

proposition, respectively. And the particular affirmative and negative proposition ‘Some Ss are

P’ and ‘Not all Ss are P’ are denoted by some(S, P) and not all(S, P), and abbreviated by I and

O proposition, respectively. The proposition ‘All Ss are necessarily P’ and ‘Some Ss are

possibly P’ are denoted by all(S, P) and  some(S, P), and abbreviated by A and  I

proposition, respectively. The other cases are similar.

Similar to classical syllogisms, modal syllogisms can be grouped into four different ‘figures’:

(1) first figure (2) second figure (3) third figure (4) fourth figure

Q1(M, P) Q1(P, M) Q1(M, P) Q1(P, M)
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Q2(S, M) Q2(S, M) Q2(M, S) Q2(M, S)

Q3(S, P) Q3(S, P) Q3(S, P) Q3(S, P)

Here Q can be chosen among the following 12 generalized quantifiers all, some, no, not all,

all,�some, no, not all,all,some,no, andnot all, so there are 1212124

4  4  4  4 = 6656 Aristotle’s modal syllogisms. Similar to classical syllogisms, a modal

syllogism is valid if each instantiation of S, M and P verifying the premises also verifies the

conclusion.

According to the above notation, in the third figure, if suppose that Q1=all, Q2=some and

Q3=not all and, then the modal syllogism all(M, P)  some(M, S)◇not all(S, P) can

be abbreviated by AIO-3. Similarly, the modal syllogism all(P, M)some(M, S) 

some(S, P) can be abbreviated byAII-4. The other notations are similar to them.

In terms of modal logic ([1][2]), necessity is what is true at every possible world, and

possibility is what is true at some. Specifically, let p be one of the proposition A, E, I, and O,

it follows that:

Definition 2:

(1)p is true just in case p itself is true at every possible world;

(2)p is true just in case p itself is true at least one possible world.

According to Definition 1 and Definition 2, it follows that:

Definition 3:

(1)all(S, P) is true just in case SP is true at every possible world.

(2)all(S, P) is true just in case SP is true at least one possible world.

(3)some(S, P) is true just in case S∩P is true at every possible world.

(4)some(S, P) is true just in case S∩P is true at least one possible world.

(5)no(S, P) is true just in case S∩P= is true at every possible world.

(6)no(S, P) is true just in case S∩P= is true at least one possible world.

(7)not all(S, P) is true just in case SP is true at every possible world.
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(8)not all(S, P) is true just in case SP is true at least one possible world.

According to Definition 3, it is clear that

Fact 1: Let p be one of the proposition A, E, I, and O

(1) p p; (2) pp; (3)pp

For instance, A  A, A  A and A  A. More specifically, the following Fact 2

holds.

Fact 2：

(1)all(S, P) all(S, P); (2)some(S, P) some(S, P);

(3)no(S, P) no(S, P); (4)not all(S, P) not all(S, P);

(5) all(S, P)all(S, P); (6) some(S, P)some(S, P);

(7) no(S, P)no(S, P); (8) not all(S, P)not all(S, P);

(9)all(S, P)all(S, P); (10)some(S, P)some(S, P);

(11)no(S, P)no(S, P); (12)not all(S, P)not all(S, P);

In the light of Definition 1 and Definition 3, it follows that

Fact 3：

(1)all(S, P)some(S, P); (2)all(S, P)some(S, P);

(2)no(S, P)not all(S, P); (4)no(S, P)not all(S, P);

(5) all(S, P) some(S, P) ; (6) no(S, P) not all(S, P).

According to Definition 1 and Definition 3, one can easily derive the following Fact 4:

Fact 4：Symmetry of some or no

(1) some(S, P) some(P, S)； (2)some(S, P)some(P, S)；

(2) some(S, P)some(P, S)； (4) no(S, P) no(P, S)；

(5) no(S, P)no(P, S)； (6)no(S, P)no(P, S)；

For example, the proposition “no dog is a fish” is necessarily true, the proposition “no fish is
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a dog” is also necessarily true. According to Fact 4, replacing the statement part on the right

proposition in a valid modal syllogism by the left, one will not change the validity of the

obtained modal syllogism.

In the following paper, let  and  be a syllogism,    means that the syllogism  can be

derived from the syllogism , and one can say that there are reducible relations between the

two syllogisms. For example, EAE-1 EAO-1 means that EAO-1 can be

derived from EAE-1. Hence, there are reducible relations between EAE-1 and

EAO-1.

3. The Form Proof for Valid Modal Syllogisms

On the basis of set theory, generalized quantifier theory, and possible world semantics,

which modal syllogisms are valid can be proved in the light of Definition 1, Definition 3 and

Fact 2. Proofs for some of modal syllogisms can be easily constructed and will be omitted.

Theorem 1: The following 16 modal syllogisms are valid:

(1.1) [001]AAA-1: all(M, P)all(S, M)all(S, P)

(1.2) [002]AAA-1:all(M, P)all(S, M)all(S, P)

(1.3) [003]AAA-1: all(M, P)all(S, M)all(S, P)

(1.4) [004]AAA-1: all(M, P)all(S, M)all(S, P)

(1.5) [005]AAA-1: all(M, P)all(S, M)all(S, P)

(1.6) [006]AAA-1: all(M, P)all(S, M)all(S, P)

(1.7) [007]AAA-1: all(M, P)all(S, M)all(S, P)

(1.8) [008]AAA-1: all(M, P)all(S, M)all(S, P)

(1.9) [009]AAA-1: all(M, P)all(S, M) all(S, P)

(1.10) [010]AAA-1: all(M, P)all(S, M)all(S, P)

Proof: For (1.1), suppose thatall(M, P) and all(S, M) are true, then MP and SM is true
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at every possible world in terms of the clause (1) in Definition 3. Now it follows that MP

and SM, so it is clear that SP is true at every possible world. Therefore all(S, P) is true

according to the clause (1) in Definition 3 again. This proves the claim that the Arisitotle’s

modal syllogismall(M, P)all(S, M)all(S, P) is valid, just as required.

The other cases can be similarly proved as (1.1). For example, for (1.8), suppose that all(M, P)

and all(S, M) are true, then all(M, P) is true if and only if MP is true in the light of the

clause (1) in Definition 1, and it follows thatall(S, M) SM at least one possible world

by the clause (2) in Definition 3. Now it is easy to observe that MP and SM at least one

possible world, hence SP is true at least one possible world. Thusall(S, P) is true in term

of the clause (2) in Definition 3 again. Therefore all(M, P)all(S, M)all(S, P) is valid,

as desired.

Theorem 2: The following 16 modal syllogisms are valid:

(2.1) [011]EAE-1: no(M, P)all(S, M)no(S, P)

(2.2) [012]EAE-1:no(M, P)all(S, M)no(S, P)

(2.4) [013]EAE-1: no(M, P)all(S, M)no(S, P)

(2.5) [014]EAE-1: no(M, P)all(S, M)no(S, P)

(2.7) [015]EAE-1: no(M, P)all(S, M)no(S, P)

(2.8) [016]EAE-1: no(M, P)all(S, M)no(S, P)

(2.9) [017]EAE-1: no(M, P)all(S, M)no(S, P)

(2.10) [018]EAE-1: no(M, P)all(S, M)no(S, P)

(2.11) [019]EAE-1: no(M, P)all(S, M) no(S, P)

(2.16) [020]EAE-1: no(M, P)all(S, M)no(S, P)

Proof: Theorem can be similarly proved as Theorem 1 by means of Definition 1, Definition 3

and Fact 2.

Theorem 3: The validity of some of the following modal syllogisms can be derived by the

validity of the other of the following modal syllogisms:
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(3.1) [001]AAA-1 [021]AAA-1

(3.2) [001]AAA-1 [022]AAA-1

(3.3) [005]AAA-1 [023]AAA-1

(3.4) [005]AAA-1 [024]AAA-1

(3.5) [006]AAA-1 [025]AAA-1

(3.6) [006]AAA-1 [026]AAA-1

(3.7) [011]EAE-1 [027]EAE-1

(3.8) [011]EAE-1 [028]EAE-1

(3.9) [015]EAE-1 [029]EAE-1

(3.10) [015]EAE-1 [030]EAE-1

(3.11) [016]EAE-1 [031]EAE-1

(3.12) [016]EAE-1 [032]EAE-1

Proof: From (3.1) to (3.6) in Theorem 3 can be easily deducible from Theorem 1 and Fact 2.

From (3.7) to (3.12) in Theorem 1 can be derived from Theorem 2 and Fact 2.

Theorem 3 not only means that the 12 derived syllogisms are valid, but also means that

reducible relations between these Aristotle’s modal syllogisms. It is easily observed that the

20 valid Aristotle’s modal syllogisms in Theorem 1 and Theorem 2 can be obtained by adding

modal operators to valid classical syllogisms AAA-1 and EAE-1. In fact, all valid Aristotle’s

modal syllogisms can be obtained by adding modal operators to 24 valid classical syllogisms

(for details, see [23]). It is clear that the number of all valid Aristotle’s modal syllogisms

obtained by adding modal operators to the valid classical syllogism AAA-1 is 16, that is, the

ten syllogisms in Theorems 1 and the first six derived syllogisms in Theorem 3. And the other

cases are similar, therefore the number of all valid Aristotle’s modal syllogisms is 1624=384.
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4. Reducible Relations between/among Aristotle’s Modal Syllogisms:

Xiaojun Zhang and Sheng Li (2016) derives the other 22 valid classical syllogisms from the

valid classical syllogisms AAA-1 and EAE-1, that is, there are reducible relations

between/among valid classical syllogisms. On the basis of the 20 valid modal syllogisms in

Theorem 1 and Theorem 2, this paper not only shows that the validity of the other 326

Aristotle’s modal syllogisms can be derived by making full use of truth definition and

symmetry of Aristotelian quantifiers in generalized quantifier theory and propositional

deformation rules in proof theory, but also shows that there are reducible relations

between/among Aristotle’s modal syllogisms.

In order to study reducible relations between modal syllogisms, the following two

propositional deformation rules are required.

Propositional Deformation Rule 1: Let p, q, r be a proposition, (( rp)  q) can be

derived from ((pq) r).

Proof: From ((pq) r) it can be derived (r  (pq)), then can be derived (r  (p

q)), and then can be derived (r (pq)), therefore it can can be derived ((rp) 

q). In short, from ((pq) r) it can be derived ((rp)q), as desired.

Propositional Deformation Rule 2: Let p, q, r be a proposition, ((rp)  p) can be

derived from ((pq) r).

Proof: From ((pq) r) it can be derived ((qp) r), then can be derived (r (qp))

and then can be derived (r (qp)), therefore it can can be derived ((rq) p). In

short, from ((pq) r) it can be derived ((rp)p), just as required.

The proof of the following four theorems will use these two propositional deformation rules.

Theorem 4: [001]AAA-1 [067]EAO-1

Proof: Since A I, it is clear that [259] A A I-4 can be derived from [001]

AAA-1. That is,all(P, M)all(M, S)some(S, P). According to the Propositional

Deformation Rule 2, it can be known that ((rp)  p) can be derived from ((pq)  r).

Therefore,  some(S, P)  all(M, S)   all(P, M) can be derived from  all(P,
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M)all(M, S) some(S, P). Therefore,some(S, P)all(M, S)all(P, M). And

since some=no and all=not all,no(S, P)all(M, S) not all(P, M). By replacing S

by M, P by S and M by P, it can be obtained thatno(M, S)all(P, M)  not all(S, P).

That is, the first figure modal syllogism [067]EAO-1 is valid.

Theorem 5: [001]AAA-1 [169]AOO-2

Proof: For [001] AAA-1, i.e. all(M, P)all(S, M)  all(S, P). According to the

Propositional Deformation Rule 1, it can be known that ((rp)  q) can be derived from

((pq) r). Therefore, all(S, P)all(M, P)all(S, M) can be derived fromall(M,

P)all(S, M)  all(S, P). Hence all(S, P)all(M, P)  all(S, M). And since

all=not all,not all(S, P)all(M, P) not all(S, M). By replacing P by M, and M by

P, it can be followed thatnot all(S, M)all(P, M)not all(S, P). By putting the major

premise in front of the minor premise it can be obtained that all(P, M)not all(S, M) 

not all(S, P). In other words, the second figure modal syllogism [169]AOO-2 is

valid.

Theorem 6: [001]AAA-1 [247]OAO-3

Proof: For [001] AAA-1, i.e. all(M, P)all(S, M)  all(S, P). According to the

Propositional Deformation Rule 2, it can be known that ((rp)  p) can be derived from

((pq)  r). Therefore, all(S, P)all(S, M)  all(M, P) can be inferred from

all(M, P)all(S, M)  all(S, P). Since  and  can be mutually defined, all(S,

P)all(S, M)all(M, P). And since all=not all,not all(S, P)all(S, M)not

all(M, P). By changing the letters it can be obtained thatnot all(M, P)all(M, S)not

all(S, P). That is, the third figure modal syllogism [247]OAO-3 is valid.

Theorem 7: [001]AAA-1[307]EAO-4

Proof: It is clear that [259]AA I-4 can be derived from [001]AAA-1. That is,

all(P, M)all(M, S) some(S, P). According to the Propositional Deformation Rule 1,

it can be known that ((rp)q) can be derived from ((pq) r). Therefore, some(S,

P)all(P, M) all(M, S) can be derived from all(P, M)all(M, S) some(S, P).

And  and  can be mutually defined, hence some(S, P)all(P, M)  all(M, S).
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And since  some= no and all=not all, no(S, P)all(P, M)  not all(M, S). By

replacing P by M, M by S and S by P it can be obtained thatno(P, M)all(M, S)not

all(S, P). In other words, the fourth figure modal syllogism [307]EAO-4 is valid.

It can be seen from the above four theorems that the valid modal syllogism of the first, second,

third and fourth figures can be derived from the valid modal syllogism of the first figure. Now

one can begin to study reducible relations between/among modal syllogisms on the basis of

Definition 1, Definition 1, Fact 1, Fact 2, Propositional Deformation Rule 1 and Rule 2.

Theorem 8: Reducible relations between the following modal syllogisms:

(8.1) [001]AAA-1 [033]AAI-1

(8.2) [001]AAA-1 [034]AAI-1

(8.3) [001]AAA-1 [035]AAI-1

(8.4) [002]AAA-1 [036]AAI-1

(8.5) [003]AAA-1 [037]AAI-1

(8.6) [004]AAA-1 [038]AAI-1

(8.7) [005]AAA-1 [039]AAI-1

(8.8) [005]AAA-1 [040]AAI-1

(8.9) [005]AAA-1 [041]AAI-1

(8.10) [006]AAA-1 [042]AAI-1

(8.11) [006] AAA-1 [043]AAI-1

(8.12) [006] AAA-1 [044]AAI-1

(8.13) [007]AAA-1 [045]AAI-1

(8.14) [008] AAA-1 [046]AAI-1

(8.15) [009]AAA-1 [047]AAI-1

(8.16) [010]AAA-1 [048]AAI-1

Proof: Theorem 8 can be deduced from Theorem 1 by use of Fact 2. It is known that a
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necessarily particular affirmative proposition can be implied by a necessarily universal

affirmative proposition. Specifically, for (8.1), according to the clause (13) in Fact 2, it is clear

that A I, therefore [033]AAI-1 can be obtained by replacing the conclusion A

in [001]AAA-1 withI. The others can be similarly proved by means of Fact 2.

Theorem 9: Reducible relations between the following modal syllogisms:

(9.1) [011]EAE-1 [049]AII-1

(9.2) [011]EAE-1 [050]AII-1

(9.3) [011]EAE-1 [051]AII-1

(9.4) [013]EAE-1 [052]AII-1

(9.5) [014]EAE-1 [053]AII-1

(9.6) [015]EAE-1 [054]AII-1

(9.7) [015]EAE-1 [055]AII-1

(9.8) [015]EAE-1 [056]AII-1

(9.9) [016]EAE-1 [057]AII-1

(9.10) [016]EAE-1 [058]AII-1

(9.11) [016]EAE-1 [059]AII-1

(9.12) [019]EAE-1 [060]AII-1

(9.13) [020]EAE-1 [061]AII-1

Proof: Theorem 9 can be similarly proved in terms of the symmetry of no, Propositional

Deformation Rule 1, and Fact 2. More specifically, for (9.1). According to the symmetry of no,

[091]  A  E  E-2 can be obtained by replacing  no(S, P) in the conclusion of

[011]EAE-1 with no(P, S). And [092] AEE-2 can certainly be deduced from

[091]AEE-2 in view of that E E. Then [049]AII-1 can be deduced from

[092] A E E-2 in the light of Propositional Deformation Rule 1, just as proved in

Theorem 5 and Theorem 7.

For (9.4). According to the symmetry of no,[095]AEE-2 can be obtained by replacing
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the conclusion no(S, P) in [013]EAE-1 with no(P, S). By taking advantage of

Propositional Deformation Rule 1, one can transform [095]  A  E  E-2 to obtain

[052]A I I-1, just as proved in Theorem 5 and Theorem 7. The other arguments are

analogous to that given for (9.1) and (9.4) just proved or easier.

It can be seen from the above proof process in (9.1) that [011]  E  A  E-1 

[091]AEE-2 [092]AEE-2 [049]AII-1. That not only means that the

three modal syllogisms derived from [011]EAE-1 are valid, but also means that there

are reducible relations among the four syllogisms. The other cases are similar.

Theorem 10: Reducible relations between the following modal syllogisms:

(10.1) [011]EAE-1 [062]EAO-1

(10.2) [011]EAE-1 [063]EAO-1

(10.3) [011]EAE-1 [064]EAO-1

(10.4) [012]EAE-1 [065]EAO-1

(10.5) [013]EAE-1 [066]EAO-1

(10.6) [014]EAE-1 [067]EAO-1

(10.7) [015]EAE-1 [068]EAO-1

(10.8) [015]EAE-1 [069]EAO-1

(10.9) [015]EAE-1 [070]EAO-1

(10.10) [016]EAE-1 [071]EAO-1

(10.11) [016]EAE-1 [072]EAO-1

(10.12) [016]EAE-1 [073]EAO-1

(10.13) [017]EAE-1 [074]EAO-1

(10.14) [018]EAE-1 [075]EAO-1

(10.15) [019]EAE-1 [076]EAO-1

(10.16) [020]EAE-1 [077]EAO-1
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Proof: Similar to Theorem 8, Theorem 10 can be easily deduced from Fact 2. It is clear that a

necessarily particular affirmative proposition can be certainly implied by a necessarily

universal affirmative proposition. Specifically, for (10.1), EO according to the clause

(15) in Fact 2, therefore [062] EAO-1 can certainly be obtained by replacing the

conclusion A in [011]EAE-1 with .O The other argument is analogous to that given

for (10.1) by means of Fact 1.

Theorem 11: Reducible relations between the following modal syllogisms:

(11.1) [011]EAE-1 [078]EIO-1

(11.2) [011]EAE-1 [079]EIO-1

(11.3) [011]EAE-1 [080]EIO-1

(11.4) [013]EAE-1 [081]EIO-1

(11.5) [014]EAE-1 [082]EIO-1

(11.6) [015]EAE-1 [083]EIO-1

(11.7) [015]EAE-1 [084]EIO-1

(11.8) [015]EAE-1 [085]EIO-1

(11.9) [016]EAE-1 [086]EIO-1

(11.10) [016]EAE-1 [087]EIO-1

(11.11) [016]EAE-1 [088]EIO-1

(11.12) [019]EAE-1 [089]EIO-1

(11.13) [020]EAE-1 [090]EIO-1

Proof: Similar to Theorem 9, Theorem 11 can be followed from the symmetry of no,

Propositional Deformation Rule 1, and Fact 2. More specifically, for (11.1), in the light of the

symmetry of no, [123]EAE-2 can be obtained by replacing the major premise no(M,

P) in[011]EAE-1 withno(P, M). According to [123]EAE-2 and thatEE,

each one can easily derive [124] EAE-2. And then [078]EIO-1 can be obtained

from [124]EAE-2 according to Propositional Deformation Rule 1, just as proved in
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Theorem 5 and Theorem 7 . The other proofs are analogous to that given for (11.1) just

proved or easier.

Theorem 12: Reducible relations between the following modal syllogisms:

(12.1) [011]EAE-1 [091]AEE-2

(12.2) [011]EAE-1 [092]AEE-2

(12.3) [011]EAE-1 [093]AEE-2

(12.4) [012]EAE-1 [094]AEE-2

(12.5) [013]EAE-1 [095]AEE-2

(12.6) [014]EAE-1 [096]AEE-2

(12.7) [015]EAE-1 [097]AEE-2

(12.8) [015]EAE-1 [098]AEE-2

(12.9) [015]EAE-1 [099]AEE-2

(12.10) [016]EAE-1 [100]AEE-2

(12.11) [016]EAE-1 [101]AEE-2

(12.12) [016]EAE-1 [102]AEE-2

(12.13) [017]EAE-1 [103]AEE-2

(12.14) [018]EAE-1 [104]AEE-2

(12.15) [019]EAE-1 [105]AEE-2

(12.16) [020]EAE-1 [106]AEE-2

Proof: Theorem 12 can be similarly proved by means of the symmetry of no and Fact 2. More

specifically, for (12.2), according to the symmetry of no, [091]AEE-2 can be obtained

by substituting  no(P, S) for the conclusion  no(S, P) in [011] E A E-1. And

[092]AEE-2 can be shown from [091]AEE-2, since E  E in terms of the

clause (12) in Fact 2. The other verifications follow the same pattern as the worked example

above.
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Theorem13: Reducible relations between the following modal syllogisms:

(13.1) [011]EAE-1 [107]AEO-2

(13.2) [011]EAE-1 [108]AEO-2

(13.3) [011]EAE-1 [109]AEO-2

(13.4) [012]EAE-1 [110]AEO-2

(13.5) [013]EAE-1 [111]AEO-2

(13.6) [014]EAE-1 [112]AEO-2

(13.7) [015]EAE-1 [113]AEO-2

(13.8) [015]EAE-1 [114]AEO-2

(13.9) [015]EAE-1 [115]AEO-2

(13.10) [016]EAE-1 [116]AEO-2

(13.11) [016]EAE-1 [117]AEO-2

(13.12) [016]EAE-1 [118]AEO-2

(13.13) [017]EAE-1 [119]AEO-2

(13.14) [018]EAE-1 [120]AEO-2

(13.15) [019]EAE-1 [121]AEO-2

(13.16) [020]EAE-1 [122]AEO-2

Proof: Similar to Theorem 12, Theorem 13 can be followed from the symmetry of no and Fact

2. More specifically, for (13.5), in the light of the symmetry of no, [095]AEE-2 can be

deduced by replacing the conclusion no(S, P) in [013]EAE-1 with no(P, S). It is

clear that  E  O from Fact 2, and hence [111] A EO-2 is deducible from

[095]AEE-2, just as required. The others are similar or easier to prove.

Theorem 14: Reducible relations between the following modal syllogisms:

(14.1) [011]EAE-1 [123]EAE-2
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(14.2) [011]EAE-1 [124]EAE-2

(14.3) [011]EAE-1 [125]EAE-2

(14.4) [012]EAE-1 [126]EAE-2

(14.5) [013]EAE-1 [127]EAE-2

(14.6) [014]EAE-1 [128]EAE-2

(14.7) [015]EAE-1 [129]EAE-2

(14.8) [015]EAE-1 [130]EAE-2

(14.9) [015]EAE-1 [131]EAE-2

(14.10) [016]EAE-1 [132]EAE-2

(14.11) [016]EAE-1 [133]EAE-2

(14.12) [016]EAE-1 [134]EAE-2

(14.13) [017]EAE-1 [135]EAE-2

(14.14) [018]EAE-1 [136]EAE-2

(14.15) [019]EAE-1 [137]EAE-2

(14.16) [020]EAE-1 [138]EAE-2

Proof: Similar to Theorem 12 and Theorem 13, Theorem 14 can be followed from the

symmetry of no and Fact 2. Specifically, for (14.8), in terms of the symmetry of no,

[129]EAE-2 can be included by substituting no(P, M) for the major premise no(M, P)

in [015]  EA  E-1. Since  E   E, [130]  EA  E-2 can be deducible from

[129]EAE-2, as desired. The other verifications are analogous to that given for (14.8) just

proved or easier .

Theorem 15: Reducible relations between the following modal syllogisms:

(15.1) [011]EAE-1 [139]EAO-2

(15.2) [011]EAE-1 [140]EAO-2

(15.3) [011]EAE-1 [141]EAO-2
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(15.4) [012]EAE-1 [142]EAO-2

(15.5) [013]EAE-1 [143]EAO-2

(15.6) [014]EAE-1 [144]EAO-2

(15.7) [015]EAE-1 [145]EAO-2

(15.8) [015]EAE-1 [146]EAO-2

(15.9) [015]EAE-1 [147]EAO-2

(15.10) [016]EAE-1 [148]EAO-2

(15.11) [016]EAE-1 [149]EAO-2

(15.12) [016]EAE-1 [150]EAO-2

(15.13) [017]EAE-1 [151]EAO-2

(15.14) [018]EAE-1 [152]EAO-2

(15.15) [019]EAE-1 [153]EAO-2

(15.16) [020]EAE-1 [154]EAO-2

Proof: Similar to Theorem 12-14, Theorem 15 can be followed from the symmetry of no and

Fact 2. More specifically, for (15.12), [072]EAO-1 can be obtained from [016]EAE-1

and EO. And then [150]EAO-2 can be derived by replacing the major premise no(M, P)

in [072]EAO-1 with no(P, M), just as required. The other proofs are similar to that

given for (15.12) just proved or easier .

Theorem 16: Reducible relations between the following modal syllogisms:

(16.1) [011]EAE-1 [155]EIO-2

(16.2) [011]EAE-1 [156]EIO-2

(16.3) [011]EAE-1 [157]EIO-2

(16.4) [013]EAE-1 [158]EIO-2

(16.5) [014]EAE-1 [159]EIO-2
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(16.6) [015]EAE-1 [160]EIO-2

(16.7) [015]EAE-1 [161]EIO-2

(16.8) [016]EAE-1 [162]EIO-2

(16.9) [016]EAE-1 [163]EIO-2

(16.10) [016]EAE-1 [164]EIO-2

(16.11) [016]EAE-1 [165]EIO-2

(16.12) [019]EAE-1 [166]EIO-2

(16.13) [020] AAA-1 [167]EIO-2

Proof: Similar to Theorem 9 and Theorem 11, Theorem 16 can be obtained according to

Propositional Deformation Rule 1 and Fact 2. More specifically, for (16.12), [029]EAE-1

can be deduced from [015]EAE-1 and EE. Then [166]EIO-2 can be obtained

by transforming [029]EAE-1 by means of Propositional Deformation Rule 1, just as

proved in Theorem 5 and Theorem 7. The other verifications are similar to that given for

(16.12) just proved or easier.

Theorem 17: Reducible relations between the following modal syllogisms:

(17.1) [001]AAA-1 [168]AOO-2

(17.2) [001]AAA-1 [169]AOO-2

(17.3) [001]AAA-1 [170]AOO-2

(17.4) [003]AAA-1 [171]AOO-2

(17.5) [004]AAA-1 [172]AOO-2

(17.6) [005]AAA-1 [173]AOO-2

(17.7) [005]AAA-1 [174]AOO-2

(17.8) [006]AAA-1 [175]AOO-2

(17.9) [006]AAA-1 [176]AOO-2

(17.10) [006]AAA-1 [177]AOO-2
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(17.11) [006]AAA-1 [178]AOO-2

(17.12) [009]AAA-1 [179]AOO-2

(17.13) [010] AAA-1 [180]AOO-2

Proof: Similar to Theorem 9, 11 and 16, Theorem 17 can be obtained from Propositional

Deformation Rule 1 and Fact 2. More specifically, for (17.1), [021]AAA-1 can be

deduced from [001]AAA-1 and A A. And [168]AOO-2 can be obtained

from [021]AAA-1 in views of Propositional Deformation Rule 1, just as proved in

Theorem 5 and Theorem 7. The other arguments are analogous to that given for (17.1), just

proved.

Theorem 18: Reducible relations between the following modal syllogisms:

(18.1) [011]EAE-1 [181]AII-3

(18.2) [011]EAE-1 [182]AII-3

(18.3) [011]EAE-1 [183]AII-3

(18.4) [013]EAE-1 [184]AII-3

(18.5) [014]EAE-1 [185]AII-3

(18.6) [015]EAE-1 [186]AII-3

(18.7) [015]EAE-1 [187]AII-3

(18.8) [015]EAE-1 [188]AII-3

(18.9) [016]EAE-1 [189]AII-3

(18.10) [016]EAE-1 [190]AII-3

(18.11) [016]EAE-1 [191]AII-3

(18.12) [019]EAE-1 [192]AII-3

(18.13) [020]EAE-1 [193]AII-3

Proof: Theorem 18 can be deducible from the symmetry of no, Fact 2 and Propositional

Deformation Rule 2. Specifically, for (18.3), with reference to the symmetry of no,
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[123]EAE-2 can be obtained by substituting no(P, M) for the major premise no(M,

P) in [011]EAE-1. And [125]EAE-2 can be derived from [123]EAE-2 and E

E. Then [183]AI I-3 can be followed by transforming [125]EAE-2 according to

Propositional Deformation Rule 2, just as proved in Theorem 4 and Theorem 6. The other

verifications are similar to that given for (18.3) just proved or easier.

Theorem 19: Reducible relations between the following modal syllogisms:

(19.1) [011]EAE-1 [194]AAI-3

(19.2) [011]EAE-1 [195]AAI-3

(19.3) [011]EAE-1 [196]AAI-3

(19.4) [013]EAE-1 [197]AAI-3

(19.5) [014]EAE-1 [198]AAI-3

(19.6) [015]EAE-1 [199]AAI-3

(19.7) [015]EAE-1 [200]AAI-3

(19.8) [015]EAE-1 [201]AAI-3

(19.9) [016]EAE-1 [202]AAI-3

(19.10) [016]EAE-1 [203]AAI-3

(19.11) [016]EAE-1 [204]AAI-3

(19.12) [019]EAE-1 [205]AAI-3

(19.13) [020]EAE-1 [206]AAI-3

Proof: Similar to Theorem 18, Theorem 19 can be followed from the symmetry of no, Fact 2

and Propositional Deformation Rule 2. More specifically, for (19.12), [076]EAO-1 can be

deduced from [019]EAE-1 and E O. [153]EAO-2 can be obtained by replacing the

major premiseno(M, P) in [011]EAE-1 withno(P, M). And then [205]AAI-3 can

be deduced from [125]EAE-2 in views of Propositional Deformation Rule 2, just as

proved in Theorem 4 and Theorem 6. The other verifications follow the same pattern as the

just worked example.
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Theorem 20: Reducible relations between the following modal syllogisms:

(20.1) [011]EAE-1 [207]EAO-3

(20.2) [011]EAE-1 [208]EAO-3

(20.3) [011]EAE-1 [209]EAO-3

(20.4) [013]EAE-1 [210]EAO-3

(20.5) [014]EAE-1 [211]EAO-3

(20.6) [015]EAE-1 [212]EAO-3

(20.7) [015]EAE-1 [213]EAO-3

(20.8) [015]EAE-1 [214]EAO-3

(20.9) [016]EAE-1 [215]EAO-3

(20.10) [016]EAE-1 [216]EAO-3

(20.11) [016]EAE-1 [217]EAO-3

(20.12) [019]EAE-1 [218]EAO-3

(20.13) [020]EAE-1 [219]EAO-3

Proof: Similar to Theorem 18 and Theorem 19, Theorem 20 can be derived from the

symmetry of no, Fact 2 and Propositional Deformation Rule 2. Specifically, for (20.8),

[097]AEE-2 can be obtained by substituting no(P, S) for the conclusion no(S, P) in

[015]EAE-1. And [115]AEO-2 can be followed from [097]AEE-2 and E  O.

And then [214] EA  O-3 can be deduced by from [115]  AEO-2 with reference to

Propositional Deformation Rule 2, just as proved in Theorem 4 and Theorem 6. The other

cases are similar.

Theorem 21: Reducible relations between the following modal syllogisms:

(21.1) [011]EAE-1 [220]EIO-3

(21.2) [011]EAE-1 [221]EIO-3

(21.3) [011]EAE-1 [222]EIO-3
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(21.4) [013]EAE-1 [223]EIO-3

(21.5) [014]EAE-1 [224]EIO-3

(21.6) [015]EAE-1 [225]EIO-3

(21.7) [015]EAE-1 [226]EIO-3

(21.8) [015]EAE-1 [227]EIO-3

(21.9) [016]EAE-1 [228]EIO-3

(21.10) [016]EAE-1 [229]EIO-3

(21.11) [016]EAE-1 [230]EIO-3

(21.12) [019]EAE-1 [231]EIO-3

(21.13) [020]EAE-1 [232]EIO-3

Proof: Similar to Theorem 18-20, Theorem 21 can be followed from the symmetry of no, Fact

2 and Propositional Deformation Rule 2. More specifically, for (21.7), [097]AEE-2 can be

obtained by replacing the conclusion no(S, P) in [015]EAE-1 with no(P, S). And [098]

AEE-2 can be deducible from [097]AEE-2 andEE. And then [226] EIO-3

can be derived from [098]AEE-2 in terms of Propositional Deformation Rule 2, just as

proved in Theorem 4 and Theorem 6. The other arguments are similar or easier.

Theorem 22: Reducible relations between the following modal syllogisms:

(22.1) [011]EAE-1 [233]IAI-3

(22.2) [011]EAE-1 [234]IAI-3

(22.3) [011]EAE-1 [235]IAI-3

(22.4) [013]EAE-1 [236]IAI-3

(22.5) [014]EAE-1 [237]IAI-3

(22.6) [015]EAE-1 [238]IAI-3

(22.7) [015]EAE-1 [239]IAI-3

(22.8) [015]EAE-1 [240]IAI-3
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(22.9) [016]EAE-1 [241]IAI-3

(22.10) [016]EAE-1 [242]IAI-3

(22.11) [016]EAE-1 [243]IAI-3

(22.12) [019]EAE-1 [244]IAI-3

(22.13) [020]EAE-1 [245]IAI-3

Proof: Similar to Theorem 9, 11 and 16-17, Theorem 22 can be obtained from Fact 2 and

Propositional Deformation Rule 2. Specifically, for (22.9), [031]EAE-1 can be derived

from [016]E A E-1 and  E E. And [241] I AI-3 can be deducible from

[031]EAE-1 by means of Propositional Deformation Rule 2, just as proved in Theorem 4

and Theorem 6. The other arguments are analogous to that given for (22.5) just proved or

easier.

Theorem 23: Reducible relations between the following modal syllogisms:

(23.1) [001]AAA-1 [246]OAO-3

(23.2) [001]AAA-1 [247]OAO-3

(23.3) [001]AAA-1 [248]OAO-3

(23.4) [003]AAA-1 [249]OAO-3

(23.5) [004]AAA-1 [250]OAO-3

(23.6) [005]AAA-1 [251]OAO-3

(23.7) [005]AAA-1 [252]OAO-3

(23.8) [005]AAA-1 [253]OAO-3

(23.9) [006]AAA-1 [254]OAO-3

(23.10) [006]AAA-1 [255]OAO-3

(23.11) [006]AAA-1 [256]OAO-3

(23.12) [009]AAA-1 [257]OAO-3

(23.13) [010]AAA-1 [258]OAO-3
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Proof: Similar to Theorem 22, Theorem 23 can be obtained from Fact 2 and Propositional

Deformation Rule 2. More specifically, for (23.7), [023]AAA-1 can be followed from

[005] AA A-1 and  A A. And then [252]O AO-3 can be deducible from

[023]AAA-1 by use of Propositional Deformation Rule 2, just as proved in Theorem 4

and Theorem 6. The other verifications are similar to that given for (23.7) just proved or

easier.

Theorem 24: Reducible relations between the following modal syllogisms:

(24.1) [001]AAA-1 [259]AAI-4

(24.2) [001]AAA-1 [260]AAI-4

(24.3) [001]AAA-1 [261]AAI-4

(24.4) [002]AAA-1 [262]AAI-4

(24.5) [003]AAA-1 [263]AAI-4

(24.6) [004]AAA-1 [264]AAI-4

(24.7) [005]AAA-1 [265]AAI-4

(24.8) [005]AAA-1 [366]AAI-4

(24.9) [005]AAA-1 [367]AAI-4

(24.10) [006]AAA-1 [268]AAI-4

(24.11) [006]AAA-1 [269]AAI-4

(24.12) [006]AAA-1 [270]AAI-4

(24.13) [007]AAA-1 [271]AAI-4

(24.14) [008]AAA-1 [272]AAI-4

(24.15) [009]AAA-1 [273]AAI-4

(24.16) [010]AAA-1 [274]AAI-4

Proof: Similar to Theorem 4, Theorem 24 can be deduced from the symmetry of some, Fact 2

and some transformations. More specifically, for (24.4), [037]AAI-1 can be followed
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from [002]AAA-1 andAI. In fact, [037]AAI-1 can be written asall(M,

P)all(S, M)   some(S, P). And with reference to the symmetry of some, all(M,

P)all(S, M) some(P, S) can be obtained by replacing the conclusionsome(S, P) in

[037] AAI-1 with some(P, S). By replacing P by S, and S by P, it can be obtained

thatall(M, S)all(P, M)some(S, P) fromall(M, P)all(S, M)some(P, S).

By putting the major premise in front of the minor premise it can be obtained that all(P,

M)  all(M, S)   some(S, P). In short, the fourth figure modal syllogism [262]

AAI-4 is valid, as required. The other verifications are similar to that given for (24.2)

just proved or easier .

Theorem 25: Reducible relations between the following modal syllogisms:

(25.1) [011]EAE-1 [275]AEE-4

(25.2) [011]EAE-1 [276]AEE-4

(25.3) [011]EAE-1 [277]AEE-4

(25.4) [012]EAE-1 [278]AEE-4

(25.5) [013]EAE-1 [279]AEE-4

(25.6) [014]EAE-1 [280]AEE-4

(25.7) [015]EAE-1 [281]AEE-4

(25.8) [015]EAE-1 [282]AEE-4

(25.9) [015]EAE-1 [283]AEE-4

(25.10) [016]EAE-1 [284]AEE-4

(25.11) [016]EAE-1 [285]AEE-4

(25.12) [016]EAE-1 [286]AEE-4

(25.13) [017]EAE-1 [287]AEE-4

(25.14) [018]EAE-1 [288]AEE-4

(25.15) [019]EAE-1 [289]AEE-4
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(25.16) [020]EAE-1 [290]AEE-4

Proof: Similar to Theorem 12-15, Theorem 25 can be followed from the symmetry of no and

Fact 2. Specifically, for (25.3), [091]AEE-2 can be obtained by substituting no(P, S)

for the conclusion no(S, P) in [011]EAE-1. It is clear that [093]AEE-2 can be

deduced from [091]AEE-2 and E E. And then [277]AEE-4 can be derived by

replacing the minor premise no(S, M) in [093]AEE-2 with no(M, S), just as desired.

The other arguments follow the same pattern as that given for (25.3) just proved or easier.

Theorem 26: Reducible relations between the following modal syllogisms:

(26.1) [011]EAE-1 [291]AEO-4

(26.2) [011]EAE-1 [292]AEO-4

(26.3) [011]EAE-1 [293]AEO-4

(26.4) [012]EAE-1 [294]AEO-4

(26.5) [013]EAE-1 [295]AEO-4

(26.6) [014]EAE-1 [296]AEO-4

(26.7) [015]EAE-1 [297]AEO-4

(26.8) [015]EAE-1 [298]AEO-4

(26.9) [015]EAE-1 [299]AEO-4

(26.10) [016]EAE-1 [300]AEO-4

(26.11) [016]EAE-1 [301]AEO-4

(26.12) [016]EAE-1 [302]AEO-4

(26.13) [017]EAE-1 [303]AEO-4

(26.14) [018]EAE-1 [304]AEO-4

(26.15) [019]EAE-1 [305]AEO-4

(26.16) [020]EAE-1 [306]AEO-4

Proof: Similar to Theorem 12-15 and Theorem 25, Theorem 26 can be deduced from the
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symmetry of no and Fact 2. More specifically, for (26.12), [100]AEE-2 can be followed

by substituting  no(P, S) for the conclusion  no(S, P) in [[016]EAE-1. And [118]

AEO-2 can be derived from [100]AEE-2 and E O. And then [302]AEO-4 can be

obtained by replacing the minor premise no(S, M) in [118]AEO-2 with no(M, S), just as

required. The other proofs follow the same pattern as the worked example above.

Theorem 27: Reducible relations between the following modal syllogisms:

(27.1) [001]AAA-1 [307]EAO-4

(27.2) [001]AAA-1 [308]EAO-4

(27.3) [001]AAA-1 [309]EAO-4

(27.4) [003]AAA-1 [310]EAO-4

(27.5) [004]AAA-1 [311]EAO-4

(27.6) [005]AAA-1 [312]EAO-4

(27.7) [005]AAA-1 [313]EAO-4

(27.8) [006]AAA-1 [314]EAO-4

(27.9) [006]AAA-1 [315]EAO-4

(27.10) [006]AAA-1 [316]EAO-4

(27.11) [007]AAA-1 [317]EAO-4

(27.12) [008]AAA-1 [318]EAO-4

(27.13) [009]AAA-1 [319]EAO-4

(27.14) [010]AAA-1 [320]EAO-4

Proof: Similar to Theorem 18-21, Theorem 27 can be followed from the symmetry of some,

Fact 2 and Propositional Deformation Rule 1. Specifically, for (27.12), it is clear that

[046]AAI-1 can be deducible from [010] AAA-1 andA I. And in the light of

the symmetry of some, [272]A A I-4 can be obtained by replacing the conclusion

some(S, P) in [046]AAI-1 withsome(P, S). And then [318]EAO-4 can be derived

by transforming [272]A A I-4 according to Propositional Deformation Rule 1, just as
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proved in Theorem 5 and Theorem 7. The other arguments are similar.

Theorem 28: Reducible relations between the following modal syllogisms:

(28.1) [011]EAE-1 [321]EIO-4

(28.2) [011]EAE-1 [322]EIO-4

(28.3) [011]EAE-1 [323]EIO-4

(28.4) [013]EAE-1 [324]EIO-4

(28.5) [014]EAE-1 [325]EIO-4

(28.6) [015]EAE-1 [326]EIO-4

(28.7) [015]EAE-1 [327]EIO-4

(28.8) [016]EAE-1 [328]EIO-4

(28.9) [016]EAE-1 [329]EIO-4

(28.10) [016]EAE-1 [330]EIO-4

(28.11) [016]EAE-1 [331]EIO-4

(28.12) [019]EAE-1 [332]EIO-4

(28.13) [020]AAA-1 [333]EIO-4

Proof: Similar to Theorem 18-21 and Theorem 27, Theorem 28 can be derived from the

symmetry of no, Fact 2 and Propositional Deformation Rule 1. More specifically, for (28.10),

it is clear that [031]EAE-1 can be followed from [016]EAE-1 and EE. And

[160]EIO-2 can be obtained from [031]EAE-1 in terms of Propositional Deformation

Rule 1, just as proved in Theorem 5 and Theorem 7. And then [330] E IO-4 can be

followed by substitutingsome(M, S) for the minor premisesome(S, M) in [160]EIO-2.

The other verifications are similar or easier.

Theorem 29: Reducible relations between the following modal syllogisms:

(29.1) [011]EAE-1 [334]IAI-4

(29.2) [011]EAE-1 [335]IAI-4
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(29.3) [011]EAE-1 [336]IAI-4

(29.4) [013]EAE-1 [337]IAI-4

(29.5) [014]EAE-1 [338]IAI-4

(29.6) [015]EAE-1 [339]IAI-4

(29.7) [015]EAE-1 [340]IAI-4

(29.8) [015]EAE-1 [341]IAI-4

(29.9) [016]EAE-1 [342]IAI-4

(29.10) [016]EAE-1 [343]IAI-4

(29.11) [016]EAE-1 [344]IAI-4

(29.12) [019]EAE-1 [345]IAI-4

(29.13) [020]EAE-1 [346]IAI-4

Proof: Similar to Theorem 18-21 and Theorem 27-28, Theorem 29 can be followed from the

symmetry of some, Fact 2 and Propositional Deformation Rule 2. More specifically, for (29.8),

it is clear that [029]EAE-1 can be obtained from [015]EAE-1 and EE. Then

[239]I  A  I-3 can be deducible from [029]  EA  E-1 according to Propositional

Deformation Rule 2, just as proved in Theorem 4 and Theorem 6. And then with reference to

the symmetry of some, [341]IAI-4 can be obtained by substituting some(P, M) for the

major premise  some(M, P) in [239]IA I-3. The other verifications follow the same

pattern as the example just proved.

4. Conclusion and the Future Work

The above theorems show that the validity of the other 326 modal syllogisms can be deduced

from the 20 basic valid modal syllogisms obtained by adding modal operators to the classical

valid syllogisms AAA-1 and EAE-1. On the basis of the 20 valid modal syllogisms, this paper

not only shows that the validity of the other 326 Aristotle’s modal syllogisms can be derived

by making full use of truth definition and symmetry of Aristotelian quantifiers in generalized
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quantifier theory, and propositional deformation rules in proof theory, but also shows that

there are reducible relations between/among Aristotle’s modal syllogisms. These innovative

results are embodied in the 29 theorems proposed in this paper. It is hoped that these

innovative achievements will make contributions to further research on Aristotle’s and

generalized modal syllogistic logic, and to promote knowledge representation and knowledge

reasoning in computer science, and natural language information processing.

The study of the reducible relations between modal syllogisms is a necessary condition for

studying the axiomatization of modal syllogistic. Up to now, the author has not yet found how

to derive the other (38632620=) 38 valid modal syllogisms from the 20 basic valid modal

syllogisms. If this problem is solved, then it is easier to axiomatize Aristotelian modal

syllogistic.

It should be noted that the modal syllogisms studied in this paper are only Aristotle’s modal

syllogisms, because this paper only studies the modal syllogisms obtained by adding modal

operators to the four Aristotelian quantifiers, all, some, no, and not all. Generalized modal

syllogisms is obtained by adding modal operators to generalized quantifiers (such as most, few,

more...than). But the research methods used in this paper provide a simple and reasonable

mathematical model to study generalized modal syllogisms. How to use the methods to study

the validity and reducible relations of generalized modal syllogisms? Due to limited time, it

can only be left for future study.
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