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Abstract

With the help of the definitions of three negative quantifiers of Aristotelian quantifiers (i.e.

all, no, some and not all), the symmetry of no and some, and some basic inference rules in

propositional logic, one can deduce the remaining 23 valid syllogisms only from the

syllogism OAO-3. In other words, there is reducible relations between/among different forms

and different figures of valid traditional syllogisms. And these reducible relations actually

reflect the transformation relations between the monotonicity of the four Aristotelian

quantifiers. This paper provides a computational level of reasoning for syllogistic logic and an

important theoretical basis for knowledge representation and knowledge reasoning in

computers.
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1. Introduction

Syllogistic arguments have played an important role in logic and human reasoning from

Aristotle onwards [1]. In natural languages, there are various syllogisms, such as traditional

syllogisms [2-4], syllogisms with verbs [5], generalized syllogisms [6-7] and modal

syllogisms [8-10], and so on, in which traditional syllogisms are time-honored and the most

intensively researched in logic due to its prominence in human reasoning. This paper only

studies the traditional syllogisms, thus all of the syllogisms in the following refers to

traditional syllogisms.

Different studies of traditional syllogistic logic have already been shown, for example by in

Łukasiewicz ([2]), Corcoran ([11]), van Benthem ([12]), Westerståhl ([4], [13]), Moss([3],

[5]) Beihai et al ([14]), and Xiaojun ([15-18]), and so on. This paper makes a formal study of

traditional syllogistic logic from the perspective of generalized quantifier theory [19-20] and

set theory, and provides a computational level of reasoning. The research method is simple

and universal. And this paper is not only beneficial to the further study of other kinds of

syllogisms, but also provides an important theoretical basis for knowledge representation and

knowledge reasoning in computers.

2. Symbolization of Syllogisms

Traditional syllogisms involve the four kinds of categorical propositions, A, E, I, O. Let x and

y be the subject and predicate variables of the categorical proposition, respectively. The

categorical propositions A refers to that all xs are y, and can be symbolized as all(x, y), in

which x and y are lexical variables. The categorical propositions E refers to that no xs are y,

and can be denoted by no(x, y). The categorical propositions I refers to that some xs are y, and

can be symbolized as some(x, y). The categorical propositions O refers to that not all xs are y,

and can be denoted by not all(x, y). From the perspective of generalized quantifier theory, all,

no, some and not all are called Aristotelian quantifiers, and traditional syllogisms embody the

semantic and inferential properties of these four Aristotelian quantifiers.

The figure of a syllogism is determined by the position of the middle term. A syllogism is

called the first figure if the middle term is the subject of the major premise and the predicate

of the minor premise, respectively. A syllogism is called the second figure if the middle term

is the predicate of both the major and minor premise. A syllogism is called the third figure if

the middle term is the subject of both the major and minor premise. A syllogism is called the
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fourth figure if the middle term is the predicate of the major premise and the subject of the

minor premise, respectively. For example, the syllogism EIO-3 stands for the third figure

syllogism, and its major premise, minor premise and conclusion is the categorical proposition

E, I and O, respectively. And the syllogism can be symbolized as no(y, z)some(y, x)not

all(x, z), in which x, y, and z are lexical variables. The other notations and symbolization are

similar.

In this paper, =def means that the content on the left can be defined by the content on the right.

3. Formation Rules and Definitions

In order to explore the reducible relations between/among different syllogisms, it is necessary

to give primitive symbols, formation rules, related definitions as the following.

3.1 Primitive Symbols

(1) lexical variables: x, y, z

(2) unary negative operator: 

(3) binary implication operator: ,

(4) quantifier: not all

(5) brackets: (, )

3.2 Formation Rules

(1) If Q is a quantifier, x and y are lexical variables, then Q(x, y) is a well-formed formula.

(2) If p and q are well-formed formulas, then p, pq and pq are well-formed formulas.

(3) Only the formulas obtained through (1) and (2) are well-formed formulas.

For example, not all(x, y), and not all(y, z)all(y, x)not all(x, z) are well-formed formulas,

which read respectively as ‘not all xs are y’, and ‘if not all ys are z, and all ys are x, then not

all xs are z. Others are similar.

3.3 Related Definitions

Let D be the domain of lexical variables, and Q be a quantifier, then Q, Q and Qd stands

for the outer quantifier of Q, the inner quantifier of Q and the dual quantifier of Q,

respectively.
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Definition 1 (outer negative quantifier): Q(x, y) =def It is not that Q(x, y);

Definition 2 (inner negative quantifier): Q(x, y) =defQ(x, Dy);

Definition 3 (dual negative quantifier): Qd(x, y) =defQ(x, y);

According to the above definitions and generalized quantifier theory, the negative relations

of the four Aristotelian quantifiers (i.e, all, no, some and not all) in traditional syllogisms are

as follows: (1) all and not all, no and some are mutually outer negative. More specifically,

all=not all, not all=all; no= some, some=no; (2) no and all, some and not all are

mutually inner negative. More specifically, no=all, all=no; some=not all; not all=some;

(3) all and some, no and not all are mutually dual negative. More specifically, all=some,

some=all; no=not all, not all=no.

4. System of Traditional Syllogistic Logic

In the following, ⊢ is to represent a proposition or syllogism that can be proved. For

example, the syllogism OAO-3 can be proved, and symbolized as ⊢ not all(y, z) some(y,

x)not all(x, z). The other notations are similar.

4.1 Basic Axioms

(1) A0: if p is a valid formula in propositional logic, then ⊢ p.

(2) A1: ⊢ all(x, x).

(3) A2: ⊢ some(x, x).

(4) A3 (that is, the syllogism OAO-3): ⊢ not all(y, z)some(y, z)not all(x, z).

4.2 Inference Rules

In the following rules, p, q, r and s are well-formed formulas.

(1) Replacement rule: if p is obtained from q by means of “replacing one variable with another”, then

⊢ p can be derived from ⊢ q.

(2) Modus Ponens: From ⊢ (pq) and ⊢ p infer ⊢ q.

(3) Substitution of equivalents: From ⊢ (...p...) and pq infer ⊢ (...q...), and vice versa.

(4) Double negative: From ⊢ p infer ⊢ p , and vice versa.

(5) Antecedent interchange: From ⊢ (pqr) infer ⊢ (qpr).
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(6) Subsequent weakening: From ⊢ (pqr) and ⊢ (rs) infer ⊢ (pqs).

(7) Reverse rule: From ⊢ (pq) infer ⊢ (qp).

(8) Reverse rule 1 of syllogism: From ⊢ (pqr) infer ⊢ (rpq).

(9) Reverse rule 2 of Syllogism: From ⊢ (pqr) infer ⊢ (rqp).

4.3 Relevant Facts

The following Fact 1 and 2 are the definitions in generalized quantifier theory. Fact

3 embodies the symmetry of some and no. Fact 4 is the basic fact of predicate logic. And the

four facts can be easily proved by means of the above definitions, inference rules and axioms.

Therefore, the detailed proofs of these facts will not be given here.

Fact 1 (inner negation):

(1) ⊢ all(x, y)no(x, y); (2) ⊢ no(x, y)all(x, y);

(3) ⊢ some(x, y)not all(x, y); (4) ⊢ not all(x, y)some(x, y).

Fact 2 (outer negation):

(1) ⊢ all(x, y)not all(x, y); (2) ⊢ not all(x, y)all(x, y);

(3) ⊢ some(x, y)no(x, y); (4) ⊢ no(x, y)some(x, y).

Fact 3 (symmetry of some and no):

(1) (symmetry of some): ⊢ some(x, y)some(y, x);

(2) (symmetry of no): ⊢ no(x, y)no(y, x).

Fact 4 (assertoric subalternations):

(1) ⊢ no(x, y)not all(x, y); (2) ⊢ all(x, y)some(x, y).

4.4 Reducible Relations between/among Valid Syllogisms from the Syllogism OAO-3

In this paper, OAO-3IAI-3 means that the validity of syllogism IAI-3 can be deduced from

the validity of syllogism OAO-3. And one can say that there is a reducible relation between

the two syllogisms. Others are similar. On the basis of generalized quantifier theory, set theory

and the above inference rules in propositional logic, one can prove the reductions

between/among valid traditional syllogisms as the following Theorem 1.

Theorem 1: The other 23 valid syllogisms can be deduced only from the syllogism OAO-3.

According to the order of proof, the reducible relations between/among syllogisms as the

following:
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[1] OAO-3IAI-3

[2] OAO-3IAI-3IAI-4

[3] OAO-3IAI-3AII-3

[4] OAO-3IAI-3AII-3AII-1

[5] OAO-3AOO-2

[6] OAO-3AOO-2EIO-2

[7] OAO-3AOO-2EIO-2EIO-1

[8] OAO-3AOO-2EIO-2EIO-1EIO-3

[9] OAO-3AOO-2EIO-2EIO-4

[10] OAO-3AAA-1

[11] OAO-3AAA-1AAI-1

[12] OAO-3AAA-1AAI-1AAI-4

[13] OAO-3AAA-1EAE-1

[14] OAO-3AAA-1EAE-1EAE-2

[15] OAO-3AAA-1EAE-1EAE-2AEE-2

[16] OAO-3AAA-1EAE-1AEE-4

[17] OAO-3AAA-1EAE-1EAO-1

[18] OAO-3AAA-1EAE-1EAE-2EAO-2

[19] OAO-3AAA-1EAE-1EAE-2AEE-2AEO-2

[20] OAO-3AAA-1EAE-1AEE-4AEO-4

[21] OAO-3AAA-1EAE-1EAE-2AEE-2AEO-2EAO-3

[22] OAO-3AAA-1EAE-1EAE-2AEE-2AEO-2EAO-3EAO-4

[23] OAO-3AAA-1EAE-1EAE-2AEE-2AEO-2EAO-3AAI-3

Proof:

(1) not all(y, z)all(y, x)not all(x, z) (i.e. Axiom 3)

(2) some(y, z)all(y, x)some(x, z) (by (1) and not all=some)

(3) some(y, Dz)all(y, x)some(x, Dz) (by (2) and Definition 2)

(4) some(y, z)all(y, x)some(x, z) (i.e. IAI-3, by (3) and Replacement rule)
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(5) some(y, z)some(z, y) (by the symmetry of some)

(6) some(z, y)all(y, x)some(x, z) (i.e. IAI-4, by (4), (5) and Substitution of equivalents)

(7) some(x, z)some(z, x) (by the symmetry of some)

(8) some(y, z)all(y, x)some(z, x) (by (4), (7) and Substitution of equivalents)

(9) all(y, x)some(y, z)some(z, x) (i.e. AII-3, by (8) and Antecedent interchange)

(10) all(y, x)some(z, y)some(z, x) (i.e. AII-1, by(5), (9) and Substitution of equivalents)

(11) not all(x, z)not all(y, z)all(y, x) (by (1) and Reverse rule 1 of syllogism)

(12) all(x, z)not all(y, z)not all(y, x)

(i.e. AOO-2, by (11), not all=all,all=not all, and Substitution of equivalents )

(13) no(x, z)some(y, z)not all(y, x)

(by (12), all=no, not all=some, and Substitution of equivalents)

(14) no(x, Dz)some(y, Dz)not all(y, x) (by (13) and Definition 2)

(15) no(x, z)some(y, z)not all(y, x) (i.e. EIO-2, by (14) and Replacement rule)

(16) no(x, z)no(z, x) (by the symmetry of no)

(17) no(z, x)some(y, z)not all(y, x) (i.e. EIO-1, by (15), (16) and Substitution of equivalents)

(18) no(z, x)some(z, y)not all(y, x) (i.e. EIO-3, by (5), (17) and Substitution of equivalents)

(19) no(x, z)some(z, y)not all(y, x) (i.e. EIO-4, by (5), (15) and Substitution of equivalents)

(20) not all(x, z)all(y, x)not all(y, z) (by (1) and Reverse rule 2 of syllogism)

(21) all(x, z)all(y, x)all(y, z)

(i.e. AAA-1, by (20), not all=all and Substitution of equivalents )

(22) all(y, z)some(y, z) (Fact 4 and Replacement rule)

(23) all(x, z)all(y, x)some(y, z) (i.e. AAI-1, by (21) and Subsequent weakening)

(24) all(x, z)all(y, x)some(z, y) (by (5), (23) and Substitution of equivalents)

(25) all(y, x)all(x, z)some(z, y) (i.e. AAI-4, by (24) and Antecedent interchange)

(26) no(x, z)all(y, x)no(y, z) (by (21), all=no and Substitution of equivalents)

(27) no(x, Dz)all(y, x)no(y, Dz) (by (26) and Definition 2)

(28) no(x, z)all(y, x)no(y, z) (i.e. EAE-1, by (27) and Replacement rule)

(29) no(z, x)all(y, x)no(y, z) (i.e. EAE-2, by (16), (28) and Substitution of equivalents)

(30) no(y, z)no(z, y) (by the symmetry of no)

(31) no(z, x)all(y, x)no(z, y) ( by (29), (30) and Substitution of equivalents)

(32) all(y, x)no(z, x)no(z, y) (i.e. AEE-2, by (31) Antecedent interchange)

(33) no(x, z)all(y, x)no(z, y) (by (28), (30) and Substitution of equivalents)

(34) all(y, x)no(x, z)no(z, y) (i.e. AEE-4, by (33) and Antecedent interchange)

(35) no(y, z)not all(y, z) (Fact 4 and Replacement rule)

(36) no(x, z)all(y, x)not all(y, z) (i.e. EAO-1, by (28), (35) and Subsequent weakening)
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(37) no(z, x)all(y, x)not all(y, z) (i.e. EAO-2, by (29), (35) and Subsequent weakening)

(38) no(z, y)not all(z, y) (Fact 4 and Replacement rule)

(39) all(y, x)no(z, x)not all(z, y) (i.e. AEO-2, by (32), (38) and Subsequent weakening)

(40) all(y, x)no(x, z)not all(z, y) (i.e. AEO-4, by (34), (38) and Subsequent weakening)

(41) not all(z, y)no(z, x)all(y, x) (by (39) and and Reverse rule 2 of syllogism)

(42) all(z, y)no(z, x)not all(y, x)

(by (41), not all=all,all=not all, and Substitution of equivalents)

(43) no(z, x)all(z, y)not all(y, x) (i.e. EAO-3, by (42) and Antecedent interchange)

(44) no(x, z)all(z, y)not all(y, x) (i.e. EAO-4, by (16), (43) and Replacement rule)

(45) all(z, x)all(z, y)some(y, x)

(by (43), no=all, not all=some, and Substitution of equivalents)

(46) all(z, Dx)all(z, y)some(y, Dx) (by (45) and Definition 2)

(47) all(z, x)all(z, y)some(y, x) (i.e. AAI-3, by (46) and Replacement rule)

5. Conclusion and FutureWork

The main work and conclusions of this paper are as follows: (1) with the help of the

definitions of three negative quantifiers of Aristotelian quantifiers (i.e. all, no, some and not

all), the symmetry of no and some, and some basic inference rules in propositional logic, one

can deduce the remaining 23 valid syllogisms only from the syllogism OAO-3. (2) there is

reducible relations between/among different forms and different figures of valid traditional

syllogisms. (3) these reducible relations actually reflect the transformation relations between

the monotonicity of the four Aristotelian quantifiers. These relations once again exemplifies

and highlights the dialectical materialist viewpoint that ‘things are universally connected’.

This paper provides a simple and clear research paradigm for other kinds of syllogisms, such

as generalized syllogisms and modal syllogisms. How to deal with them needs further study.
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