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Abstract

Syllogism reasoning is a common and important form of reasoning in natural language and

logic. This paper shows that the remaining 23 valid syllogisms can be deduced merely from

the syllogism IAI-3 by making the best of propositional logic and generalized quantifier

theory, so as to achieve the goal of deeply discussing the reducible relations between the

syllogism IAI-3 and the other syllogisms. More specifically, on the basis of formalizing

syllogisms, this paper makes full of rules of deduction in classical propositional logic, the

definitions of outer and inner negative quantifiers of Aristotelian quantifiers, and the

symmetry of Aristotelian quantifiers no and some in generalized quantifier theory, and then

establishes a concise formalized axiom system for Aristotelian syllogistic logic. This

innovative research not only shows that formalized logic has the characteristics of

structuralism, but also provides a concise and general mathematical paradigm for studying

other syllogistic logics, and also provides theoretical support for knowledge and information

processing in artificial intelligence and computer science.
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1. Introduction

Syllogistic reasoning is a common and important form of reasoning in natural language and

logic [1-3], which has been widely studied and plays an important role in logic from Aristotle

on onwards[4-10]. There are many kinds of syllogisms, such as Aristotelian syllogisms[6],

generalized syllogisms[3-5], modal syllogisms [12-13], rational syllogisms [14], and so on.

This paper focuses on the study of Aristotelian syllogisms. And in the following, unless

otherwise specified, syllogism refers to Aristotelian syllogisms.

Aristotelian syllogisms involve sentences of the following four forms: all xs are y, no xs are y,

some xs are y, and not all xs are y, and these four forms of sentences are referred to as

proposition A, E, I and O respectively, in which all, no, some and not all are called

Aristotelian quantifiers [12, 15]. It can be seen that Aristotelian syllogistic logic mainly

studies the semantic properties and reasoning properties of the four Aristotelian

quantifiers[16-17]. It is widely known that there are 256 kinds of Aristotelian syllogisms, and

only just 24 kinds of syllogisms are valid among them [18-19].

In previous studies such as Łukasiewicz [20], Shushan[21], Xiaojun and Sheng [18], Xiaojun

[22-23] and Beihai [24], at least two valid syllogisms were used as basic axioms when

deriving all of the other valid syllogisms. While this paper only takes one syllogism (that is,

IAI-3) as the reasoning basis in order to deduce all of the remaining 23 valid syllogisms, and

then establishes a simplified formal axiom system for Aristotelian syllogistic logic.

Specifically, by making full use of the deductive rules of propositional logic [25], generalized

quantifier theory [15], the transformation relations between Aristotelian quantifiers and their

inner and outer negation quantifiers [18], and the symmetry of some and no [26], the

remaining 23 valid syllogisms are derived from the valid syllogism IAI-3, so as to achieve the

goal of deeply discussing the reducible relations between the syllogism IAI-3 and the other

syllogisms.

2. Formal Aristotelian Syllogism Logic

To specify a formal system we require: (1) an alphabet of symbols, called primitive symbols;

(2) a set of finite strings of these symbols, called well-formed formulas; (3) a set of

well-formed formulas as the basis of reasoning, called basic axioms; (4) a finite set of ‘rules

of deduction’, used to deduce the theorems in the system.
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2.1 Primitive Symbols

(1) lexical variables: x, y, z

(2) negative operator: 

(3) implication operator:

(4) quantifier: some

(5) brackets: (, )

The other operators such as conjunctional operator  and biconditional  can be defined by

 and as usual, that is, (pq) =def (pq), and (pq) =def ((pq)(qp)).

2.2 Formation Rules

(1) If Q is a quantifier, x and y are lexical variables, then Q(x, y) is a well-formed formula.

(2) If p and q are well-formed formulas, then pq are well-formed formulas.

(3) Only the formulas obtained through (1) and (2) are well-formed formulas.

For example, some(x, y), and some(x, y)some(y, z) are well-formed formulas, which read

respectively as ‘some xs are y’, and as ‘if some xs are y, then that some ys are z is false’.

Others are similar. And it is can be seen that Aristotelian syllogisms merely contain the

following four forms of categorical propositions, that is, all(x, y), no(x, y), some(x, y) and not

all(x, y).

In this paper, ⊢ p represents a well-formed formula that can be derived from basic axioms and

rules of deduction or it is a basic axiom or a fact. For example, the syllogism IAI-3 is a basic

axiom, and denoted as ⊢ some(y, z)(all(y, x)some(x, z)). The other notations are similar.

2.3 Basic Axioms

(1) A1: if p is a valid formula in propositional logic, then ⊢ p.

(2) A2 (that is, the syllogism IAI-3): ⊢ some(y, z)(all(y, x)some(x, z)).
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2.4 Rules of Deduction

Aristotelian syllogistic logic is obtained by extending classical propositional logic, and then

the following rules of deduction in the former are also applicable in the latter. Let p, q, r and s

be well-formed formulas.

(1) Rule 1 (Antecedent interchange): From ⊢ (p(qr)) infer ⊢ (q(pr)) .

(2) Rule 2 (Subsequent weakening): From ⊢ (p(qr)) and ⊢ (rs) infer ⊢ (p(qs)).

(3) Rule 3 (Rule A of anti-syllogism): From ⊢ (p(qr)) infer ⊢ (p(rq)).

(4) Rule 4 (Rule B of anti-syllogism): From ⊢ (p (qr)) infer ⊢ (q(rp)).

2.5 Related Definitions and Facts

According to generalized quantifier theory ([13], [19]), the four Aristotelian quantifiers (i.e.

all, no, some and not all) are special cases of type <1, 1> generalized quantifiers, and any

generalized quantifier has the following three kinds of negative quantifiers: inner negative,

outer negative and dual negative quantifiers. In this paper, D stands for the domain of lexical

variables, and Q for a type <1, 1> generalized quantifier, Q, Q Q for the outer, inner

and dual negative quantifier of Q, respectively.

Definition 1 (inner negative quantifier): Q(x, y) =defQ(x, Dy);

By the definition, all=no, no=all, some=not all, not all=some, so we can say that all

and no, some and not all are inner negations each other. From this we can get Fact 1.

Fact 1 (inner negation)

(1) ⊢ all(x, y)no(x, y); (2) ⊢ no(x, y)all(x, y);

(3) ⊢ some(x, y)not all(x, y); (4) ⊢ not all(x, y)some(x, y).

Definition 2 (outer negative quantifier): Q(x, y) =def It is not that Q(x, y).

To be specific, all=not all, not all=all, no=some, some=no, thus we can say that all and

not all, some and no are outer negative each other. From this we can obtain Fact 2.

Fact 2 (outer negation):

(1) ⊢ all(x, y)not all(x, y); (2) ⊢ not all(x, y)all(x, y);

(3) ⊢ some(x, y)no(x, y); (4) ⊢ no(x, y)some(x, y).
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Definition 3 (dual quantifier): Q(x, y) =def It is not that Q(x, Dy).

More specifically, all=some, some=all, no=not all, not all=no, thus we can say

that all and some, no and not all are dual negations each other.

By Definition 1-3, it is can be seen that any one of the Aristotelian quantifier can define the

other three Aristotelian quantifiers, so any one of the four Aristotelian quantifiers (say, some)

can be used as the initial quantifier. In this paper, the other three Aristotelian quantifiers can

be respectively defined by some as follows : all=defsome, no=defsome, not all=def some.

Definition 4 (symmetry): Let D be the domain of lexical variables, and Q be a type <1, 1>

quantifiers, Q is symmetric if and only if, for all x, yD, Q(x, y)Q(y, x).

For example, (a) ‘Some men are gynecologists’, (b) ‘Some gynecologists are men’, and the

two sentences imply each other, and some is symmetric by Definition 4. Similarly, (c) ‘no pig

is a dog’, (d) ‘no dog is a pig’, and the two sentences imply each other, so no is symmetric.

And then we have Fact 3.

Fact 3 (symmetry of some and no):

(1) (symmetry of some): ⊢ some(x, y)some(y, x); (2) (symmetry of no): ⊢ no(x, y)no(y, x).

Fact 4 (assertoric subalternations): (1) ⊢ no(x, y)not all(x, y); (2) ⊢ all(x, y)some(x, y).

Fact 4 is a basic fact of predicate logic or generalized quantifier theory, and can be easily

deduced from the above basic axioms and rules of deduction.

3. Reducible Relations between/among Syllogisms Based on the Syllogism

IAI-3

In the following theorem 1, IAI-3IAI-4 means that the validity of syllogism IAI-4 can be

deduced from the validity of syllogism IAI-3 (that is, the basic axiom A2). In other words,

there is a reducible relation between the two Aristotelian syllogisms. Others are similar. The

following theorem characterizes the reducible relations between the syllogism IAI-3 and the

other 23 valid syllogisms.

Theorem 1: The remaining 23 valid syllogisms can be deduced just from the syllogism IAI-3.

（1）IAI-3IAI-4

（2）IAI-3AII-3
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（3）IAI-3AII-3AII-1

（4）IAI-3EIO-2

（5）IAI-3EIO-2EIO-1

（6）IAI-3EIO-2EIO-4

（7）IAI-3EIO-2EIO-4EIO-3

（8）IAI-3EAE-1

（9）IAI-3EAE-1EAE-2

（10）IAI-3EAE-1AEE-4

（11）IAI-3EAE-1AEE-4AEE-2

（12）IAI-3EAE-1EAO-1

（13）IAI-3EAE-1EAO-1EAO-2

（14）IAI-3EAE-1EAO-1EAO-2AAI-3

（15）IAI-3OAO-3

（16）IAI-3OAO-3AAA-1

（17）IAI-3OAO-3AAA-1AAI-1

（18）IAI-3OAO-3AAA-1AAI-1AAI-4

（19）IAI-3OAO-3AAA-1AAI-1EAO-3

（20）IAI-3OAO-3AAA-1AAI-1EAO-3EAO-4

（21）IAI-3OAO-3AAA-1AAI-1AEO-2

（22）IAI-3OAO-3AAA-1AAI-1AEO-2AEO-4

（23）IAI-3OAO-3AOO-2

Proof:

[1] ⊢ some(y, z)(all(y, x)some(x, z)) (i. e. IAI-3, that is axiomA2)

[2] ⊢ some(y, z)some(z, y) (by symmetry of some )
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[3] ⊢ some(z, y)(all(y, x)some(x, z)) (i.e. IAI-4, by [1], [2])

[4] ⊢ some(x, z)some(z, x) (by symmetry of some)

[5] ⊢ all(y, x)(some(y, z)some(z, x)) (i.e. AII-3, by [1], [4] and Rule 1)

[6] ⊢ all(y, x)(some(z, y)some(z, x)) (i.e. AII-1, by [2], [5])

[7] ⊢ some(y, z)(some(x, z)all(y, x)) (by [1] and Rule 3)

[8] ⊢ no(x, z)(some(y, z)not all(y, x)) (i.e. EIO-2, by [7], Rule 1and Fact 2)

[9] ⊢ no(x, z)no(z, x) (by symmetry of no)

[10] ⊢ no(z, x)(some(y, z)not all(y, x)) (i.e. EIO-1, by [8], [9])

[11] ⊢ no(x, z)(some(z, y)not all(y, x)) (i.e. EIO-4, by [2], [8])

[12] ⊢ no(z, x)(some(z, y)not all(y, x)) (i.e. EIO-3, by [9], [11])

[13] ⊢ all(y, x)(some(x, z)some(y, z)) (by [1] and Rule 4)

[14] ⊢ no(x, z)(all(y, x)no(y, z)) (i.e. EAE-1, by [13] , Rule 1 and Fact 2)

[15] ⊢ no(z, x)(all(y, x)no(y, z)) (i.e. EAE-2, by [9], [14])

[16] ⊢ no(y, z)no(z, y) (by symmetry of no )

[17] ⊢ all(y, x)(no(x, z)no(z, y)) (i.e. AEE-4, by [14], [16] and Rule 1)

[18] ⊢ all(y, x)(no(z, x)no(z, y)) (i.e. AEE-2, by [9], [17])

[19] ⊢ no(y, z)not all(y, z) (by Fact 4)

[20] ⊢ no(x, z)(all(y, x)not all(y, z)) (i.e. EAO-1, by [14], [19] and Rule 2)

[21] ⊢ no(z, x)(all(y, x)not all(y, z)) (i.e. EAO-2, by [9], [20])

[22] ⊢ all(y, x)(not all(y, z)no(z, x)) (by [21] and Rule 4)

[23] ⊢ all(y, x)(all(y, z)some(z, x)) (i.e. AAI-3, by [22]and Fact 2)

[24] ⊢ not all(y, z)(all(y, x)not all(x, z)) (by [1] and Fact 1 )

[25] ⊢ not all(y, Dz)(all(y, x)not all(x, Dz)) (by [24] and Definition 1 )

[26] ⊢ not all(y, z)(all(y, x)not all(x, z)) (i.e. OAO-3, by [25])

[27] ⊢ all(y, x)(not all(x, z)not all(y, z)) (by [26] and Rule 4)

[28] ⊢ all(x, z)(all(y, x)all(y, z)) (i.e. AAA-1, by [27] and Fact 2)

[29] ⊢ all(y, z)some(y, z) (by Fact 4)
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[30] ⊢ all(x, z)(all(y, x)some(y, z)) (i.e. AAI-1, by [28], [29] and Rule 2)

[31] ⊢ all(y, x)(all(x, z)some(z, y)) (i.e. AAI-4, by [2], [30] and Rule 1)

[32] ⊢ all(y, x)(some(y, z)all(x, z)) (by [30] and Rule 4)

[33] ⊢ no(y, z)(all(y, x)not all(x, z)) (i.e. EAO-3, by [32], Rule 1 and Fact 2 )

[34] ⊢ no(z, y)(all(y, x)not all(x, z)) (i.e. EAO-4, by [16] and [33])

[35] ⊢ all(x, z)(some(y, z)all(y, x)) (by [30] and Rule 3)

[36] ⊢ all(x, z)(no(y, z)not all(y, x)) (i.e. AEO-2, by [35] and Fact 2 )

[37] ⊢ all(x, z)(no(z, y)not all(y, x)) (i.e. AEO-4, by [16], [36])

[38] ⊢ not all(y, z)(not all(x, z)all(y, x)) (by [26] and Rule 3)

[39] ⊢ all(x, z)(not all(y, z)not all(y, x)) (i.e. AOO-2, by [38], Rule 1 and Fact 2 )

According to the above proof sequences and proof process, it can be concluded that different

syllogisms have the above reducible relations as in theorem 1. Due to different proving paths,

the reduction process between different syllogisms is not unique. These reducible relations

have eloquently proved the dialectical materialism view that ‘things are universally

connected’.

4. Conclusion

This paper shows that the remaining 23 valid syllogisms can be deduced only just from the

syllogism IAI-3 by making the best of propositional logic and generalized quantifier theory.

More specifically, on the basis of formalizing syllogisms, this paper makes full of rules of

deduction in propositional logic, the definitions of outer and inner negative quantifiers of

Aristotelian quantifiers, and the symmetry of Aristotelian quantifiers no and some generalized

quantifier theory, then establishes a concise formalized axiom system for Aristotelian

syllogistic logic.

This innovative research not only shows that formalized logic has the characteristics of

structuralism, but also provides a concise and general mathematical paradigm for studying

other syllogistic logics, and also provides theoretical support for knowledge and information

processing in artificial intelligence and computer science.
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