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Abstract

This paper firstly presents knowledge representations of Aristotelian modal syllogisms

based on the structure of modal categorical propositions; Then, the validity of syllogism

AA◇A-1 was proved by using the truth value definitions of these propositions. And

then this syllogism was used for knowledge reasoning with the help of some reduction

operations. More specifically, the validity of the other 30 syllogisms can be inferred from

that of AA◇A-1 with the help of possible world semantics and generalized quantifier

theory. Owing to the possible modality (◇) and necessary modality () can be defined

mutually, and any one Aristotelian quantifier can define the other three, so there are

reducible relations between/among 31 valid Aristotelian modal syllogisms. Due to the

other 30 valid syllogisms obtained by deductive methods, these results are consistent.

That is superior to previous works. This formal method is consistent with the ideas of

knowledge mining in artificial intelligence.
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1. Introduction

The fact that syllogistic reasoning has been a widespread and significant form of reasoning in

human thinking. There are different kinds of syllogisms in natural language, such as

categorical syllogisms [7], [10], [14], Aristotelian modal syllogisms [6], [16], [17], and

syllogisms with Boolean operations [4], etc. This paper focuses on Aristotelian modal

syllogisms.

McCall ([9]), Geach ([3]), Johnson ([5]) and other scholars have discussed modal syllogisms

and made some achievements, but it’s far from establishing a formal consistent axiom system

for Aristotelian modal syllogistic. Thomason ([13]) and Malink ([8]) have given adequate

semantic analysis or reconstruction of the syllogistic, but the commonplace view is that there

are a lot of inconsistencies and faults. Thus, this paper attempts to contribute to the

consistency of this syllogistic. Specifically, it takes advantage of related knowledge to infer

the validity of other Aristotelian modal syllogisms by proving the validity of one Aristotelian

modal syllogism (i.e.AA◇A-1).

2.Knowledge Representation for Aristotelian Modal Syllogisms

In the following, G, M and N denote lexical variables, and D the domain of lexical variables.

Q stands for any of Aristotelian quantifiers (that is, all, some, no and not all), Q and Q for

the outer and inner negative quantifier of Q, respectively. And the symbol ‘=def ’means the left

is defined by the right. Let , , , and  be propositions. ‘⊢’ stands for that  is provable.

The others are similar. And , , , ,◇and  are respectively symbols of conjunction,

negation, conditionality, biconditionality, possibility, and necessity.

Aristotelian syllogisms contain the following four kinds of propositions: all(G, N), some(G,

N), no(G, N), and not all(G, N), meaning that ‘all Gs are Ns’, ‘some Gs are Ns’, ‘no Gs are Ns’

and ‘not all Gs are Ns’, respectively. They are noted as Proposition A, E, I and O,

respectively. An Aristotelian modal syllogism is obtained by adding modalities (◇or) to an

Aristotelian syllogism. A modal syllogism contains at least one possible modality (◇ )or

necessary modality () and at most three modalities. Therefore, there are the following 12

propositions: A, E, I, O, ◇A, ◇E, ◇I, ◇O,A,E,I andO.

Example 1:
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Major premise: All birds necessarily can fly.

Minor premise: All robins are birds.

Conclusion: All robins possibly can fly.

The figures of Aristotelian modal syllogisms is as usual [1]. Then the above example is the

first figure syllogism. Let G be the set of robins, M the set of birds, and N the set of flying

animals in the domain. The above syllogism can be symbolized as  all(M, N)  all(G,

M)◇all(G, N), abbreviated asAA◇A-1.

2.1 Relevant Definitions

According to set theory [1] and possible world semantics [2], and generalized quantifier

theory [12], the truth value definitions of the above 12 propositions can be given as follows:

Definition 1 (truth value definition):

(1.1) all(G, N) is true when and only when GN is true in any real world.

(1.2) some(G, N) is true when and only when G∩N is true in any real world.

(1.3) no(G, N) is true when and only when G∩N= is true in any real world.

(1.4) not all(G, N) is true when and only when G⊈N is true in any real world.

(1.5)all(G, N) is true when and only when GN is true in any possible world.

(1.6) ◇all(G, N) is true when and only when GN is true in at least one possible world.

(1.7)some(G, N) is true when and only when G∩N is true in any possible world.

(1.8) ◇some(G, N) is true when and only when G∩N is true in at least one possible world.

(1.9)no(G, N) is true when and only when G∩N= is true in any possible world.

(1.10) ◇no(G, N) is true when and only when G∩N= is true in at least one possible world.

(1.11)not all(G, N) is true when and only when G⊈N is true in any possible world.

(1.12) ◇not all(G, N) is true when and only when G⊈N is true in at least one possible world.

Definition 2 (inner negation): Q(G, N) =defQ(G, DN).

Definition 3 (outer negation): Q(G, N) =def It is not that Q(G, N).
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2.2 Relevant Facts

Fact 1 (inner negation)

(1) all(G, N)no(G, N); (2) no(G, N)all(G, N);

(3) some(G, N)not all(G, N); (4) not all(G, N)some(G, N).

Fact 2 (outer negation):

(1)not all(G, N)all(G, N); (2) all(G, N)not all(G, N);

(3) no(G, N)some(G, N); (4) some(G, N)no(G, N).

Fact 3 (dual): (1) Q(G, N)◇Q(G, N); (2) ◇Q(G, N)Q(G, N).

Fact 4 (a necessary proposition implies an assertoric one): ⊢Q(G, N)Q(G, N).

Fact 5 (a necessary proposition implies a possible one): ⊢Q(G, N)◇Q(G, N).

Fact 6 (an assertoric proposition implies a possible one): ⊢Q(G, N)◇Q(G, N).

Fact 7 (a universal proposition implies a particular one):

(1) ⊢all(G, N)some(G, N); (2) ⊢no(G, N)not all(G, N).

Fact 8 (symmetry of some and no): (1) some(G, N)some(N, G); (2) no(G, N)no(N, G).

The above facts are the basic knowledge in generalized quantifier theory or modal logic, their

proofs are omitted [11].

2.3 Relevant Inference Rules

Rule 1 (subsequent weakening): If ⊢() and ⊢(), then ⊢().

Rule 2 (anti-syllogism): If ⊢(), then ⊢().

Rule 3 (anti-syllogism): If ⊢(), then ⊢().

3. Knowledge Reasoning Based on the SyllogismAA◇A-1

The following Theorem 1 shows that the syllogism AA◇A-1 is valid. In the following

Theorem 2, AA◇A-1AA◇I-1 means that the validity of the syllogism AA◇I-1 can

be inferred from that ofAA◇A-1. One can say that there are reducible relations between the
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two syllogisms. The others are similar.

Theorem 1 (AA◇A-1):all(M, N)all(G, M)◇all(G, N) is valid.

Proof: According to Example 1, AA◇A-1 is the abbreviation of the first figure syllogism

all(M, N)all(G, M)◇all(G, N). Suppose that all(M, N) and all(G, M) are true, then

MN is true at any possible world and GM is true at any real world in line with Definition

(1.5) and (1.1), respectively. Because all real worlds are possible worlds. Now it follows that

GN is true in at least one possible world. Thus, ◇all(G, N) is true according to Definition

(1.6). This proves that the syllogismall(M, N)all(G, M)◇all(G, N) is valid.

Theorem 2: The validity of the following 30 syllogisms can be inferred from that of AA◇

A-1:

(2.1) ⊢AA◇A-1AA◇I-1

(2.2) ⊢AA◇A-1AA◇I-1AA◇I-4

(2.3) ⊢AA◇A-1EA◇E-1

(2.4) ⊢AA◇A-1EA◇E-1EA◇E-2

(2.5) ⊢AA◇A-1EA◇E-1AE◇E-4

(2.6) ⊢AA◇A-1EA◇E-1EA◇E-2AE◇E-2

(2.7) ⊢AA◇A-1EA◇E-1EA◇O-1

(2.8) ⊢AA◇A-1EA◇E-1EA◇O-1EA◇O-2

(2.9) ⊢AA◇A-1OA◇O-3

(2.10) ⊢AA◇A-1AOO-2

(2.11) ⊢AA◇A-1AA◇I-1EA◇O-3

(2.12) ⊢AA◇A-1AA◇I-1EA◇O-3EA◇O-4

(2.13) ⊢AA◇A-1AA◇I-1AEO-2

(2.14) ⊢AA◇A-1AA◇I-1AEO-2AEO-4

(2.15) ⊢AA◇A-1EA◇E-1IA◇I-3

(2.16) ⊢AA◇A-1EA◇E-1IA◇I-3IA◇I-4
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(2.17) ⊢AA◇A-1EA◇E-1EIO-2

(2.18) ⊢AA◇A-1EA◇E-1E◇IO-2EIO-4

(2.19) ⊢AA◇A-1EA◇E-1E◇IO-2EIO-1

(2.20) ⊢AA◇A-1EA◇E-1E◇IO-2EIO-4EIO-4EIO-3

(2.21) ⊢AA◇A-1EA◇E-1EA◇E-2AI◇I-3

(2.22) ⊢AA◇A-1EA◇E-1EA◇E-2AI◇I-3AI◇I-1

(2.23) ⊢AA◇A-1EA◇E-1EA◇E-2AI◇I-3IA◇I-3

(2.24) ⊢AA◇A-1EA◇E-1EA◇E-2AI◇I-3AI◇I-1IA◇I-4

(2.25) ⊢AA◇A-1EA◇E-1EA◇O-1EAO-2

(2.26) ⊢AA◇A-1EA◇E-1EA◇O-1EAO-2EAO-1

(2.27) ⊢AA◇A-1EA◇E-1EA◇O-1AA◇I-3

(2.28) ⊢AA◇A-1EA◇E-1EA◇O-1AA◇I-3AA◇I-3

(2.29) ⊢AA◇A-1EA◇E-1AE◇E-4AE◇O-4

(2.30) ⊢AA◇A-1AA◇I-1AEO-2AE◇O-2

Proof:

[1] ⊢all(M, N)all(G, M)◇all(G, N) (i.e.AA◇A-1, Theorem 1)

[2] ⊢all(M, N)all(G, M)◇some(G, N) (i.e.AA◇I-1, by [1] and Fact 7)

[3] ⊢all(M, N)all(G, M)◇some(N, G) (i.e. AA◇I-4, by [2] and Fact 8)

[4] ⊢no(M, N)all(G, M)◇no(G, N) (by [1] and Fact 1)

[5] ⊢no(M, DN)all(G, M)◇no(G, DN) (i.e.EA◇E-1, by [4] and Definition 2)

[6] ⊢no(DN, M)all(G, M)◇no(G, DN) (i.e.EA◇E-2, by [5] and Fact 8)

[7] ⊢no(M, DN)all(G, M)◇no(DN, G) (i.e. AE◇E-4, by [5] and Fact 8)

[8] ⊢no(DN, M)all(G, M)◇no(DN, G) (i.e. AE◇E-2, by [6] and Fact 8)

[9] ⊢no(M, DN)all(G, M)◇not all(G, DN) (i.e.EA◇O-1, by [5] and Fact 7)

[10] ⊢no(DN, M)all(G, M)◇not all(G, DN) (i.e.EA◇O-2, by [9] and Fact 8)

[11] ⊢◇all(G, N)all(G, M)all(M, N) (by [1] and Rule 2)
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[12] ⊢all(G, N)all(G, M)◇all(M, N) ( by [11] and Fact 3)

[13] ⊢not all(G, N)all(G, M)◇not all(M, N) (i.e.OA◇O-3, by [12] and Fact 2)

[14] ⊢◇all(G, N)all(M, N)all(G, M) (by [1] and Rule 3)

[15] ⊢all(G, N)all(M, N)all(G, M) (by [14] and Fact 3)

[16] ⊢not all(G, N)all(M, N)not all(G, M) (i.e.AOO-2, by [15] and Fact 2)

[17] ⊢◇some(G, N)all(G, M)all(M, N) (by [2] and Rule 2)

[18] ⊢some(G, N)all(G, M)◇all(M, N) (by [17] and Fact 3)

[19] ⊢no(G, N)all(G, M)◇not all(M, N) (i.e.EA◇O-3, by [18] and Fact 2)

[20] ⊢no(N, G)all(G, M)◇not all(M, N) (i.e.EA◇O-4, by [19] and Fact 8)

[21] ⊢some(G, N)all(M, N)all(G, M) (by [2] and Rule 3 and Fact 3)

[22] ⊢no(G, N)all(M, N)not all(G, M) (i.e.AEO-2, by [21] and Fact 2)

[23] ⊢no(N, G)all(M, N)not all(G, M) (i.e.AEO-4, by [22] and Fact 8)

[24] ⊢no(G, DN)all(G, M)◇no(M, DN) (by [5] and Rule 2 and Fact 3)

[25] ⊢some(G, DN)all(G, M)◇some(M, DN) (i.e.IA◇I-3, by [24] and Fact 2)

[26] ⊢some(DN, G)all(G, M)◇some(M, DN) (i.e.IA◇I-4, by [25] and Fact 8)

[27] ⊢no(G, DN)no(M, DN)all(G, M) (by [5] and Rule 2 and Fact 3)

[28] ⊢some(G, DN)no(M, DN)not all(G, M) (i.e.EIO-2, by [27] and Fact 2)

[29] ⊢some(DN, G)no(M, DN)not all(G, M) (i.e.EIO-4, by [28] and Fact 8)

[30] ⊢some(G, DN)no(DN, M)not all(G, M) (i.e.EIO-1, by [28] and Fact 8)

[31] ⊢some(DN, G)no(DN, M)not all(G, M) (i.e.EIO-3, by [29] and Fact 8)

[32] ⊢no(G, DN)all(G, M)◇no(DN, M) (by [6] and Rule 2 and Fact 3)

[33] ⊢some(G, DN)all(G, M)◇some(DN, M) (i.e. AI◇I-3, by [32] and Fact 2)

[34] ⊢some(DN, G)all(G, M)◇some(DN, M) (i.e. AI◇I-1, by [33] and Fact 8)

[35] ⊢some(G, DN)all(G, M)◇some(M, DN) (i.e.IA◇I-3, by [33] and Fact 8)

[36] ⊢some(DN, G)all(G, M)◇some(M, DN) (i.e.IA◇I-4, by [34] and Fact 8)

[37] ⊢not all(G, DN)no(M, DN)all(G, M) (by [9] and Rule 2 and Fact 3)
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[38] ⊢all(G, DN)no(M, DN)not all(G, M) (i.e.EAO-2, by [37] and Fact 2)

[39] ⊢all(G, DN)no(DN, M)not all(G, M) (i.e.EAO-1, by [38] and Fact 8)

[40] ⊢not all(G, DN)all(G, M)◇no(M, DN) (by [9] and Rule 3 and Fact 3)

[41] ⊢all(G, DN)all(G, M)◇some(M, DN) (i.e.AA◇I-3, by [40] and Fact 2)

[42] ⊢all(G, DN)all(G, M)◇some(DN, M) (i.e. AA◇I-3, by [41] and Fact 8)

[43] ⊢no(M, DN)all(G, M)◇not all(DN, G) (i.e. AE◇O-4, by [7] and Fact 7)

[44] ⊢no(DN, M)all(G, M)◇not all(DN, G) (i.e. AE◇O-2, by [8] and Fact 7)

Theorem 2 shows there are reducible relations between valid Aristotelian modal syllogisms of

different figures and forms.

5. Conclusion

To sum up, Theorem 1 firstly proves that the syllogism AA◇A-1 is valid. Theorem 2 shows

the validity of the other 30 syllogisms can be inferred from that ofAA◇A-1 with the help of

possible world semantics and generalized quantifier theory. Owing to the possible modality

(◇) and necessary modality () can be defined mutually, and any Aristotelian quantifier also

can be defined by the other three, so there are reducible relations between/among 31 valid

Aristotelian modal syllogisms.

This paper provides a concise mathematical method for studying other types of modal

syllogisms (such as generalized modal syllogisms). The formal processing technology of

natural language in artificial intelligence has developed rapidly and has occupied an important

position. Therefore, how to make full use of this method to benefit natural language

information processing? This question is worth further study.
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