The Validity of Generalized Modal Syllogisms with the Generalized Quantifiers in Square\{most\}

Siyi Yu ${ }^{1}$, Xiaojun Zhang ${ }^{1, *}$
${ }^{1}$ School of Philosophy, Anhui University, Hefei, China
*Corresponding author
Email address:1490269686@qq.com(Siyi Yu), 591551032@qq.com (Xiaojun Zhang)

Abstract

Due to the large number of generalized quantifiers in the English language, this paper only studies the fragment of generalized modal syllogistic that contains the quantifiers in Square $\{$ all $\}$ and Square $\{$ most $\}$. On the basis of generalized quantifier theory, possible-world semantics, and set theory, this paper shows that there are reducible relations between/among the generalized modal syllogism $\square \mathrm{EM} \diamond \mathrm{O}-3$ and at least the other 29 valid generalized modal syllogisms. This method can also be used to study syllogisms with other generalized quantifiers. The results obtained by means of formal deductive method have not only consistency, but also theoretical value for the development of inference theory in artificial intelligence.

Key words: generalized modal syllogisms; reducibility; modality; validity

1. Introduction

Syllogism is one of the significant forms of reasoning in natural language and human thinking. There are various kinds of syllogisms, such as Aristotelian syllogisms (Patzig, 1969; Long, 2023; Hui, 2023), Aristotelian modal syllogisms (Johnson, 2004; Łukasiewicz, 1957; Cheng and Xiaojun, 2023), generalized syllogisms (Murinová and Novák, 2012; Xiaojun and Baoxiang, 2021; Endrullis and Moss, 2015), and generalized modal syllogisms (Jing and Xiaojun, 2023).

Although many generalized modal syllogisms exist in natural language, there is little literature on their reducibilities. Therefore, this paper mainly focuses on them. The four Aristotelian quantifiers (that is, not all, all, some and no) constitute Square \{all\}. And 'most' and its three negative (i.e. inner, outer and dual), fewer than half of the, at most half of the, and at least half of the, form Square $\{$ most $\}$. The generalized modal syllogisms studied in this paper only involve the quantifiers in Square $\{$ all $\}$ and Square $\{$ most $\}$.

2. Preliminaries

In this paper, let w, v and z be the lexical variables, which are elements in the set W, V and Z respectively, D be the domain of lexical variables, $|W|$ the cardinality of the set W, and m, n, s and t propositional variables. Q stands for any generalized quantifiers, $\neg Q$ and $Q \neg$ for the outer and inner negative quantifier of Q respectively. The generalized modal syllogisms discussed in this paper comprise the following sentences as follows: 'all w s are $v s$ ', 'no $w s$ are $v s$ ', 'some w s are $v s$ ', 'not all w s are $v s$ ', 'most w s are $v s$ ', 'fewer than half of the w s are $v s$ ', 'at most half of the w s are $v s$ ', and 'at least half of the w s are $v s$ '. They can be denoted as: $\operatorname{all}(w, v)$, no (w, v), some (w, v), not all (w, v), most (w, v), fewer than half of the (w, v), at most half of the (w, v), at least half of the (w, v), and are respectively abbreviated as Proposition A, E, I, O, M, F, H and S.

A non-trivial generalized modal syllogism includes at least one and at most three nonoverlapping modalities (possible modality (\diamond) or necessary modality (\square)) and non-trivial generalized quantifiers, such as the quantifiers in Square $\{$ most $\}$.

Example 1:

Major premise: No grapes are necessarily blueberries.
Minor premise: Most grapes are purple fruits.

Conclusion: Not all purple fruits are possibly blueberries.
Let w be the lexical variable for a blueberry in the domain, v be the lexical variable for a grape in the domain, and z be the lexical variable for a purple fruit in the domain. Then the syllogism in example 1 can be formalized as: $\square n o(v, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ not $\operatorname{all}(z, w)$, which abbreviated as $\square \mathrm{EM} \diamond \mathrm{O}-3$.

According to generalized quantifier theory, set theory (Halmos, 1974) and possible world semantics (Chellas, 1980), the truth value definitions of sentences with quantification, relevant facts and rules used in the paper are as follows:

Definition 1 (truth value definitions):
(1.1) $\operatorname{all}(w, v)$ is true when and only when $W \subseteq V$ is true in all real worlds.
(1.2) $n o(w, v)$ is true when and only when $W \cap V=\varnothing$ is true in all real worlds.
(1.3) some (w, v) is true when and only when $W \cap V \neq \varnothing$ is true in all real worlds.
(1.4) not all (w, v) is true when and only when $W \nsubseteq V$ is true in all real worlds.
(1.5) $\operatorname{most}(w, v)$ is true when and only when $|W \cap V|>0.5|W|$ is true in all real worlds.
(1.6) $\square a l l(w, v)$ is true when and only when $W \subseteq V$ is true in all possible worlds.
(1.7) $\diamond \operatorname{all}(w, v)$ is true when and only when $W \subseteq V$ is true in some possible worlds.
(1.8) $\square n o(w, v)$ is true when and only when $W \cap V=\varnothing$ is true in all possible worlds.
(1.9) $\diamond n o(w, v)$ is true when and only when $W \cap V=\varnothing$ is true in some possible worlds.
(1.10) \square some (w, v) is true when and only when $W \cap V \neq \varnothing$ is true in all possible worlds.
(1.11) \diamond some (w, v) is true when and only when $W \cap V \neq \varnothing$ is true in some possible worlds.
(1.12) \square not $\operatorname{all}(w, v)$ is true when and only when $W \nsubseteq V$ is true in all possible worlds.
(1.13) \diamond not $\operatorname{all}(w, v)$ is true when and only when $W \nsubseteq V$ is true in some possible worlds.
(1.14) $\square \operatorname{most}(w, v)$ is true when and only when $|W \cap V|>0.5|W|$ is true in all possible worlds.
$(1.15) \diamond \operatorname{most}(w, v)$ is true when and only when $|W \cap V|>0.5|W|$ is true in some possible worlds.
Definition 2 (inner negation): $Q \neg(w, v)={ }_{\operatorname{def}} Q(w, D-v)$.
Definition 3 (outer negation): $\neg Q(w, v)==_{\text {def }} \mathrm{It}$ is not that $Q(w, v)$.

Fact 1 (inner negation):
(1.1) $\vdash \operatorname{all}(w, v) \leftrightarrow n o \neg(w, v)$;
(1.2) $\vdash n o(w, v) \leftrightarrow \operatorname{all} \neg(w, v)$;
(1.3) $\vdash \operatorname{some}(w, v) \leftrightarrow \operatorname{not} \operatorname{all} \neg(w, v)$;
(1.4) \vdash not $\operatorname{all}(w, v) \leftrightarrow \operatorname{some} \neg(w, v)$;
(1.5) \vdash fewer than half of the $(w, v) \leftrightarrow \operatorname{most} \neg(w, v)$;
(1.6) $\vdash \operatorname{most}(w, v) \leftrightarrow$ fewer than half of the $\neg(w, v)$;
(1.7) トat most half of the $(w, v) \leftrightarrow$ at least half of the $\neg(w, v)$;
(1.8) トat least half of the $(w, v) \leftrightarrow$ at most half of the $\neg(w, v)$.

Fact 2 (outer negation):
(2.1) $\vdash \neg \operatorname{not} \operatorname{all}(w, v) \leftrightarrow \operatorname{all}(w, v)$;
(2.2) $\vdash \neg \operatorname{all}(w, v) \leftrightarrow \operatorname{not} \operatorname{all}(w, v)$;
$(2.3) \vdash \neg n o(w, v) \leftrightarrow \operatorname{some}(w, v)$;
(2.4) $\vdash \neg \operatorname{some}(w, v) \leftrightarrow n o(w, v)$;
(2.5) $\vdash \neg \operatorname{most}(w, v) \leftrightarrow a t$ most half of the (w, v);
(2.6) $\vdash \neg$ at most half of the $(w, v) \leftrightarrow \operatorname{most}(w, v)$;
(2.7) $\vdash \neg$ fewer than half of the $(w, v) \leftrightarrow$ at least half of the (w, v);
(2.8) $\vdash \neg$ at least half of the $(w, v) \leftrightarrow f$ fewer than half of the (w, v).

Fact 3 (dual):
(3.1) $\vdash \neg \square Q(w, v) \leftrightarrow \diamond \neg Q(w, v)$;
(3.2) $\vdash \neg \diamond Q(w, v) \leftrightarrow \square \neg Q(w, v)$.

Fact 4 (symmetry):
(4.1) $\vdash \operatorname{some}(w, v) \leftrightarrow \operatorname{some}(v, w)$;
$(4.2) \vdash n o(w, v) \leftrightarrow n o(v, w)$.
Fact 5 (subordination):
(5.1) $\vdash \square Q(w, v) \rightarrow Q(w, v)$;
$(5.2) \vdash \square Q(w, v) \rightarrow \diamond Q(w, v) ;$
(5.3) $\vdash Q(w, v) \rightarrow \diamond Q(w, v)$;
(5.4) $\vdash \operatorname{all}(w, v) \rightarrow \operatorname{some}(w, v)$;
$(5.5) \vdash n o(w, v) \rightarrow \operatorname{not} \operatorname{all}(w, v)$.
Rule 1 (subsequent weakening): If $\vdash(m \wedge n \rightarrow s)$ and $\vdash(s \rightarrow t)$, then $\vdash(m \wedge n \rightarrow t)$.
Rule 2 (anti-syllogism): If $\vdash(m \wedge n \rightarrow s)$, then $\vdash(\neg s \wedge m \rightarrow \neg n)$ or $\vdash(\neg S \wedge n \rightarrow \neg m)$.

3. The Validity of the Syllogism $\square \mathbf{E M} \diamond \mathbf{O}-3$

In order to discuss the reducibility of generalized modal syllogisms based on the syllogism $\square \mathrm{EM} \diamond \mathrm{O}-3$, it is necessary to prove the validity of the syllogism $\square \mathrm{EM} \diamond \mathrm{O}-3$.

Theorem $1(\square \mathrm{EM} \diamond \mathrm{O}-3)$: The generalized modal syllogism $\square n o(v, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ not $\operatorname{all}(z, w)$ is valid.

Proof: According to Example 1,$\mathrm{EM} \diamond \mathrm{O}-3$ is the abbreviation of the syllogism$n o(v$, $w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ not $\operatorname{all}(z, w)$. Suppose that $\square n o(v, w)$ and $\operatorname{most}(v, z)$ are true, then in virtue of

Definition (1.8), $\square n o(v, w)$ is true when and only when $V \cap W=\varnothing$ is true in all possible worlds. Similarly, in line with Definition (1.5), $\operatorname{most}(v, z)$ is true when and only when $|V \cap Z|>0.5|V|$ is true in all real worlds. Real worlds are elements in the set of all possible worlds. Thus, it is easily seen that $V \cap W=\varnothing$ and $|V \cap Z|>0.5|V|$ are true in some possible worlds. Then, it is clear that $Z \nsubseteq W$ is true in some possible worlds. \diamond not $\operatorname{all}(z, w)$ is true in terms of Definition (1.13). The above proves that the syllogism $\square n o(v, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ not $\operatorname{all}(z, w)$ is valid.

4. The Other Generalized Modal Syllogisms Derived from $\square \mathbf{E M} \diamond \mathbf{O}-3$

Theorem 1 states that $\square \mathrm{EM} \diamond \mathrm{O}-3$ is valid, and ' $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-4$ ' in Theorem 2(1) expresses that the validity of syllogism$\mathrm{EM} \diamond \mathrm{O}-4$ is deduced from that of syllogism $\square \mathrm{EM} \diamond \mathrm{O}-3$. That is to show that there are reducible relations between these two syllogisms, and the others are similar.

Theorem 2: There are at least the following 29 valid generalized modal syllogisms obtained from $\square \mathrm{EM} \diamond \mathrm{O}-3$:
(1) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-4$
(2) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2$
(3) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-1$
(4) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-3$
(5) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-4 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-4$
(6) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-4 \rightarrow \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-4$
(7) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-2$
(8) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-1 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-1$
(9) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-3 \rightarrow \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-3$
(10) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-1$
(11) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-1 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-1 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-2$
(12) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-3 \rightarrow \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-3 \rightarrow \mathrm{~F} \square \mathrm{~A} \diamond \mathrm{O}-3$
(13) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-1 \rightarrow \square \mathrm{~A} \square \mathrm{AS}-1$
(14) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{AM} \diamond \mathrm{I}-1 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-1 \rightarrow \square \mathrm{EM} \diamond \mathrm{O}-2 \rightarrow \square \mathrm{AF} \diamond \mathrm{O}-2$
(15) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2$
(16) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-4$
(17) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{M} \diamond \mathrm{I}-1$
(18) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-3$
(19) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{A} \diamond \mathrm{H}-2$
(20) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-4 \rightarrow \square \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-4$
(21) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-4 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-4$
(22) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{M} \diamond \mathrm{I}-1 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-1$
(23) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{M} \diamond \mathrm{I}-3$
(24) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{A} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{A} \diamond \mathrm{H}-1$
(25) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{~A} \square \mathrm{M} \diamond \mathrm{I}-1 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-1 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-2$
(26) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{~A} \square \mathrm{E} \diamond \mathrm{H}-2 \rightarrow \square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{M} \diamond \mathrm{I}-3 \rightarrow \square \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-3$
(27) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}$ $\mathrm{H}-2 \rightarrow \square \mathrm{E} \square$ AH-1 $\square \mathrm{A} \square \mathrm{A}$ $\square \mathrm{AS}-1$ $\square \mathrm{A} \square \mathrm{A}$
(28) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-1 \rightarrow \square \mathrm{~A} \square \mathrm{AS}-1 \rightarrow \square \mathrm{~A} \square \mathrm{~A} \diamond \mathrm{~S}-1$ $\rightarrow \square \mathrm{A} \square \mathrm{F} \diamond \mathrm{O}-2$
(29) $\square \mathrm{EM} \diamond \mathrm{O}-3 \rightarrow \square \mathrm{~A} \square \mathrm{EH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-2 \rightarrow \square \mathrm{E} \square \mathrm{AH}-1 \rightarrow \square \mathrm{~A} \square \mathrm{AS}-1 \rightarrow \square \mathrm{~A} \square \mathrm{~A} \diamond \mathrm{~S}-1$
$\rightarrow \square \mathrm{F} \square \mathrm{A} \diamond \mathrm{O}-3$

Proof:

$[1] \vdash \square \operatorname{no}(v, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{not} \operatorname{all}(z, w)$
$[2] \vdash \square n o(w, v) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{not} \operatorname{all}(z, w)$
[3] $\vdash \neg \diamond n o t \operatorname{all}(z, w) \wedge \square n o(v, w) \rightarrow \neg \operatorname{most}(v, z)$
$[4] \vdash \square \neg \operatorname{not} \operatorname{all}(z, w) \wedge \square n o(v, w) \rightarrow \neg \operatorname{most}(v, z)$
(i.e. $\square \mathrm{EM} \diamond \mathrm{O}-3$, Theorem 1)
(i.e. $\square \mathrm{EM} \diamond \mathrm{O}-4$, by [1] and Fact (4.2)) (by [1] and Rule 2)
(by [3] and Fact (3.2))
$[5] \vdash \square \operatorname{all}(z, w) \wedge \square n o(v, w) \rightarrow$ at most half of the (v, z)
(i.e. $\square \mathrm{A} \square \mathrm{EH}-2$, by [4], Fact (2.1) and Fact (2.5))
$[6] \vdash \neg \diamond \operatorname{not} \operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \neg \square \operatorname{no}(v, w)$
[7] $\vdash \square \neg \operatorname{not} \operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \neg \operatorname{no}(v, w)$ (by [1] and Rule 2) (by [6], Fact (3.1) and Fact (3.2))
$[8] \vdash \square \operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{some}(v, w) \quad$ (i.e. $\square \mathrm{AM} \diamond \mathrm{I}-1$, by [7], Fact (2.1) and Fact (2.3))
$[9] \vdash \square \operatorname{all} \neg(v, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ some $\neg(z, w)$
$[10] \vdash \square \operatorname{all}(v, D-w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{some}(z, D-w)$
(i.e.(by [1], Fact (1.2) and Fact (1.4))
$[11] \vdash \neg \diamond n o t \operatorname{all}(z, w) \wedge \square n o(w, v) \rightarrow \neg \operatorname{most}(v, z)$ (by [2] and Rule 2)
$[12] \vdash \square \neg \operatorname{not} \operatorname{all}(z, w) \wedge \square n o(w, v) \rightarrow \neg \operatorname{most}(v, z)$ (by [11] and Fact (3.2))
$[13] \vdash \square \operatorname{all}(z, w) \wedge \square n o(w, v) \rightarrow$ at most half of the (v, z)
(i.e. $\square \mathrm{A} \square \mathrm{EH}-4$, by [12], Fact (2.1) and Fact (2.5))
$[14] \vdash \neg \diamond$ not $\operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \neg \square n o(w, v) \quad$ (by [2] and Rule 2)
$[15] \vdash \square \neg \operatorname{not} \operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \neg n o(w, v)$
(by [14], Fact (3.1) and Fact (3.2))
$[16] \vdash \square \operatorname{all}(z, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{some}(w, v)$
(i.e. $\mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-4$, by [15], Fact (2.1) and Fact (2.3))
$[17] \vdash \square n o \neg(z, w) \wedge \square$ all $\neg(v, w) \rightarrow$ at most half of the $(v, z) \quad$ (by [5], Fact (1.1) and Fact (1.2))
$[18] \vdash \square n o(z, D-w) \wedge \square a l l(v, D-w) \rightarrow a t ~ m o s t ~ h a l f ~ o f ~ t h e ~(v, z)$
(i.e. $\square \mathrm{E} \square \mathrm{AH}-2$, by $[17]$ and Definition 2)
$[19] \vdash \square n o \neg(z, w) \wedge \operatorname{most}(v, z) \rightarrow \diamond$ not all $\neg(v, w)$
(by [8], Fact (1.1) and Fact (1.3))
$[20] \vdash \square n o(z, D-w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{not} \operatorname{all}(v, D-w) \quad$ (i.e. $\square \mathrm{EM} \diamond \mathrm{O}-1$, by [19] and Definition 2)
$[21] \vdash \square \operatorname{all}(v, D-w) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{some}(D-w, z) \quad$ (i.e. $\mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-3$, by [10] and Fact (4.1))
$[22] \vdash \square n o(D-w, z) \wedge \square a l l(v, D-w) \rightarrow a t ~ m o s t ~ h a l f ~ o f ~ t h e(v, z)$
(i.e. $\square \mathrm{E} \square \mathrm{AH}-1$, by [18] and Fact (4.2))
$[23] \vdash \square n o(D-w, z) \wedge \operatorname{most}(v, z) \rightarrow \diamond \operatorname{not} \operatorname{all}(v, D-w) \quad$ (i.e. $\square \mathrm{EM} \diamond \mathrm{O}-2$, by [20] and Fact (4.2))
$[24] \vdash \square$ all $(v, D-w) \wedge$ fewer than half of the $\neg(v, z) \rightarrow \diamond$ not all $\neg(D-w, z)$
(by [21], Fact (1.6) and Fact (1.3))
$[25] \vdash \square a l l(v, D-w) \wedge$ fewer than half of the $(v, D-z) \rightarrow \diamond$ not all $(D-w, D-z)$
(i.e. $\mathrm{F} \square \mathrm{A} \diamond \mathrm{O}-3$, by [24] and Definition 2)
$[26] \vdash \square a l l \neg(D-w, z) \wedge \square a l l(v, D-w) \rightarrow a t ~ l e a s t ~ h a l f ~ o f ~ t h e ~ \neg(v, z)$
(by [22], Fact (1.2) and Fact (1.7))
$[27] \vdash \square \operatorname{all}(D-w, D-z) \wedge \square a l l(v, D-w) \rightarrow a t ~ l e a s t ~ h a l f ~ o f ~ t h e(v, D-z)$
(i.e.\square AS-1, by [26] and Definition 2)
$[28] \vdash \square$ all $\neg(D-w, z) \wedge$ fewer than half of the $\neg(v, z) \rightarrow \diamond$ not all $(v, D-w)$
(by [23], Fact (1.2) and Fact (1.6))
$[29] \vdash \square \operatorname{all}(D-w, D-z) \wedge$ fewer than half of the $(v, D-z) \rightarrow \diamond$ not all $(v, D-w)$
(i.e. $\square \mathrm{AF} \diamond \mathrm{O}-2$, by $[28]$ and Definition 2)
$[30] \vdash \square \operatorname{all}(z, w) \wedge \square n o(v, w) \rightarrow \diamond$ at most half of the (v, z)
(i.e. $\square \mathrm{A} \square \mathrm{E} \diamond \mathrm{H}-2$, by [5], Fact (5.3) and Rule 1)
$[31] \vdash \square \operatorname{all}(z, w) \wedge \square n o(w, v) \rightarrow \diamond$ at most half of the (v, z)
(i.e.$A \square E \diamond H-4$, by [30] and Fact (4.2))
$[33] \vdash \square \neg$ at most half of the $(v, z) \wedge \square \operatorname{all}(z, w) \rightarrow \diamond \neg n o(v, w) \quad$ (by [32], Fact (3.1) and Fact (3.2)) $[34] \vdash \square \operatorname{most}(v, z) \wedge \square \operatorname{all}(z, w) \rightarrow \diamond \operatorname{some}(v, w)$
(i.e. $\square \mathrm{A} \square \mathrm{M} \diamond \mathrm{I}-1$, by [33], Fact (2.6) and Fact (2.3))
[35] $\neg \neg \diamond$ at most half of the $(v, z) \wedge \square n o(v, w) \rightarrow \neg \square \operatorname{all}(z, w) \quad$ (by [30] and Rule 2)
[36] $\vdash \square \neg$ at most half of the $(v, z) \wedge \square n o(v, w) \rightarrow \diamond \neg \operatorname{all}(z, w) \quad$ (by [35], Fact (3.1) and Fact (3.2))
$[37] \vdash \square \operatorname{most}(v, z) \wedge \square n o(v, w) \rightarrow \diamond \operatorname{not} \operatorname{all}(z, w)$
(i.e. $\square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-3$, by [36], Fact (2.6) and Fact (2.2))
$[38] \vdash \square n o \neg(z, w) \wedge \square$ all $\neg(v, w) \rightarrow \diamond$ at most half of the $(v, z) \quad$ (by [30], Fact (1.1) and Fact (1.2)) $[39] \vdash \square n o(z, D-w) \wedge \square a l l(v, D-w) \rightarrow \diamond$ at most half of the (v, z)
(i.e. $\square \mathrm{E} \square \mathrm{A} \diamond \mathrm{H}-2$, by [38] and Definition 2)
[40] $\neg \neg \diamond$ at most half of the $(v, z) \wedge \square a l l(z, w) \rightarrow \neg \square n o(w, v) \quad$ (by [31] and Rule 2)
$[41] \vdash \square \neg$ at most half of the $(v, z) \wedge \square \operatorname{all}(z, w) \rightarrow \diamond \neg n o(w, v) \quad$ (by [40], Fact (3.1) and Fact (3.2))
$[42] \vdash \square \operatorname{most}(v, z) \wedge \square \operatorname{all}(z, w) \rightarrow \diamond \operatorname{some}(w, v)$
(i.e. $\square \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-4$, by [41], Fact (2.6) and Fact (2.3))
$[43] \vdash \neg \diamond$ at most half of the $(v, z) \wedge \square n o(w, v) \rightarrow \neg \square \operatorname{all}(z, w)$
(by [31] and Rule 2)
[44] $\vdash \square \neg$ at most half of the $(v, z) \wedge \square n o(w, v) \rightarrow \diamond \neg \operatorname{all}(z, w) \quad$ (by [43], Fact (3.1) and Fact (3.2))
$[45] \vdash \square \operatorname{most}(v, z) \wedge \square n o(w, v) \rightarrow \diamond \operatorname{not} \operatorname{all}(z, w)$
(i.e. $\square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-4$, by [44], Fact (2.6) and Fact (2.2))
$[46] \vdash \square \operatorname{most}(v, z) \wedge \square n o \neg(z, w) \rightarrow \diamond$ not all $\neg(v, w) \quad$ (by [34], Fact (1.1) and Fact (1.3))
$[47] \vdash \square \operatorname{most}(v, z) \wedge \square n o(z, D-w) \rightarrow \diamond \operatorname{not} \operatorname{all}(v, D-w)$
(i.e. $\square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-1$, by [46] and Definition 2)
$[48] \vdash \square \operatorname{most}(v, z) \wedge \square \operatorname{all} \neg(v, w) \rightarrow \diamond \operatorname{some} \neg(z, w) \quad$ (by [37], Fact (1.2) and Fact (1.4))
$[49] \vdash \square \operatorname{most}(v, z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond \operatorname{some}(z, D-w)$
(i.e.$\square \mathrm{A} \square \mathrm{M} \diamond \mathrm{I}-3$, by [48] and Definition 2)
$[50] \vdash \square n o(D-w, z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond$ at most half of the (v, z)
(i.e. \qquad $\square \mathrm{A} \diamond \mathrm{H}-1$, by [39] and Fact (4.2))
$[51] \vdash \square \operatorname{most}(v, z) \wedge \square n o(D-w, z) \rightarrow \diamond n o t \operatorname{all}(v, D-w)$
(i.e. $\square \mathrm{E} \square \mathrm{M} \diamond \mathrm{O}-2$, by [47] and Fact (4.2))
$[52] \vdash \square \operatorname{most}(v, z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond \operatorname{some}(D-w, z)$
(i.e. $\square \mathrm{M} \square \mathrm{A} \diamond \mathrm{I}-3$, by [49] and Fact (4.1))
[53] $\vdash \square \operatorname{all}(D-w, D-z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond$ at least half of the $(v, D-z)$
(i.e. $\square \mathrm{A} \square \mathrm{A} \diamond \mathrm{S}-1$, by [27], Fact (5.3) and Rule 1)
[54] $\vdash \neg \diamond$ at least half of the $(v, D-z) \wedge \square \operatorname{all}(D-w, D-z) \rightarrow \neg \square \operatorname{all}(v, D-w) \quad$ (by [53] and Rule 2)
$[55] \vdash \square \neg$ at least half of the $(v, D-z) \wedge \square \operatorname{all}(D-w, D-z) \rightarrow \diamond \neg \operatorname{all}(v, D-w)$
(by [54], Fact (3.1) and Fact (3.2))
$[56] \vdash \square$ fewer than half of the $(v, D-z) \wedge \square \operatorname{all}(D-w, D-z) \rightarrow \diamond$ not $\operatorname{all}(v, D-w)$
(i.e. $\square \mathrm{A} \square \mathrm{F} \diamond \mathrm{O}-2$, by [55], Fact (2.8) and Fact (2.2))
[57] $\vdash \neg \diamond$ at least half of the $(v, D-z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \neg \square \operatorname{all}(D-w, D-z) \quad$ (by [53] and Rule 2)
[58] $\vdash \square \neg$ at least half of the $(v, D-z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond \neg \operatorname{all}(D-w, D-z)$
(by [57], Fact (3.1) and Fact (3.2))
[59] $\vdash \square$ fewer than half of the $(v, D-z) \wedge \square \operatorname{all}(v, D-w) \rightarrow \diamond$ not $\operatorname{all}(D-w, D-z)$
(i.e. $\square \mathrm{F} \square \mathrm{A} \diamond \mathrm{O}-3$, by [58], Fact (2.8) and Fact (2.2))

Now, the other 29 generalized modal syllogisms have been deduced from the validity of $\square \mathrm{EM} \diamond \mathrm{O}$-3. Similarly, more valid syllogisms can be inferred from it. This indicates that there are reducible relations between/among these syllogisms. Their validity can be proven similar to Theorem 1.

5. Conclusion

Due to the large number of generalized quantifiers in the English language, this paper only studies the fragment of generalized modal syllogistic that contains the quantifiers in

Square $\{$ all $\}$ and Square $\{$ most $\}$. This paper proves that there are reducible relations between/ among the generalized modal syllogism $\square \mathrm{EM} \diamond \mathrm{O}-3$ and at least the above 29 valid generalized modal syllogisms. To be specific, this paper firstly proves the validity of $\square \mathrm{EM} \diamond \mathrm{O}-3$ on the basis of generalized quantifier theory, possible-world semantics, and set theory. Then, according to some facts and inference rules, the above 29 valid generalized modal syllogisms are derived from $\square \mathrm{EM} \diamond \mathrm{O}-3$.

This method can also be used to study syllogisms with other generalized quantifiers, such as at most $1 / 3$ of the, more than $1 / 3$ of the, at least $2 / 3$ of the, fewer than $2 / 3$ of the. It is obvious that the above results obtained by deduction have not only consistency, but also theoretical value for the development of inference theory in artificial intelligence.

Acknowledgement

This work was supported by the National Social Science Foundation of China under Grant No.22\&ZD295.

Reference

[1] J. Łukasiewicz, (1957). Aristotle’s Syllogistic: From the Standpoint of Modern Formal Logic, second edition, Oxford: Clerndon Press.
[2] G. Patzig, (1969). Aristotle's Theory of the Syllogism. D. Reidel.
[3] P. Halmos, (1974). Naive Set Theory, New York: Springer-Verlag.
[4] F. Chellas, (1980). Modal Logic: an Introduction, Cambridge: Cambridge University Press.
[5] F. Johnson, (2004). Aristotle's modal syllogisms, Handbook of the History of Logic, I, pp. 247-338.
[6] P. Murinová and V. Novák, (2012). A Formal Theory of Generalized Intermediate Syllogisms, Fuzzy Sets and Systems, 186, pp. 47-80.
[7] J. Endrullis and L. Moss, (2015). Syllogistic logic with 'Most', in V. de Paiva et al. (eds.), Logic, Language, Information, and Computation, pp. 124-139.
[8] Xiaojun Zhang, Baoxiang Wu, (2021). Research on Chinese Textual Reasoning, Beijing:

People's Publishing House. (in Chinese)
[9] Long Wei, (2023). Formal system of categorical syllogistic logic based on the syllogism AEE-4. Open Journal of Philosophy, (13), 97-103.
[10] Hui Li, (2023). Reduction between categorical syllogisms based on the syllogism EIO-2. Applied Science and Innovative Research, (7), 30-37.
[11] Cheng Zhang and Xiaojun Zhang (2023). Reduction between Aristotelian Modal Syllogisms Based on the Syllogism $\diamond \mathrm{IA} \diamond \mathrm{I}-3$. Open Journal of Philosophy, 2023, 13, 145-154.
[12] Jing Xu and Xiaojun Zhang (2023). The Reducibility of Generalized Modal Syllogisms Based on $\square \mathrm{AM} \diamond \mathrm{I}-1$. SCIREA Journal of Philosophy, Volume 3, Issue 1.

