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Abstract

This paper firstly proves that the syllogism EMO-4 is valid, and secondly indicates

the validity of the other 14 syllogisms can be deduced from that of EMO-4 with the

help of generalized quantifier theory, set theory, and first-order logic. And more valid

generalized syllogisms can be deduced when one continues to infer. It indicates that

there are reducible relations between/among valid generalized syllogisms. It is hoped

that this research will not only promote the development of modern logic, but also

provide assistance for knowledge reasoning in natural language.

Keywords: generalized quantifiers; first-order logic; reducible relation; generalized
syllogisms

1. Introduction

There are two types of quantifiers in natural language: Aristotelian quantifiers (that is,

all, not all, some, no) and generalized quantifiers (Zhang, 2018). The former is a
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special case of the latter (Wei, 2023). A generalized syllogism contains at least one

generalized quantifier (Hao, 2024). This paper only studies non-trivial generalized

syllogisms(Moss, 2008; Endrullis and Moss, 2015), which include at least one

generalized quantifier beyond Aristotelian quantifiers. There are infinitely many

non-trivial generalized quantifiers in natural language (Barwise and Cooper, 1981;

Westerståhl, 1989), such as most, both, fewer than half of the, which can form an

infinite number of non-trivial generalized syllogisms. Generalized syllogism

reasoning is one of the important forms of syllogistic reasoning which has been a

widespread and significant form of reasoning in human thinking (Xu and Zhang,

2023).

But there are few works about generalized syllogisms. Different from the previous

studies, this paper is devoted to studying the validity and reducibility of generalized

syllogisms with the non-trivial generalized quantifier most and its outer, inner, and

dual negative quantifiers, that is, at most half of the, fewer than half of the, and at

least half of the, respectively. The above four quantifiers form a modern

square{most}.

2. Preliminary Knowledge

In this paper, g, k, and r denote lexical variables, and D represents their domain. The

sets composed of g, k, and r are denoted by G, K, and R, respectively. Let , ,  and

 be well-formed formulas (abbreviated as wff). ‘G∩R’ represents the cardinality

for the intersection of the sets G and R (Halmos, 1974). ‘⊢’indicates that the formula

 is provable, and ‘=def’indicates that  can be defined by . Others are similar. The

connectives in the paper such as, ,, , are symbols in first-order logic.

Generalized syllogisms in this paper only involves the following eight propositions:

all (g, r), no (g, r), some (g, r), not all (g, r), most (g, r), fewer than half of the (g, r),

at most half of the (g, r), at least half of the (g, r), which are respectively abbreviated

as Propositions A, E, I, O, M, F, H, and S. In this paper, Q just refers to one of the

eight quantifiers contained in these eight propositions. The fourth figure generalized

syllogism no(g, k)most(k, r)not all(r, g) is abbreviated as EMO-4, which is the

foundation of syllogism deductive reasoning in this paper. A natural language

example of it is as follows:
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Major premise: No plastic conducts electricity.

Minor premise: Most conductive things are metals.

Conclusion: Not all metals are plastic.

Let g be a lexical variable that stands for plastic in the domain, k be a lexical variable

that denotes conductive things in the domain, and r be a lexical variable that

represents metals in the domain. Then this syllogism can be formalized as ‘no(g,

k)most(k, r)not all(r, g) ’, which is abbreviated as EMO-4. Others are similar to

this.

3. Generalized Syllogism System Including the Generalized

Quantifier ‘Most’

This system contains the following: primitive symbols, formation and deductive

rules, and basic axioms, and so on.

3.1 Primitive Symbols

(1) lexical variables: g, k, r

(2) quantifier: no

(3) quantifier: most

(4) unary connectives:  

(5) brackets: (, )

3.2 Formation Rules

(1) If Q is a quantifier, g and r are lexical variables, then Q(g, r) is a wff.

(2) If  and  are wffs, then so is .

(3) Only the formulas obtained by the rules are wffs.

3.3 Basic Axioms

A1: If  is a valid formula in first-order logic, then ⊢.

A2: ⊢no(g, k)most(k, r)not all(r, g) (that is, the syllogism EMO-4).
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3.4 Deductive Rules

Rule 1 (subsequent weakening): From ⊢() and ⊢() infer ⊢().

Rule 2 (anti-syllogism): From ⊢() infer ⊢().

Rule 3 (anti-syllogism): From ⊢() infer ⊢().

3.5 Relevant Definitions

D1: ()=def();

D2: () =def ()();

D3: (Q)(g, r)=def Q(g, Dr)

D4: (Q)(g, r)=def It is not that Q(g, r)

D5: all(g, r) is true when and only when GR is true;

D6: some(g, r) is true when and only when G∩R is true;

D7: no(g, r) is true when and only when G∩R= is true;

D8: not all(g, r) is true when and only when G⊈R is true;

D9: most(g, r) is true when and only when G∩RG is true;

D10: fewer than half of the(g, r) is true when and only when G∩R0.5G is true ;

D11: at most half of the(g, r) is true when and only when G∩R0.5G is true;

D12: at least half of the(g, r) is true when and only when G∩RG is true.

Fact 1(Inner Negation):

(1.1) ⊢all(g, r)=no(g, r);

(1.2) ⊢no(g, r)=all(g, r);

(1.3) ⊢some(g, r)=not all(g, r);

(1.4) ⊢not all(g, r)=some(g, r);

(1.5) ⊢most(g, r)=fewer than half of the(g, r);

(1.6) ⊢fewer than half of the(g, r)=most(g, r);

(1.7) ⊢at least half of the(g, r)=at most half of the(g, r);
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(1.8) ⊢at most half of the(g, r)=at least half of the(g, r).

Fact 2(Outer Negation)::

(2.1) ⊢all(g, r)=not all(g, r);

(2.2) ⊢not all(g, r)=all(g, r);

(2.3) ⊢no(g, r)=some(g, r);

(2.4) ⊢some(g, r)=no(g, r);

(2.5) ⊢most(g, r)=at most half of the(g, r);

(2.6) ⊢at most half of the(g, r)=most(g, r);

(2.7) ⊢fewer than half of the(g, r)=at least half of the(g, r);

(2.8) ⊢at least half of the(g, r)=fewer than half of the(g, r).

Fact 3 (Symmetry):

(3.1) ⊢some(g, r)some(r, g);

(3.2) ⊢no(g, r)no(r, g).

Fact 4 (Subordination):

(4.1) ⊢all(g, r)some(g, r);

(4.2) ⊢no(g, r)not all(g, r);

(4.3) ⊢all(g, r)most(g, r);

(4.4) ⊢most(g, r)some(g, r);

(4.5) ⊢at least half of the(g, r)some(g, r);

(4.6) ⊢all(g, r)at least half of the(g, r);

(4.7) ⊢at most half of the(g, r)not all(g, r);

(4.8) ⊢fewer than half of the(g, r)not all(g, r).

4. The Validity and Reducibility of the Generalized Syllogism EMO-4

The following Theorem 1 indicates that the syllogism EMO-4 is valid. In the
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following Theorem 2, EMO-4 EMO-3 means that the validity of the syllogism

EMO-3 can be inferred from that of EMO-4. One can say that there are reducible

relations between the two syllogisms. In other words, the syllogism EMO-3 has

reducibility. The others are similar.

Theorem 1 (EMO-4): The generalized syllogism no(g, k)most(k, r)not all(r, g) is

valid.

Proof: According to Example 1, EMO-4 is the abbreviation of the fourth figure

syllogism no(g, k)most(k, r)not all(r, g). Suppose that no(g, k) and most(k, r) are

true, then G∩K= is true and K∩RK is true in line with Definition D7 and

D9, respectively. Now it follows that R∩G= is true. Thus, not all(r, g) is true

according to Definition D8. This proves that the syllogism no(g, k)most(k, r)not

all(r, g) is valid.

Theorem 2: There are the following 14 valid generalized syllogisms inferred from the

syllogism EMO-4:

(2.1) ⊢EMO-4EMO-3

(2.2) ⊢EMO-4AEH-4

(2.3) ⊢EMO-4AEH-4AEH-2

(2.4) ⊢EMO-4MAI-4

(2.5) ⊢EMO-4MAI-4AMI-1

(2.6) ⊢EMO-4EMO-3AMI-3

(2.7) ⊢EMO-4EMO-3AMI-3MAI-3

(2.8) ⊢EMO-4AEH-4AEH-2EAH-2

(2.9) ⊢EMO-4AEH-4AEH-2EAH-2EAH-1

(2.10) ⊢EMO-4MAI-4AMI-1EMO-1

(2.11) ⊢EMO-4MAI-4AMI-1EMO-1EMO-2

(2.12) ⊢EMO-4EMO-3AMI-3MAI-3FAO-3

(2.13) ⊢EMO-4AEH-4AEH-2EAH-2EAH-1AAS-1

(2.14) ⊢EMO-4MAI-4AMI-1EMO-1EMO-2AFO-2

Proof

[1] ⊢no(g, k)most(k, r)not all(r, g) (i.e.EMO-4, basic axiom)

[2] ⊢no(k, g)most(k, r)not all(r, g) (i.e.EMO-3, by[1] and Fact 3)

[3] ⊢not all(r, g)no(g, k)most(k, r) (by[1] and Rule 2)
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[4] ⊢all(r, g)no(g, k)at most half of the(k, r) (i.e.AEH-4, by[3] and Fact 2)

[5] ⊢all(r, g)no(k, g)at most half of the(k, r) (i.e.AEH-2, by[4] and Fact 3)

[6] ⊢not all(r, g)most(k, r)no(g, k) (by[1] and Rule 3)

[7] ⊢all(r, g)most(k, r)some(g, k) (i.e.MAI-4, by[6] and Fact 2)

[8] ⊢all(r, g)most(k, r)some(k, g) (i.e.AMI-1, by[7] and Fact 3)

[9] ⊢all(k, g)most(k, r)some(r, g) (by[2] and Fact 1)

[10] ⊢all(k, Dg)most(k, r)some(r, Dg) (i.e.AMI-3, by[9] and D3)

[11] ⊢all(k, Dg)most(k, r)some(Dg, r) (i.e.MAI-3, by[10] and Fact 3)

[12] ⊢no(r, g)all(k, g)at most half of the(k, r) (by[5] and Fact 1)

[13] ⊢no(r, Dg)all(k, Dg)at most half of the(k, r) (i.e.EAH-2, by[12] and D3)

[14] ⊢no(Dg, r)all(k, Dg)at most half of the(k, r) (i.e.EAH-1, by[13] and Fact 3)

[15] ⊢no(r, g)most(k, r)not all(k, g) (by[8] and Fact 1)

[16] ⊢no(r, Dg)most(k, r)not all(k, Dg) (i.e.EMO-1, by[15] and D3)

[17] ⊢no(Dg, r)most(k, r)not all(k, Dg) (i.e.EMO-2, by[16] and Fact 3)

[18] ⊢all(k, Dg)fewer than half of the(k, r)not all(Dg, r) (by[11] and Fact 1)

[19] ⊢all(k, Dg)fewer than half of the(k, Dr)not all(Dg, Dr) (i.e.FAO-3, by[18] and D3)

[20] ⊢all(Dg, r)all(k, Dg)at least half of the(k, r) (by[14] and Fact 1)

[21] ⊢all(Dg, Dr)all(k, Dg)at least half of the(k, Dr) (i.e.AAS-1, by[20] and D3)

[22] ⊢all(Dg, r)fewer than half of the(k, r)not all(k, Dg) (by[17] and Fact 1)

[23] ⊢all(Dg, Dr)fewer than half of the(k, Dr)not all(k, Dg) (i.e.AFO-2, by[22] and D3)
Now, the other 14 valid generalized syllogisms have been deduced from the validity

of EMO-4.

4. Conclusion

To sum up, Theorem 1 firstly proves that the syllogism EMO-4 is valid. Theorem 2

indicates the validity of the other 14 syllogisms can be deduced from that of EMO-4

with the help of generalized quantifier theory, set theory, and first-order logic. It

shows that there are reducible relations between/among valid generalized syllogisms

of different figures and forms.

This paper only studies the validity and reducibility of the generalized syllogisms that

involve the generalized quantifiers in modern Square{most}. This work provides a

concise and universal deductive method for generalized syllogisms that include other

non-trivial generalized quantifiers (such as at least two-thirds, both, infinitely many).
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This study has important theoretical value and practical significance for knowledge

reasoning in natural language. Therefore, it is crucial to conduct in-depth research on

the validity and reducibility of other generalized syllogisms.
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